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Méthodes de volumes finis non structurés centrées sommets pour
les triangulations anisotropiques étirées

Résumé :Les schémas volumes finis centrés sommets appliqués à des triangulations peuvent
présenter une mauvaise précision quand des maillages étirés sont utilisés. Nous introdui-
sons une famille de schémas variationnels avec trois paramètres pour chaque triangle et étu-
dions les conditions que ces paramètres doivent vérifier pour avoir un bon comportement
en maillage étiré. Certains des schémas obtenus sont aussi plus aptes pour des calculs sur
maillages quasi-cartésiens que les schémas standard reposants sur des cellules limitées par
des médianes. Nous obtenons entre autres le schéma volumes finis de Barth. Ces schémas
sont aussi apparentés aux schémas MDHR. Nous discutons de l’application de ces schémas
pour le calcul d’écoulements transsoniques autour d’un cylindre et dans une chambre de
combustion de booster.

Mots-clés : Méthode volumes finis, méthode éléments finis, schéma multidimensionnel,
maillage étiré



On Vertex-Centered Unstructured Finite-Volume Methods for Stretched Anisotropic Triangulations1

Contents

1 Introduction 1

2 Variational derivation of the Galerkin Finite-Volume method 3
2.1 Variational frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Lagrange-Galerkin particular case. . . . . . . . . . . . . . . . . . . . . . 5

3 Diamond variant 8
3.1 Definition of the main choices .. . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Passing to centered finite volumes. . . . . . . . . . . . . . . . . . . . . . 12
3.3 Qualification of a diamond scheme for cartesian meshes . . . . . . . . . . . 16
3.4 Bridge with centered MDHR . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Bridge towards distributive schemes . . .. . . . . . . . . . . . . . . . . . 19

4 Analysis of high stretching 20
4.1 Barycentered Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 A uniform triangulation model .. . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Stretched triangles with no obtuse angles .. . . . . . . . . . . . . . . . . . 24
4.4 Stretched triangles with obtuse angles (1). . . . . . . . . . . . . . . . . . 25
4.5 Stretched triangles with obtuse angles (2). . . . . . . . . . . . . . . . . . 27
4.6 Synthesis: Elementwise anisotropy . . . . . . . . . . . . . . . . . . . . . . 28
4.7 Relation to existing finite-volume schemes . . . . . . . . . . . . . . . . . . 31

5 Upwind formulation for CFD : MUSCL 33

6 The linearity preservation property 34

7 Some numerical illustrations 37
7.1 Unsteady flow: rotation of a conical spot . . . . . . . . . . . . . . . . . . . 37
7.2 Flow around a circular cylinder .. . . . . . . . . . . . . . . . . . . . . . . 39
7.3 Flow in a booster combustion chamber . .. . . . . . . . . . . . . . . . . . 42

8 Concluding remarks 44

9 Acknowledgments 46

RR n° 3464



On Vertex-Centered Unstructured Finite-Volume Methods for Stretched Anisotropic Triangulations1

1 Introduction

Most existing CFD codes rely on finite-volume schemes resulting in a five point stencil for
advection. These schemes are of low cost, but of second-order accuracy only on quasi-
cartesian meshes. They apply well on regular stretched meshes. However, on highly dis-
torted meshes, accuracy can markedly degrade since the order of accuracy can become
much smaller than one. Further, compared to numerical diffusion errors which are made
easily smaller by mesh refinement, this kind of error is difficult to detect by the user since,
refining the mesh would have a small effect on the refined solution, due to the poor order of
this kind of error.

Finite-volume schemes resulting in a seven point stencil can be obtained from vertex
formulations on triangles. Some standard choices such as control volumes bounded by
segments of medians (so-calledmedian cells) are essentially equivalent to the Galerkin
variational formulation (centered versions) [18, 8, 2, 15] and enjoy a rather good robust-
ness to distorted meshes as long as they are not stretched. For the Galerkin formulation
itself, error estimates show a good behavior for irregular but non-stretched meshes, and for
highly stretched meshes which meet a maximum angle condition (e.g. see [14]). Unfor-
tunately, when upwinding that preserves positiveness is introduced, the favorable behavior
on unstretched meshes is inherited, but not the robustness to stretching [4, 12]. Indeed, a
simple truncation error analysis on cartesian meshes shows that the scheme is not uniformly
consistent for arbitrarily stretched meshes [5].

The qualification of the scheme for stretched meshes can be obtained either by relax-
ing the positivity statement as in the stabilized finite-element method [11] and in artificial
viscosity models [13], or by replacing the Galerkin centered approximation with a dif-
ferent one; for example, the shape of the cell can be changed as suggested by Barth [4],
or the global approximation can be reconsidered as in the numerous works around multi-
dimensional (MD) schemes [16, 19].
For both the Barth approach and the MD approach, the scheme stencil is made in some
cases more compact: the containment-circle based dual control volume (that we will call
theBarth cell) disables fluxes along any edges that are in front of obtuse angles. The MD
schemes systematically select only two edge-wise differences per triangle (scalar case). Be-
hind the approximation of the advection terms remains the question of diffusion terms, that
are conveniently treated by the Galerkin option only if this treatment is compatible with the
advection scheme. Now, it is remarkable that for second order derivatives, the Galerkin tri-
angular approximation (Figure 1) is identical to the usual five point finite difference scheme
of the Galerkin quadrangular approximation (Figure 3). For first order derivatives, this is
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2 C. Viozat, C. Held, K. Mer, A. Dervieux

not true, since non zero coefficients appear in points at the end of diagonals (compare Fig-
ure 2 to Figure 4). Considering new advection schemes that reduce on cartesian meshes to
a five point approximation seems an interesting standpoint.
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Figure 1: Illustration of the five point
finite-difference stencil fortrian-
gular meshes in the case of the
diffusion equation.
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Figure 2: Illustration of the seven
point Galerkin stencil fortriangu-
lar meshes in the case of thead-
vection equation.
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Figure 3: Illustration of the five point
finite-difference stencil forquadri-
lateral meshes in the case of the
diffusion equation.
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Figure 4: Illustration of the three
point finite-difference stencil for
quadrilateral meshes in the
case of the horizontaladvection
equation.
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In the present work, we concentrate on amending the vertex centered finite-volume
formulation on triangles. A family of cell shapes is defined from a variational argument.
Instead of starting from the Galerkin method for obtaining median cells, we introduce a for-
mulation characterized by a modified differentiation operator, in which edgewise gradients
are defined on the so-called diamond cell. The use of this diamond derivative reduces the
stencil of the scheme, and in the case of cartesian triangulations, the new cell reduces to
a rectangular cell. Another feature of the proposed construction is the bridge that is thus
established between finite volume, and in particular with special cell shapes as introduced
by Barth [4], with finite element (of P1-Galerkin type) and with multidimensional schemes.
We develop an analysis of the new family of schemes by proposing a necessary condition
for consistency in the presence of stretched meshes. The rest of the scheme construction
is more standard: an approximate Riemann solver is introduced for stability purposes, a
MUSCL [22] interpolation is applied for increasing the formal order of accuracy, and lim-
iters can be (optionally) added for saving positiveness.

The next three sections of this paper are devoted to the new scheme derivation: varia-
tional context (Sec.2), introduction of a diamond derivative (Sec.3) and identification of a
family of schemes adapted to stretched meshes (Sec.4). In Section 5, second-order accurate
extension is presented. In Section 6, the properties verified by the new scheme are investi-
gated. In Section 7, a set of numerical experiments aiming at showing the accuracy of the
selected scheme, and its behavior on stretched and non stretched meshes is presented. In
the last part of the paper concluding remarks are given.

