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Méthodes de volumes finis non structurés centrées sommets pour
les triangulations anisotropiques étirées

Résumé :Les schémas volumes finis centrés sommets appliqués a des triangulations peuvent
présenter une mauvaise précision quand des maillages étirés sont utilisés. Nous introdui-
sons une famille de schémas variationnels avec trois paramétres pour chaque triangle et étu-
dions les conditions que ces paramétres doivent vérifier pour avoir un bon comportement
en maillage étiré. Certains des schémas obtenus sont aussi plus aptes pour des calculs sur
maillages quasi-cartésiens que les schémas standard reposants sur des cellules limitées par
des médianes. Nous obtenons entre autres le schéma volumes finis de Barth. Ces schémas
sont aussi apparentés aux schémas MDHR. Nous discutons de I'application de ces schémas
pour le calcul d'écoulements transsoniques autour d’un cylindre et dans une chambre de
combustion de booster.

Mots-clés : Méthode volumes finis, méthode éléments finis, schéma multidimensionnel,
maillage étiré



On Vertex-Centered Unstructured Finite-Volume Methods for Stretched Anisotropic Triangulations

Contents

1 Introduction 1

2 Variational derivation of the Galerkin Finite-Volume method 3
2.1 Variational frame . . . . . . ... 3
2.2 Lagrange-Galerkin particularcase. . . . . ... .. ... ... ..... 5

3 Diamond variant 8
3.1 Definition of the mainchoices ... . . . . . . . . . . .. ... . ..... 8
3.2 Passingto centered finite volumes. . . . . .. ... ... ... ... .. 12
3.3 Qualification of a diamond scheme for cartesian meshes . . . . . ... ... 16
3.4 Bridgewithcentered MDHR . . . . . . . . ... ... ... .. ... ... 17
3.5 Bridge towards distributive schemes . . . . .. .. .. ... ... ... 19

4 Analysis of high stretching 20
4.1 Barycentered Formulation . . . ... ... ... ... .. .. ... ..., 20
4.2 Auniform triangulation model . . . . . ... ... ... oL 21
4.3 Stretched triangles with no obtuse angles... . . . . .. ... ... ... 24
4.4 Stretched triangles withobtuse angles (1). . . . . . .. ... ... ... 25
4.5 Stretched triangles with obtuse angles (2). . . . . . .. ... ... ... 27
4.6 Synthesis: Elementwise anisotropy . . . . . . . . .. ... oL 28
4.7 Relation to existing finite-volume schemes . . . . . . .. ... ... .. .. 31

5 Upwind formulation for CFD : MUSCL 33

6 The linearity preservation property 34

7 Some numerical illustrations 37
7.1 Unsteady flow: rotation ofaconicalspot . . . . . .. ... ... .. .... 37
7.2 Flowaround acircularcylinder... . . . ... ... ... ......... 39
7.3 Flow in a booster combustion chamber . . . . . . . . ... . ... ... 42

8 Concluding remarks 44

9 Acknowledgments 46

RR n° 3464



On Vertex-Centered Unstructured Finite-Volume Methods for Stretched Anisotropic Triangulations

1 Introduction

Most existing CFD codes rely on finite-volume schemes resulting in a five point stencil for
advection. These schemes are of low cost, but of second-order accuracy only on quasi-
cartesian meshes. They apply well on regular stretched meshes. However, on highly dis-
torted meshes, accuracy can markedly degrade since the order of accuracy can become
much smaller than one. Further, compared to numerical diffusion errors which are made
easily smaller by mesh refinement, this kind of error is difficult to detect by the user since,
refining the mesh would have a small effect on the refined solution, due to the poor order of
this kind of error.

Finite-volume schemes resulting in a seven point stencil can be obtained from vertex
formulations on triangles. Some standard choices such as control volumes bounded by
segments of medians (so-callededian cells are essentially equivalent to the Galerkin
variational formulation (centered versions) [18, 8, 2, 15] and enjoy a rather good robust-
ness to distorted meshes as long as they are not stretched. For the Galerkin formulation
itself, error estimates show a good behavior for irregular but non-stretched meshes, and for
highly stretched meshes which meet a maximum angle condition (e.g. see [14]). Unfor-
tunately, when upwinding that preserves positiveness is introduced, the favorable behavior
on unstretched meshes is inherited, but not the robustness to stretching [4, 12]. Indeed, a
simple truncation error analysis on cartesian meshes shows that the scheme is not uniformly
consistent for arbitrarily stretched meshes [5].

The qualification of the scheme for stretched meshes can be obtained either by relax-
ing the positivity statement as in the stabilized finite-element method [11] and in artificial
viscosity models [13], or by replacing the Galerkin centered approximation with a dif-
ferent one; for example, the shape of the cell can be changed as suggested by Barth [4],
or the global approximation can be reconsidered as in the nhumerous works around multi-
dimensional (MD) schemes [16, 19].

For both the Barth approach and the MD approach, the scheme stencil is made in some
cases more compact: the containment-circle based dual control volume (that we will call
the Barth cel) disables fluxes along any edges that are in front of obtuse angles. The MD
schemes systematically select only two edge-wise differences per triangle (scalar case). Be-
hind the approximation of the advection terms remains the question of diffusion terms, that
are conveniently treated by the Galerkin option only if this treatment is compatible with the
advection scheme. Now, it is remarkable that for second order derivatives, the Galerkin tri-
angular approximation (Figure 1) is identical to the usual five point finite difference scheme
of the Galerkin quadrangular approximation (Figure 3). For first order derivatives, this is
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2 C. Viozat, C. Held, K. Mer, A. Dervieux

not true, since non zero coefficients appear in points at the end of diagonals (compare Fig-
ure 2 to Figure 4). Considering new advection schemes that reduce on cartesian meshes to

a five point approximation seems an interesting standpoint.

Figure 1:lllustration of the five point
finite-difference stencil fotrian-
gular meshes in the case of the
diffusion equation.

Figure 3:lllustration of the five point
finite-difference stencil foquadri-
lateral meshes in the case of the
diffusion equation.

1 1
6 6

1 1

3 3

1 1

6 6

Figure 2: lllustration of the seven
point Galerkin stencil fotriangu-

lar meshes in the case of tlzel-
vection equation.

Figure 4: lllustration of the three
point finite-difference stencil for
quadrilateral meshes in the
case of the horizontaladvection
eqguation.
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On Vertex-Centered Unstructured Finite-Volume Methods for Stretched Anisotropic TriangBations

In the present work, we concentrate on amending the vertex centered finite-volume
formulation on triangles. A family of cell shapes is defined from a variational argument.
Instead of starting from the Galerkin method for obtaining median cells, we introduce a for-
mulation characterized by a modified differentiation operator, in which edgewise gradients
are defined on the so-called diamond cell. The use of this diamond derivative reduces the
stencil of the scheme, and in the case of cartesian triangulations, the new cell reduces to
a rectangular cell. Another feature of the proposed construction is the bridge that is thus
established between finite volume, and in particular with special cell shapes as introduced
by Barth [4], with finite element (of P1-Galerkin type) and with multidimensional schemes.
We develop an analysis of the new family of schemes by proposing a necessary condition
for consistency in the presence of stretched meshes. The rest of the scheme construction
is more standard: an approximate Riemann solver is introduced for stability purposes, a
MUSCL [22] interpolation is applied for increasing the formal order of accuracy, and lim-
iters can be (optionally) added for saving positiveness.

