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An analysis of the scattering of high-frequency 
electromagnetic radiation from rough surfaces 
with application to pulse radar operating 
in backscatter mode 

J. Walsh • and E.W. Gill 
Faculty of Engineering and Applied Science, Memorial University of Newfoundland, 
St. John's, Newfoundland, Canada 

Abstract. The scattering of high-frequency (HF) electromagnetic radiation from slightly 
rough, good conducting surfaces is presented. The analysis is based on a decomposition 
of the relevant space using generalized functions. The fundamental analysis incorporates 
a general source and involves all scattering orders for the normal component of the field. 
Subsequently, derivation of the scattered electric field (to third order in scatter) using a 
pulsed dipole source is effected. The first 2 orders are used to deduce an estimate of radar 
cross sections of bounded regions or targets when operation is carried out in the backscatter 
mode. Conditions of small height and small slope are imposed. Application is made to the 
determination of the first-order cross section of a perfectly conducting sphere (within the 
limits of the imposed contraints) and of an exponential boss. The results are shown to be 
consistent with Rayleigh scattering theory. 

1. Introduction 

Since the presentations of such fundamental works 
as those of Sommerfeld [1909] and Norton, [1936, 
1937], a vast quantity of literature has appeared on 
topics pertinent to the scattering of electromagnetic 
(em) radiation as it impinges a surface separating 
homogeneous media. A few of the techniques which 
are either relevant to the treatment at hand or to its 

possible applications are briefly mentioned here. 
Of the several approaches to the problem of the 

scattering of wave energy from rough surfaces, one 
of the earliest was that of perturbation, initiated by 
Lord Rayleigh in 1896 [Strutt, 1945] in the context 
of acoustics and implemented by Rice, [1951] in re- 
lation to electromagnetics. Following Rice, many in- 
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vestigators, including Wait [1971], Barrick [1971a, 
1971b, 1972a, 1972b], Mitzner [1964], Rosich and 
Wait [1977], and Rodriguez and Kim [1992], have 
adapted, refined, and applied this method to a vari- 
ety of scattering problems. The basic requirements in 
the application of the perturbation method are that 
the surface profile variations be small compared to 
the radio wavelength and the surface slopes be much 
smaller than unity. It transpires that similar restric- 
tions in the ensuing procedures lead to simplifications 
of the analysis, while providing results which are es- 
pecially useful for the many applications involving 
radio transmission in the high-frequency (HF) band 
(3-30 MHz). 

The so-called full-wave scattering solutions intro- 
duced by Bahar [1972] have been refined over the 
last two and one half decades [see, e.g., Bahar, 1980, 
1991; Coilin, 1992]. The results of Bahar et al. [1995] 
are in agreement with those of Rice [1951] when the 
product of the root-mean-square surface height and 
the free space wavenumber along with the surface 
slopes are on the same order of smallness. 

Walsh [1980] proposed an alternate technique for 
the study of rough surface propagation and scatter. 
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The method is based on a decomposition of surface 
characteristics and em field components in terms of 
Heaviside functions dictated by the various regions 
of the total scattering space. The application and 
interpretation of Maxwell's are carried out in the 
sense of generalized functions. As noted by Walsh 
and Donnelly [1987a], the technique contains a min- 
imum of sophisticated analysis and has the following 
properties: (1) The analysis proceeds directly from 
Maxwell's equations; (2) the source field is arbitrary; 
(3) the equations directly relate the scattered electric 
fields to the known source fields without the use of 

intermediate Hertz potentials; and (4) the bound- 
ary conditions are generated naturally from the ini- 
tial formulation of the problem. The basic approach 
has been to develop the analyses and applications to 
the problem of propagation and scattering for mixed 
paths with discontinuities [Walsh et al., 1986; Walsh 
and Donnelly, 1987a], as well as to surface propa- 
gation and scatter for periodic surfaces [Walsh and 
$rivastava, 1987a]. 

In this paper, the results given by Walsh and Don- 
nelly [1987b] are first used to develop new, general 
expressions for the normal and tangential electric 
fields for a surface with arbitrary profile. Second, 
with a view to applying the results to the operation 
of a pulsed HF vertical dipole source in a marine 
environment, the initial equations, which appear in 
operator form and are of great generality, are vastly 
simplified by imposing the conditions of (1) a good 
conducting surface and (2) small surface height vari- 
ations as compared to the radio wavelength. The re- 
sulting integral equation, involving only the normal 
electric field component, is analyzed to first order in 
slope. Third, the scattering surface is considered to 
be representable as a Fourier series, and a general 
series solution is derived. Fourth, the condition of 
backscatter is imposed, and the field equations are 
developed for a pulsed radar. Finally, using the re- 
sults for the first and second order, the backscatter 
cross section for a small deterministic target is de- 
duced and is shown to be consistent with Rayleigh 
scattering. 

The results presented here are directly applica- 
ble to developing high-frequency ground wave radar 
cross sections of the ocean surface, and this has mo- 
tivated the work. The reader will no doubt see other 

applications at various levels of sophistication, de- 
pending on the chosen starting point in the general 
analysis. In the case of the ocean surface, prelimi- 

nary considerations for the bistatic case are made by 
Walsh et al. [1996] and Gill and Walsh [1997]. It is 
intended that rigorous derivation and validation of 
these cross sections, rooted in the theory presented 
here, should constitute other publications. 

2. Formulation of the Electric Field 

Equations for Rough Surfaces 

The general two-body em scattering problem ad- 
dressed by Walsh and Donnelly [1987b] is signifi- 
cantly simplified for the case of an infinite rough sur- 
face which is the interface between free space and a 
region of known em parameters. The entire space 
satisfies the definition 

hR(x, y, z) = I - h[z - •(x, y)], (1) 

where the h are the usual Heaviside functions and 

•(x, y) is the two-dimensional rough surface which is 
assumed to be bounded for all x and y and forms 
the boundary of the lower half-space. This is de- 
picted in Figure 1. The permittivity, permeability, 
and conductivity are e0, /•0, and zero, respectively, 
above the surface. The corresponding values below 
the surface are el, /•0, and or0. Using the Heaviside 
notation while suppressing the argument of hR, the 
expressions given by Walsh and Donnelly [1987b] for 
the electric field, E, reduce to 

hRE- - V. [E-VhR] -]-(VE) 'VhR * G1, 
(2) 

z =/•(x,y) •t=•o;•=%;o= 0 

y 

Figure 1. Typical rough surface with parameters as 
discussed in the text. 
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(1- hR)E 

xyz + (VE) +.VhR * Go, 

h(z-•)E - Es-{V'[E+nS(z-•)] 
xyz + (rE) + ß •e(z - •) ß •0, (10) 

with boundary condition 

[(vr,)+ -(vr,)-] + v. [(r,+ - r,-) 
= •_-•V (E+'Vh•) ß (4) 

n o 

The plus and minus superscripts on the various ex- 
pressions indicate values of these variables in the 
limit as the surface is approached from above and 
below, respectively. The xyz star represents a three- 
dimensional spatial convolution with the appropriate 
Green's functions, Go and G•, which are themselves 
defined as 

½--jkr ½--jknor 
G0- 4,rr , G•= 4,rr ' (5) 

Here, r = V/X2+ y2+ z 2, k is the wavenumber of 
the radiation, and no is the index of refraction of the 
lower medium. The field Es is assumed to be derived 
from a source entirely within the vacuum half-space. 
Equations (2) and (3) require that 

(1 - h•) { IV' (E-Vh•) 
_ ] xyz q-(VE) 'VhR * •1 -- 0, (6) 

+ (v•) +.vn• ß •0 - 0. (7) 

In the notation of (2)-(4) and (6)-(7) the divergences 
(V.) are with respect to Vhn, with E + and E- being 
treated formally as scalars [see Walsh and Donnelly, 
1987b]. 

From (1) it is easily shown that 

vn•(x, y, z) = -• (• - •(x, y)), (8) 

where 5 is the Dirac delta function and the normal, 
n, to the surface z = •(x,y) is given by 

n = • - V•(x, y). 