2 Variational derivation of the Galerkin Finite-Volume method

The scheme considered in this paper is presented as a modification of the standard P1-
Galerkin scheme ; in particular, we adopt the variational formulation. The aim of this
section is to recall (with some extra details) the well-known bridge between finite-volume
and Galerkin methods [18, 8, 2, 15].

2.1 Variational frame

The two dimensional Euler equations can be written as a system of hyperbolic equations of
conservation:

Wt +
�!r :�!F (W ) = 0; (1)
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4 C. Viozat, C. Held, K. Mer, A. Dervieux

where
�!
F (W ) = (F (W ); G(W ))t.

The variational form is obtained by multiplying Equation (1) by atestfunction m, and
integrating it over an open domain
:Z



 mWt d
+

Z


 m

�!r � �!F (W ) d
 = 0; 8  m 2 L2(
): (2)

Following the standard finite-element method, we approximateW and
�!
F by a linear

combination ofbasisfunctions belonging toH1(
) :

W =
NX
n=1

Wn'n; (3)

and

�!
F (W ) =

NX
n=1

�!
F (Wn)'n; (4)

whereN is the number of mesh nodes and'n is the finite-element shape function associated
with noden. The'’s may not necessarily be chosen identical to the ’s (“Petrov Galerkin”
type formulation).

Substituting Equations (3) and (4) into Equation (2) and replacing
�!r by an approximate

gradient
�!rh, we obtain the following set of linear equations:

NX
n=1

MmnWn;t +

NX
n=1

�!
Amn:

�!
F n = 0; 8m = 1; ::; N; (5)

where

Mmn =

Z


'n m d
; (6)

�!
Amn =

Z


 m
�!r h'n d
: (7)

A classical mass-lumping gives 
NX
n=1

Mmn

!
Wm;t +

NX
n=1

�!
Amn:

�!
F n = 0; 8m = 1; ::; N: (8)

INRIA
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Definition:
We define properties(P1), (P2) and(P3) by:

(P1)
�!
Amm = 0; 8m = 1; ::; N;

(P2)

NX
n=1

�!
Amn = 0; 8m = 1; ::; N;

(P3)
�!
Amn = ��!A nm; 8m;n = 1; ::; N:

(9)

Proposition 1 [8, 15, 18]:
If Properties(P1), (P2) and (P3) hold, the approximation described in (8) is equivalent
to the following finite-volume type method

Area(Cm)Wm;t +

NX
n = 1
n 6= m

�!� mn �
�!
F m +

�!
F n

2
= 0; 8m = 1; ::; N; (10)

whereArea(Cm) =

NX
n=1

Mmn is the area of a (at least virtual) finite-volume control volume

Cm and�!� mn = 2
�!
Amn is the mean normal vector occuring in the finite-volume flux

integration between nodesm andn.

2.2 Lagrange-Galerkin particular case

For the Lagrange-Galerkin formulation ('m =  m with Lagrange interpolation and
�!rh =�!r ), Properties (P1), (P2) and (P3) are satisfied [8].

In particular, if'm(=  m) are P1-Lagrange basis functions (i.e. continuous, piecewise
linear on each triangle and equal to 1 at nodem and0 at the other nodes), then it is well-
known that Equation (8) is equivalent to Equation (10) in which the cellCm (see Figure 5)
is delimited by the medians of the neighboring triangles of the vertexm and�!� mn is the
mean outward normal vector to the interfaceCm \ Cn.
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point Cnode m

node n

cell Cm

Figure 5:Cell built around nodem.

mn

node n

ν

ν

T1

mn

T2

mn

node m

Triangle T
mn

2

Triangle T
1

Figure 6: The mean normal vector
occuring in the finite volume flux in-
tegration between nodes m and n is
~�mn = ~�T1mn + ~�T2mn.

x

x

y

y∆

∆

Figure 7:Cartesian mesh, and median cells in dotted lines.

Then, the so-called median finite-volume method (as in Baba-Tabata [3]) is a natural
variation of the finite-element method. An upwind version is easily built by introducing
some flux splitting. In the case of the scalar advection equation

wt + div(
�!
V w) = 0; (11)
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On Vertex-Centered Unstructured Finite-Volume Methods for Stretched Anisotropic Triangulations7

where
�!
V = (a; b)t is a constant vector and using the usual “Donor Cell” splitting, Equa-

tion (10) becomes:

Area(Cm)wm;t

+
NX

n = 1
n 6= m

"�!
V :�!� mn

2
(wm + wn) + j

�!
V :�!� mn

2
j (wm � wn)

#
= 0;8m = 1; ::; N:

(12)

A truncation error analysis of Scheme (12) applied to the case of a family of skewed
meshes as described in Figure 7, with�x 6= �y, yields:

wt = �a wx

�b wy

+
1

6

�
j b(�x)

2

�y
� 2 a�x j + j b(�x)

2

�y
+ a�x j

�
wxx

+
1

3
j b�x+ a�y j wxy

+
1

6

�
j 2 b�y � a

(�y)2

�x
j + j b�y + a

(�y)2

�x
j
�

wyy

� 1

6
a (�x)2 wxxx

� 1

6
(b�x+ a�y)�x wxxy

� 1

6
(b�x+ a�y)�y wxyy

� 1

6
b (�y)2 wyyy

+O

�
�x3;�y3;

�x4

�y
;
�y4

�x

�
;

(13)
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8 C. Viozat, C. Held, K. Mer, A. Dervieux

in which the functionO

�
�x3;�y3;

�x4

�y
;
�y4

�x

�
holds for a term that is asymptotically

smaller than�x3, �y3,
�x4

�y
or

�y4

�x
.

It is clear that Scheme (12) is consistent if
�x

�y
and

�y

�x
are uniformly bounded. Con-

versely, this scheme may lose its consistency in the case of stretched meshes. Indeed, for

an increasing stretching, we may have
�x2

�y
! 1 if the stretching direction is along thex

axis, or
�y2

�x
!1 if it is along they axis, thus the first-order terms of the truncation error

will increase.

The lack of accuracy for stretched meshes is the main drawback of this standard finite-
volume method. Several ways to go around this drawback have been proposed [6, 4, 12].
They involve changing the shape of the finite-volume cells. Analysing the resulting schemes
with respect to the standard Galerkin variational formulation is rather difficult; therefore, we
propose a new variational frame for the definition of new finite-volume schemes.

3 Diamond variant

3.1 Definition of the main choices

In order to develop a method accurate on stretched meshes, and getting inspiration from
the multidimensional schemes building (e.g. see [20]), we consider Equation (8) with the
following choices:

� A point C is chosen on each triangle (C is not necessarily located at centroid).

� Test functions:

 Cm = �Cm ; (14)

where�Cm denotes the characteristic function (i.e. the function is equal to1 on the area
Cm and0 elsewhere) andCm is the cell built around nodem by joining for each triangle
aroundm the middle of edges to a pointC in the triangle (see Figure 5).

� Basis functions:'n are P1-Lagrange basis functions.

INRIA



On Vertex-Centered Unstructured Finite-Volume Methods for Stretched Anisotropic Triangulations9

� Discretized gradient operator:
We consider a triangleT (assumed not degenerated) of verticesi, j andk, and a given

pointC of T . The triangleT is numbered anti-clockwise.

 i 

C

k

C

j

Diamond half-cell T
k

Figure 8: Illustration of the diamond
half-cellTC

k .

