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Attenuation of Swell by Sea Ice 

PETER WAD, HAMS 

Scott Pola•' Research Institute, University o] Cambridge, Cambridge, England 

A mechanism of steady state creep is proposed to describe the attenuation rate of long- 
period ocean waves in fields of sea ice.. It is shown that this mechanism fits the existing wave 
observations of Robin [1963] and Wadhams [1973] provided a Glen-type flow law is employed 
with an exponent n -- 3 and a flow law parameter (B) similar to the value for polycrystalline 
ice near the melting point. 

Observations of the penetration of ocean 
waves into sea ice have shown that two extreme 

types of effect can be distinguished. The short- 
wave component of a sea is very rapidly at- 
tenuated, and within a few hundred meters of 
the ice edge its energy has largely disappeared 
[Dean, 1973]. Long-period waves and swell, 
however, are still detectable several hundred 
kilometers into the ice [Robin, 1963]. 

When exposed to an incident wave, each 
volume element of an ice floe passes through 
a cycle of alternating tension and compression. 
The major part of the deformation thus induced 
is elastic, but it is accompanied by a time de- 
pendent plastic strain (creep). The creep 
process requires work, which involves the ab- 
sorption of energy from the wave. We hope 
to show that a creep mechanism provides an 
adequate description of the observed attenua- 
tion rates of long waves in floating ice, and we 
also will examine how far the results are ap- 
plicable to sea waves of shorter period. 

RATE OF ENERGY Loss DUE TO CREEP 

We consider a simplified geometry shown 
in Figure 1. A semi-infinite sheet of ice of con- 
stant thickness 2h floats in water of depth D. 
A monochromatic wave with a plane wave- 
front is propagating into the ice at right angles 
to the ice edge. We assume that no plastic 
strain can occur in the y direction. The 
orthogonal system of axes shown has x as 
horizontal, but for stress analysis we assume 
that x can always be taken as parallel to the 
ice surface. 

Each element of the ice is subject to a 
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sinusoidal stress cycle consisting of two 'loading 
phases' in which the magnitude of the stress 
is increasing and two 'unloading phases' in 
which it is decreasing. In the loading phase, 
forward creep occurs: Tabata [1958] found 
that a constant tensile stress applied to sea 
ice first produces rapid transient creep, which 
slows after a few minutes to steady state creep 
with a constant strain rate. In the absence of 

laboratory experiments on the behavior of ice 
under dynamic stresses we cannot be certain 
if these results still apply. In addition we do 
not know how much creep occurs during the 
unloading phase. Therefore we shall test one 
possible model of the creep process against the 
observational evidence, and then we shall con- 
sider what modifications may be necessary. Our 
assumption is that steady state creep, obeying 
the flow law of Glen [1955] with a constant 
flow law exponent, occurs through all phases of 
the stress cycle. 

Each phase lasts less than 5 sec, and in 
such a time it is found [Tabata, 1958] that 
the absolute creep strain is two orders of mag- 
nitude less than the elastic strain. Thus the 

creep has little opportunity to relax the stress, 
so we can make the further assumption that 
the stress can be derived directly from the 
degree of bending of the sheet using linear 
elastic theory. 

For an element of ice at (x, y, z) the flow 
law as formalized by Nye [1953] gives 

d• •' , 
ii- B n O'ii (1) 

where ß is the effective shear stress Ix/•a,j ' 
a,/I TM, a,/is the deviatoric stress tensor a,• - 
p, p is the hydrostatic pressure, (de/dt),• is 
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Fig. 1. A wave entering an ice field. 

the strain rate tensor, i, j is 1-3, and B and n Then the rate of energy loss per unit volume 
are flow law parameters, n being a constant within the ice due to creep is 
and B a function of temperature. 