The next three sections of this paper are devoted to the new scheme derivation: varia-
tional context (Sec.2), introduction of a diamond derivative (Sec.3) and identification of a
family of schemes adapted to stretched meshes (Sec.4). In Section 5, second-order accurate
extension is presented. In Section 6, the properties verified by the new scheme are investi-
gated. In Section 7, a set of numerical experiments aiming at showing the accuracy of the
selected scheme, and its behavior on stretched and non stretched meshes is presented. In
the last part of the paper concluding remarks are given.

2 Variational derivation of the Galerkin Finite-Volume method

The scheme considered in this paper is presented as a modification of the standard P1-
Galerkin scheme ; in particular, we adopt the variational formulation. The aim of this
section is to recall (with some extra details) the well-known bridge between finite-volume
and Galerkin methods [18, 8, 2, 15].

2.1 Variational frame

The two dimensional Euler equations can be written as a system of hyperbolic equations of
conservation:

W,+ V. F(W) = o, (1)
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4 C. Viozat, C. Held, K. Mer, A. Dervieux

where F (W) = (F(W), G(W))L.

The variational form is obtained by multiplying Equation (1) bieatfunction,,, and
integrating it over an open domatiit

/zmetdQ+/me-?(W)dQ = 0, Vb € L2(Q). )
Q Q

Following the standard finite-element method, we approxinﬁﬁtand? by a linear
combination obasisfunctions belonging td7! (<) :

N
W = Z Wynon, 3)
n=1
and
N
F(W)=Y F(Wa)en, (4)
n=1

wherelN is the number of mesh nodes apglis the finite-element shape function associated
with noden. They's may not necessarily be chosen identical todte(“Petrov Galerkin”
type formulation).

Substituting Equations (3) and (4) into Equation (2) and replaﬁngy an approximate
gradientv_,i, we obtain the following set of linear equations:

N N
ZanWn,t_f'szn-?n = 07 Vm = 17-'7N7 (5)

n=1 n=1

where
Mpn = / Onm dS2, (6)
Q
Z>mn = / me Vh‘an ds. (7)
Q

A classical mass-lumping gives

N N
(Z an> Wi+ Ao Fr = 0, Vm=1,.,N. (8)
n=1 n=1

INRIA
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Definition:
We define propertiegP1), (P2) and (P3) by:

(P1) Amm =0, Vm =1,..,N,

N
(P2) Y Apw =0, Vm=1,.N,

n=1

(9)

—
mn = —Anpm, Ym,n=1,..,N.m

b|

(P3)

Proposition 1 [8, 15, 18]:
If Properties(P1), (P2) and (P3) hold, the approximation described in (8) is equivalent
to the following finite-volume type method

al Fn+F
Area(Co) Wos + S Tn - % — 0, Ym=1,..N, (10)
n=1
n#m
N
whereArea(C,,) = Z M., is the area of a (at least virtual) finite-volume control volume
n=1

Cpand 7 = 2 Zmn is the mean normal vector occuring in the finite-volume flux
integration between nodes andn. m

2.2 Lagrange-Galerkin particular case

For the Lagrange-Galerkin formulatiop,{, = .,,, with Lagrange interpolation anﬁfh> =
?), Properties (P1), (P2) and (P3) are satisfied [8].

In particular, ife,, (= v, ) are P1-Lagrange basis functions (i.e. continuous, piecewise
linear on each triangle and equal to 1 at ned@nd0 at the other nodes), then it is well-
known that Equation (8) is equivalent to Equation (10) in which the@gll(see Figure 5)
is delimited by the medians of the neighboring triangles of the verteand 77°,,,,, is the
mean outward normal vector to the interfacg N C,,.
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2
Triangle T
m

S

cell Cp

Figure 5:Cell built around noden.
Figure 6: The mean normal vector
occuring in the finite volume flux in-
tegration between nodes m and n is
Tmn = ﬁgmlz + ’771;31

B

Figure 7:Cartesian mesh, and median cells in dotted lines.

Then, the so-called median finite-volume method (as in Baba-Tabata [3]) is a natural
variation of the finite-element method. An upwind version is easily built by introducing
some flux splitting. In the case of the scalar advection equation

we + div(7 w) =0, (11)

INRIA
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where V' = (a,b)! is a constant vector and using the usual “Donor Cell” splitting, Equa-
tion (10) becomes:

Area(Cp,) Wit

N Vv V.5
n Z - ' mn (Wm+wn)+| - ' mn |(wm_wn) =0,Yym=1,..,N.
2
n=1

n#m
(12)
A truncation error analysis of Scheme (12) applied to the case of a family of skewed
meshes as described in Figure 7, witly £ Ay, yields:

wy= —a Wy
—b wy
1 Ax)? Ax)?
+5 [|b(Az) —2an|+|b(A—xy)+an|} Way
+ - | bAz 4+ aAy | Way
1 (Ay)? (Ay)?
—||2bAy —a —=— A
w5 [120ar-a G5 14 pay+a G0y
) (13)
—5 ¢ (Ax)? Waga
1
% (b Az + aAy)Ax Wy
1
% (b Ax 4+ aAy)Ay Wayy
1 2
% b(Ay) Wyyy
Azt Ayt
O (Ax? Ay, 2L 2L
—"_ < €r ) y ) Ay ) Ax) )
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8 C. Viozat, C. Held, K. Mer, A. Dervieux

. . . 3 3 Azt Ayt . .
in which the functionO | Az>, Ay Ay Ar holds for a term that is asymptotically
Azt Ayt
ller thamAz3, Agy?, =— or =2,
smaller thamAz?, Ay?, Ay orAw

. . . A .
It is clear that Scheme (12) is con&stent%ﬁ7£ andA—y are uniformly bounded. Con-
Yy X

versely, this scheme may lose its consistency in the case of stretched meshes. Indeed, for
2

an increasing stretching, we may havAéC— — oo if the stretching direction is along the
)
. Ay? s . , .
axis, orA—y — oo if itis along they axis, thus the first-order terms of the truncation error
Xz
will increase.

The lack of accuracy for stretched meshes is the main drawback of this standard finite-
volume method. Several ways to go around this drawback have been proposed [6, 4, 12].
They involve changing the shape of the finite-volume cells. Analysing the resulting schemes
with respect to the standard Galerkin variational formulation is rather difficult; therefore, we
propose a new variational frame for the definition of new finite-volume schemes.

3 Diamond variant

3.1 Definition of the main choices

In order to develop a method accurate on stretched meshes, and getting inspiration from
the multidimensional schemes building (e.g. see [20]), we consider Equation (8) with the
following choices:

e A point C'is chosen on each triangl€’ (s not necessarily located at centroid).

e Test functions:

UG = X (14)

wherey,, denotes the characteristic function (i.e. the function is equéaldo the area
C,, and0 elsewhere) and’,, is the cell built around node: by joining for each triangle
aroundm the middle of edges to a point in the triangle (see Figure 5).

e Basis functions: p,, are P1-Lagrange basis functions.

INRIA



On Vertex-Centered Unstructured Finite-Volume Methods for Stretched Anisotropic Trianguations

e Discretized gradient operator:
We consider a triangl&' (assumed not degenerated) of verticesandk, and a given

point C' of T'. The triangl€T” is numbered anti-clockwise.