On substituting (8)into (2)-(4), the latter become 

- - e)l - {v. - e)] 
xyz + (v•)-. •(• - •) ß •, (•) 

[(VE) + - (VE)-]. nS(z - •) 
+V. [(E + - E-). nS(z - f)] 

n•- 1V [E+. nS(z- •)], (11) 
with the requirements in (6) and (7) being recast as 

h(z-•)({V.[E-nS(z-•)] 
+ (vr•)- .•(z - •) ß • - 0, (12) 

[1 - h(z - •)] {Es - [V' [E+nS(z - •)] 
+ (vr4+.•(z - •) ß •0 - 0. (13) 

The coordinate arguments have been suppressed in 
the various functions of (9)-(13). In particular, re- 
ferring to (9) and (11), it is noted that 

E-nS(z - •) = E-(x,y)n(x,y)5[z - •(x, y)], 

with the divergence in those equations being with 
respect to n while E- is treated formally as a scalar. 
Consequently, it is easily confirmed that 

V. [E-5(z - •)n] --Inl 2 E-5'(z - •) 
-v•. (E-V•) 5(z - •). (14) 

Here, Inl is the magnitude of n, 5' denotes the deriva- 
tive of 5, Vxy' is the planar divergence which, on the 
basis of the preceding discussion, is with respect to 
surface gradient, and E- is being treated formally as 
a scalar. In a similar fashion, 

V. [E + 5(z - •)n] -- Inl 2 E + 5'(z - •) 
-v•. (E+Ve) e(z - e). (15) 

On the basis of (14) and (15) and defining the vec- 
tor fields 

a-(x, y) - v•. (E-V•) -(rE)- ß n, 

a +(x, y) - V•. (E+V•) - (rE) + ß n, 
(9)-(11) may be written as 

(16) 

(17) 
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[1 - h(z - •)] E 

xyz -R-5(z - e) ß a• (18) 

n(• - e)E 

xyz -R+5(z-•) * Go (19) 

It,+ _ r,-] 5'(z - e) - [a+ - a-] - e) 
n•0 - I 

(20) 

with E• + = fi.E +, where fi is the unit normal, n/In I. 
Similarly, (12) and (13) become 

- R-5(z- * G• =0, (21) 

[1 - h(z - •)] {Es - [[n[ 2 E+5'(z - •) 
-R +5(z-• * Go -0. (22) 

relatively simple set 

} xyz [1 - hi E = In[ • E-5'(z - ½) - a-5(z - ½) ß •, 
(•) 

hE - E• - [hi a E+5'(z- ½) - R+5(z - ½) * •o, 
(28) 

which require (21) •na (22) •na • subject to tn• 
boundary condition imposed by (25} aria (2•). •o• 
compactness, the ar•ments of the Heaviside func- 
tions in (27) aria (28) a•e suppressed. At this junc- 
ture it is now obvious that if (21) and (22) can be 
solved for the surface quantities subject to (25) and 
(26), the complete electric field, E, in all regions may 
be aeterminea kom (27)aria (2S). 

3. Fourier Analysis and Solution 
Technique for Good Conducting 
Surfaces 

If (27) is Fourier transformed in a plane z = z + > 
•(x,y) for all (x,y), it may be determined without 
undue difficulty that the result is 

(29) 

It may be further deduced that 

v [Inl E•+5(z - •)] : Inl a •,•+5'(z - •) 
+v•u (Inl E• +) 5(z - •), (23) 

so that the boundary condition dictated by (20) re- 
duces to 

In[ a[E + - E-] 8'(z - •) - [a + - a-] 8(z - •) 

= no • - 1 [inl 2 E• +5,(z - ½) 
+v• (Inl E• +) 5(z - •)] . 

The l•t equation is satisfied if 

(24) 

E- - E + n• - 1E• + _ Et + + 1E+ (25) 

R- =R++ n• -1 nø • V• (InlEt+), (26) 
and Et + is to be interpreted as the tangential com- 
ponent of E +. On the basis of the foregoing, the 
original pair, (3) and (4), has been reduced to the 

Ul -- v/K 2 - n•k 2, 

Here, •xy[ ] indicates the x-y spatial Fourier trans- 
form, and Kx and Ky are the transform variables 
with respect to x and y. Thus K is interpreted as 
a surface wavenumber. A similar transformation in 
a plane z = z- < 0 < ½(x,y) for all (x,y) gives for 
(26) 

u = v/K 2 -- k 2 . 

Therefore, as an alternative to solving (21) and (22) 
subject to (25) and (26), (29) and (30) may be solved 
subject to the same boundary condition. 

As noted, for example, by Walsh and S•vastava 
[1987a], for a good conducting surface it is permissi- 
ble to write 

Ul= •K 2-n•k 2•jkn0. 
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Applying this approximation to (29) yields 

R- - -jkno Inl 2 E-, 

from which it may be readily deduced that (25) and 
(26) give 

R + n•- 1 
•g V•(Inl •+) 

-•o Inl 2 Et + - jk/X Inl 2 E• +, (31) 

where A -- 1/no. For the good conductor the prob- 
lem has therefore reduced to that of solving (30) sub- 
ject to (31). If, as is true for the class of surfaces 
being considered, 

using (31)in (30)produces 

This result may be written as 

u+jkA 

1 [Vx• nlE• +) e (•--•)•] +• + •• {• (I 
+jk(no- A).• [In12 Et+e(•--•/)u] } (33) 

or as 

u + jkno 

[Inl ] 
1 [V•:• nl e (•--•)•] +• + •o {•:• (I •+) 

-jk (no- A)• [Inl 2 En+e(•--•)u] } . (34) 

To facilitate the analysis, a linear operator œ may 
be defined as 

Z;[E(x, Y)I - a• { In12Ee (z--•/)u } 

or, explicitly, 

•[E] /Inl 2 (x, y)E(x, y) 
ß exp { [z- -•(x,y)] u} 
ß exp (-jk•x - jkyy) dxdy . (35) 

Further, a normal projection operator .if and a tan- 
gential propagation operator • may be defined as 

•V(E) = aa.E = E•, (36) 

V-(E) = E- •V(E)= E,. (37) 

Then, assuming a proper inverse, œ-1, exists for 
(33) and (34) take the form 

ß u+j•A œ Inl 2 

Tœ-• - E, + + Tœ-• 
u +jkno ' 

u + jkno [nl 2 

(39) 

Again, invoking the good conductor assumption, so 
that u +jkno • jkno and no >> A = 1/no, the prob- 
lem of generating solutions to (38) and (39) is con- 
siderably simplified. In this case, (39) may easily be 
shown to reduce to 

j knoEt + 

(40) 

Substitution of this result into (38) gives, after min- 
imal rearrangement of terms, 
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j•-I U + jkA 

u+jkA ' 

which, on observing that 

may be written as 

u+jkA 

= E•+ + 'Afœ-I u + jkA ' 

It should be noted that if (41) can be solved for E• +, 
R + can be determined from (31) via (40). Then, the 
electric field above the surface may be found from 
(28). 

4. Small-Height Analysis 

The result for a good conducting surface in (41) 
may be further simplified by imposing a so-called 
small-height analysis while requiring z-(< 0) << 
•(x,y) for all (x,y). This constraint dictates that 
k• << I and permits the operator in (35) to be writ- 
ten as 

œ(E) •0 e*-•'.•xu [Inl2E] . (42) 
Its inverse is therefore 

I -1 

•--1( ).,• ]_•,?•y [e--z-u( )] , (43) 
Here •1[ ] denotes the inverse two-dimensional 
spatial Fourier transform [see Walsh, 1984] 

[1] e -jkp •1 u + jkA • F(p) 2•p ' (44) 

where p is the planar distance variable given by 
p - V/x2+ y2 and F(p) is the familiar Sommer- 
feld attenuation function incorporating the surface 
impedance A. Then, applying (42), (43), and (44) 
to (41), while recalling the definition of A/' in (36) 
yields 

E + tiff { aa Vx• (Inl E + e-•P } 
= tiff [2U.•x• e -•-•' ,nl2 ß {fifi.•-•l (E:-) ] 

xy e -jkp } ß F(p) 2•rp ' (45) 
where E + has replaced E• + to indicate that the 
small-height approximation is being invoked. Not- 
ing that the unit normal, fi, may be written as 

n •-V• 

and taking fl. on each side of (45) yields, after mini- 
mal manipulation, the scalar equation 

- o,•) %• F(p) 27rp o,, inl •' i-•.Vx•(lnlS + 

v• {v•v• •-•} o•) 7 •(p) in]3' in]a .Vx• (In] S + 

n { nn _ 
xy e-jkp } * •(P) 2•p ß (4½) 

This may be written more compactly, in operator 
form, as 

E + E+ E+ E s ' o• - T1 (o•) - T2 (o•) - (47) 

1 

•1( ) -- inla 
•( )- 



WALSH AND GILL: HF SCATTERING FROM ROUGH SURFACES 1343 

It should be noted that (46) or (47) is valid for 
arbitrary slope and is in the proper form for a Neu- 
mann series or iterative solution. However, in the 
section 5 where a vertical dipole source is specified, 
we have for simplicity imposed the condition of small 
slope. 