Principal stresses are f,, f=, and f=, and if d W 
-- ---' f ii -- • fxx -- w• neglect shear stresses due to bending we dt •dt]ii •dt]xx 

can identify the principal axes as x, y, and z, and in our case 
so that 

2 I t2 t2 t2 7' •- •(fxx + fyy + fizz ) (2) dW = [(Txxn+l/(2B)n [ (7) dt 
The mean shear stress due to bending (i.e., of 
the form f,•)is a fraction 4h(1 -- r•)/3X of 
the tensile stress averaged over thickness at 
the wave crest, where r is Poisson's ratio and 
A is the wavelength. For A -- 200 meters this 
fraction is only 2% and diminishes for increas- 
ing wavelength. We shall also neglect stresses 
tending to cause the sheet to spread outwards 
under its own weight [Weertman, 1957], which 
are less than 1% of tensile stress for X -- 200 
meters. 

We thus have 

Now the profile of flexure of the sheet of 
ice, and hence the wave, is given by 

• = •Ai sin 2•r(x/k -- t/T) (8) 

where ,A• is the amplitude of flexure of the 
sheet at a penetration x and T is the wave 
period. 

The tensile stress f,, at the ice surface 

(z -- h) is given by the theory of elastic bend- 
ing as 

! 

f,,' : f,, -- p (3) 
! 

f,, - f,, -- p 

Now f,, -- 0 from our elastic bending assump- 
tion, and we have assumed that f•' -- 0. For 
zero dilatation we must have f•' -- --a' 

so equations 3 yield 

Eh O•'• 4• 2' Eh 
f•x(h) = -- (1 -- y•)Ox • -- k • •j(1 -- y•) 

(9) 

where E is Young's modulus for the ice. Also, 
by assuming a linear variation of stress about 
a neutral axis at the center of the sheet, 

= 

= (4) 
and from (2) 

! 

We can therefore state the flow law as 

so from (7), 

dW 27F2E•z •.[n+l dt (x, z) - 2B BXe(1 _ • (10) 
For a unit width of ice field taken perpendicular 
to the wave vector the rate of energy loss per 
unit length is 
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__ foh dW '• Q ( •) = • ( • , •) • at 

(4•"•/x"(1 - 
= 2 ' (2(B))"(n -4- 2) (11) 

where {B) is the flow law parameter averaged 
over the depth of the ice. 

ATTEl';UATI01'; OF WAVE AMPLITUDE 

We now introduce a factor R such that 

(energy/unit surface area of wave in ice 
sheet) = •/• p g'R ,A f, where p is the density 
of sea water. R is a factor of proportionality 
designed to make this expression identical with 
the equivalent expression for a wave in open 
water. 

The average rate of energy transmission in 
the direction of the wave, per unit width across 
the wavefront, is then: 

[energy/unit surface area] 

ß [group velocity of wave] • «•gR•A_•a. U (12) 

The rate of energy loss between x and x q- dx 
is 
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«pgUR.2•Ai dxAi (13) 
and we equate this to the rate of energy loss 
due to creep in that distance which from (11) 
is 

n+2 1> 
where 

Kh"+2I. 
S = X•..+epg uR 

The solution is 

xA,n_• _ 1 (16) -- n--1 

(n - 1) Sx q- 

except in the special case of n: I when 

•A• = oA• exp (--Sx) (17) 

Figure 2 shows the general shape of the decay 
of •Af (proportional to the wave energy den- 
sity) with increasing penetration. 

Before we can compare this with observa- 
tional data we need to derive values for U 

and R; this derivation follows in the next two 
sections. 

Group velocity of a wave in ice. The follow- 
ing treatment is based with modifications on 
an analysis by Greenhill [1887]. The result- 
ing equations were verified by Ewing and Crary 
[1934] for the case of ice cover on a canal. 

Assuming that the water is incompressible 
and that the flow due to the wave is irrotational, 
we can define a velocity potential • within 
the water such that at every point it obeys 
the equation of continuity (Laplace's equa- 
tion) 

V"• = 0 (18) 
with the boundary conditions 

- o • = - • (is) Oz 

and 

4•ra E )"+• K-- 2 (1:?)' 1 (2(•))"(,• + 2) 

a function of ice properties only, and (1•1 "*•) 
is an average taken over one wave period. Now 

<l•l -+'> = •a, .- • 

= 

say, with I. = % for n -- I and <% for 
n>l. 