η

 i 

j

k

x

x

1

2

ξ

ξ

η

Figure 9: The global referencial
( ~x1; ~x2) and the local referencial
(~�; ~�).

Definition:
The diamond half-cell related to the edgeij is the triangleTC

k of verticesi, j andC (see
Figure 8). Similarly, the diamond half-cell related to the edgesjk andki are respectively
the trianglesTC

i of verticesj, k andC, andTC
j of verticesk, i andC.

We denote by�i(x; y), �j(x; y) and�k(x; y) the barycenter coordinates ofT . For any
pointC(xC ; yC) we consider

�Ci = �i(xC ; yC) =
Area(TC

i )

Area(T )
;

�Cj = �j(xC ; yC) =
Area(TC

j )

Area(T )
;

�Ck = �k(xC ; yC) =
Area(TC

k )

Area(T )
:

(15)

The local coordinate system(~�; ~�) is defined by (see Figure 9)

~� =
~ij

k ~ij k ; ~� =
~ik

k ~ik k :

RR n° 3464



10 C. Viozat, C. Held, K. Mer, A. Dervieux

Definition of the diamond derivation in the local coordinate system(~�; ~�):
Let f be a function defined on triangleT ; the diamond derivation off in the local

coordinate system(~�; ~�) is given by

@hf

@h�
jT =

�TC
k

�Ck

f(j)� f(i)

k ~ji k ; (16)

@hf

@h�
jT =

�TCj
�Cj

f(k)� f(i)

k ~ki k
; (17)

where� denotes the characteristic function.

In the case wheref(�; �)jT is a linear function, the following properties hold:Z
T

@hf

@h�
d� d� =

Z
T

@f

@�
d� d�;Z

T

@hf

@h�
d� d� =

Z
T

@f

@�
d� d�;

(18)

since Z
T

�TC
k

�Ck
dT = Area(T ): (19)

Definition of the diamond derivation in the global coordinate system( ~x1; ~x2):

Once derivatives have been computed in directions� and�, we can deduce derivatives
in all directions.

The relation between the global referential( ~x1; ~x2) and the local referential(~�; ~�) is
given by:

�!xl = �l
�!
� +�l�!� ; l = 1; 2; (20)

where

�l =
�!xl :�!� ?

�!
� :�!� ?

; �l =
�!xl :�!� ?

�!� :�!� ?
; l = 1; 2: (21)

In Equation (21), as well as in the rest of the paper, we denote by~v? the vector of
components(�vy; vx) (where(vx; vy) are the components of~v).

INRIA
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We can rewrite the coefficients given in Equation (21) in terms of the coordinates of
triangleT :

�
�1
�2

�
=

~ki
? k ~ij k

2Area(T )
;

�
�1
�2

�
=
~ij
? k ~ik k

2Area(T )
: (22)

The derivative of a functionf(x1; x2) in the global referential can be written with regard
to the local referential in the following manner :

@hf

@hxl
jT = �l

@hf

@h�
jT +�l

@hf

@h�
jT ; l = 1; 2:

(23)

Substituting Equations (16) and (17) into Equation (23) we finally obtain the diamond
derivation in the global coordinate system:

@hf

@hxl
jT = �l

�TC
k

�Ck

f(j)� f(i)

k ~ji k + �l
�TCj
�Cj

f(k)� f(i)

k ~ki k
; l = 1; 2; (24)

which can also be written using Equation (22) as

rhf jT =
~ki
?

2

�TC
k

Area(T )�Ck
(f(j)� f(i)) +

~ij
?

2

�TCj
Area(T )�Cj

(f(k)� f(i)): (25)

If (~ij; ~ik) defines a cartesian coordinate system, this derivative is identical to the usual
derivative. In general it is a different one. We summarize the definition of the diamond
scheme as follows:

Definition
We call diamond scheme withij andik as the two sides chosen for directional splitting the
following variational form of Equation (1)Z



 CmWt d
+

Z


 Cm

�!r h � �!F (W ) d
 = 0; (26)

�!
F (W ) =

NX
n=1

�!
F (Wn)'n; (27)

where'n are P1-Lagrange basis functions, Cm = �Cm are the test functions and the
diamond derivation is given by (25).
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12 C. Viozat, C. Held, K. Mer, A. Dervieux

3.2 Passing to centered finite volumes

We now apply Proposition 1 to the new context. Let us check that properties(P1), (P2)
and(P3) hold for the diamond method (26)-(27)-(25):

• Verification of (P1)

To show that(P1) holds, we need to compute
�!
Amm.

By definition (7), we have

(Amm)l =
X

T2N(m)

Z
T

 Cm
@h'm
@hxl

d
; l = 1; 2; (28)

whereN(m) denotes the neighboring triangles of the vertexm.

Using the definition of the diamond derivation (25), we obtain:

(Amm)l =
X

T2N(m)

Area(T )

2

@'m
@xl

jT ; l = 1; 2: (29)

Moreover, since'm is a P1-Lagrange basis function we can writeZ
T

'm d
 =
Area(T )

3
:

Therefore (29) can be written as

(Amm)l =
3

2

X
T2N(m)

Z
T

'm
@'m
@xl

d
; l = 1; 2: (30)

Since'm
@'m
@xl

=
1

2

@('m)
2

@xl
, after an integration by parts we obtain

�!
Amm =

3

4

X
T2N(m)

Z
@T

('m)
2~nd�;

=
3

4

Z
@


('m)
2~nd�;

(31)

INRIA
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where@
 denotes the boundary of the support of the'm function and~n is the exterior
unitary normal.

Since'm = 0 on@
, we have
�!
Amm = 0.

• Verification of (P2)

To show that(P2) holds, we need to compute
X
n

�!
Amn.

By definition (see Equation (7)), we have:

X
n

(Amn)l =
X
n

Z


 Cm

@h'n
@hxl

d
 l = 1; 2: (32)

Equation (32) can be written as

X
n

(Amn)l =

Z


 Cm

@h'sum
@hxl

d
; l = 1; 2 (33)

where

'sum =

NX
n=1

'n :

Moreover, for linear functions, using properties (18), we can write

X
n

(Amn)l =

Z


 Cm

@'sum
@xl

d
; l = 1; 2: (34)

Since the function'n is a P1-Lagrange function, we have:

'sum = 1: (35)

Sustituting Equation (35) into Equation (34), we obtain
X
n

�!
Amn = 0.

• Verification of (P3)
To show that(P3) holds, we need to compute

�!
Amn and

�!
A nm.

RR n° 3464
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In the case wherem 6= n, according to Equation (7), we can write

(Amn)l =
X

T=T 1
mn;T

2
mn

�
AT
mn

�
l
; l = 1; 2; (36)

where

�
AT
mn

�
l
=

Z
T

 Cm
@h'n
@hxl

dT; l = 1; 2: (37)

In Equation (36),T 1
mn andT 2

mn denote the two triangles havingmn as a common
edge (see Figure 6).

Substituting Equation (25) into Equation (37) we obtain:

�!
AT

nm =
~ki
?

2
('n(j) � 'n(i))

Z
T

 Cm

� �TC
k

Area(T )�Ck

�
dT

+
~ij
?