(47) which contains the T• operator is eliminated and 
that equation, for vertical dipole excitation, becomes 

E + O. 

-.•kp 

e-•p 
-- CoF(p) 2•p ß (50) 

5. Field Equations Incorporating a 
Vertical Dipole Source 

It is now assumed that the source field is the far 

field of a vertical dipole at the (x, y) origin and ele- 
vated slightly above the surface; i.e., the location is 
the point (x, y, z) -- (0, 0, 0+). The far field is then 
the well-known result 

E• - c0•0•,, (48) 

where Go is defined in (5) and 

IA•k 2 
Co = , 

jweo 

where the source current I on the dipole of length A• 
has a radian frequency w. Fourier transformation in 
a plane z - z- < 0 thus gives 

2u 

which immediately implies 

where 5(x)5(y) is the two-dimensional Dirac delta 
function. Substitution of this inverse transform ex- 

pression into the form of E 8 defined following (47) 
results in 

S = inl•. i-•.Co5(x)5(y)•. %• F(p) 2•.p 
_ Co F(p)e-J•P (49) 
-- Inl 3 2•'p ' 

Here, it has been assumed that at the (x,y) origin 

If it is now assumed that [V•[ << 1, then clearly 

Inl 2 - 1 + IV•l 2 • 1. 

If it is further agreed to neglect powers of slope 
greater than I in a single scatter, then the term of 

as 

A Neumann series solution of (50) may be given 

E + O. = E' + T1 (E') + T• 2 (E') +... 

= E + E + ,(51 ½+ +'-' ) 

where it may be noted that the zeroth-order term, 
E + is simply the expression for propagation over 

a smooth plane surface with surface impedance A. 
The form of the first-order solution in (51) may now 
be written down directly as 

Then, given that V x• 
an asymptotic sense, 

(52) 

- pa/ap + $(1/p)(a/ao), in 

Vxu CoF(p) 2•rp J -jkCoF(p) 2•'p •' 
so that 

(53) 

Using this formulation, the next 2 orders of scatter 
may be written as 

•+ - • (•) = • • Co•(p) 
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E + 

6. Scattering From Surfaces 
Representable as Fourier Series 

In this section, the preceding analysis is applied to 
rough surfaces which may be represented as Fourier 
series. Each scattering order is examined separately, 
and results are given for the backscatter condition. 

6.1. First-Order Case 

It is straightforward to show that (53) for first- 
order scattering may be written as an asymptotic 
integral in the form 

1 

e-j k(pl q-p2 ) 
F (Pl) F (P2) dXl dyl. (56) 

PlP2 

The various quantities in (56) are illustrated in 
Figure 2. It should be recalled that the source is 

at the origin and the scatter occurs at point (Xl, Yl). 
Of course, the scattered radiation travels in all direc- 
tions over the scattering surface, but it is "observed" 
at position (x, y). The distances p, Pl, P2 are from 
the source to the reception point, from the source to 
the scatter point, and from the scatter point to the 
reception point, respectively. The integration limits 
are over the entire x-y plane. 

It is now required that the surface, •(x, y), be char- 
acterized in some fashion, the choice here taking the 
form of a two-dimensional Fourier series. It shall be 
assumed that the fundamental surface wavenumber 
N is the same in both the x and y directions. The 
appropriate series is 

•(X, y) -- • Prone jN(mx+ny) . (57) 
m,n 

The indices m, n span the set of integers, and Pm, is 
the Fourier coefficient corresponding to the wavenum- 
ber components Nm and Nn. We may therefore ex- 
press the mnth surface wave vector component as 

z 

Scattering 

Y / Point 
-- (x,,y,) 

P• P2 

(x,y) 

Observation 

Source Point (R) 
(T) x 

Figure 2. Geometry of the first-order scatter. 

Kmn - Nm• + Nn:• , 

• and :• being the usual unit vectors. Since a general 
planar displacement vector p on the surface may be 
written as 

p - x• + y•, 

(57) is, equivalently, 

•'(x, y) -- • PK..•eJP 'K'•,• 
m,n 

= • PK• exp [jpKm• cos (Om• - O)]. (58) 
m,n 

Here Om• is the direction of Kmn and O is the direc- 
tion of p (i.e., O - tan -1 (x/y)). Applying (58) to 
the scattering point (Xl,Yl) of Figure 2, it may be 
e•ily seen that on writing Vxy in polar coordinates, 

Pl'VXlYl [•(Xl, Yl )] -- j • PSm• Kmn cos (Omn -- 01) 
m,n 

ß exp [jpKmn cos (Oran -- 01)]. 
Using this result in (56) produces 

E+ • • PK• Kmn (0.)1 (2w)2 m,n 
ß cos • I PlP2 

ß exp {jPl [Xm cos (Om -- 01) -- 
ß e -jkp2 dxldyl (,59) 

for the first-order field. This equation represents the 
integral form of the field observed at a general point 
(x, y) or (p, 0) when a single scatter occurs at a point 
(x l, yl) far from the source and the surface profile is 
not a function of time. 

Equation (59) may be simplified for the condition 
of backscatter. Referring to Figure 2, for backscat- 
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ter, p- 0, giving p• -- P2. Therefore, in polar coor- 
dinates, (59) becomes 

-j2kpl .½ 

In this equation a receiving antenna "directivity" 
function g (01) has been included. At this point, g 
will be taken as a measure of the ability of the re- 
ceiving antenna to discriminate in direction, in the 
sense of electric field. It is necessary to introduce it, 
at this point, as the simplest way to model the re- 
ceiving antenna's directivity. For an omnidirectional 
system, g (8) - 1. The function g may be appropri- 
ately scaled later to agree with convention. 

The 01 integral in (60) is available in closed form 
if g(O) = 1. In any event a stationary phase integra- 
tion may be performed [see, e.g., Ishimaru, 1991, ap- 
pendix to chapter 11, section C]. It requires the usual 
assumptions that plKm• >> I and g(01)cos (Om•- 
01) is slowly varying. Consider 

j•o 2w I (Kmn , Omn) -- g (8 1)cOS (Omn - 8 1) 

ß exp[jplKmncOS(Omn-O1)]d01. (61) 

Applying the stationary phase method requires the 
solution of 

which gives 

d 
[COS (Omn -- 8 1)] ---- 0, 

81 = Omn , Omn +71' 

as stationary points. Further, the value of d 2 [cos 
(Om, -0•)]/•0• is required at the stationary values 
of 01. Clearly, 

d 2 [cos (Omn -- 81) ] __ { -1 81 -- Omn , dO• 2 - 1 01 - Om,• + •r. 

According to the theory, (61) may be approximated 
as 

I(Kmn'Omn)'"'• KmnP 1 g(Omn)½JplKmr•½-J(w/4) 
--g (Omn -Jr- 71') e -jp• Kmn ej(•r/4) }. 

By using this result, (60) may be written as 

F 
E+ kCo fp ( 0n)l """ (271.)3/2 E VKmn 4Kmn •3/2 m,n i [31 

ß {g (Oran) e-J(•r/4)eJPl(K'•'•-2k) 
--g (Oran + •) eJ(•/4)e-JP•(K•+2k) } dpl. (62) 

Equation (62) represents the first-order normal back- 
scatter field from the rough surface when the source 
is a continuously excited vertical dipole. It is well 
knom that for the given excitation, and surface con- 
straints, it is the normal component which predom- 
inates. It is modified in section 7 to determine the 

backscattered first-order field when the excitation is 

a time-pulsed dipole. 