By equating (13) and (14) 

d•Ai 
dx - -- S•A f (15) 

where 

04, o• 
Oz Ot (20) 

2 

xAi 

Fig. 2. 

For la•ge x, 

) 
x 

Schematic diagram of decay of wave 
energy with penetration. 
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assuming D >> h. A solution to this is 

e• •Ai cosh k(z + D) -- k sinh k D cos (kx -- wt) (21) 
where k = 2•r/X and • = 2•-,/T. 

If 3p is the excess of pressure just beneath 
the ice-water interface over atmospheric pres- 
sure, then by Bernoulli's equation taken to first 
order, 

(6p/p) -t- g•- (&b/O t) = 0 (22) 
But the equation of motion of the ice is 

F __ 
3 (1 -- •)p 

G- 4whpi 

The group velocity 

de 
U =c--k 

dX 

_ c II -{- (4F/X3c2)I (26) 2 + 

For thin ice, F and G are small and c tends 
2hpi 02• --L--•-1- (3•(23) toward the familiar value for open water of O, • = O• 

infinite depth, with U tending to c/2. 
where p• is the density of the ice and L is Figures 3 and 4 summarize how c, U, and 
the flexural rigidity of ice, equal to 2/•[h • E/ k vary with wave period for different ice 
(1 -- r•)], assuming that the inertia of each thicknesses. The graphs were plotted using the 
section of ice is concentrated at its center. typical values E -- 6.10 ø N m -• and r -- 0.3 

Equations 21-23 yield (best average values for permanent polar ice 
2 obtained from Lavrov [1969]) p,/p -- 0.9, and 2 • gp/k q- Lk 3 ' 

c - ke - (24) -- 1025 m -• p coth kD -]- 2hpik p kg . It can be seen that at all ex- 
cept the longest periods X is greater than its 

where c is the phase velocity of the wave within open water value for a given period. For short 
the ice field. For ice fields over continental waves U > c, and both U and c have mini- 
shelves it may be necessary to use this form, mums at midperiod. The behavior is thus 
but over an abyssal plain where kD >> 1 we greatly unlike that, of open water except at 
can approximate coth kD to unity, giving the longer periods. 

q We can draw an important conclusion from • gX [1 q- (2•rF/gX 4) (25) these results. For long-period waves the phase c = • 1 • •-]• J velocities in ice and in open water are almost 
where the same, so that a wave does not 'see' the 
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Fig. 3. Variation of wavelength in ice with wave period. 
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Fig. 4. Dispersion relation for phase and group velocities. 

edge of a floe. An ice field in the form of finite 3q• 
--• xAi exp (kz) floes separated by narrow leads will therefore v - Oz - 

have virtually the same attenuating effect as 
a continuous sheet, provided the average floe -cos (kx- •t) 
diameter is at least double the wavelength Then the average kinetic energy of the water 
(otherwise considerable reduction in bending per unit area of surface 
stress occurs). For shorter waves there is an 
impedance mismatch between ice and water, 
resulting in multiple scattering and reflection 
at floe edges. In nature the portion of an ice 
field which abuts upon the open sea is almost 
always broken up into finite floes, so we con- 
clude that the simple theory developed here 
cannot be applied to waves of short period. per unit surface area is 
From Figure 3 the transition to validity occurs 

at about a 10- to 14-see wave period for ice 1 fo x pg•' pg i 2 meters thick. E2 = • --•- dx = (29) 
Energy density of a wave in ice. The prop- Now each element of the ice cover moves 

agation of a water wave through ice involves only in the z direction with velocity d•/dt, 
a complex exchange of the kinetic and potential so an element of unit width and length dx 
energies of the ice and underlying water, re- has instantaneous kinetic energy h dx p,(d•/ 
speetively. We shall consider average values dr) •. Thus the average kinetic energy of the 

ice per unit surface area is of each quantity over a wavelength. 
If u and v are the x and z components of 

water particle velocity at the point (x, y, z), 
then from (21) 