2
('n(k) � 'n(i))

Z
T

 Cm

"
�TCj

Area(T )�Cj

#
dT:

(38)

Taking into account the definition of�Ck (15) and the definition of Cm (14) we can
write Equation (38) as:

�!
AT

nm =
~ki
?

2
('n(j) � 'n(i))

Z
T\Cm

�Tk
Area(Tk)

dx1dx2

+
~ij
?

2
('n(k)� 'n(i))

Z
T\Cm

�Tj
Area(Tj)

dx1dx2:

(39)
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The numerical computation of the terms involved in Equation (39) is straightforward:

Z
T\Cm

�Tk
Area(Tk)

dx1dx2 =

8<
:

1=2 if m = i;
1=2 if m = j;
0 if m = k;

Z
T\Cm

�Tj
Area(Tj)

dx1dx2 =

8<
:

1=2 if m = i;
0 if m = j;
1=2 if m = k;

'n(j) � 'n(i) =

8<
:
�1 if n = i;
1 if n = j;
0 if n = k;

'n(k)� 'n(i) =

8<
:
�1 if n = i;
0 if n = j;
1 if n = k:

(40)

Substituting Equations (40) into Equation (39), we obtain

�!
AT

nm =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

~ki
?
=4 if ~mn = ~ij;

~ik
?
=4 if ~mn = ~ji;

~ij
?
=4 if ~mn = ~ik;

~ji
?
=4 if ~mn = ~ki;

0 if ~mn = ~jk;

0 if ~mn = ~kj:

(41)

From Equation (41), we can verify that
�!
AT

mn = ��!AT
nm, therefore

�!
Amn = ��!A nm.

According to Proposition 1, we have the lemma:

Lemma 3.1 The diamond method withij and ik as the two sides chosen for directional
splitting (26)-(27)-(25) is equivalent to the finite-volume type method (10) with

(�mn)l =
X

T=T 1
mn;T

2
mn

�
�Tmn

�
l
; l = 1; 2; (42)
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where

�
�Tmn

�
l

=

8>><
>>:

(~ki)?=2; if ~mn = ~ij;

(~ij)?=2; if ~mn = ~ik;

0; if ~mn = ~jk:

(43)

Area(Cm) is the area of the cell chosen for building the test functions.

Remark
The normal vectors~�mn obtained are the normal vectors to a cell defined on each triangle
by joining the middle point of the two chosen sides for the diamond derivation to the middle
point of the third side (see Figure (11.a)).

3.3 Qualification of a diamond scheme for cartesian meshes

A truncation error analysis of Scheme (12) using the diamond method based on thetwo
smallest sides, applied to the case of a family of skewed meshes as described in Figure 7,
with �x 6= �y, yields:

wt = �a wx

�b wy

+
1

2
j a j �x wxx

+
1

2
j b j �y wyy

� 1

2
a (�x)2 wxxx

� 1

2
b (�y)2 wyyy

+O
�
�x3;�y3

�
;

(44)

in which the functionO
�
�x3;�y3

�
holds for a term that is asymptotically smaller than

�x3 or�y3.
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x

x

y

y∆

∆

Figure 10:Cartesian mesh, and cells (in dotted lines) obtained with the diamond scheme
using the two smallest sides.

Conversely to the truncation error obtained for the median finite-volume method the
diamond method based on the two smallest sides leads to a truncation error which contains

no terms in
�x

�y
or

�y

�x
. Consistency to stretching is obtained. As shown in Figure 10, in

this case, cells reduce to quadrilateral cells. The scheme results in a five point stencil.

3.4 Bridge with centered MDHR

In this section, we analyse the relationship between the dual diamond method and the mul-
tidimensional scheme of Sidilkover [20]. We show that, in thecase of a 2D scalar advection
equation, the dual diamond method in which the pointC is chosen as the gravity center of
the triangle, is similar to the centered multidimensional scheme of Sidilkover.
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The discretization (26)-(27)-(25) (or equivalently (42)-(43)) writes, for a given vertexl:

Area(CI)
dwl

dt

+
X
T3l

Area(T ) 

w(j) � w(i)

k ~ij k

Z
T\CI

�Tk
Area(Tk)

dx1dx2

+
X
T3l

Area(T ) �
w(k)� w(i)

k ~ik k

Z
T\CI

�Tj
Area(Tj)

dx1dx2

= 0;

(45)

where the sums are taken for any triangleT of verticesi, j andk which hasl as vertex (l is
eitheri or j or k), and


 = a�1 + b�2; � = a�1 + b�2; (46)

with coefficients�1; �2; �1 and�2 given in (22).

Computing this expression in the three casesl = i; j; k we obtain the following discrete
scheme: 8>>>>>>>><

>>>>>>>>:

Area(Ci)
dwi

dt
:=

1

2
(R� +R�);

Area(Cj)
dwj

dt
:=

1

2
R�;

Area(Ck)
dwk

dt
:=

1

2
R�:

(47)

where we define the following quantities, which are some finite-difference approximations
of the derivatives ofw on triangleT (see Figure 9):8>>>><

>>>>:

R� = �Area(T ) 
 wj � wi

k ~ij k ;

R� = �Area(T ) � wk � wi

k ~ik k
:

(48)

The system of Equations (47) is identical to thefluctuation distribution formulaeof
Sidilkover (as presented Equation (7) in [20]) for the case of a 2D scalar advection equation,
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i.e. we have thecenteredversion of the multidimensional scheme of Sidilkover.
This illustrates in particular that thiscenteredMDHR version is a finite volume scheme (i.e.
a Lax-Wendroff theorem for convergence towards weak solution can be directly applied).
For convergence towards weak solutions in the case of theupwindMDHR version (i.e. the
narrow scheme), we refer to [1].

3.5 Bridge towards distributive schemes

Distributive schemes [21, 7] rely on a basic vertex-distribution of the element-by-element
flux integral; for the state of simplicity, the time derivative is put under finite volume form:

Area(Ci)
@wi

@t
=
X
T

�Ti �
T ;

where

�T =

Z
T

r � ~F hdx1dx2 =

Z
@T

(~V � ~n)w d� ;

where ~F h is an approximation of~F = ~V w.

Let us define the following functions that are constant on each triangle:

�Ti =
1

2�T

(R� +R�);

�Tj =
1

2�T
R�;

�Tk =
1

2�T

R�;

where�T 6= 0. We deduce that the above family of centered schemes ((42)-(43) or (47))
belongs to the family ofdistributive schemes. We observe that this implies that we can also
write them under a purelyPetrov-Galerkinformulation, i.e. with the usualGalerkin basis
functions'i and with an exact derivation of them (in contrast to the diamond derivation
of the first sections). It is indeed enough to introduce in the variational formulation the
following testfunctions:

Area(Ci)
@wi

@t
=

Z


r � ~F h  PGi d
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 PGi jT = 'ijT + �Ti � 1=3 :

Since the�Ti are constant by element, the gradient of the test functions is identical to
that of the Galerkin basis functionin each triangle, but not through the boundary of the
triangles. However, it is usual to consider that this allows us to replace indiffusive termsthe
Petrov-Galerkin i by the Galerkin'i:

Area(Ci)
@wi

@t
=

Z


r � ~F h  PGi d
 +

Z
@

rw � r'i d�

Such strategies are adopted in the Petrov-Galerkin works [11] and in distributive schemes
works [17].