6.2. Second-Order Case 

The second-order field component dictated by (54) 
is represented geometrically in Figure 3. The first 
scatter at (X l, Yl) may occur anywhere on the rough 
surface, and the result is a scatter to any other sur- 
face point (x2, y2). Subsequently, a portion of this 
doubly scattered radiation may be received, for the 
moment, at some arbitrary position (x, y). Not sur- 
prisingly, this adds considerable tedium to the en- 
suing analysis as compared to the first-order case. 
The significant portions of the-procedure are outlined 
here, and details of the technique are appropriately 
referenced. 

Designating the inner convolution of (54) by I1, 
say, and referring to Figu. re 3 for various position 
and distance parameters, we write 

(x•,y•) 
•D12 

Pl 

ø:x,y 
T 

(0,0) X 

Figure 3. Geometry of the second-order scatter. 
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For the surface being considered (see (58)), 

'= j ,• PK,,.,•Kmn cos (Oran -- 191) 

ß exp [jPlKmn cos (Oran -- 01)], 

giving, for (63), 

(63) 

I1 -- (271')2 E PKm-gmn cos (Oran -- 0 1) '/'D, •'/1 1 1 

ß - - - 

. ,F(Pl )F(•12 ) dx 1dr1. (64) 
PIP12 

This restit may be reduced via a twodimensional 
stationary ph•e approach [see, e.g., Bleistein and 
Handelsman, 1975; •edman, 1969]. In order to ini- 
tiate this process, a transformation of coordinates 
may be effected • follows: (1) rotation of the •es 
by 9•, (2) a shift of the origin to a position hal•ay 
along p•, and (3) conversion to elliptic coordinates. 
It is easy to show that the following result: 

Here,/• and 5 are the usual cylindrical elliptic coordi- 
nates [e.g., $tratton, 1941]. Using (65), (64) becomes 

--' '(••)2 • PKm,• gmn C05 (Oran --01) 
ß F(p•)F(p•2) exp (j (p2/2) {K,•n [(1 + cosh/• cos 5) 

ß cos (0,•,• - 02) + sinh/• sin * sin (0,•,• - 02)] 
- 2k cosh/z }) dlzda. (66) 

It is understood that/91,/912 , and 01 are functions of 
/z and 5 as required in (65). 

Equation (66) may now be simplified by a two- 
dimensional stationary phase analysis. The station- 
ary points may be shown to be 

/z=O , 5=0, (67a) 
/, = 0, = +,r (67b) 

(only one of the pair is distinct), 
, , 

tan 5 -- .V'K•" 74k2 cøs2(0'•"-0•) 
2k cos (0m,• -0•) 

tanh/z -- v/K•m•"-4k'= 2k sin (Omn--O•) 

(67c) 

In (67c) the restriction 2k I cos (Oran- 02) I < Kmn < 
2k obviously applies. Furthermore, 0,•, •= 02, 02 •= 
Om,•+•r/2 in the points designated by (67c), but these 
values are covered by the first two stationary points. 
These points may be seen to represent the following 
physical situations: 

1. Prom the first two equations in (65) and Figure 
3, (/•,5) = (0,0) means that p• = P2 and P12 = 
0. It is seen that this indicates a double scatter at 

(Xl,Yl) (i.e., (x2,y2) = (Xl,Yl)). For reasons that 
will become evident when this analysis is applied to 
a pulse radar (section 7), it is customary to refer to 
this phenomenon as patch scatter. 

2. For the (0, •r) stationary point the first two 
equations of (65) reduce to pl = 0 and P12 = P2. 
This time, Figure 3 indicates that point (Xl, Yl) has 
shifted to the transmitting sight T and the second 
scatter occurs remotely from T at (x2,y2). Given 
that 012 -- tan -1 [(Y2 - Yl) / (x2 - x•)], it is easy to 
show that 012 ---• 02 uniquely as (/z, 5) --, (0, •r). Thus 
the (0, •r) represents a first scatter near the trans- 
mitter and a second on a patch of ocean which is 
"viewed" from R. 

3. The restrictions on the third stationary "point" 
(which is really a set of points) stated following (65) 
make it distinct from the previous two points. Thus 
the scatter for the third "point" must occur else- 
where than at the transmitter or at the remote patch 
whereon (Xl,Yl)or (x2,y2) resides. In monostatic 
operation this case has been referred to as "off-patch" 
scatter [$rivastava, 1984]. 

In this work, only the patch scatter condition, i.e. 
the (0, 0) stationary point, is addressed. Such may 
be shown to be the important contribution when the 
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source and receiver are "narrow beam" in nature and 

neither is totally surrounded by the highly conduct- 
ing scattering mediumß Deviations from these con- 
ditions are addressed by Gill [1999]. For the patch 
scatter condition the integral in (66), by direct appli- 
cation of the two-dimensional stationary phase pro- 
cedure, may be shown to be well approximated by 

11 • jF(p2) e-JkP2 
m,n 

gmn cos (Omn -- •2 ) 
, 

•K•n - 2kKmn cos (Oran -- •2) 
exp [jp2gmn COS(Oran -- •2)] ß (68) 

That is, I• contains this •ymptotic patch scatter 
term for large P2 Kmn. On the b•is of this discussion 
it mw therefore be seen that an asymptotical term 
of (52) is given by 

E + • -jkCo{V•.V•[jF(p) e-• ( 
ß • PK• exp [jpKmn COS (Oran -- 0)] 

m,n 

Kmn cos (0mn -- 0) ] •K•n - 2 k Kmn cos (0ran -- O) 

xy e-jkp } (69) ß F(p) ' 
A geometrical representation of (69) is given in Fig- 
ure 4, and the similarity with Figure 2 for first-order 
scatter is evident. Again, using the polar represen- 
tation of V• and dropping terms of 1/p 2, (69) be- 
comes 

(E + • jkCo{(F(p) e-jkp 2•rp 

ß Z PKmn Kmn cos (Oran -- O) 
m,n v/K2mn - 2kKmn cos (Oran -- 

'{ [Kmn cos (Oran - O) - •] • + Kmn sin (Oran - 

) ß exp COS(0m -- 0)1 
For the type of surface assumed, 

•(p, 0) -- Z PKpq exp [jpKpq cos (Opq - 0)]. 
pq 

(x2,Y2) _.Double scatter here 

I D I • D•• 0 
x 

Figure 4. Geometry of the second-order "patch scatter." 

Then, it may be verified that the dot product in (70) 
may be written as 

V•' { [Kran cos (Oran - O) - k] p 
-'[-Kran sin (Oran - 0)• } 
= - P'K,I 

P,q 

ß exp [jpKpq cos (Opq - 0)], 

so that (70) becomes 

E + ",• -kCo F(p) •-••PK,•,•PK,,• ( 0')2 27rP m,n p,q 
ß exp [jpKrs cos (Ors - 0)] 

(Kmn'P) [Kpq'(Kran - kk)] } •y e -jkp ) ß 7••••: 5r• F(p) 2•p . (71) 

Here, Krs -- Kran -]- Kpq. In integral form, referring 
to Figure 4, and using the notation there, (71) is 

E+ -kCo ( 0.)2 • (2•r)2 ra,n p,q 

ß Jfx /y (Kran'•2)[Kpq.(Kran - k•2) ] F(p2)F(p20) 2 2 k/rKran'(Kran - 2k)2) 

.exp {jP2 [Krs cos (Ors -- 02) -- k] - jkp2o} dx2 dy2. 
p2p2o 

(72) 

Referring to Figure 4, it is evident that for the 
special case of backscatter, p - 0 and p20 - P2. 
Equation (72) in this instance becomes 
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As for the first-order case, a factor g(02) has been 
included to account for receiver antenna directiv- 

ity, and the equation has been written using polar 
coordinates. By direct comparison with first-order 
backscatter and assuming a stationary phase inte- 
gration with respect to 02 in (73), there results 