1 f•• Xp(u2 •V 2) E• = • fo ----• dxdz 
(2s) 

2 2 

pw xAi 
__ 

__ 

4k 

The potential energy stored in the water 

(a0) ( 1 fo x d:• dx w2hpixAi Es ---- • hpi \dt/ = 2 
0½ w xA• cosh k(z q- D) 
Ox sinh k D 

ß sin (kx -- wt) = w •Ag exp (kz) 

ß sin (kx -- wt) D _> X/2 (27) 

When a sheet of ice is flexed to a profile 
//(x) it exerts a vertical stress s(//) on the 
underlying water of 

2Eh 3 
= - a(1 - ax 
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Thus the work done per wavelength in estab- best fitted by a flow law with n -- 3, with no 
lishing this profile is evidence of reversion to Newto. nian (n -- 1) 

flow at lower stresses. Thomas [1971] showed 
x • Eh3k 4 •A; that the creep of ice shelves involving stresses 

-- s(•) d• dx = 6(1- •') between 0.04 and 0.1 X 10 • N m -2 can also 
giving an average potential energy of the ice be described by an n - 3 flow law. The 
per unit surface area of maximum stresses involved in wave action given 

Eh3k 4 •Ai • E4 = 6(1 -- •" 

By the conservation of energy, 

E1 -]- E•. -]- E• -1- E4 = «pgR x A•'* 

by (9) are of the order 1 X 10 • N m -2. We 
shall therefore take an n = 3 flow law for sea 

(31) ice and examine whether this fits observational 
data. 

Equation 16 then becomes 

(•2) •A, • = •/(2Sx + •/oA, •) (3•) 
and by applying (26) and (27) we find that 

oA,, the amplitude of flexure just inside the 
E• + E• = E,. + E• (33) ice edge, is not a readily measurable quantity, 

i.e., the average kinetic and potential energies and it is more convenient to choose as a base 
of the combined ice/water system are equal, line the amplitude at a small penetration 
the result expected for a progressive wave. x- a, giving 
Then from (32), (1/xA• 2) -- (1/aA• 2) = 2S(x- a) (36) 

32Eha•r• (34) The results of Robin. Robin [1963] made R = 1 + 3pgk4(1_ •2) measurements from R.R.S. John Biscoe with 
In Figure 5, R is plotted against wave period a shipborne wave recorder during two complete 
for different ice thicknesses. transits of the Antarctic pack ice belt between 

South Georgia and Halley Bay. 
Co•rr•R•so• w•T• OBS•,RW•O•, D•TA The National Institute of Oceanography 

There have been no direct laboratory ex- wave recorder [Tucker, 1956] with a combina- 
periments on the flow law of sea ice. Walker tion of aeeelerometers and a pressure trans- 
[1970], in experiments on the creep of poly- ducer records objective wave height in open 
crystalline ice at stresses between 0.1 and water. In an ice field, provided the vessel is 
2 X 10 • N m -•, found that his results were not held fast, it is reasonable to suppose that 

ICE THICKNESS 
m 

1 --••'•'• 9 10 •1 12 13 14 15 16 17 
WAVE PERIOD s 

Fig. 5. Variation of R with wave period for different ice thicknesses. 
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the recorder measures the objective height of 
waves in the small pool of open water that x•w aA'w 

the vessel occupies. If we call this height 
and assume continuity of energy when the wave 
leaves the ice to enter the pool (Figure 6), 
then from (12) 

«pg Aw 2 Co • 

provided D •_ •/2, where Co - gT/2?r is the 
phase velocity of the wave in open water. 
Equation 36 then becomes 

4 

RETURN / 
a = 4.16.1• m/ OUTWAR D 

2. 

