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A. G. VORONOVICH 

PROPAGATION OF INTERNAL AND SURFACE GRAVITY 

WAVES IN THE APPROXIMATION OF 

GEOMETRICAL OPTICS* 

The propagation of surface and internal gravity waves which have a modal structure is con­
sidered in an ocean whose properties vary in time and space. The problem is solved in a 
linear formulation by the method of geometrical optics: it is assumed that the length and peri­
od of the wave are much smaller than the corresponding spatial and temporal scales of the 
main motion. It was possible to reduce the equation determining the amplitude of the wave to 
the form of a conservation law for a certain adiabatic invariant I of the wave: 

ol at + div (Cgrl) = 0. 

Solutions are presented for this equation and the equation determining the phase of the wave on 
the characteristics. Certain simple corollaries of the relationships derived are discussed in 
the conclusion. 

1. Currents and density-field inhomogeneities that 
are variable in both time and space are practically al­
ways present in the real ocean. It would therefore be 
interesting to consider how these inhomogeneities in­
fluence the propagation of surface and internal gravity 
waves. In its general formulation, this problem is a 
highly complex one, and it is therefore convenient to 
consider first of all the propagation of short waves whose 
length and period are much smaller than the character­
istic distances and times in the variability of the large­
scale motions. If the latter are assumed to be of the 
order of 100 km and 10 hr, a rather broad class of the 
actually observed wave motions will fall within the range 
of the analysis. On the other hand, it becomes possible 
in this case to analyze the problem by the geometrical­
optics method. 

Many published papers have been devoted to this 
problem in a more or less general formulation. Here it 
is appropriate to take note of the paper [1], where the 
influence of density-field inhomogeneities on the propa­
gation of internal waves was considered in the approxima­
tion of geometrical optics (the papers [2, 3] were also 
devoted to this problem). Wave propagation in inho­
mogeneous media was discussed in a general formula­
tion in [4, 5]. However, the papers [6, 71, in which the 
problem was solved under general hypotheses in the case 
of a medium that varies slowly along the vertical co­
ordinate, deserve special mention. The problem has 
also been investigated by several other authors in this 
form~lation (see, for example, [8, 9] and their bibliog­
raphies). The results of a numerical experiment on the 
propagation of internal waves on a current with hori­
zontal shear were presented in [10]. 

In the present paper, the propagation of internal waves 
with modal structure and the propagation of surface 
waves are analyzed in a linear formulation for an in­
homogeneous, slowly varying ocean, using the geometri­
cal-optics method. We shall treat the ocean as an in­
compressible fluid and use the Boussinesq approximation, 
i.e., we shall take account of the departure of the fluid 
density from unity only in the buoyancy-related terms. 
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2. We take the dynamic equations in the form 

du, op 
ar =-ax,' i=1,2, 

au, aw 
-+-=0 ax, {)z , 

(1) 

Here ii, (i=1, 2) are the horizontal velocity compon.c!nts, 
w is the vertical velocity, p and p are the pressure and 
density, Xi and z are the horizontal and vertical coordi­
nates (the latter increases upward), and d/dT is the total 
derivative. The boundary conditions have the form 

at z=li(X,,T) p=p,(X,, T), 
~ {)7i ~ {)7i 
w=-+u,-, ar ax, 

at z=-H(X.) 
oH 

w+u,ax;= o, 

(2) 

(3) 

where z =hand z =-Hare the equations of the bottom 
and _the free surface and Pa is the atmospheric pressure. 
We introduce the small parameter e, which characterizes 
the slowness of the variations of the main motion along 
the horizontal coordinates and in time. Slowness of 
variation is not assumed along the vertical coordinate. 
We then represent all of the hydrodynamic fields as con­
sisting of two components: 

(4) 

where ip is any of the variables characterizing the motion 
rp' 0

' for the main motion and rp for the disturbance propa- ' 
gating against the main motion as a background; x,=EX, 
and t=eT are the slow horizontal coordinates and time, 
and a is a small amplitude parameter. Since urn'=u'"' 
(z, x,, t), it follows from the continuity equation (1) that 
w'"-s I u,' 0 '1- We shall assume that the other hydrodynamic­
field variables of the main motion are of the order of 
unity. We shall also assume that the atmospheric pres­
sure and the bottom level vary slowly: p,,=p,,(x,, t), H 
= H(x). 