,,,,,,, . Diamond half-cell T K

Figure 8: lllustration of the diamond Figure 9: The global referencial

half-ceIITkC. (£1,23) and the local referencial
(& )

Definition:

The diamond half-cell related to the edgeis the triangleT)" of verticesi, j and C (see
Figure 8). Similarly, the diamond half-cell related to the edgésand ki are respectively
the trianglesT[ of verticesj, k andC, and T~ of verticesk, i and C'. ms

We denote by\;(x,y), A\j(x,y) and;(z, y) the barycenter coordinates 6f For any
pointC(x¢, yc) we consider
Area(TC)
=\, I viJ
/\l /\z(x07y0) AT@CL(T) )

Area(TE)
C _ ). S 15
/\] )‘] (Ic, yC) AT‘@CL(T) ) ( )

Area(TE)
A = Moz, ye) = Wa(iﬁ)'

The local coordinate syste@ 77) is defined by (see Figure 9)

ij
fad b
i ||

o~
1

7=

£=

1

Izl
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10 C. Viozat, C. Held, K. Mer, A. Dervieux

Definition of the diamond derivation in the local coordinate system(g, 7):
Let f be a fungtion defined on trianglE; the diamond derivation of in the local
coordinate systerft, 77) is given by

oty _ N 1)~
" O A 4o
Onf, _ Xrg f(k)— f(i)

o T R )

wherey denotes the characteristic function.

In the case wher¢ (¢, n)|r is a linear function, the following properties hold:

8hf af
dédn = —déd
ST A .
Onf _ of
/T%dédn - /Tandgdn,
since
XTkC .
/T 3 dT = Area(T). (29)

Definition of the diamond derivation in the global coordinate system(z7, #):

Once derivatives have been computed in directipasdn, we can deduce derivatives
in all directions.

The relation between the global referentfatl, 23) and the local referentia(l{, ) IS
given by:

T o= w € +8T, I =1,2, (20)
where
E—— — L
.M z. €
o == ) ﬂl = l=1,2. (21)
&t 7Lt

In Equation (21), as well as in the rest of the paper, we denoté'bthe vector of
componentg—u,, v, ) (Where(v,, v,) are the components o).

INRIA
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We can rewrite the coefficients given in Equation (21) in terms of the coordinates of

triangleT:
-L - ~L =
o\ _ K Nl G\ i llik] @2
a9 2 Area(T)’ B2 2 Area(T)

The derivative of a functiorf (z1, ) in the global referential can be written with regard
to the local referential in the following manner :
Onf Onf f

—lr = ao= +58L| =12
oy T T M T G T (23)

Substituting Equations (16) and (17) into Equation (23) we finally obtain the diamond
derivation in the global coordinate system:
Onf,  _ Xrg f(G) = f(0)

T = A =
Oy X gl

I £ - £
- =, ? l = ? Y
SRV b @

which can also be written using Equation (22) as

E o xag gt xee |
Viflr = TWU(]) - f(@) + TWUU‘C) — f(@). (25)

If (ij,ik) defines a cartesian coordinate system, this derivative is identical to the usual
derivative. In general it is a different one. We summarize the definition of the diamond
scheme as follows:

Definition
We call diamond scheme with andik as the two sides chosen for directional splitting the
following variational form of Equation (1)

/wg Wtd9+/¢,€§ Vi F(W)dQ = 0, (26)
Q Q
N
?(W) = Z ?(Wn)%, (27)
n=1
where ¢,, are P1-Lagrange basis functions;C = Y, are the test functions and the

diamond derivation is given by (2im.

RR n° 3464



12 C. Viozat, C. Held, K. Mer, A. Dervieux

3.2 Passing to centered finite volumes

We now apply Proposition 1 to the new context. Let us check that propéfties (P2)
and(P3) hold for the diamond method (26)-(27)-(25):

* Verification of (P1)
To show that P1) holds, we need to computd ...

By definition (7), we have

SRS =12 (@9
3/1331

TEN(m)

where N (m) denotes the neighboring triangles of the vertex

Using the definition of the diamond derivation (25), we obtain:

Area(T) 0o,
(Amm)y = ) #%h l=12. (29)
TEN(m) !

Moreover, sincep,, is a P1-Lagrange basis function we can write

/me 40 — Area(T)'
T 3

Therefore (29) can be written as

Apm); = Z / &pm 1=1,2. (30)

TGN

. Oom  10(om)?
Sincey,, Pm _ ($m)

, after an integration by parts we obtain

dx; 2 Oy
Z>mm = Z / Spm TLdO'
TegN (31)

= - c,om) ndo,
4 /8(2(

INRIA
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whered2 denotes the boundary of the support of ghefunction and7 is the exterior
unitary normal.

Sincep,, = 0 0n o, we havezmm =0.m

* Verification of (P2)
To show that P2) holds, we need to compuE A .

n

By definition (see Equation (7)), we have:

D (Amn), = /wcah‘p” [=1,2. (32)

" Opy

n

Equation (32) can be written as

/ yg; 2fem g =12 (33)

Ohx

where
N
Psum = Z@n .
n=1

Moreover, for linear functions, using properties (18), we can write

/ € DPsum ) 1=1,2. (34)

™ Oxy

Since the functionp,, is a P1-Lagrange function, we have:

Csum = 1. (35)

Sustituting Equation (35) into Equation (34), we obti@ Apn =0m

n

* Verification of (P3) . .
To show that P3) holds, we need to computd ,,,,, and A4 ,,,,,.

RR n° 3464



14 C. Viozat, C. Held, K. Mer, A. Dervieux

In the case wherer # n, according to Equation (7), we can write

(Amn)l = Z (Az;m),, [ = 1,2, (36)
where
Oh n g
/ng h¥ 1=1,2. (37)
3/1331

In Equation (36),7.},, andT?, denote the two triangles havingn as a common

edge (see Figure 6).

Substituting Equation (25) into Equation (37) we obtain:

-1
— B ki L . c XT¢
~L (38)
iJ : c Ty
b el = ) [ 2| e | 07

Taking into account the definition dfkc (15) and the definition of’$, (14) we can
write Equation (38) as:

o7 kl . / XT;,

A nm = n - ¥n —————dxd
— (@n(j) = @n(?) e, Area(Ty) LA o)
~ L

s L - [0

— 2 dxidx
TNCm Area(T]) B

INRIA
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The numerical computation of the terms involved in Equation (39) is straightforward:

r 1/2 if m=i,

— =k dyidry = 1/2 if m=yj,
/Tﬂcm Area(T) A
. 1/2 if m=i,

/ 7jd$1d$2 = 0 if m= j,
rnc,, Area(T;) 1/2 if m=k,

(40)

-1 if n=q,
on(k) —pn(i) = 0 if n=4j,
1 if n==k.

Substituting Equations (40) into Equation (39), we obtain
(G /4 it min =i},
/4 i i =i,

Gt/a i nn =ik,

i (41)
it i m= ki,
0 it nin=jk,
L 0 it ntn = kj.

From Equation (41), we can verify thﬁmn = —fTT) . thereforeﬁmn = —Z)nm -

According to Proposition 1, we have the lemma:

Lemma 3.1 The diamond method witly and ik as the two sides chosen for directional
splitting (26)-(27)-(25) is equivalent to the finite-volume type method (10) with

(nmn)l = Z (Vr]r;n)la [ = 1a27 (42)

T=T}, T2

mni’-mn

RR n° 3464



16 C. Viozat, C. Held, K. Mer, A. Dervieux

where
(ki)y:/2, it nin=1j,
('), = (i))L/2, it nin=ik, (43)
0, it nn = jk.
Area(Cy,) is the area of the cell chosen for building the test functions.

Remark
The normal vectors,,,, obtained are the normal vectors to a cell defined on each triangle
by joining the middle point of the two chosen sides for the diamond derivation to the middle
point of the third side (see Figure (11.28.