4 Analysis of high stretching

The three possible options (see Figure 11) that we have defined for any triangle will allow
the definition of a family of schemes which will rely on a barycenter between the three
possible diamond derivatives with weighting coefficients defined on each triangle. Not all
the schemes of this family are consistent for arbitrary stretched meshes. The purpose of this
section is to build necessary conditions for a scheme of the above family to be consistent
with arbitrary meshes.

4.1 Barycentered Formulation

Let us denote by�i, �j and�k the barycenter coefficients of schemes DI, DJ and DK, for
each triangle. The diamond method withij andik as the two sides chosen for directional
splitting corresponds to the case where (�i, �j , �k) = (1, 0, 0). We now consider the family
of schemes combining the three possible diamond schemes (see Figure 11), by replacing
Equation (43) by (�i + �j + �k = 1)

~�Tmn =

8>>>>><
>>>>>:

�
�i (~ki)

? + �j ( ~kj)
?
�
=2 if ~mn = ~ij;�

�i (~ij)
? + �k ( ~kj)

?
�
=2 if ~mn = ~ik;�

�j (~ij)
? + �k (~ik)

?
�
=2 if ~mn = ~jk;

(49)

We will now analyze the truncation error in three different contexts of uniform meshes.
This analysis will give us necessary conditions on the coefficients of the barycenter (�i, �j ,
�k), to obtain consistent schemes.
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i

k

ik

j

ν
ij

T

ν

T

T

i

k

ji

j

ν
jk

T

T

T
ν

i

k

ki

j

ν
kj

T

T

Tν

(�i, �j , �k) = (1, 0, 0) (�i, �j , �k) = (0, 1, 0) (�i, �j , �k) = (0, 0, 1)

(a) (b) (c)

Figure 11:The three possible diamond schemes: (a) the scheme DI, (b) the scheme DJ and
(c) the scheme DK.

4.2 A uniform triangulation model

We will not derive an error analysis applicable to anyunstructuredstretched meshes. Instead
of this, we will concentrate on a typical example of a sequence ofstructuredmeshes with
an increasing fineness, and, at the same time, an increasing stretching.

Returning to the advection example (11) of Section 2.2, we can extract the truncation
error from the new family of schemes on the triangulationT . Triangulations in this family
consist of only one type of obtuse triangles, numbered as shown in Figures 12 and 13.
We denote�i, �j and�k as the coefficients corresponding to the diamond schemes built
repectively with the axesx andz, with the axesx andw, and with the axesz andw.
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∆ x
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Figure 12:Model triangulationT .
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Figure 13:Numerotation of vertices in a triangle of triangulationT .
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The truncation error is obtained by computing the values of the mean normal vector
applying Equation (49) and using a finite Taylor expansion around the point P1 of the val-
ues W(Pi), i = 2, 3, 4, 6, 7 and 9. We obtain the following result:

Wt = �a Wx

�b Wy

+
1

2

�x

�y

�
j ~V � ~�12 j + j ~V � ~�14 j �2+ j ~V � ~�15 j (� � 1)2

�
Wxx

+
�
j ~V � ~�14 j �+ j ~V � ~�15 j (� � 1)

�
Wyx

+
1

2

�y

�x

�
j ~V � ~�14 j + j ~V � ~�15 j

�
Wyy

�1

6

(�x)2

�y

�
(~V � ~�12) + (~V � ~�14)�3 + (~V � ~�15))(� � 1)3

�
Wxxx

�1

2
�x

�
(~V � ~�14)�2 + (~V � ~�15)(� � 1)2

�
Wyxx

�1

2
�y

�
(~V � ~�14)� + (~V � ~�15)(� � 1)

�
Wyyx

� b
6
(�y)2 Wyyy

+O

�
(�x)3; (�y)3;

(�x)4

�y
;
(�y)4

�x

�
;

(50)

where

~V � ~�12 = a(�j + �i)�y � b (�j (� � 1) + �i �)�x; (51)
~V � ~�14 = a�k�y + b (�i � �k (� � 1))�x; (52)
~V � ~�15 = �a�k�y + b (�j + ��k)�x: (53)

We now select three particular subsequences of the family of triangulationT .
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∆

∆ x

1

1

1 1y y    /2

(c)

y    /4

∆ x    /4
1

∆ x    /16
1

∆ ∆

i j

k k k

i j i j

(a) (b)

Figure 14:Evolution of the shape of a triangle in triangulationMn: (a) triangle inM1,
(b) triangle inM2, scale :2, (c) triangle inM3, scale :4.

4.3 Stretched triangles with no obtuse angles

The mesh sequence(Mn)n is defined by

M1 : Model triangulationT shown in Figures 12 and 13:

The distance��x measures the non-orthogonality of the mesh:

We assume0 < � = const <
1

2
:

Mn : (�x)n =
�x1
n2

; (�y)n =
�x1
n

; � = const

(54)

The triangulation sequence(Mn)n is such that the larger isn, the more stretched is the
mesh in they direction, since

lim
n!1

(�x)n
(�y)n

= 0:

We observe that forn large, all triangles ofMn areacute.

The scheme is uniformly consistent onMn for n tending to infinity only if in the trun-
cation error (50) all terms tend to zero. This is verified if and only if the factorsj ~V � ~�14 j
andj ~V � ~�15 j defined in Equation (52) and (53) are small enough and in particular only if
�k, which corresponds to the diamond scheme relying on the two largest sides, is smaller
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than
�x

�y2
. Thus, we obtain the following necessary condition for consistency :

�k = o

�
�x

�y2

�
: (55)

In this particular case, due to (54), the remainder, estimated as a

O

�
(�x)3; (�y)3;

(�x)4

�y
;
(�y)4

�x

�
, tends to zero withn.

It is interesting to introduce the following definition of the aspect ratio of a triangle:

Definition:
We shall think of the aspect ratio of a given triangle as the ratio of its largest side divided
by its smallest altitude.

We observe that the aspect ratior0n of meshMn satisfies:

r0n �
�y

�x
:

Similarly, the largest altitude in triangles ofMn is of the same order as the largest side.
Therefore, statement (55) can be written in the following general manner :

�k = o

�
1

largest side� r0n

�
: (56)

4.4 Stretched triangles with obtuse angles (1)

We consider now an obtuse stretched context(Nn)n that is defined by

N1 : Model triangulationT shown in Figures 12 and 13:

The angle� = (~z; ~y) is kept constant;

it can be either positive or negative and� �

2
< � <

�

2
:

Nn : (�x)n =
�x1
n

; (�y)n =
�y1
n2

:

(57)
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The evolution of a triangle in the triangulation sequence(Nn)n is given in Figure 15.

The triangulation sequence(Nn)n is such that the larger isn, the more stretched is the
mesh in thex direction, since

lim
n!1

(�y)n
(�x)n

= 0:

Let us examine the above truncation analysis; as for the above section, the remainder
again tends to zero withn. We account for the following relation:

� =
�y

�x
tan �; (58)

which allows us to deduce that the scheme is uniformly consistent with regard to the stretch-
ing of the mesh only if in the truncation error all terms tend to zero. This is verified only if

the factorsj ~V � ~�12 j andj ~V � ~�14 j are small enough, that is if�i is smaller than
�y

(�x)2
.

Thus, we derive the following necessary condition for consistency :

�j = o

�
�y

�x2

�
: (59)

We observe that the aspect ratior00 of meshNn satisfies:

r00n =
�x

�y
:

Similarly, the largest side in triangles ofNn are of the same order as�x.