Substituting the representation (4) with consideration 
of the smallenss of rc' 0

' 

(5) 
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into Eqs. (1)-(3) and separating the variables relating 
to the main motion, we obtain 

(6b) 

(6c) 

iJu/o> iJw<o> 
--+--=0. 

iJx, i}z 
(6d) 

The boundary conditions are the same as (2) and (3) 
with the tilde replaced by the superscript (0), and Xi 
and T by Xi and t. Equations (6a), (6c), and (6d) and the 
boundary conditions are exact equalities, while (6b) 
holds accurate to quantities of the order of e'. 

We then find the solution of the equations for the dis­
turbance {j) in the form of the WKB expansion: 

where S is the phase of the wave, which determines the 
local wave number and the frequency in accordance with 
the relation k,=iJS/iJx,; w=-iJS/iJt. Now, separating quan­
tities of the order of a from the original equations, we 
easily obtain an equation and boundary conditions for the 
vertical velocity w< 1> of the disturbance (we shall hence­
forth consistently omit the superscript (1)) 

(7) 

(-w )' = gk
3
' w at z=h< 0> and w=O at 

(l)d (l)a: 
z=-H. (8) 

Here w,=w-k-u< 0> is the Doppler frequency, which de­
pends on z (through u<0 >) and µ< 0 >(z, x,, t)=-giJp<0>/iJz is the 
square of the Brunt-V!UslU!l frequency. Here and be­
low, the prime identifies the derivative with respect to 
z. The boundary-value problem (7), (8) gives us a set 
of dispersion relations for the various modes: 

w=f(k., x,, t) (9) 

and the corresponding solutions w=w(z, x,, t), which de­
pend on :iq and t as parameters. All other variables 
characterizing the wave can be expressed in terms of 
w using the relations 

_ iwl ( w )' p-- -
k' w, 

W iJp(0) 
p=-i---, 

w, iJz 

iw 
h=-. 

w, 

(10a) 

(10b) 

(10c) 

(10d) 

Then, separating quantities of the order of ae in the 
equations and boundary conditions, we obtain the equa-

tions 

ap<o> ap ap ap< 0> ap k' 
iw,p''' - -- w<" = -+ u?> - + u;--+ w< 0

> - * -g, 
az iJt iJx1 iJx1 iJz wl 

aw<•> au, w,' a·' (11) 
--+ ik·u<•>=--*-+-, 

iJz iJx, w, az 

and the boundary conditions 

wt 2 >+iwa:hc 2 >= 

ah iJh iJh(O) ( iJw(O) iJh' 0
' au'') ) 

-+u/''-+u1---h -------'- 1at 
at OX; axj az ax; az 

fJH 
W( 2)=-U;­

fJx; 
at z=-H. 

(12) 

Using the operators indicated in the right-hand side of 
(11) on these equations, we obtain 

kz (a> co,, 
(2)" + ( µ d k') (2)-F w -- --- w - ' 

wi Wa: ' 
(13) 

where F is the result of an application of the operators 
to the right-hand sides. Expressing p< 2

> and h"> in terms 
of w<•> in (12), we obtain the boundary conditions 

aw< 2
> ( gk' ) w,--- --+w/ w( 2l=G1 

[}z w, 
at z=h< 0 J, 

at z=-H. 
(14) 

The condition for solvability of the inhomogeneous bound­
ary-value problem (13), (14) is written in the form 

h(o) 

S iw i w i iJw I 
F-, dz--,--G,1,-•<•>--,-G,- =0. 

-H k k w, k [}z ,--H 
(15) 

Here iw/k' was taken as the solution of the homogeneous 
boundary-value problem. The expressions for F and G1 
have the form 

F=--- -+Vp+u?>-+w<0>-+u1-- + k iJ ( iJu fJu au iJu' 0
') 

w, [}z at iJx1 az iJx; 

ik' ( iJw <oi aw iJ ) k' ( ap ,o, ap 
+- -+u; -+-(ww<0 >) +-g -+ui -+ 

Wd at OX; i}z Wd iJt axi 

&p< 0
) ap) w/ OU; a au; 

+u;--+w<0>- ------, 
OX; i}z w, ax; i}z ax; 

Here V=(a/ax., a/iJx,). Condition (15) can be reduced by 
unwieldy manipulation to the form of a conservation law 
for a certain "adiabatic invariant" I: 