E + -k•o fp F2(p2) (27T.)3/2 Y• Z PK,•. PKpq 3/2 m,n p,q o. P2 

ß {e-J(•r/4)g(Ors)eJP•(K•-21•) 
(Km,•'Pr•) [Kpq.(Km,• - 

ß 

•v/Kmn'(Kmn - 2k•rs) 
+ eJ(•r/4)g(•rs + 7r)e -jpO'(K•8+2k) 
(Smn'Prs) [Spq.(Smn -'{- kPrs) ] 

ß 

x/-•-'•rsv/Kmn'(Kmn + 2k•rs) dp2. (74) 

In (74) the following definitions hold: 

K•s = Kmn + Kpq, 

P,.s -- i cos Ors + • sin Ors ß 

It may also be noted that 

6.3. Third-Order Case 

The triple convolution governing the third-order 
scatter as it appears in (55) is interpreted graphically 
in Figure 5. We now seek a result for the situation 
in which all three interactions occur near each other 

on the scattering surface, a phenomenon which shall 
be referred to as third-order patch scatter. It fol- 
lows directly from the second-order result that the 
stationary phase contribution for the point p•2 -• 0, 
Pl • P2 gives 

e -jkp xy e -jkp ) 
xy e -jkp j 
* r(p) 27rp • (2•) 2 • Z PKmnPKpq 

m,n p,q 

ß •x •y (Kmn'•2)[Kpq.(Kmn - k•2) ] F(p2)F(p23) •. • VSmn'(Smn - 2kP2 ) 

.exp {jP3 [K•s cos (0•s - 02) - k] - jkp23} dx• dy2. 
P2P23 

(75) 
Here, for clarity, the variables have been labeled as in 
Figure 5. Again, after the fashion of the second or- 
der, a further two-dimensional stationary phase inte- 
gration may be carried out. With a view to the patch 
scatter condition the contribution to the right-hand 
side (RHS) of (75) from the point P2a • 0, P2 • Pa 
may be correspondingly written as 

RHS(75) -j F(p3) e-JkP• m• • 27rp3 Z PK , , PK p q 
, P,q 

(Km,•'P3) [Kpq.(Km• - kP3) ] 
v/Kmn.(Kmn - 2k•13)•Krs.(Krs - 2kP3 ) 

ß exp [jp3Krs cos (Ors - 0a)], (76) 

where, as before, Krs = Kmn + Kpq . 
Carrying out the final convolution in (55), again 

following the second-order analysis, leads to the ex- 
pression 

V•.Vxy {V•.Vxy [[•.V•F(p) e-jkp xy e -jkp] 2•rp * F(p) 2•rp J 

• e-• } 7 r(p) e-• ß r(p)2•p 2•• 
e-jkps 

m,n p,q w,v 

ß exp [jp3K• cos (9• - 93)] 
(•m.%) [•'(•m. -- •P•)] [•'(• -- •P•)] 

v/Smn'(Smn - 2kPa)v/Krs'(Krs - 2kP3)(77; 
where the third-order surface wave vector Kao is 
given by 

Kab = Kmn + Kpq + K•v . 

The backscatter condition, with reference to Fig- 
ure 5, is clearly p = 0, p30 = Pa. Therefore, using 
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polar coordinates as for the first 2 orders and intro- 
ducing an antenna directivity g(03), (77) becomes 

•c0 

m,• p,q 

a P3 

(Kmn'P3) [Kpq'(Kmn - kP3) ] [K•ov'(Kr8 - kPa)] 
ß 

v/Kmn.(Kmn - 2kpa)v/Krs.(K• - 2kPa ) 
ß exp [jpaKab cos (0ab - 0a)] dOadpa. (78) 

This time, a stationary phase integration with re- 
spect to 03 leads to 

E+ kCo 
m,• p,q •,• 

• F•(p•) . 
• P3 

(•m•'•) [•'(•m• -- •)] [•'(•-- -- •)] 
Kv/•abV/Kmn.(Kmn - 2kp.•) v/K•.(K• - 

ß ½jpa(K•b-2k) + ½j(•r/4)g(Oab + •r) 
(Km•'P•) [K•.(Km• + •P•)] [K•'(K• + 
••ab V/Kmn.(Kmn q- 2kp,•)v/K•,.(K• + 

ß e -jpa(K•b+2k) dpa. (79) 

Collecting the patch scatter results of (62), (74), and 
(79), the backscattered field to third order, given a 
dipole source whose excitation for the moment is gen- 
eral, is 

kC0 -j(•r/4) E + (o.) • (2•)•/• • 

. K•i g((Pl) •p F2(t9)½jp(Kl_2k)d p V•I p3/2 

ß {•(K•)(K•.)•) - • •(K•)•(K1 - K•) K2 

(K•.)•) [(K• - K2).(K• - •)•)1 
. 

•K•.(K• - 2•)•) 

+ • • •(K•)•(K• - K•)•(K• - K•) 

(K•.p•) [(K• - Ks).(Ks - 
. 

•K•.(K• - 2kp•) 

. [(K1- K•).(K• - •K•.(K• - •Pl) 
(8O) 

Higher orders of scatter may be written down im- 
mediately by observing the pattern developed in the 
second- and third-order analyses. For example, for 
fourth order the term in the braces of (80) becomes 

-- • • Z P(K4)P(K3 -- $4) 
K4 Ks K2 

ß P(K2 - Ka)P(K• - K2) 
(K4')•) [(Ka - K4)'(K4 - k)•)] 

ß 

v/K4.(K4 - 2k•l ) 

ß [(K2K3)'(K3 - k•l)l [(K1 - K2).(K2 - k•l)]. (81) 
x/K].(K• - 2•/•) v/K•.(K• - 2•/•) 

To aid in compactly writing the results in the latter 
two equations, the letter subscripts on the K have 
been changed to numbers, with the meaning of the 
latter being obvious when compared to (62), (74), 
and (79) and the wave vector definitions which are 
associated with them. 

7. Application to Pulse Radar 

In this section, the backscattered fields derived 
in section 5 are modified by imposition of a par- 
ticular source excitation, namely that of a pulsed 
dipole. The aim of this procedure is to develop suit- 
able expressions which may be used to model a vari- 
ety of backscatter cross sections for pulse radar ap- 
plications. Since the higher-order derivatives follow 
directly from the first-order analysis, the latter is 
treated in some detail here. It should be mentioned 

that for pulse excitation the integral (for example, 
equation (46)) are of the Volterra type. Hence a 
Neumann series solution will converge [Walsh and 
Srivastava, 1987b]. 

Recalling that kCo is a function of the transformed 
time variable w, (62) may be inverse Fourier trans- 
formed to yield 

1 { (Eo+n)l (t) -0 (2•r)a/2 •-l(kCo) ,t Z PKm,• V/Kmn m• 

'fp• F2(/9---•1!•ø) [1•-- (-•)] [½--j(•r/4)g p?• • 2 (Om•) 
½jp•K.,• __ ½j(•r/4) g(Omn q- •)½-jp•K,•,•] dpl } . (82) 

Here t star denotes time convolution, and •-•( ) is 
the inverse temporal Fourier transform. It is assumed 
that 
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(x,y) 

T x 
(0,0) 

Figure 15. The geometry of the third-order scatter. 

.T'•-l [F2(pl,w)e-J2kP• ] ..• F2(p1,wo)S It- 2p11, c 

where coo is the dominant or representative frequency 
of excitation. This approximation is common in 
high-frequency applications and is discussed in de- 
tail, for example, by $rivastava [1984]. The p• in- 
tegration in (82) is facilitated by the Dirac delta 
function 6It- (2pi/c)]. Setting x = (2p•_/c)- t and 
dp• = (c/2)dx, while noting x = 0 when p• = ct/2, 
permits (82) to be written as 

1 
(t) 

(2•) a/2 

m• 

. F 2 (ct/2, wo) [g(Om.)e_•(•/4)e•(a/2)•. (ct/2) a/2 

!t should be remembered that the earlier stationary 

phase imegration which preceded the result in (82) 
requires that piKm. = Km.(Ct/2) > 1. 