I 

co/ + • 

• Y . .. . , 
i 2 3 4 

(x-a) rn•O s 

1 i Sco (x -- a) (38) •Aw 2 -- •A •' - UR Fig. 7 Plot of (1/xA•, 2-- 1IaAa?) against (x-- 
a) for the observations of Robin [1963]. 

The validity of this assumption depends on 
the size of the pool and the boundary con- 

ditions at its periphery: the real wave height by the power spectrum analysis of 10-min wave 
probably lies between xA, and •A•. In the records, yielding a statistical uncertainty of 
case of long-period waves this is not a serious ___40% in each energy value. Second, fiuctua- 
problem, since •A, and •A• are almost identical. tions in ice thickness cause large changes in 

Robin calculated the spectral energy density the gradient of the graph. Equation 38 pre- 
of the 16-sec wave component at different dicts the gradient to be 
penetrations for the two transits. Figure 7 
shows his results replotted in a form compatible 
with (38). In each' case the first measurement 
made inside the ice was-taken as the x -- a 

datum. The ice field was taken to begin at 
66øS for the outward voyage and 67øS for 
the return, and the ice edge was assumed to 
run east-west in each case. Robin gives a range 
of values for ice thickness, but for the out- 
ward voyage he indicates a distinct thickening 
half-way through the transit. Accordingly an 
attempt was made to fit two straigh• lines to 
the data for the outward voyage and a single 
line for the return. 

The scatter in the data points derives from 
two sources. First, the energies were obtained 

ICE i WA•'••I ICE , ,, 

i 

I I 

GROUP 
VELOCITY U ! q ! I U i 

• I 
I 

• I 

t I xAi AMPLITUDE xAi t xAw 
I I 
I 
• I 
I I 

Fig. 6. Effect of a narrow lead at right angles to 
wave vector. 

Sco 12hST ( ?r2E 2 •4 UR - 5•rXSpU"Re(B) s \•----•-/ (39) 
For long-period waves •., U and R are relatively 
insensitive to variations in h, so that for a 
given wave period the gradient is, proportional 
to h •. Taking into account this unavoidable 
scatter, the fit of the data to a straight line 
is remarkably good, providing evidence for the 
validity of an n -- 3 flow law. 

Robin estimated ice thickness by eye and 
noted that these were likely to be underesti- 
mates. If we take the upper limit of each range 
of estimates as being a true typical ice thickness 
we obtain from the lines of best fit 

Outward voyage: 
Thin ice, 1.6 meters 

(B) = 3.2 X 10 7 Nm -a sec s 
Thick ice, 2.1 meters 

(B) = 3.1 X 10 7 Nm -• sec s 
Return voyage, 1.6 meters' 

(B) = 2.0 X 10 7 Nm-2sec s 
To gage the reliability of these values of 

(B) we must consider both the limitations of 
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our model and the possibility of other physical These mechanisms add to the uncertainty 
processes occurring. Our model has employed in our results, and our best estimate of (B) 
three simplifying assumptions: constancy of ice is (3 +_ 2) X 107 N m -'ø sec •. Figure 8, taken 
thickness, a continuous sheet of ice, and a from Thomas [1971], shows Walker's lab- 
wave vector that runs perpendicular to the oratory curve of the variation of (B) with 
edge. We have shown that variations in ice temperature in pure polycrystalline ice. Our 
thickness have a very large effect, so that value of (B) for sea ice is close to the value 
features such as bergy bits and very thick for polycrystalline ice at the melting point. 
old floes, although occupying only a small frac- Only near the melting point does polycrystalline 
tion of the ice field, will cause a dispropor- ice have significant aqueous intrusions along 
tionately high loss of wave energy. For long grain boundaries, whereas sea ice has brine 
waves the effect of finite-sized floes is small, inclusions at all temperatures [Lewis, 1971]. 
since the reflection coefficient is offs.et by the Thus sea ice over a range of temperatures 
reduction in the rate of energy loss due to is likely to have a creep behavior similar to 
the partial coverage of the surface. The effect that possessed by polycrystalline ice at the 
of a wave entering the ice at a slant is greater. melting point, a conclusion supported by our 
If the wavefront is at an angle 0 to the ice result. 
edge the wave vector travels a distance The effect o,• ice thickness. Robin also 