(16) 
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where 

h'''( µ'o' ro,'' ) ' ( g ro,' ) 'I - ----- w~+ -+-- m , I - J ro,' 2roa'k' ro,' 2roa'k' ,~1,ro> (l 7) 
H 

h(O) µ(0) (0 II 1 820{0) 

cr-J {u' 0
'[---• ]+--

gri - ro,' 2roa'k' 2ro.k' oz' 
-H 

k ,,, )} +-(~-1 w'dz+ 
k 2 wl 

Using only the boundary-value problem (7), (8), it is 
easily shown that the ratio of expressions (18) and (17) 

is indeed the group velocity c~'=of/ok,. It is important 
to note that Eq, (16) will not hold for arbitrary main 
hydrodynamic velocity, density, and other fields, but 
only for those that are controlled by the dynamic equa­
tions; Eqs. (6) and the boundary conditions (2), (3) were 
those essentially used in the-calculations. If the surface 
waves are filtered out by using the "solid lid" boundary 
condition w(0) = 0 in the initial equations at z = 0, the 
terms to be evaluated at z "" 0 in (17), (18) vanish, 

We note that in the absence of currents, expression 
(17) reduces to / =El ro, where E is the energy of the 
wave, In the case of purely internal waves and high 
Richardson numbers (slow variation of the horizontal 

(OJ h(O)E 

velocity with depth), we obtain ro." « .!:._ k' and / = J - dz, 
Wa Wa 

-H 

in agreement with the usual expression for the adiabatic 
invariant of an internal wave in this case (here E is the 
energy density), 

We note that the main equation (16) and expressions 
(17), (18) should be obtainep directly from a suitable 
variational principle by the method proposed in [4, 5]. 
However, we have not yet done this. 

Integrating Eq, (16) over a sufficiently large hori­
zontal area s, we easily find that the total adiabatic 

invariant~ Ids of the wave is conserved as it propagates. 

3, Using the definitions of the wave number and fre­
quency, we obtain an equation that determines the phase 
of the wave (Hamilton-Jacobi equation) from the disper­
sion relation (9): 

as ( as ) -+f - X t =0. at ax,' " (19) 

Equations (19) and (16) fully determine the propagation 
of a linear wave in the WKB approximation, The char­
acteristics of Eq. (19) are specified with a system of 
ordinary differential equations: 

dx, of 1,, -=-=Cgr (k;,X;,t), 
dt ok, (20a) 

dk, of 
"at=-ax,' (20b) 

(20c) 

The phase of the wave along a characteristic is cal­
culated from the relation 

(21) 

:c, = y 

Fig. 1 Fig. 2 

Fig. 1. Illustrating definition of dl: the light lines are 
two closely spaced characteristic projections, and the 

heavy line is the original manifold ,{x,(s, to), x,(s, to)}. 

Fig, 2, Profile of current with horizontal shear and gen­
eral picture of characteristic projections onto the coordi­

nate space in the case u1°>=(u(y), O), pl 0 >=p1o>(z). 

where S0 is its initial value, The characteristics of Eq. 
(16) agree with (20), From this we easily find that the 
quantity 

I o(x,,x,) 
a (1;, t) 

const, (22) 

where £ is a parameter that specifies the initial manifold 
at t = to, is conserved along a characteristic, Relation 
(22) has the following geometric interpretation: if we 
consider two infinitesimally closely spaced characteristic 
projections on the coordinate space (x1, Xz) and denote the 
distance between them by dl (Fig. 1), the equation 

I Cgrl j dl=const. (23) 

holds along the characteristics. 
We have from (20a) that the vector Cgr is perpendicular 

to the segment dl, so that relation (23) is the law of con­
stant flux of the adiabatic invariant along the ray tube. 
Thus, if equation system (20) is solved, relations (22) 
and (23) determine the amplitude and phase of the wave, 

4. It follows from (20b) and (20c) that if the parame­
ters of the ocean do not depend on time, ro = const along 
a characteristic; but if they do not depend on the Xi co­
ordinate, we have ki = const (Snell's law). 