Therefore, Equation (59) can be written in the more general manner :

�j = o

�
1

largest side� r00n

�
: (60)

We observe thatNn may present obtuse angles but these obtuse angles are uniformly
bounded (i.e. a maximum angle condition is satisfied). We recall that, for the usual Galerkin
method, assuming a maximum angle in the triangulation sequence is the poorest standard
one. It is thus interesting to examine some examples for which this basic assumption is not
verified.
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Figure 15: Evolution of the shape of
a triangle in triangulationNn: (a)
triangle in N1, (b) triangle in N2,
scale :2, (c) triangle inN3, scale :4.
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Figure 16: Evolution of the shape of
a triangle in triangulationPn: (a)
triangle in P1, (b) triangle in P2,
scale :2, (c) triangle inP3, scale :4.

4.5 Stretched triangles with obtuse angles (2)

The mesh sequence(Pn)n is defined by

P1 : Model triangulationT shown in Figures 12 and 13:

The distance��x measures the non-orthogonality of the mesh:

We assume0 < � = const <
1

2
:

Pn : (�x)n =
�x1
n

; (�y)n =
�y1
n2

:

(61)

The evolution of a triangle in the triangulation sequence(Pn)n is given in Figure 16.
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The triangulation sequence(Pn)n is such that the larger isn, the more stretched is the
mesh in thex direction, since

lim
n!1

(�y)n
(�x)n

= 0:

Moreover, no maximum angle condition is satisfied.
The truncation error in this context is again given by (50). On this triangulation se-

quencePn the terms with
(�x)n
(�y)n

alwaysbring inconsistency.

4.6 Synthesis: Elementwise anisotropy

In order to avoid a local numerotation of the triangles and to make the method more practi-
cal, from now on, we callschemesDS, DM andDL the diamond schemes relying on the
vertices opposite respectively the smallest, the medium and the largest side of the triangle.
We denote�DS , �DM and�DL as the coefficients related respectively to the schemesDS,
DM andDL.

The two first contexts of triangulation sequence did satisfy a uniform majoration of the
largest angle, because either all angles where acute or the largest angle was held constant or
smaller than a given angle; the third analysis seems to show that a maximum angle assump-
tion remains a minimal one, which we cannot today get rid of.

The results of the analysis of Sec. 4.3 and 4.4 can be synthetised as follows:

We first remark that for the acute triangulation sequence, the coefficient�k in Equa-
tion (56) corresponds to the diamond scheme along the two largest sides of each triangle,
and so does the coefficient�j in Equation (60) of the first obtuse triangulation sequence,
then both necessary conditions concern the DS scheme, that is:

Lemma 4.1 A necessary condition for a barycenter of the three diamond schemes to be
consistent for any family of mesh, is that in case of high stretching the coefficient of the
diamond version relying on largest sides be small enough according to the following rule:

�DS = o

�
1

largest side� rn

�
; (62)

wherern denotes the aspect ratio.
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It is clear that the schemes DL and DM are two admissible choices as far as consistency
on regular meshes is concerned. But for non uniform meshes, the non regular switch be-
tween sides, for example on nearly isosceles triangles, may induced some irregularity in the
resulting approximation. We thus need to specify an appropriatesmooth barycenter.

With this end in view, we make an inventory of the following desired properties:

• indispensable criteria

(i) If there is a right angle then choose the two sides other than the hypothenuse.

(ii) If a triangle is isosceles the symmetry should be respected : same weight on the
two symmetric sides.
This implies that for equilateral triangles the weight should be one third on each side.

(iii) The weight should be smooth.

We note that (ii) ensures that the ambiguity in choosing the smallest between two
symmetric sides has no influence on the resulting scheme.

• additional criteria for stretched mesh

We need to choose a strategy in case of an obtuse angle. We keep the same strategy
as for a right angle.

(i)’ if there is an obtuse angle then choose the two sides other than the largest side.

An example:
It is natural to seek obtuseness indicators satisfying:

�S = 0 if Ŝ � �
2 ;

�M = 0 if M̂ � �
2 ;

�L = 0 if L̂ � �
2 :

(63)

whereŜ, M̂ andL̂ are respectively the angles opposite to sidesS,M andL (see Figure 17).

We define then the following coefficients:

�DS = �M �L;
�DM = �S �L;
�DL = �S �M :

(64)
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m
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I

sm

l
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Figure 17:Notation in a triangle:S, M andL are the lengths of respectively the smallest,
medium and largest side.s, m and l are the vertices opposite to respectively the smallest,
medium and largest side.̂S, M̂ and L̂ are the angles opposite to respectively the smallest,
medium and largest side.Is, Im and Il are the middle points of respectively the smallest,
medium and largest side.

The choice of� satisfying (63) enables us to have�DL = 0 if the angleŜ or the
angleM̂ is obtuse. The same properties hold for�DS and�DM .
We normalize the coefficients of (64):

�DS =
�S

�S + �M + �L
;

�DM =
�M

�S + �M + �L
;

�DL =
�L

�S + �M + �L
:

(65)

We easily verify that ifŜ is obtuse,�M and�L are vanishing, so that(i)’ is satisfied.

Let us introduce a method for establishing� values which satisfy (63).
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The detection of right and obtuse angles is (rather) smoothly detected via the Pythagoras
formula as follows:

�S = f(Max(0; L2 +M2 � S2));
�M = f(Max(0; S2 + L2 �M2));
�L = f(Max(0; S2 +M2 � L2)):

(66)

wheref is a positive increasing function,f(x) is vanishing forx = 0, andS, M , L are
respectively the lengths of the smallest, medium and largest sides.

We have managed the satisfaction of the consistency for obtuse angles; let us now ana-
lyze it for theacutefamily of meshes: we will compute the coefficient�DS, �DM and�DL

in this context. In the casef(x) = x, Equation (65) can be written as8>>>>>>>><
>>>>>>>>:

�DS =
1

tan(M̂) tan(L̂)
;

�DM =
1

tan(Ŝ) tan(L̂)
;

�DL =
1

tan(Ŝ) tan(M̂)
:

(67)

We derive that for this choice off , the scheme defined in (49) satisfies the consistency
necessary conditions (62). Note that for example the choicef(x) =

p
xwould not produce

the consistency relation whilef(x) = x2 would. In practice we will takef(x) = x.

4.7 Relation to existing finite-volume schemes

The relation to existing finite-volume schemes is summarized in Table 1. Details are given
in Appendix I.

The Barycentered Diamond (BD) scheme with coefficient (67) can be in fact identified
as the Barth circumcenter method [4]. Therefore, we call this scheme, the BDBarth method.
In the numerical tests we will show results forf(x) = x2, we will refer to this method as the
BDsquaremethod, and forf(x) =

p
x, we will refer to this method as the BDroot method.

It can be verified from (50)-(53) that BDBarth and BDsquareare consistent for stretching
and that BDroot is not.
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Location of Point C (�DS , �DM , �DL)

Middle of [S] (1, 0, 0)

Middle of [M ] (0, 1, 0)

Middle of [L] (0, 0, 1)

Intersection

�
1

3
,
1

3
,
1

3

�
of the medians

Circumcenter

 
1

tan(M̂ ) tan(L̂)
,

1

tan(Ŝ) tan(L̂)
,

1

tan(Ŝ) tan(M̂ )

!

Table 1:Example of equivalence between a given location of the pointC used to build the
finite-volume cell and barycenter coefficients used to build a scheme of the diamond family
in the case of an acute triangle.