3.3 Qualification of a diamond scheme for cartesian meshes

A truncation error analysis of Scheme (12) using the diamond method based twothe
smallest sidesapplied to the case of a family of skewed meshes as described in Figure 7,
with Az # Ay, yields:

wy = —a Wy

—b Wy

RPN
~|al|Ax Waa
2
1

+5 0] Ay Wyy (44)
1 2

—30 (Ax) Wogs
1 2

) b(Ay) Wyyy

+ 0 (Ax3, Ay3) ,

in which the functionO (Axz3, Ay?®) holds for a term that is asymptotically smaller than
Az3 or Ay3.

INRIA
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Yo

B

Figure 10: Cartesian mesh, and cells (in dotted lines) obtained with the diamond scheme
using the two smallest sides.

Conversely to the truncation error obtained for the median finite-volume method the
diamond method based on the two smallest sides leads to a truncation error which contains

A A , o . - ,
no terms in—~ or =7, Consistency to stretching is obtained. As shown in Figure 10, in

. y A . . .
this case, cells reduce to quadrilateral cells. The scheme results in a five point stencil.

3.4 Bridge with centered MDHR

In this section, we analyse the relationship between the dual diamond method and the mul-
tidimensional scheme of Sidilkover [20]. We show that, in¢hse of a 2D scalar advection
equation, the dual diamond method in which the pdiris chosen as the gravity center of

the triangle, is similar to the centered multidimensional scheme okSiatt.

RR n° 3464



18 C. Viozat, C. Held, K. Mer, A. Dervieux

The discretization (26)-(27)-(25) (or equivalently (42)-(43)) writes, for a given vertex

dwl
Area(Cr)—
rea(CT) o
+ ZArea,(T)'yM/ Ld‘fldl‘g
731 || t] || TnCr AT@CL(Tk) (45)
w(k)—w(z)/ XT;
+ Area(T)§ ———= ——2 —dxdx
Tz;l @) ik | Jroe, Area(T;) 1
= 0,

where the sums are taken for any trianglef verticesi, j andk which hag as vertex {(is
either: or j or k), and

v =ao; +baz, 6=aB +bb, (46)

with coefficientsay, as, 51 andgs given in (22).

Computing this expression in the three cakesi, j, k we obtain the following discrete
scheme:

( dw;

1
Area(C;) e §(R£+R’7),
dw; 1
Area(Cj)—dt] = §R§, (47)
dwp 1 n
L AT@CL(C}C)W = §R .

where we define the following quantities, which are some finite-difference approximations
of the derivatives ofv on triangleT” (see Figure 9):

i Y
i |l

RY = —Area(T)~

(48)

Wj, — Wy

lik |l

R" = —Area(T)é

The system of Equations (47) is identical to thectuation distribution formulaef
Sidilkover (as pesented Equation (7) in [20]) for the case of a 2D scalar advection equation,
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i.e. we have theenteredversion of the multidimensional scheme of Skdwer.

This illustrates in particular that thinteredVIDHR version is a finite volume scheme (i.e.

a Lax-Wendroff theorem for convergence towards weak solution can be directly applied).
For convergence towards weak solutions in the case aiiaéndMDHR version (i.e. the
narrow scheme), we refer to [1].

3.5 Bridge towards distributive schemes

Distributive schemes [21, 7] rely on a basic vertex-distribution of the element-by-element
flux integral; for the state of simplicity, the time derivative is put under finite volume form:

Area,(Ci)aaut}i = Z@T(I)T,
T

where
ol = /V-fhdxldxz :/ (V-ﬁ)wda,
T

whereF" is an approximation of' = Vw.

Let us define the following functions that are constant on each triangle:

1
2<11>T
r—- _— R
T o o_ - R
ﬁk 28, s

where®” # 0. We deduce that the above family of centered schemes ((42)-(43) or (47))
belongs to the family oflistributive schemedVe observe that this implies that we can also
write them under a pureli?etrov-Galerkinformulation, i.e. with the usuabalerkin basis
functionsp; and with an exact derivation of them (in contrast to the diamond derivation
of the first sections). It is indeed enough to introduce in the variational formulation the
following testfunctions:

0

Area(C;) ;: = /V-fh vPEdQ
Q
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W = qilr + BT — 1/3.

Since the3! are constant by element, the gradient of the test functions is identical to
that of the Galerkin basis function each triangle, but not through the boundary of the
triangles. However, it is usual to consider that this allows us to repladéusive termghe
Petrov-Galerkiny; by the Galerkinp;:

ow;

Area(Cy) il

/ V. FhpPOa + | Vw. Vi do

Q [59]

Such strategies are adopted in the Petrov-Galerkin works [11] and in distributive schemes
works [17].

4  Analysis of high stretching

The three possible options (see Figure 11) that we have defined for any triangle will allow
the definition of a family of schemes which will rely on a barycenter between the three
possible diamond derivatives with weighting coefficients defined on each triangle. Not all
the schemes of this family are consistent for arbitrary stretched meshes. The purpose of this
section is to build necessary conditions for a scheme of the above family to be consistent
with arbitrary meshes.

4.1 Barycentered Formulation

Let us denote byy;, o; anday, the barycenter coefficients of schemes DI, DJ and DK, for
each triangle. The diamond method withandik as the two sides chosen for directional
splitting corresponds to the case whetg, ;, a;) = (1, 0, 0). We now consider the family

of schemes combining the three possible diamond schemes (see Figure 11), by replacing
Equation (43) by d; + o + ai, = 1)

(ai (Fi): + a; (k}')L) /2 i nn =7,

e = $ (0 @) +an () /2 it nin =ik, (49)

(aj (@7)* + cu (ﬁc)l) /2 it nin = jk,

We will now analyze the truncation error in three different contexts of uniform meshes.
This analysis will give us necessary conditions on the coefficients of the barycepter;
ay), to obtain consistent schemes.
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\Y I]
(aiu Qaij, ak) = (11 01 0) @iu Qaij, ak) = (0, 11 0) @il Qaij, ak) = (0, 01 1)

(@) (b) (c)

Figure 11:The three possible diamond schemes: (a) the scheme DI, (b) the scheme DJ and
(c) the scheme DK.

4.2 A uniform triangulation model

We will not derive an error analysis applicable to amgtructuredstretched meshes. Instead
of this, we will concentrate on a typical example of a sequencgratturedmeshes with
an increasing fineness, and, at the same time, an increasing stretching.

Returning to the advection example (11) of Section 2.2, we can extract the truncation
error from the new family of schemes on the triangulationTriangulations in this family
consist of only one type of obtuse triangles, numbered as shown in Figures 12 and 13.
We denoten;, oj and oy, as the coefficients corresponding to the diamond schemes built
repectively with the axes andz, with the axes: andw, and with the axes andw.
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P7 P38 A X P9

0 AX

Figure 12:Model triangulation7 .
Y

Figure 13:Numerotation of vertices in a triangle of triangulatiah.
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The truncation error is obtained by computing the values of the mean normal vector
applying Equation (49) and using a finite Taylor expansion around the point P1 of the val-
ues WE;),1=2,3,4,6,7 and 9. We obtain the following result:

Wt = —Q Wx
) wy
1 Ax — e e
+§—(|V'7]12|+|V'7714|92+|V'7715|(9—1)2> Wz
Y
+ (17 a0+ 177051 (0-1) Wy
1Ay — 5 —
N <|V 14|+|V'7715|> Wyy
1(Az)? [ o S e o 5 (50)
6 Ay ((V' 12) + (V- 714)0° + (V- 15))(9—1)> Wea
1 - -
—3 Az (V- i00? + (V- 7s)(0 = 1)?) Wya
1 - -
=38y (Va8 + (V- 7i5) (0 - 1)) Wi
—é(A )2 14
6 Yy yyy
Az)t (Ay)?
where
Viia = aloy+ o) Ay —b(aj (0 —1) + oy 0) A, (51)
Vs = aopAy—+b(a; —ay (0 —1))Ax, (52)
Vs = —aag Ay +b(oj + Ooy) A, (53)

We now select three particular subsequences of the family of triangul&tion
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Ay

A X
@ (b) ©

Figure 14:Evolution of the shape of a triangle in triangulatioit,,: (a) triangle in My,
(b) triangle in M, scale :2, (c) triangle inM3, scale :4.