Before performing the time convolution in (83), 
the hnction [kG] (t) must be specified. In (48), G 
was given as 

IAek 2 
•0 = . 

j•0 

Emph•izing that the current I is, strictly, a function 
of w, it is easily seen that 

•G - -jnøAew2I(w) C2 

where r/0- V//•0/e0 and c- V/1/(/•0e0)is the (vac- 
uum) speed of light. Therefore 

•0At• 02 
•'•-•-(kC'0) -j c• Ot 2 [i(t)], (84) 

where i(t) is the time domain dipole current. 
Equations (83) and (84) together are useful in 

modeling a wide variety of transmitted signals. In 
the present discussion the particular case of a pulse 
radar is to be examined so that the antenna current 

mw be modeled as 

i(t) = Ioe •øt [h(t) - h(t- r0)] ß (85) 

Here, h( ) is the usual Heaviside function, I0 is the 
current magnitude, and r0 is the pulse duration. This 
current is obviously complex, but it may be phys- 
ically realized by in-phase and quadrature compo- 
nents. Also, real trigonometric sines and cosines are 
given by linear combinations of (85) at positive and 
negative coo. Thus a variety of excitations may be 
derived from (85), and the basic structure of the en- 
suing analysis would be unaltered since the linear 
response equation ensures valid application of super- 
position. If it is agreed to ignore the leading and 
trailing edge terms, then from (85) 

oi(t) 
Ot 2 = In(t) - n(t- 0)1 ß 

In this case, (84) becomes 

:r;-• (•Co)•-jvoAe•o•e•ot In(t) - n(t - r0)], 
(86) 

with ko -wo/c. Consequently, (83) may be cast as 

E + (t) -• -j v0zxez002 
(27F)3/2 • PKmn v/gmn 

(87) 

Focusing on the convolution inside the braces, that 
factor may be written as 
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For the intended application of this analysis, i.e., 
pulse radar operation, it may be reasonably assumed 
that ct/2 >> 1 and c•-0/2 << ct/2. It follows that for 
t • in the range l- r0 < t • < t, cid/2 >• 1. Denoting 

p0- 
c•/2 q- c(* - r0)/2 c (* - r0/2) 

2 2 

and using the fact that the Sommerfeld attenuation 
function may be assumed to be slowly varying over 
the integration range, the right-hand side (RHS) of 
(88) may be approximated as 

ß F2 (P__0,.?0) ({ RHS(88 ) • ½.•wot p(•/2 g(Omn)e-J(*r/4) 
ß exp [j (c*'/2)(Kmn -- 2•0) ] 

7'0 

-- {g(Omn + 7r)e j(x/4) 
ß exp [-j + 2o)] at 
_ _2 ApeJWO t g(Omn)e_j(,r/4) 

c p03/2 

ß eJPø(Km'-2kø)SA I-•(Kmn-2ko)]} 
-- { g(Omn q- 7r)eJ(•r/4) e-Jpø(K"•+2kø) 
' SA [-•(gmn-ll-2ko)] }) . (89) 

In addition to the k0 and P0 definitions above, 

Ap - cro/2, 

SA[ ]- sin( ) 
() ß 

By using (89) in (87) there results 

F 2 (Po, w0) E + (t) •. -jrloAeAplok•) 
(2•rpo)3/2 

ß exp {jwo It - 2 (po/c)]} • PK• •Kmn 
m• 

ß (•g(Omn)e-J(•/4)eJpøKmnSh [•(Kmn-2ko)]} 
-{g(Omn + •)eJ(X/4)e-JPøK• 

In (90) it should be noted that 

t - 2po/c- to/2 -- Ap/c. 

(90) 

Further, since the original distance variable, Pl, in 
(62) is given by pl - ct•/2, the requirement that 

implies 
c(t- r0)/2 < Pl < ct/2 

or 

Po - Ap/2 < Pl < Po + Ap/2 . 

That is, Ap = cro/2 is the potential range resolu- 
tion (commonly referred to as "patch width") for the 
pulsed signal. 

With a view to pulse Doppler radar applications 
a pulse to pulse time variation may be introduced 
into (90). One means of doing this is by introducing 
a time variation into the Fourier surface coefficients 

according to the equation 

½jeWt PK• -- •PK•,• , 

i.e., by redefining the surface as 

•(x, y, t) -- E PK,•.•,,•. exp [iN(tax + ny) + jeWt], 
mnœ 

with W being the fundamental temporal frequency 
of the surface and we - gW. Using this surface deft- 
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nition in (90), that expression becomes 

E + (t, to) ..• -jrloAt•Aploko 2 F2 (Po, o•o) ( 0•)1 (271. p0i3/2 
'exp {Jo•o (t - 2 (•)] } Y•PKm•,weeJeWt V/Kmn 

m nt? 

((•(Omn)•-J(•/4)•jPøKm•S m [•(Kmn - 2•0)] } 
-- { g(Omn + •)e j(•/4) e -jpøK• 

Here, t0 is to be understood as the time of obser- 
vation of the electric field after the beginning of the 
pulse. The variable t refers to the variation in the 
field for successive pulses; that is, the "experiment" 
is repeated, and the surface variation between pulses 
is accounted for by the dependency on t. It is, of 
course, important that the rate of variation of the 
surface be much smaller than the time necessary to 
make a single observation. 

Equation (74), for the second-order backscatter, 
may be compared directly with its first-order coun- 
terpart in (62) and then the first-order pulse radar 
result in (90). The corresponding second-order re- 
turn for the pulse radar model may thus be written 
down immediately as 

E + •e•plok• F2 (p0, •0) 
(2•p0 

m,n p,q 

(•m•')•) [•' (•• -- •0)•)]• 

(••')•) [•' (•• + •0P•)] 

The de•kions of r0, P0, •P, and k0 hold as be- 
fore. Also, pulse •o pulse surface variation over •ime 
may be accounted for, • before, by introducing •ime 
dependency in•o •he surface coefficients, PK•, and 
P•pq ß 

(91) 

Following from the first- and second-order proce- 
dures, the third-order result may be written analo- 
gously as 

E + (t) -jrloAt•Aplok • F2 (P0, c•0) i7;0iw 
ß exp{jc•0 [t-2(P-•)]}Ey•EPI<m•PI<pqPI<wv 

m,n p,q w,v 

(K•.)•) [I%•. (K• - •0)•)] 
• ½• •. (•• - 2 •0)•) 

[•. (• - •0)•)] } ' ½•: (•. - 2•0)•) 

(••.)•) [•. (•• + •0)•)] 
•x/••. (•m• + 2•0)•) 

[K•. (K•, + k0)•b)] }) (93) ' ••• (K•, + 2k0)•) 

In addition to the previous wavenumber definitions 
in (93), Kab -- Km• + Kpq -+- Kwv. As usual, the 
surface time dependency may be introduced by ap- 
propriately modifying PK.•, PKpq, and PK.wv- Thus, 
to third order, the pulse radar results may be sum- 
marized as 

(K2'•i)[(K1 - K2)' (K2 - kO•l)] 
v/K2 ß (K - 2k0/•1) 

K3 K2 

(K3'•l) [(K2 - Ka)' (Ka - k0•l) ] 
ß 

v/Ka ß (Ka - 2koPl) 

[(K1 - K2)' (K2 - ko/•x)] } (94) 
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where, as mentioned in section 6.3, the K have been 
subscripted numerically. This equation may be ex- 
tended to any order. Finally, it is noteworthy that 
only the sampling fi•nction with the minus sign has 
been retained. The term containing the other sam- 
pling function has been legitimately discarded be- 
cause of its relatively insignificant contribution. 

8. Application to Estimates of Target 
Radar Cross Sections 

With a view to estimating the radar cross section 
of discrete targets it is next considered that the scat- 
tering surface may be described, with reference to 
Figure 6, as 

z x, ycR, •(x, y) - 0 otherwise, 
where R is a small bounded region in the (x, y) plane. 
In order to apply the results of the preceding analysis 
the spatial Fourier transform 

:% [•(•,y)] - z(x•, x•) 

- fv l •(x,y)e-JI4•,:•-JI4•Ydxdy (95 ) 
is required. It is also useful to introduce a change of 
variables in (95) as 

X t -- X Xl , -- Y -- Yl, __ yt 

(x•,y•) • R as illustrated in Figure 6. Then, (95) 
becomes 

?.(K•, Kv) - e-JK'P•.=/(K•, Kv), (96) 

(x•,y•) 

Pl 

(o,o) 

Figure 6. A discrete scattering region in the x-y plane. 