INRIA



On Vertex-Centered Unstructured Finite-Volume Methods for Stretched Anisotropic Triangulations33

5 Upwind formulation for CFD : MUSCL

Since we have shown that our scheme is a finite-volume one, we can derive a second-order
accurate MUSCL extension.

Equation (10) can be written as,

Area(Cm)Wm;t +

NX
n = 1
n 6= m

�centered(Wm;Wn; ~�mn) = 0: (68)

The extension of the Donor Cell formulation (12) to Euler equations consists in using
a Riemann problem withWm andWn as left and right states and~�mn for defining the
interface. We are now left with a one-dimensional problem which may be solved by a
Godunov solver or an approximate Riemann solver like Roe’s solver.

Equation (68) is replaced with

Area(Cm)Wn;t +
NX

n = 1
n 6= m

�upwind(Wm;Wn; ~�mn) = 0; (69)

where�upwind(Wm;Wn; ~�mn) are the first-order numerical fluxes.

A second-order spatial accurate scheme for hyperbolic terms can be obtained using the
MUSCL interpolation technique introduced by van Leer [22]. To reach the second-order
accuracy the numerical fluxes are evaluated with extrapolated valuesWmn andWnm at the
interface@Cmn. Thus, the function� remains the same, only its arguments are modified:

Area(Cm)Wn;t +

NX
n = 1
n 6= m

�upwind(Wmn;Wnm; ~�mn) = 0; (70)

The quantitiesWmn andWnm are computed by

Wmn =Wm +
1

2
rWmn � ~mn;

Wnm =Wn +
1

2
rWnm � ~nm:

(71)
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A gradient centered at the middle of the edge[mn] (see Figure 18) is defined by

(rW )centeredmn � ~mn =Wn �Wm; (72)

and an upwind gradient is defined by

(rW )upwindmn � ~mn = rW jTmn � ~mn;
(rW )upwindnm � ~nm = rW jTnm � ~mn;

(73)

whereTmn andTnm are defined in Figure 18, and whererW jTmn is the finite element
approximation of the gradient.

Tmn Tnm

m n

Figure 18:Downstream and upstream triangleTmn andTnm.

We can use a “�-scheme” which combines the centered and fully upwind gradient to
obtain

rWmn � ~mn = (1� ��)(rW )centeredmn � ~mn+ �� (rW )upwindmn � ~mn (74)

where�� is the parameter of upwinding included in interval[0; 1]. In the test cases presented
in the sequel, we took either�� = 1

2 or �� = 1
3 .

The scheme described above is not monotone. It can introduce extrema which would not
exist, particularly in the case of transonic and supersonic flows. To reduce the oscillations
in the solution a LED slope-limiting procedure can be used as in [6]. In our test cases, we
did not use limiters.

6 The linearity preservation property

We are now concerned by the local consistency of the second order versions (centered and
upwind) of thediamondscheme. We will consider both the optimal consistency for station-
ary solutions on cartesian meshes, and a consistency on unstructured non-stretched triangu-
lations. For formally second order schemes, the local consistency can be obtained with the
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so-calledLinearity preservationproperties [14] [4] [21].
We first review two properties of linearity preservation in the context of the scalar linear
equation (11) ; we then consider the ability of thediamondscheme to be exact for affine
functions.

Definitions

The diamondscheme (26)-(27)-(25) writes in the following fluctuation-splitting (or dis-
tributive) form (see also section 3.5):

NX
n=1

wn;t

Z


	C
m'nd
+

X
T ;xm2T

�Tm = 0; 8m = 1; ::; N; (75)

where the fluctuation at nodemwrites�Tm =

Z
Cm\T

~V �~rh(�hw)d
 (�h is theP1�Lagrange

interpolation operator). We have�Tm = �Tm�
T where�T is the total fluctuation. The cell

Cm is defined as in Section 3 (see (14) for the test functions and (25) for the definition of
~rh) and we have shown that the spatial term of (75) is in fact independent of the choice
of Cm. The conservativity of the scheme, in the fluctuation splitting sense, is given by:X
m=i;j;k

�Tm = �T and is equivalent to (19).

Let us recall two well-known properties of polynomial preservation:
(i) A scheme is said to be linear preserving (LP) if the spatial approximationLh is exact

for linear functions [4, 14]:

(Lhp)m = Lp; 8m = 1; ::; N; 8p 2 P1(
):
A more particular notion of linear preserving is the following:

(ii) A fluctuation splittingscheme is said to be linear preserving if a linearstationary
solution of (11) is also a solution of the scheme, or equivalently if forp 2 P1(
) such that
~V � ~rp = 0 (then�T (p) = Area(T )~V � ~rp = 0), we have:

�Tm(p) = �Tm(p)�
T (p) = 0; 8m = i; j; k:

This is equivalent to saying that the coefficient�Tm is bounded when�T tends to zero. If the
scheme is linear, one can show that the scheme is linear preserving in this sense if and only
if the coefficients=�Tm is independent ofp [21]. In the sequel, we call this property written
in the fluctuation splitting form, the propertyLP-FS.
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Consistency ofLP and LP-FSschemes

For stationary solutions, theLP-FSschemes (e.g. SUPG, PSI,...) are consistent and have
a second order truncation erroron cartesian mesheswith a uniform choice of diagonals
(Figure 7). For general solutions, theLP property(i) provides a local consistency of order
one on unstructured meshes, the only conditions on the mesh being the regularity (in the
finite element sense) and a local quasi-uniformity [14].

Consistency of thediamondscheme

We can highlight the following properties of the diamond scheme:

We first consider thecentral differenceddiamond scheme equivalent to the scheme of
Sidilkover (47). This scheme is notLP-FS in the general case, since if�T = 0 (which
givesR� + R� = 0), this does not imply that the distributed fluctuations�Tm = 0 (i.e.
R� = R� = 0). However, it isLP-FS in some particular cases, for example if one of the
two edges chosen for the diamond derivatives is colinear to~V (see (48)).
The barycentered formulation with equal coefficients (i.e. the median dual scheme or the
Galerkin scheme) isLP-FSon any triangulations.

We now consider theupwinddiamond schemes. ALP version of the MUSCL scheme
of Section 5 (70-71) can be obtained in the following manner: we can replace Equation (70)
by the following scheme:

Area(Cm)Wn;t +

NX
n = 1
n 6= m

Z
�mn

�upwind(W�(~x);W+(~x); ~�mn(~x)) = 0; (76)

where�mn is the interface defined by the normals~�mn andW�(~x);W+(~x) are the left and
right values of the reconstruction on the interface. If the reconstruction and the numerical
integration of the flux are exact for affine functions, then the above scheme isLP if we
chooseCm as the cell defined by the normals~�mn. This property for the reconstruction is
usually called thek-exactnessproperty [4] (here fork = 1). For the numerical integration,
we can consider a Gauss quadrature ; in this case, we should consider the values of the
reconstructions in the middle point of each portion of the interface�lmn (l = 1; 2), with
normal

�
�Tmn

�
l
.
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7 Some numerical illustrations

Let us first evaluate with a very simple example how large the difference can be between
a scheme that is consistent with stretching, and a scheme that is not, even for rather mild
stretching. We consider the unsteady concentration cone test case, described for example
in [9].
Then, we consider several easy academic cases in simple geometries such as flow around a
circular cylinder. These test cases have already been widely investigated which enables us
to compare our results with existing ones. All presented results are obtained with the Roe
scheme and no limiters are used.
Finally, improvements brought by the diamond scheme in case of quasi-cartesian meshes is
illustated on a flow in a booster combustion chamber.