Let us consider, for example, a plane-parallel cur-

rent: {u;°',u:°'}={u(y), 0}, p' 0 >=p 10>(z). In this case, the 
characteristics will be a family of parallel curves (Fig, 
2), whence follows conservation not only of ro and kx, but 
also of 

c~~) /=const. (24) 

If we put µ''.>=No'=const, we obtain from (24) and (18) 

from which 

k, ( N0
2 

) 
2 ---- - 1 w2 = const, 
k (ro-k,u)' 

w _ ( cos' a; ) '
1
• 

--R ---
wo R-sin2 a; 
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Here 

k,=- -
0 

-1 sina· nn (N' ) 
H ©' ' 

His the depth of the ocean, n is the mode number, and 
© and w2 are the initial frequency and amplitude (on the 
quiet water). If ukx > 0, then we have as I u I increases 
k,-+O, C~-+-0 and w-+00, at the point where R=sin' a. But 
if ukx < 0, we have as lul increases ©-k,u-+N, as 
k,-+"", w-+oo. It is interesting that in the latter case the 
wave arrives at the critical level after an infinite time 
(t-lv.-ucrl-''), while in the former case this happens 
after a finite time, but since k,-o, the limits of validity 
of geometrical optics are crossed sooner. 

Let us consider the one-dimensional problem of 
propagation of short surface waves on deep water with a 
current that does not have vertical shear and whose 
velocity depends on x (this can be brought about by vary­
ing the relief of the distant bottom). 

With µ<•l=0, u<•l=u(x), H=oo, the boundary-value prob­
lem (7), (8) yields the solution 

w=w,e'', (©-ku)'=gk. 

In this case (J) = const and 

Cgrl=- w;' J e"' dz+ 

( 
g g -)

00 

w,' ©+uk 
u---+---- w0

2=--=const. 
(©-ku)' k(©-ku)' 2k' ©-Uk 

This result agrees with the expression obtained in [11]. 
Let us consider the propagation of a short linear wave 

against the background of a nonlinear stationary wave 
traveling along the x axis at velocity C. In this case. 

:©=f(k,, x,, t)=f(k., x-Ct). 

Here it follows from Eqs. (20) that the quantities ©-k,C 
=const, k,=const are conserved along a characteristic 
(the first of them is the Doppler frequency in the co­
ordinate system of the stationary wave) • These three 
equations can be solved graphically (Fig. 3). As the 
traveling coordinate x' varies (i. e., on transition to a 
different phase of the stationary wave), the dispersion 
curves will undergo some deformation, while the 
straight lines remain in place. We see that if at acer­
tain moment the phase velocity of the wave Cp=©!k<C 
(Fig. 3a), there will always be a point of intersection 
no matter how the dispersion curve changes. The short 
wave will at all times lag the stationary wave, since 
Ci?r < C. But if Cp > C, the picture will be somewhat 
different. If at some time the parameters of the wave 
correspond to point 1 (Fig. 3b), then 

d 
dt (x-Ct) > 0, 

Fig. 3. Graphical construction for the 
determination of the parameters of a 
short wave. The dispersion curves are 
drawn for a certain fixed "traveling co­
ordinate" x' = x - Ct. The points of in­
tersection correspond to the parameters 

of the wave. 

and the short wave will overtake the stationary wave. If 
the dispersion curve is strongly enough deformed when 
this happens, points 1 and 2 will merge at a certain time, 
after which the wave parameters will correspond to 
point 2 and the short wave will cease to lag the stationary 
wave: ·. 

d dt (x-Ct) <.O. 

If the stationary wave is periodic, points 1 and 2 will 
again merge at a corresponding time, the wave will 
"cross" to point 1, and this process will be successively 
repeated. While the short wave spends time in all phases 
of the stationary wave in the case of Fig. 3a, there are 
in the case of Fig. 3b certain forbidden zones that the 
short wave does not penetrate. In both cases, the wave 
parameters vary in such a way that !).(J)/ !).k,=C. 

It seems reasonable to assume that Eq. (16) will also 
hold in a more general formulation of the problem. as 
when the rotation of the earth is taken into account or the 
Boussinesq approximation is dispensed with. Then the 
expressions for the adiabatic invariant and its flux are 
easily surmised if we note that their ratio must be equal 
to the group velocity, a relationship for which is simple 
to obtain from the usual-boundary-value problem. and by 
using the limit transition to the case under consideration. 

In conclusion, I extend my profound gratitude to L. M. 
Brekhovskikh and to all members of his working seminar 
- K. A. Naugol'nykh, S. A. Rybak, V. V. Goncharov and 
V. M. Kurtepov, whose helpful recommendations aided me 
in the solution of this problem. 
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