4.3 Stretched triangles with no obtuse angles

The mesh sequencé,,),, is defined by

M : Model triangulation7 shown in Figures 12 and 13

The distanc# Ax measures the non-orthogonality of the mesh

1
We assumé < 0 = const < 3 (54)
A A
My (Ax), = #, (Ay)n = ﬁ, 0 = const m
n n

The triangulation sequence\,, ), is such that the larger is, the more stretched is the
mesh in they direction, since

. (Ax),
lim =0.
e (Ag),

We observe that for large, all triangles of\1,, areacute

The scheme is uniformly consistent @r,, for n tending to infinity only if in the trun-
cation error (50) all terms tend to zero. This is verified if and only if the fadtéfs 74 |
and| V- 715 | defined in Equation (52) and (53) are small enough and in particular only if
oy, Which corresponds to the diamond scheme relying on the two largest sides, is smaller
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A : . " .
thanA—"Z. Thus, we obtain the following necessary condition for consistency :

Y
Ax
In this particular case, due to (54), the remainder, estimated as a
3 5 (Ax)* (Ay)* .
O | (Ax)?, (Ay)?, ———, —=— |, tends to zero with.
Ay Az

It is interesting to introduce the following definition of the aspect ratio of a triangle:
Definition:

We shall think of the aspect ratio of a given triangle as the ratio of its largest side divided
by its smallest altitude.

We observe that the aspect ratipof meshM,, satisfies:

By
" Az
Similarly, the largest altitude in triangles 81, is of the same order as the largest side.
Therefore, statement (55) can be written in the following general manner :

1
=0 (Iargest sidex r§l> ' (56)

4.4 Stretched triangles with obtuse angles (1)

We consider now an obtuse stretched conté¥t),, that is defined by

N1 : Model triangulation7 shown in Figures 12 and 13
The angles = (Z, ) is kept constant;

it can be either positive or negative and g <pB< g (57)
Az A
Not (Am)y == (Mg = =3
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The evolution of a triangle in the triangulation sequent§, ),, is given in Figure 15.

The triangulation sequendgdV,,),, is such that the larger is, the more stretched is the
mesh in ther direction, since
. (Ay)n
lim

=0.

Let us examine the above truncation analysis; as for the above section, the remainder
again tends to zero with. We account for the following relation:

A
0 — A—i tan 3, (58)

which allows us to deduce that the scheme is uniformly consistent with regard to the stretch-

ing of the mesh only if in the truncation error all terms tend to zero. This is verified only if

. -, o A
the factors V' - 712 | and| V' - 7714 | are small enough, that is if; is smaller than_(A y)z_.
T

Thus, we derive the following necessary condition for consistency :

a; = o0 (ﬁ—;ﬁ) . (59)

We observe that the aspect ratibof meshV,, satisfies:

P = &
Ay’

Similarly, the largest side in triangles 4f, are of the same order asz.

Therefore, Equation (59) can be written in the more general manner :

1
W= (Iargest sidex n’;) ' (60)

We observe thatV,, may present obtuse angles but these obtuse angles are uniformly
bounded (i.e. a maximum angle condition is satisfied). We recall that, for the usual Galerkin
method, assuming a maximum angle in the triangulation sequence is the poorest standard
one. ltis thus interesting to examine some examples for which this basic assumption is not
verified.
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K k
A A /
ay P @ ay @
1 : 1 : :
v '
i j ‘<i , L
AX . < Ax
‘0 A X 1
1
o .
Ay /4 " ) Ay 14" )
! v 1 v
i i i 7 7 i
Ax 2 - Ax /2
‘ 1 A X L !
< |
’§ k k
Ay /16 ) . © ny 116 ¥ . ©
G i 3 7 7 IR
Ax 14 S Ax_ 14
1 1
N
1
Figure 15: Evolution of the shape of Figure 16: Evolution of the shape of
a triangle in triangulation A/,: (@) a triangle in triangulation P,,: (a)
triangle in Aq, (b) triangle in A, triangle in Py, (b) triangle in Ps,
scale :2, (c) triangle in\V3, scale :4 scale :2, (c) triangle irPs, scale :4

4.5 Stretched triangles with obtuse angles (2)

The mesh sequend®,,),, is defined by

P1 . Model triangulation7 shown in Figures 12 and 13

The distanc# Ax measures the non-orthogonality of the mesh

1
We assumé < 6 = const < 5 (61)
Az Ay
n Az)p = —, Ay), = —.
P, (Ax) - (Ay) i~

The evolution of a triangle in the triangulation sequefi®g),, is given in Figure 16.
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The triangulation sequend@,, ),, is such that the larger is, the more stretched is the
mesh in ther direction, since
i (BY)n

oo (Ax),

=0.

Moreover, no maximum angle condition is satisfied.

The truncation error in this context is again given by (50). On this triangulation se-

L (Ax), _ ,
guencep,, the terms wnhﬂ alwaysbring inconsistency

(Ay)n

4.6 Synthesis: Elementwise anisotropy

In order to avoid a local numerotation of the triangles and to make the method more practi-
cal, from now on, we cakchemed S, DM and DL the diamond schemes relying on the
vertices opposite respectively the smallest, the medium and the largest side of the triangle.
We denotenpg, apy andapy, as the coefficients related respectively to the scheings

DM andDL.

The two first contexts of triangulation sequence did satisfy a uniform majoration of the
largest angle, because either all angles where acute or the largest angle was held constant or
smaller than a given angle; the third analysis seems to show that a maximum angle assump-
tion remains a minimal one, which we cannot today get rid of.

The results of the analysis of Sec. 4.3 and 4.4 can be synthetised as follows:

We first remark that for the acute triangulation sequence, the coeffigjeit Equa-
tion (56) corresponds to the diamond scheme along the two largest sides of each triangle,
and so does the coefficient; in Equation (60) of the first obtuse triangulation sequence,
then both necessary conditions concern the DS scheme, that is:

Lemma 4.1 A necessary condition for a barycenter of the three diamond schemes to be
consistent for any family of mesh, is that in case of high stretching the coefficient of the
diamond version relying on largest sides be small enough according to the following rule:

aps = ( ! ) (62)

largest sidex r,

wherer,, denotes the aspect ratio.
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Itis clear that the schemes DL and DM are two admissible choices as far as consistency
on regular meshes is concerned. But for non uniform meshes, the non regular switch be-
tween sides, for example on nearly isosceles triangles, may induced some irregularity in the
resulting approximation. We thus need to specify an appropsiateoth barycenter

With this end in view, we make an inventory of the following desired properties:

* indispensable criteria

(i) If there is a right angle then choose the two sides other than the hypothenuse.

(i) If atriangle is isosceles the symmetry should be respected : same weight on the
two symmetric sides.
This implies that for equilateral triangles the weight should be one third on each side.

(iif) The weight should be smooth.

We note that (ii) ensures that the ambiguity in choosing the smallest between two
symmetric sides has no influence on the resulting scheme.
» additional criteria for stretched mesh

We need to choose a strategy in case of an obtuse angle. We keep the same strategy
as for a right angle.