plotted for waves of period 16 sec the ratio 
d = x sec 0 (40) (energy in ice/open ocean energy) against ice 

thickness as estimated by eye. The distance of 
to achieve a penetration x. By starting from penetration is not given but can be assumed 
a datum line inside the ice we ensure that to be large (x >> a) and effectively constant. 
waves with 0 close to •r/2 will never enter We also confine ourselves to those data points 
the field of measurement in the first place, but where the energy ratio is large (>10). Under 
a value as high as •r/3 is conceivable. (B) cc these circumstances we expect that (open ocean 
(d/x) •/3, a factor which is 1.26 for 0 - •r/3. energy/energy in ice) cc h 5. 
A wave recorder measurement tells us nothing Figure 9 is. a graph plotted after Robin of 
about the directional spectrum, so we must log•o (energy in ice/open ocean energy)against 
conclude on the basis of this and the other two 

effects that (B) may be greater than the derived 
value by up to 50%. 

The possibility of other physical processes 
•108 Nn•2s 3 

arises from the large distances (at least 400 
km) involved in Robin's measurements. A swell 
can gain energy directly by the pressure of a 
following wind, and energy can be added in- 
directly by the effect of air pressure fluctua- 
tions passing over the ice sheet [Syiinskii and 
Tripol'nikov, 1964]. Phillips [1969] has shown 
that weak coupling between the swell and an 

adverse wind and the breaking of locally gen- 
erated short waves as they ride over the crests 
of a swell are the two significant mechanisms 
that can cause a swell to lose energy. Finally, 
we have tacitly assumed that the energy spec- 
trum of the open sea near the ice edge has re- 
mained constant while the wave recordings 

! 

Curve 
urv 

Amery I 

tB•un' •'•1• • I•l•l•'Br un' 

(:•"in•Maudhel m 
• I IWard Hunt 

TEMPERATURE øC 

Fig. 8. Plot of flow law parameter B against 
were taken. The 16-sec wave component nor- temperature, showing Wallcer's [1970] laboratory 

results, Thomas's [1971] results for Antarctic ice 
mally originates from a distant storm, and so shelves, more recent data for thin ice shelves 
its energy density is likely to vary considerably (Thomas [1972], open rectangles), and the results 
over a period of hours. of wa. ve observations in sea ice. 
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RATIO 
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fold, enabling turbulent and viscous losses to 
become the dominant factors in wave attenua- 

tion. A more far-reaching description is needed, 
and the results will no doubt depend critically 
on the floe diameter. However, we note that 

ICE THICKNESS m 

the above estimates of (B) increase with T, in- 
dicating that the creep mechanism begins to 
take over for T • 10 sec. 

The results o/ Wadhams. Wadhams [1973] 
made a series of wave recordings to the north- 
west of Spitsbergen with an upward-looking 
echo sounder mounted on a submerged sub- 
marine. The submarine drifted very slowly into 
the ice so that each record was effectively a 
time series at a fixed location. Again we must 
decide whether xA• or xAw was the parameter 
being measured. Beneath open water a single 
echo was received, while below an ice floe a 
double echo was obtained, consisting of returns 
from the bottom and top of the floe, respec- 

Fig. 9. Log-log plot of (wave energy in ice./ tively. The open water trace, which was con- 
wave energy in open ocean) against ice thickness tinuous with the second return under a floe, 
for 16-sec wave component (after Robin [1963]). was digitized for analysis. Such a trace is 

thus composed mainly of •A,, with an indeter- 
log•o h. A straight line of gradient -5 has minate admixture of •Aw. 
been drawn through the points and appears The power spectra at different penetrations 
to fit the data well, considering the inherent each had a peak at the 12-sec period, and 
inaccuracy in visual determinations of ice thick- Figure 11 shows (1/•A• • -- 1/•,ooA• 2) plotted 
hess. against (x -- 1300), assuming that •A• is the 