8.1. First-Order, Pulse Radar 

Retaining only the first term of (90) as mentioned 
in section 7, the first-order field expression becomes, 
in this present context, 

E+ _jrloAeAploko • F 2 (po, wo) (o•) (t) • (•po 
ß exp{jo'o[t-2(•)]}e -j(x/4) 
ß I /K e-JK'P• V/-•'Z'(K)g(OK) (•=)• 

ß e•PøxSA [--•(K-2ko)] dK. (97) 
Here, K,• is identified as K, and the summation has 
been converted to an integral in view of the surface 
transform in (96), which logically suggests identify- 
ing the Fourier surface coefficients PK• as 

•-•'P•S'(K) (2•)•.. 
It should be recalled that in (97) 

•o -•/•, zxp- •o/2, po - (t- •o/2)/2. 

Next, it is noted that [Ap/(2•r)2]• )dK of (97) 
may be expressed in polar coordinates, (K, OK), as 

(2•)•. ()dI• = X•/•'e •o• (2•) •- 

ß s^ (• - •0) • (•) z'(x, •) 
7r 

ß exp [-jpl K cos (OK -- 81)] dOK } dK. (98) 
Assuming plK >> 1, the 8K integral in (98) may be 
estimated by the method of stationary phase. It is 
easily verified that (98) may be approximated as 

Ap / Ap e j(•r/4) g(01) 
ß K-•t(K, O1)eJK(pø-p•) 

ß SA[--•(K-2ko)]dK. (99) 
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Further, if the pulse is long, 

ApSA I-•(K- 2ko) > 2•r6(K- 2ko), 
and assuming Po = pl, 

Ap / 2k0 (2•r)2 ( )dK • (2•rpl)l/2 ½J(*r/4)g(O1)•(2kO,01). 
(100) 

Finally, using (100) in (97), the expression for the 
backscattered first-order field as received from the 

region R becomes 

E+ Aeloko 3 F2 (Pl, coo) ( o•)• (*) • -2•.o 
ß exp(jco0 It--2 (P---1)]}g(O1)•'(2ko,01). (101) ½ 

8.2. Second-Order, Pulse Rad• 

A result in keeping with (101) is now sought for 
the second-order field. Again, retention of only the 

F2 (Po, coo) 
E + (t) .• jrloAfAploko 2 (2•rp0)3/2 

'exp{Jwo[t--2(•)]}e-J(•/4)••PK•PKpq 
m,n p,q 

ß a(0•) (•m.')•)[•' (•m. -- •0•)] 
•½•m.' (•m. -- 2•0)•) 

ß e •pø• SA [•(K•- 2ko)] . (102) 
In a manner analogous to that which led to (97), 
application of (102) to the problem at hand suggests 
the following identifications: 

for example. With these changes in labeling, (102) 
becomes 

E + (t) .• jrloAfAploko 2 F2 (Po, cOo) (o•)• 
.exp{jcOo[t_2(•)]}e_j(•/4) 1 (2•r) 4 

' /K /K E'(K1)E'(K2)g(Os) 2 1 

ß (KI'Ps)[K2' (K1 - k0Ps)] e_jKs,Pl 
V•s v/K1 ß (K1 - 2k0•s) 

ß eJpøK'Sh [--•(Ks-2ko) dKldK2. (103) 
Changing the inte•ation variable from K2 to K, and 
using polar coordinates (K,, 0K•), a portion of (103) 
may be written • 

AP/KfK ' (•)4 • •'(K1)• 1 

. (Ki.•.)[K•. (K1 - •o•.)] 
•UK1. (K1 - •o•.) 

_ Ap 

•'(K1) •(•.)•' = (KsPs - K1) 

(Kl'•s) [(gs•s - K1), (K1 - •0•s)] 
Cal. (al - 2•0•) 

exp [-jK, pl cos (01 - 0K.)] dOK•dK,•l. (104) 

If, as similar to the first-order result, a stationary 
phase integration may be implemented with respect 
to OK., then the RHS of (104) becomes 

AP e•(•/4) g(Ox f• / • RHS(104) - (27r) 3 ¾27rpl ) •(K1) 1 s 

ß •'(K•- K1)eJK'(pø-Pi)SA -•(Ks- 2ko)] 
ß (KI'Pl) [(XsPl - K1)' (K1 - k0Pl)] dXsdKl.(105) 

•K1. (Kx - 2k0)1) 
Again, invoking the long-pulse •sumption so that 

ApSA •(K, - 2ko)] , 2•6(K•- 2ko), 
(105) may be written as 

e5(•/4) 

RHS(104 ) -(2•)2•2•p1. a(01) 

ß f• •'(K1)a'(2•o)1 - K1) 1 

. (K1.)1)[(2•o)1 - K1). (K1 - •o)1)] aK•. (lO•) 
½K1. (K•- 2•o)1) 
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Then, changing the K1 integration variable to K as 
defined by K - 2k0•1 - K1, the integral portion on 
the RHS of (106) may be written as 

$ ] g/K1 -- /$ '•'t(2kø•l - $)•t($) 1 

ß [(2k0Px - K)'Px] [g. (k0Px - g)]dK ' 
v/K ß (g - 2k0Pl) 

(107) 

Furthermore, since both the K1 and K integrals 
are over all wavenumber space, the K integration in 
(107) may be written as 

It is not difficult to show that the term in the braces 

of the integrand of (108) may be simplified to 

{...} - -2koK 2 sin2(0K - 01) - -2k0 IK x Pll 2 , 

giving 

-kø/K '•' '(2ko•)l - K)E'(K) 
IK x Pll • 

ß aK. (109) 
v/K. (K - 0Pl) 

Using (51), (101), and (111), the backscatter field to 
second order for the case being considered is 

E•n (t) ,• -2jT]oheloko 3 F2 (Pl, a30) 

ß exp (j•0 It--2 (•)] } g(01) 
1 fK '(OPl + K)S'(0Pl - K) 

I K x •1[ 2 ß . (11) 
It is worth noting that by definition, 

.e--j2koy sin • d•dy 

or, in polar coordinates (p, 

A further simplification is possible via the variable 
change 

K- K' + k0•l, 
so that 

K.(K - 2k0•l) - K '2 - k•, 

IK x pl[ • -IK' x Pll • . 

Hence, using these relationships and the fact that K 
and K' are over all wavenumber space, expression 
(109) may be cast as 

-kø fS ?' '(køPl -[- K)'•"(kø•x -- K) IK x Pll • 
(110) 

Substituting (110) into (106) for the K1 integral, and 
further substituting this result into (107), gives for 
the second-order backscattered field of (103) received 
from region R of Figure 6 

•'(2ko, 01) *)P 
ß exp [-j2kopcos ((fi - 01) ] d(dp. 

This may be interpreted as a Bragg-type scattering, 
the reaction being with spatial wavenumbers which 
are 2k0 in magnitude in the look direction. On the 
other hand, if the exponent in the integral is ex- 
panded in ascending powers of p, it may be seen 
that the leading term is the volume bounded by 
z = •(x, y) and z - 0. 