(i) if there is an obtuse angle then choose the two sides other than the largest side.

An example:
It is natural to seek obtuseness indicators satisfying:

Bs =0if § > 3,
By =0if M >3, (63)
B =0if L>T.

whereS, M andL are respectively the angles opposite to sifled/ andL (see Figure 17).

We define then the following coefficients:
aps = Bum BL,

ap = Bs Br, (64)
apr = Bs Bu-
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Figure 17:Notation in a triangle: S, M and L are the lengths of respectively the smallest,

medium and largest side, m and! are the vertices opposite to respectively the smallest,
medium and largest side, M and L are the angles opposite to respectively the smallest,
medium and largest sidd, I,,, and I; are the middle points of respectively the smallest,
medium and largest side.

Thg choice of3 satisfying (63) enables us to hawg,; = 0 if the angleS or the
angleM is obtuse. The same properties holddQss andapa,.
We normalize the coefficients of (64):

ag
aps = — — —
ag + apg +04L7
(6574
DM = — — —» (65)
as + ay + ag,
[2%7)
apr =

We easily verify that ifS is obtusen; anda, are vanishing, so th&l)' is satisfied.

Let us introduce a method for establishiiggalues which satisfy (63).
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The detection of right and obtuse angles is (rather) smoothly detected via the Pythagoras
formula as follows:

Bs = f(Max(0,L? + M?* — §?%)),
ﬂM' = f(MaX<0752 + L2 - M2))7 (66)
Br = f(Max(0,S? + M? — L?)).

where f is a positive increasing functiorf,(x) is vanishing forz = 0, andS, M, L are
respectively the lengths of the smallest, medium and largest sides.

We have managed the satisfaction of the consistency for obtuse angles; let us now ana-
lyze it for theacutefamily of meshes: we will compute the coefficient s, apy andapy,
in this context. In the casg(x) = =, Equation (65) can be written as

( 1
“PS = an(M) tan(L)’
1
a = ——, 67
| oM tan(.S) tan(L) (67)
1
(0% — -~ _~ __ -
bt tan(.S) tan(M)

\

We derive that for this choice gf, the scheme defined in (49) satisfies the consistency
necessary conditions (62). Note that for example the chtiicg¢ = /= would not produce
the consistency relation whilg(x) = =2 would. In practice we will takef (z) = .

4.7 Relation to existing finite-volume schemes

The relation to existing finite-volume schemes is summarized in Table 1. Details are given
in Appendix I.

The Barycentered Diamond (BD) scheme with coefficient (67) can be in fact identified
as the Barth circumcenter method [4]. Therefore, we call this scheme, the.BDnethod.
In the numerical tests we will show results fofz) = 22, we will refer to this method as the
BDsquaremethod, and foyf () = /x, we will refer to this method as the Bgpt method.
It can be verified from (50)-(53) that Bg),.;» and BDsquareare consistent for stretching
and that BQgot is not.
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Location of Point C (aps, apr, apr)
Middle of [S] (1,0,0)
Middle of [M] (0,1,0)
Middle of [L] (0,0,1)
Intersection L 11
3'3"3
of the medians
. 1 1 1
Circumcenter ~ — = =
(tan(M) tan(L) tan(S) tan(L) tan(S) tan(M))

Table 1:Example of equivalence between a given location of the goimsed to build the
finite-volume cell and barycenter coefficients used to build a scheme of the diamond family
in the case of an acute triangle.
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5 Upwind formulation for CFD : MUSCL

Since we have shown that our scheme is a finite-volume one, we can derive a second-order
accurate MUSCL extension.
Equation (10) can be written as,

N
Area(Co) Weng + Y YW, Wi, fnn) = 0. (68)
n=1

n#m

The extension of the Donor Cell formulation (12) to Euler equations consists in using
a Riemann problem with?,,, and W,, as left and right states ang,,, for defining the
interface. We are now left with a one-dimensional problem which may be solved by a
Godunov solver or an approximate Riemann solver like Roe’s solver.

Equation (68) is replaced with

N
Area(Cm) Wnyt + Z (I)upwind(Wm’ Wna ﬁmn) = 07 (69)
n=1

n#m

where®vnd(WW, W, if,.,,) are the first-order numerical fluxes.

A second-order spatial accurate scheme for hyperbolic terms can be obtained using the
MUSCL interpolation technique introduced by van Leer [22]. To reach the second-order
accuracy the numerical fluxes are evaluated with extrapolated V@lygsandW,,,,, at the
interfacedC,,,,. Thus, the functiorb remains the same, only its arguments are modified:

N
AT‘@CL(Cm) Wn,t + Z (I)quind(Wmna ana ﬁmn) = 07 (70)
n=1
n#m
The quantitiedV,,,,, andW,,,,, are computed by
(71)

1
Wom = Wp + §Van -nm.
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A gradient centered at the middle of the edge:] (see Figure 18) is defined by
(VW )entered . pin = Wy, — Wy, (72)
and an upwind gradient is defined by
(VW)sbwind i = W |g,. -nin, 73
(VW )b i = VW |, -nin,

whereT,,,,, andT,,, are defined in Figure 18, and wheY&V |7, is the finite element
approximation of the gradient.

Tmn A

— N

Figure 18:Downstream and upstream triangdlg,,, and T;,,,,.

We can use a/f-scheme” which combines the centered and fully upwind gradient to
obtain

VW - nin = (1 — B)(VW)eertered i 4 3 (VW )upwind .y, (74)

mn

wherej is the parameter of upwinding included in interf@l1]. In the test cases presented
in the sequel, we took either= 3 or 3 = 1.

The scheme described above is not monotone. It can introduce extrema which would not
exist, particularly in the case of transonic and supersonic flows. To reduce the oscillations
in the solution a LED slope-limiting procedure can be used as in [6]. In our test cases, we
did not use limiters.

6 The linearity preservation property

We are now concerned by the local consistency of the second order versions (centered and
upwind) of thediamondscheme. We will consider both the optimal consistency for station-

ary solutions on cartesian meshes, and a consistency on unstructured non-stretched triangu-
lations. For formally second order schemes, the local consistency can be obtained with the
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so-calledLinearity preservatiorproperties [14] [4] [21].

We first review two properties of linearity preservation in the context of the scalar linear
equation (11) ; we then consider the ability of ti@amondscheme to be exact for affine
functions.

Definitions

The diamondscheme (26)-(27)-(25) writes in the following fluctuation-splitting (or dis-
tributive) form (see also section 3.5):

N
an,t/ Vo ondQ+ Y ¢f =0,  V¥Ym=1,N, (75)
n=1 Q Tizm€T

where the fluctuation at node writes¢., = / V-V (mhw)dS (m, is the P, —Lagrange
Con T

interpolation operator). We havg, = 57 & where®” is the total fluctuation. The cell
C, is defined as in Section 3 (see (14) for the test functions and (25) for the definition of
ﬁh) and we have shown that the spatial term of (75) is in fact independent of the choice
of C,,,. The conservativity of the scheme, in the fluctuation splitting sense, is given by:
> ¢, =@" andis equivalent to (19).
m=i,j,k
Let us recall two well-known properties of polynomial preservation:
(i) A scheme is said to be linear preserving?y if the spatial approximatiorf;, is exact
for linear functions [4, 14]:

(Ehp)m = Epv Vm = ]-7 "7N7 \V/p € PI(Q)

A more particular notion of linear preserving is the following:

(i) A fluctuation splittingscheme is said to be linear preserving if a linsttionary
solution of (11) is also a solution of the scheme, or equivalently ipfer P, (2) such that
V - Vp = 0 (then®” (p) = Area(T)V - Vp = 0), we have:

oL (p) = BL(P)DT(p) =0, VYm=1i,jk.