The results of Dean. Dean [1973], using measured parameter. The first spectrum, taken 
the same instrument as Robin, made a series at a 1300-meter penetration, was used as the 
of measurements in the Antarctic concentrated base datum. 

near the ice edge, at penetrations of up to 2 km 
only. For such small penetrations the decay 
of the long-period components cannot be dis- 
tinguished against the statistical variance in 
the spectra. Only the short-period waves decay 
significantly, and Figure 10 shows plots of 
(1/xA• • -- 1/5oA• •) against (x- 50) for 
three values of wave period. Applying (38) 
to the lines of best fit we obtain the following 
estimates for (B)' 

T = 6 sec (B): 7.9 X 105N m -•' sec 3 
--2 3 T = 8 sec (B) = 4.8 X 106N m sec 

--2 3 

T = 9.6 sec (B) = 8.0 X 106N m sec 

As expected, the values are far too low, show- 
ing that the creep model can account for only 
a small fraction of the energy loss at low 

4' ! ! ! 

I - 1 

•2x 104 (6S) x 
r•2.02 (8,a6s) 3- 

T-6 
2- 

1- 

0 o.'2 014 0'.6 c• 1 
(,-.) •m 

periods. Multiple scattering and reflection in- Fig. 10. Plot of (1/,A• •-- 1/aA• •) against (x- 
crease the path length of a wave vector many- a) for the observations of Dean [1972]. 
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! 

; 2 3 
(x-a)km 

this model, especially as a suitable array of 
devices can be used to derive the direction 

and phase velocity of the waves in ice. Several 
trials of such a method have been made, of 
which the best is that of Hu?•kins [1962], who 
recorded the deflections of a seismometer and 

gravity meter in the Beaufort Sea. No nu- 
merical conclusions can be drawn from his 

spectra however on account of the short record 
length (5 min) and long sampling interval 
(3 sec). Further observations would be valuable. 

The flow law exponent n. We have shown 
that the data of Robin and Wadhams give 

Fig. 11. Plot of (1/•A/' -- 1/•A• 2) against (x -- a straight line when plotted according to (38), 
a) for the observations of Wadhams [1972]. furnishing evidence for an n -- 3 flow law. If 

n v•: 3, (16) cannot be cast into the form of 
It can be seen that the points lie close to (38), but provided xA, << aA, we have ap- 

a straight line. Applying (36) and (38) to the proximately 
line of best fit yields the estimates for (B), 

1/•Ai •'= [(n- l)S(x- a)] 2/n-' (41) depending on the assumptions and parameters 
used, as shown in Table 1. Despite the scatter in the data it is clear that 

The ice thickness was estimated visually a. value of n as low as 2, for example, is in- 
during surfacings at between 2 and 2x/• meters. admissible, and we can conclude that n must 
The larger value of E has been considered lie within the range 2.5 < n < 3.5. This 
because Lavrov [1969] in reviewing existing corresponds with laboratory results for various 
data concludes that perennial Arctic ice tends forms of fresh water ice [Weertman, 1972]. 
to be harder than Antarctic ice. However, if we The result can be shown more clearly by 
consider the whole thickness of an ice floe in- returning to (15). The differential dxA•/dx is 
cluding the very soft underpart, we conclude estimated from the gradients of smoothed 
that a lower value of E is likely to give a graphs of wave amplitude versus penetration 
better approximation to its behavior. By using (this was not possible for Robin's return 
the lower of the two values and making ad- voyage on account of the scatter). A graph 
ditional allowance for the sources of error is then plotted of log•o (d,A•/dx)against log•o 
described earlier, we obtain a best estimate (,A,) when we expect a straight line of gra- 
of (4 _ 2) >< 10; N m -2 sec • for (B). This is dient n. 
in good agreement with the value derived from Figure 12 shows the results. In general, 
Robin's results. n = 3 fits the data well, except for the outer- 