The integral term in (112) may be interpreted as 
a "corner reflector" effect. We note that (k0])l -]- 
K)'(k0Pl - K) - k• - K 2. The integrand is un- 
bounded when K - k0. At this value the vectors are 
perpendicular. Furthermore, the cross product term 
is maximum when K is perpendicular to the look di- 
rection Pl. It may then be seen that •)1 bisects the 
right angle between k0])l -]- k0•ff and k0])l - k0•f. 
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8.3. Radar Cross Sections 

Beginning with (112), a general form for the radar 
cross section of a small bounded region, R of Figure 
6, may be developed. From (112) the backscattered 
electric field is estimated by the expression 

F • (•, •0) E + o• (• ) • -Jvo /X&ro}o (2•r•)• 

ß exp{jw0 [t-2(•)]}(2k•), (113) 
with • being defined as 

p = z'(•o, o•) + •(•)• z'(•o& + •) 
z'(•o&- •) I• x &l • (x• - • a•. ( x 14) 

Since the transmitting antenna is •sumed to be a 
vertical dipole, the vertical electric field E• in the 
(x, y) plane is given by 

a-jkop• 
z•(t) • -•v•oae•o•. (11•) 

4xpx 

The free space gain, Gt, of the transmitting antenna 
in the horizontal plane may be de•ed as 

Gt - 21 [E•[ • - •p•, (11•) 
v0Pt 

where Pt is the transmitted power. Then, using E• 
from (115), it follows that 

Gt = 2• voloAgko • vok• w0P• p• 4•p• • 8•P• Iz0ael . (117) 
The power, P•, received by an antenna placed at the 
origin is estimated by 

2q0 0• [ , (118) 
where E + appears in (113) and •he effective free 0• 

space area of the receiving antenna whose free space 
gain is G• is defined by 

A• = 4w ' (119) 
wi•h •0 being •he radiation wavelength. Hence, 
(118), (119), and (113) •oge•her give for •he received 
power 

G• • [F(px, •0)[ 4 
• = 8•n0 In0Z0ae•01 (•p•)4 (•)• I•[ • ß 

(1•0) 

From (117) and (120)it is easily seen that (120) may 
be expressed as 

p,. = A•G,.G•P• .F(pl,WO) 4 [l?• (47r)3 Pax . (121) 
Comparing (121) with the standard radar range equa- 
tion yields for the radar cross section cr 

cr -- 17)[ 2 , (122) 

where 7 ) is defined in (114). It may be observed that 
since cr oc k• and the leading term in 7 ) is the sur- 
face protrusion volume, the cross section in (122) is 
consistent with Rayleigh theory [see, e.g., Ishimaru, 
1991]. However, the result may also be interpreted 
in terms of Bragg scatter. 

8.3.1. Cross section of a perfectly conduct- 
ing sphere. In application of (122) we first con- 
sider a perfectly conducting hemisphere of radius a 
embedded in the highly conducting surface. See Fig- 
ure 6 and consider that R is a circle forming the 
lower surface of the hemisphere. Of course, it should 
be recalled that in addition to the small-height ap- 
proximation the magnitude of the surface gradient 
must be much less than unity (i.e., IV•I << 1). Con- 
sequently, while the small-height approximation may 
be met by stipulating a appropriately, it is dearly not 
possible to guarantee [V•[ (( 1 everywhere on the 
sphere. Thus it should be expected that the spherical 
cross section using this analysis will be some Ëaction 
of its actual value. 

Using the transformation following (95) and intro- 
ducing polar coordinates gives 

.--.'(I()- p' [a • •-•i<. •,•, 
(l•a) 

for the expression immediately following (96). Since 
0 _< • _< 2•r and, for a particular K, O/c is fixed, 

.._., (•) _ p, [a • _ p,•] i •-•' co• •,•p,. 
(124) 

It is readily determined that the • integral in 
is given by 

•, _ •-•,co•,d•,_ •=•0(•p'), (1•5) 

where J0 is the usual zeroth-order Bessel function. 
Substituting (125) into (124) and evaluating the p' 
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integral produces 

2x/•-a3/2 
E'(K) - K3/2 F (a/2) Ja/2(aK), (12) 

with F and J being gamma and Bessel functions, re- 
spectively. Any suitable handbook of mathematical 
functions yields 

r (3/2) - v/-•/2, 

Then, 

2 (sinaK ) •raK aK cos aK . 

2•ra (sin aK E'(K)- • aK cos aK) . (127) 
Expanding the bracketed term, while noting that the 
stationary phase value of K is 2k0, yields 

27ra a 

E'(K) - 3 + O[køa]4' (128) 
with O[koa] 4 signifying terms of order (k0a) 4. Re- 
taining only the first terms of (114) and (128), there 
results 

2•ra 3 
•= 

3 ' 

the volume of the hemisphere, so that from (122), the 
first-order cross section of the hemisphere embedded 
in the highly conducting surface becomes 

a -- (647r/9)k•a • . (129) 

(122), we consider that there is a surface protuber- 
ance above the region R of Figure 6 which may be 
characterized by 

•(p') -- bee -p'a/(2a2) 0 _< pt _< oo, (132) 
that is, an exponential boss of maximum elevation 
h,. The constraint on the positive parameter, a, as 
dictated by the small-slope condition may be guaran- 
teed by requiring that the maximum slope be much 
less than unity (i.e., IVlmx << 1). This leads to 
the fact that a >> bee -1/2. 

Analogously to (124), (95) now becomes 

0 ' ' E'(K) - he p'e cos dO'dp' 

(133) 
Evaluating the •' integral as in (125) then leads to 

f0 • -p'•'/(2d') . 34) .--/(K) - 27the pte Jo(Kpt)dp • (1 

This integral evaluates exactly to 

a2/2 E'(K) - 2•'hea•e -•' . (135) 
Applying the same constraints as used in (128)- 
(129), the first-order cross section of the Gaussian 
boss may be written as 

o' - 64•'k•)h•a4e -(•ø'•)• . (136) 

We note that since a must have SI dimensions of 

meters, a has dimensions of m 2 as required. 

Adjusting this by a factor of 1/4 to obtain the equiva- 
lent free space expression for the spherical cross sec- 
tion, we obtain 

aIs -- (167r/9)k•)a • . (130) 

The accepted scattering cross section of the conduct- 
ing sphere in free space, for small k0a, appears in the 
literature [Rucket al., 1970] as 

o'f s -- 97rk•)a • . (131) 

Thus it is observed that the k•a 6 factor appearing in 
(130) is of the correct form. However, as expected 
from the small-slope approximation, the multiplier 
167r/9 is only 20% of that appearing in (131). 

8.3.2. Cross section of a perfectly conduct- 
ing exponential boss. As a final application of 

9. Concluding Remarks 

A general technique for electromagnetic scatter- 
ing, founded in the theory presented by Walsh and 
Donnelly [1987b], is applied to rough surfaces which 
are representable as a Fourier series (or transform). 
The approach is initially similar to that of Walsh and 
$rivastava [1987a], but a significant simplification of 
notation leads to electric field expressions which may 
be readily applied to a variety of scattering problems. 

Field equations are first developed without spec- 
ification of a particular source. However, the sur- 
face impedance boundary condition as well as the 
"good conductor" and "small-height" assumptions 
are imposed. These approximations lead to an ex- 
pression for the component of the field normal to the 
scattering surface. Subsequent imposition of a verti- 
cal dipole source leads to a successive approximation 
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(Neumann series) solution for the electric field to first 
order in surface slope. Each term of the series, start- 
ing with the direct field (or zero-order) term, may 
be simply interpreted as successively higher orders 
of scatter. For a static surface the field equations are 
developed to third order, and the extension to higher 
orders is shown to be obvious. 

With a view to radar applications the general field 
expressions are reduced to the case of backscatter, 
and a pulsed dipole source is introduced. The result 
is a set of electric field equations which, in conjunc- 
tion with the radar range equation, are used to de- 
termine an expression (to second order) for the HF 
radar backscatter cross section of a finite target. Ini- 
tially, the target geometry has been kept general so 
that it may be verified that the theory leads to the 
condition of Rayleigh scattering. This was subse- 
quently shown specifically to first order for the case 
of a conducting sphere and an exponential boss. 

The theory presented here has been used elsewhere 
[Walsh et al., 1990] to generate monostatic cross sec- 
tions of time-varying rough surfaces with particu- 
lar emphasis on the ocean. Subsequent application 
[Howell and Walsh, 1993a, 1993b; Gill and Walsh, 
1992; Gill et al., 1996] has proven very encouraging. 

Extension of the analysis presented here to the case 
of bistatic reception of the scattered field has been 
analyzed by Gill and Walsh, this issue. Addition- 
ally, cross sections derived by E. Gill and J. Walsh 
from this basic work have been recently submitted 
to the open literature (High-frequency bistatic cross 
sections of the ocean surface, submitted to Radio Sci- 
ence, 2000). 
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