This is equivalent to saying that the coefficigtij is bounded whe®” tends to zero. If the
scheme is linear, one can show that the scheme is linear preserving in this sense if and only
if the coefficients=3L is independent gf [21]. In the sequel, we call this property written

in the fluctuation splitting form, the propertyP-FS
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Consistency ofLP and LP-FSschemes

For stationary solutions, theP-FSschemes (e.g. SUPG, PSlI,...) are consistent and have
a second order truncation erron cartesian meshesith a uniform choice of diagonals
(Figure 7). For general solutions, the property(i) provides a local consistency of order

one on unstructured meshes, the only conditions on the mesh being the regularity (in the
finite element sense) and a local quasi-uniformity [14].

Consistency of thediamondscheme

We can highlight the following properties of the diamond scheme:

We first consider theentral differencedliamond scheme equivalent to the scheme of
Sidilkover (47). This scheme is n&iP-FSin the general case, sinced’ = 0 (which
gives R + R, = 0), this does not imply that the distributed fluctuations = 0 (i.e.
R = R, = 0). However, it iSLP-FSin some particular cases, for example if one of the
two edges chosen for the diamond derivatives is coline® (see (48)).
The barycentered formulation with equal coefficients (i.e. the median dual scheme or the
Galerkin scheme) iP-FSon any triangulations.

We now consider thepwinddiamond schemes. AP version of the MUSCL scheme
of Section 5 (70-71) can be obtained in the following manner: we can replace Equation (70)
by the following scheme:

N
Area(Co) Woi+ Y / S (), W (), (7)) =0, (76)
n=1 m
n#m

whererl',,,,, is the interface defined by the normals,, andW — (&), W (&) are the left and

right values of the reconstruction on the interface. If the reconstruction and the numerical
integration of the flux are exact for affine functions, then the above scheife ilswe
chooseC,,, as the cell defined by the normaJs,,. This property for the reconstruction is
usually called thé-exactnesgroperty [4] (here fo: = 1). For the numerical integration,

we can consider a Gauss quadrature ; in this case, we should consider the values of the
reconstructions in the middle point of each portion of the interfacg (I = 1,2), with

normal (n7,,,),-
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7 Some numerical illustrations

Let us first evaluate with a very simple example how large the difference can be between
a scheme that is consistent with stretching, and a scheme that is not, even for rather mild
stretching. We consider the unsteady concentration cone test case, described for example
in [9].
Then, we consider several easy academic cases in simple geometries such as flow around a
circular cylinder. These test cases have already been widely investigated which enables us
to compare our results with existing ones. All presented results are obtained with the Roe
scheme and no limiters are used.
Finally, improvements brought by the diamond scheme in case of quasi-cartesian meshes is
illustated on a flow in a booster combustion chamber.

In the sequel we will consider the five following schemes:

* a. The Finite Volume scheme with median cells; we will refer to “Median scheme”
for both the first-order version and its extension to the second order.

* b. The diamond scheme with a barycenter wjth:) = x (the functionf(x) was
introduced in (66)), we refer t8 D g,,, scheme.

+ . The diamond scheme with a barycenter withx) = 22, we refer toBDquare
scheme.

» d. The diamond scheme with a barycenter wjittx) = \/x, we refer toBD,. .
scheme.

7.1 Unsteady flow: rotation of a conical spot

This is a very classical test for evaluating unsteady advection schemes (see for example
[20]).

The equation to be solved is:

W, + div(VW) = 0 in Q =]0, 12
Wo(x,y) = max(1,2 —5/(z —0.25)2 + (y — 0.5)%) (77)
W(z,y) = 1 on 02

with the advection speetl = ( g ;Ei >

The solution is observed after a complete turn (t=2s).
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Two schemes are examined: the first one is the Median scheme, the second one is the
BDpgun SCheme.

Time integration relies on the corresponding areas. Third order version of both schemes are
considered § = 1/3, no limiters, Runge-Kutta 3 time stepping).

With a 31x31 cartesian mesh, t&D .../, Scheme produces a rather good solution (Fig-

ure 21). With a division by a factor 5 aky, we observe an impressive improvement (Fig-

ure 22). Conversely, the Median scheme gives a less good but acceptable solution on a
31x31 mesh (Figures 19) , and a notably less good solution on the 31x155 one, which shows
a quite undesirable manifestation of the inconsistency for stretched meshes (Figure 20).

Figure 19:Rotation of a conical spot:
Median scheme. Solution for the
31 x31 node mesh.

Figure 20:Rotation of a conical spot:
Median scheme. Solution for the
31 x155 node mesh.

Figure 21:Rotation of a conical spot:
BDpgu, Scheme. Solution for the
31 x31 node mesh

Figure 22:Rotation of a conical spot:
BDpg., Scheme. Solution for the
31 x155 node mesh.
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7.2 Flow around a circular cylinder

We turn now to a steady flow simulation. The pathological behaviour of median cells was
already noted by T. Barth [4]. We give here a simple and demonstrative example.

The flow is inviscid and the Mach number at infinity is equad 8. The flow is steady.
Experiments have been performed on two meshes of different coarsening and stretching:
i) a structured non-stretched mesh of 1088 vertices (see Figures 23 and 25),
ii) a structured stretched mesh of 2112 vertices (see Figures 24 and 26). The maximum
aspect ratio near the wall is 20.

On both meshes, the solutions obtained with the Median scheme are shown in Figures 27
and 28, and the solutions obtained with tBdg,,;, method are shown in Figures 29
and 30.

The results on the non-stretched mesh show that for quasi-cartesian meshes, and even in
the absence of stretching, ti&D g,,;, Method enables a better accuracy; this is indicated
in particular by a better symmetry of Mach contours between the front and rear parts of the
cylinder.

On the stretched mesh the solution obtained with the Median method at first-order spa-
tial accuracy is totally degraded while the solution obtained withBlieg,,.;;, method is
acceptable. One could believe that second-order accuracy would improve the results ob-
tained with the Median scheme. This is not the case; indeed, at second-order spatial accu-
racy, two large vortices appear behind the cylinder and the steady state cannot be reached.
With the diamond method the steady state solution is close to the solutions obtained with
the non-stretched mesh but again with a noticeable improvement.
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Figure 23: Non-stretched mesh with

Figure 24: Stretched mesh with 2112
1088 vertices.

vertices.

Figure 25: Zoom of the mesh with

Figure 26: Zoom of the mesh with
1088 vertices.

2112 vertices; the maximum aspect
ratio is 20.
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Figure 27: Mach contours,
M. = 0.38, 2"-order accuracy,
1088 vertex mesh,median cells
Isovalues:0 : 0.05 : 1.

Figure 29: Mach  contours,
M. = 0.38, 2"-order accuracy,
1088 vertex meshBarth cells Iso-
values:0:0.05 : 1.

RR n° 3464

Figure 28: Mach  contours,
M., = 0.38, 1%'-order accuracy,
2112 vertex mesh,median cells
Isovalues:0 : 0.05 : 1.

Figure 30: Mach  contours,
M. = 0.38, 2"-order accuracy,
2112 vertex meshBarth cells Iso-
values:0:0.05 : 1.
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7.3 Flow in a booster combustion chamber

Many combustion engines involve important acoustic effects taking place in their combus-
tion chambers and coupling with vortex shedding. The geometries of these chambers are
generally rather complicated and may motivate the use of unstructured “generalist” flow
codes.