Direct measurement of ice flexure. The most points of Robin's observations, Even here 
ambiguity between •A, and ,A,o can be removed we cannot be sure that the n -- 3 law breaks 
by direct measurement of the motion of the down, since these points correspond to a region 
ice surface when the parameter in question is of the ice field described by Robin as being 
simply xA,. This offers the best means of ob- composed mainly of small floes. If the floe 
taining more accurate data with which to test diameter is less than a wavelength, the bending 

TABLE 1. Estimates of Flow Law Parameter <B> Using Different Values for E and k 

Measured E = 6 x 10 9 N m -2 E = 8 x 10 9 N m -2 
Quantity 2-h-= 2 meters 2h = 2« meters 2h = 2 meters 2h = 2« meters 

4.3 x 10 7 4.5 x 10 7 2.7 x 10 7 2.9 x 10 7 
3.4 x 10 7 3.2 x 10 7 2.1 x 10 7 2.2 x 10 7 
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stress caused by a wave of given amplitude 
is considerably reduced, thus reducing the rate 
of energy loss. We should not try to apply 
our model therefore to fields of small ice floes. 

•)ISCUSSION 

We find that the observed attenuation rates 

of waves in ice are fitted best by a Glen-type 
flow law with an exponent n -- 3 and a param- 
eter (B) similar to the laboratory value for 
polycrystalline ice. The range of average tensile 
stress involved is 0.1-0.8 X 106 N m -• (Robin's 
results) and 0.7-1.3 X 106 N m -• (Wadhams' 
results). We must now consider whether this 
agreement is fortuitous or whether it actually 
confirms our simple model. In the absence of 
dynamic stress experiments on ice we must 
argue by analogy with metal behavior. 

A typical effect of stress cycling in metals 
is to shorten the primary creep stage and bring 
on steady state creep more quickly. However, 
since each phase of the cycle due to sea waves 
lasts for only T/4 (i.e., 5 sec or less), it is 
unlikely that secondary creep has a chance to 

-6- 

•/Wadhams 
/ T=12 

Rob, n 
T=16 / 

// 
' ' -o'.5 ' • 

Iog10 ('xA , ) 

Fig. 12. Log-log plot of rate of amplitude de- 
establish itself. Therefore in the loading phase cay against instantaneous amplitude, showing the 
the energy loss is more nearly determined by fit to an n - 3 flow law. 
the initial creep rate (de/dt)•, which is faster 
than the steady state creep rate (de/dr),. 
Garo[alo et al. [1963] found for stainless steel is greatly reduced immediately following a 
a relationship of proportionality between single small reduction in stress. 
(de/dt)• and (de/dt), given by If no creep occurs during the unloading phase 

and if in the loading phase we let the ratio 

( ) ( • (de/dt)•/(de/dt)• be a constant f, then the de = 3 3 de (42) total behavior of the ice over a cycle will • • '\dr/8 
mimic a steady state flow law with n -- 3 and 

The constant is independent of stress over (B) equal to the derived value multiplied by 
• wide range and of temperature over the more a factor of ([/2) TM. This factor will be close 
limited range of the experiment. The data of to unity if [ is of the same order as that for 
Chalmers [1937] for tin also show this re- metals, as is suggested by the creep curves of 
lationship, with a constant ranging from 3 for Tabata [1958]. It is seen therefore that the 
large-grained structures to 10 for small-grained basic mechanics of our model still hold good 
polycrys•als (sea ice is large-grained). If such and that adjustments to take account of the 
a relation is true for ice, then the energy loss possible anomalies of cyclic creep involve only 
will be seen as consistent with the steady slight numerical modifications. Experimental 
state flow law as far as n is concerned, although confirmation is required, but it is probable 
(B) will be different. that a creep model similar to that described 

If we now look at the unloading phase, how- provides a valid explanation for the attenuation 
ever, we find that experiments such as those of swell by sea ice. 
of Thompson e't al. [1955] on aluminum single 
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