However, theses codes should not involve much internal viscosity since acoustics and vor-
tices play an important role.

For example, a powder rocket may present a cavity with a starshaped section best described
with triangulations. But tetrahedra/triangles-relying upwind approximations contain gener-
ally a big amount of internal viscosity.

We propose here a 2-D test that aims at qualifying#ieg,,.,;, sScheme as involving a
low internal viscosity so that it will be able to compute this kind of flow.
We present the computation of the flow in a 2D geometry related to a booster of the launcher
ARIANE V referenced in litterature as the C1 test case. This flow is transonic and unsteady;
the Mach number varies between 0.05 and 1.7. In this chamber (Figure 31) the flow of gas
through the burning powder is driven through the cavity and the fidthe right part of the
cavity will be occupied by a large vortex and small vortices will be shed from left to right
with coupling with acoustics. Several frequencies have been observed in other computations
(2600 Hz, 3500H2).

The propeller is modelled by a simplified and fixed geometry which is discretized with
a mesh involving 9868 node818 x 31) and made of triangles that are nearly isosceles
and with a right angle. We thus again are examining the adequation of the new scheme to
guasi-cartesian meshes as analysed in Section 3.3. We consider that the injected propergol
is a perfect gas. The flow is computed with the compressible Euler equations using the
different schemes. Time advancing is calculated by the 3-stage Runge Kutta time advanc-
ing by taking a CFL number equal to 1 . The boundary conditions are the following (see
Figure 31) :

- We applyV .7 = 0 on the sides?1, G2 andG3.

- The condition onD is a “discharge condition” which imposes ti@at> 0 is constant
perpendicular to the wall with a given temperatifjewvhich can be written as :

pV =—Qi , T =T,. (78)
wherefi is the outside normal to the wall.

- On S, we have a supersonic outlet condition.
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Gl

G3

Figure 31:C1 test case: hot gases are blown from the boundary of the powder Blomikd
will finally go out through the nozzlé.

This test has been studied in details in [5]. The expected exact answer is a quasi periodic
flow with a quasi constant amplitude of fluctuation.

468500
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467500

467000

466500

PRESSION

466000

465500

465000

464500

464000 | | | | | | | |
0 0.0002 0.0004  0.0006 0.0008 0.001 0.0012 0.0014  0.0016 0.0018
TEMPS

Figure 32: C1 test case: Mediane scheme. Pressure at a point on the front combustion
chamber. The main mode is spuriously damped (rather astonishingly a second one appears).
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0 0.0002  0.0004 0.0006  0.0008 0.001 0.0012  0.0014 0.0016  0.0018
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Figure 33: C1 test case: B, scheme. Pressure at a point on the front combustion
chamber. The main mode keeps its amplitude.

It was in particular observed that a very poor result was obtained with the Median
method, with the “best option3 = 1/3 on a regular mesh &f18 x 31 nodes. The scheme
involves a rather large internal viscosity in many mesh directions and produce fastly damped
fluctuation converging finally to a steady solution (Figure 32).

Applying the BDg,,;, SCheme results in a considerable reduction of this viscosity and
allows a good prediction of the expected vortices (Figure 33). The results show that the
average pressure on the front combustion chamber is equal to about 486250om the
results of Figure 33, the acoustic frequency can be evaluated as aboul/35@blutions
obtained with variants of the BD scheme are presented in Figure 34.

8 Concluding remarks

This work has focused on the consistency question for stretched meshes when a particular
class ofupwindschemes is applied. These schemes apply on triangulations, with unknowns
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468500 T

BDroot —
BDsquare -----
468450 - BDBarth - b

468400 |- i
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Figure 34:C1 test case: Pressure at a point on the front combustion chamber. This is a
zoom of Figure 33 with three curves, to illustrate the variations induced by three possible
choices of the function f(x) (cf. (66)). The optigtwr) = 22 (BDsguare) is slightly better

than f(z) = @ (BDgarn); f(x) = /& (BD,oot) gives the worst result.

located on vertices.

For this purpose, we gather and complete a global view of several modern approxima-
tion schemes: finite-element, finite-volume, distribution schemes.
A family of upwind Godunov-type finite-volume schemes is then extracted for investigating
which subset may satisfy the proposed criteriorarfsistency in stretching
In order to havenecessary conditionsve performed a truncation analysis for several typical
sets of regular meshes and proposed some design criteria for building better schemes.
We show in particular that the Barth cell allows the corresponding finite-volume scheme to
satisfy the proposed criterion.
Some numerical experiments illustrate that our point of view is reasonable.
While bringing some answers, this paper let many questions pending.

RR n° 3464



46 C. Viozat, C. Held, K. Mer, A. Dervieux

Firstly, a general analysis for unstructured stretched meshes is missing. It would be
interesting to investigate under which conditions these schemes would be convergent for
stretched meshes.

Secondly, although we have presented several different points of view in the derivation
of the presented schemes, the extension to other types of elements is not straightforward:
which strategy will be adequate for quadrilaterals, for tetrahedra, etc.

Answers to these kinds of questions are of paramount interest for design of new schemes

for modern Reynolds-averaged Navier-Stokes calculations on unstructured meshes involv-
ing stretching and possibly anisotropic adaption devices.
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Appendix I. Relation to existing finite-volume schemes

The purpose of this appendix is to verify that choosing a particular barycenter with
weights (s, a,,, ag) for the Barycentered Diamond scheme is equivalent to choosing a
Finite-Volume scheme relying on a barycentéeof the vertices with weights\;, A, A;).

We use the notation of Figure 17.

We write (v,,,), as the normal of a cell built by joining the middle of each edge of the
triangle (s, L, I1s) to a pointC' in the triangle,

(CLy)t i min = s,
G it mn=1s, (79)
_‘ll)J—

(©
(cI,

—~
A
34
3
~
I
1

it min = Im.

In order to determine the barycenter corresponding to this scheme, we will(wﬁr,gl
in terms ofs7n, ml andls.

Properties of the barycenter coordinates:
Property 1:

CP =\ sP+ X, mP + X 1P, vC of T,VP, (80)
Property 2:

ASH+ NS AT =1 (81)

Writing (80) for the particular cases whefeis equal tol,,,, I,,; andi,;, we obtain:

C?-[sm = )\2 SYsm + /\fn TT;Ism + )\lc lg[sma
Clyy = Moslyy + NomIn + A, (82)
Clg = Xosli, + MNoyml, + X
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Since by definitionly,,,, I,,;, I;s are the middle of respectivelyin, ml andls, for any
point P we can write

( . 1 - .
Pl = 5(Ps + Pm),
" 1 - .
Pl =5 (Pm+ P), (83)
— ]_ — —
Pli, = 5(P1+ P5).
\

In particular, Equations (83) are verified in the case where the goistequal tos, m
or [ which enables us to express vectors involving the middle points in Equations (82) in
terms of the vertices of the triangle. Equations (82) become

(L)t = 5 (a-2x) 00 + (- 2x5) ()Y,
(CTayt = 3 (0 =225) ()" + (1220 (D)), (84)
| (Tt = %((1_zAlc)(nﬁ)L+(1—2Ag)(ms)L).

Identifying Equations (84) with Equations (49) (in which the numbegsandk have been
replaced bys, m andl respectively), we obtain

as =1—2X,
am=1-2X\, (85)
ap=1-2)}.

Equations (85) give the relation which, with any poiitused to build a finite-volume
cell, associates a barycenter with weights, (., ;). Particular cases are presented in
Table 1.
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