In the sequel we will consider the five following schemes:

• a. The Finite Volume scheme with median cells; we will refer to “Median scheme”
for both the first-order version and its extension to the second order.

• b. The diamond scheme with a barycenter withf(x) = x (the functionf(x) was
introduced in (66)), we refer toBDBarth scheme.

• c. The diamond scheme with a barycenter withf(x) = x2, we refer toBDsquare

scheme.

• d. The diamond scheme with a barycenter withf(x) =
p
x, we refer toBDroot

scheme.

7.1 Unsteady flow: rotation of a conical spot

This is a very classical test for evaluating unsteady advection schemes (see for example
[10]).

The equation to be solved is:8<
:

Wt + div(
�!
V W ) = 0 in 
 =]0; 1[2

W0(x; y) = max(1; 2 � 5
p
(x� 0:25)2 + (y � 0:5)2)

W (x; y) = 1 on @


(77)

with the advection speed
�!
V = �

�
y � 0:5
0:5 � x

�
.

The solution is observed after a complete turn (t=2s).
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Two schemes are examined: the first one is the Median scheme, the second one is the
BDBarth scheme.
Time integration relies on the corresponding areas. Third order version of both schemes are
considered (� = 1=3, no limiters, Runge-Kutta 3 time stepping).
With a 31x31 cartesian mesh, theBDBarth scheme produces a rather good solution (Fig-
ure 21). With a division by a factor 5 of�y, we observe an impressive improvement (Fig-
ure 22). Conversely, the Median scheme gives a less good but acceptable solution on a
31x31 mesh (Figures 19) , and a notably less good solution on the 31x155 one, which shows
a quite undesirable manifestation of the inconsistency for stretched meshes (Figure 20).

Figure 19:Rotation of a conical spot:
Median scheme. Solution for the
31�31 node mesh.

Figure 20:Rotation of a conical spot:
Median scheme. Solution for the
31�155 node mesh.

Figure 21:Rotation of a conical spot:
BDBarth scheme. Solution for the
31�31 node mesh.

Figure 22:Rotation of a conical spot:
BDBarth scheme. Solution for the
31�155 node mesh.
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7.2 Flow around a circular cylinder

We turn now to a steady flow simulation. The pathological behaviour of median cells was
already noted by T. Barth [4]. We give here a simple and demonstrative example.

The flow is inviscid and the Mach number at infinity is equal to0:38. The flow is steady.
Experiments have been performed on two meshes of different coarsening and stretching:
i) a structured non-stretched mesh of 1088 vertices (see Figures 23 and 25),
ii) a structured stretched mesh of 2112 vertices (see Figures 24 and 26). The maximum
aspect ratio near the wall is 20.

On both meshes, the solutions obtained with the Median scheme are shown in Figures 27
and 28, and the solutions obtained with theBDBarth method are shown in Figures 29
and 30.

The results on the non-stretched mesh show that for quasi-cartesian meshes, and even in
the absence of stretching, theBDBarth method enables a better accuracy; this is indicated
in particular by a better symmetry of Mach contours between the front and rear parts of the
cylinder.

On the stretched mesh the solution obtained with the Median method at first-order spa-
tial accuracy is totally degraded while the solution obtained with theBDBarth method is
acceptable. One could believe that second-order accuracy would improve the results ob-
tained with the Median scheme. This is not the case; indeed, at second-order spatial accu-
racy, two large vortices appear behind the cylinder and the steady state cannot be reached.
With the diamond method the steady state solution is close to the solutions obtained with
the non-stretched mesh but again with a noticeable improvement.
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Figure 23: Non-stretched mesh with
1088 vertices.

Figure 24:Stretched mesh with 2112
vertices.

Figure 25: Zoom of the mesh with
1088 vertices.

Figure 26: Zoom of the mesh with
2112 vertices; the maximum aspect
ratio is 20.
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Figure 27: Mach contours,
M1 = 0:38, 2nd-order accuracy,
1088 vertex mesh,median cells.
Isovalues:0 : 0:05 : 1.

Figure 28: Mach contours,
M1 = 0:38, 1st-order accuracy,
2112 vertex mesh,median cells.
Isovalues:0 : 0:05 : 1.

Figure 29: Mach contours,
M1 = 0:38, 2nd-order accuracy,
1088 vertex mesh,Barth cells. Iso-
values:0 : 0:05 : 1.

Figure 30: Mach contours,
M1 = 0:38, 2nd-order accuracy,
2112 vertex mesh,Barth cells. Iso-
values:0 : 0:05 : 1.
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7.3 Flow in a booster combustion chamber

Many combustion engines involve important acoustic effects taking place in their combus-
tion chambers and coupling with vortex shedding. The geometries of these chambers are
generally rather complicated and may motivate the use of unstructured “generalist” flow
codes.
However, theses codes should not involve much internal viscosity since acoustics and vor-
tices play an important role.
For example, a powder rocket may present a cavity with a starshaped section best described
with triangulations. But tetrahedra/triangles-relying upwind approximations contain gener-
ally a big amount of internal viscosity.

We propose here a 2-D test that aims at qualifying theBDBarth scheme as involving a
low internal viscosity so that it will be able to compute this kind of flow.
We present the computation of the flow in a 2D geometry related to a booster of the launcher
ARIANE V referenced in litterature as the C1 test case. This flow is transonic and unsteady;
the Mach number varies between 0.05 and 1.7. In this chamber (Figure 31) the flow of gas
through the burning powder is driven through the cavity and the inletS. The right part of the
cavity will be occupied by a large vortex and small vortices will be shed from left to right
with coupling with acoustics. Several frequencies have been observed in other computations
(2600 Hz, 3500Hz).

The propeller is modelled by a simplified and fixed geometry which is discretized with
a mesh involving 9868 nodes (318 � 31) and made of triangles that are nearly isosceles
and with a right angle. We thus again are examining the adequation of the new scheme to
quasi-cartesian meshes as analysed in Section 3.3. We consider that the injected propergol
is a perfect gas. The flow is computed with the compressible Euler equations using the
different schemes. Time advancing is calculated by the 3-stage Runge Kutta time advanc-
ing by taking a CFL number equal to 1 . The boundary conditions are the following (see
Figure 31) :

- We apply~V : ~n = 0 on the sidesG1,G2 andG3.

- The condition onD is a “discharge condition” which imposes thatQ � 0 is constant
perpendicular to the wall with a given temperatureTb which can be written as :

� ~V = �Q~n , T = Tb : (78)

where~n is the outside normal to the wall.

- OnS, we have a supersonic outlet condition.
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S

G1

G2

G3

D

Figure 31:C1 test case: hot gases are blown from the boundary of the powder blockD, and
will finally go out through the nozzleS.

This test has been studied in details in [5]. The expected exact answer is a quasi periodic
flow with a quasi constant amplitude of fluctuation.
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Figure 32: C1 test case: Mediane scheme. Pressure at a point on the front combustion
chamber. The main mode is spuriously damped (rather astonishingly a second one appears).
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Figure 33: C1 test case: BDBarth scheme. Pressure at a point on the front combustion
chamber. The main mode keeps its amplitude.

It was in particular observed that a very poor result was obtained with the Median
method, with the “best option”� = 1=3 on a regular mesh of318 � 31 nodes. The scheme
involves a rather large internal viscosity in many mesh directions and produce fastly damped
fluctuation converging finally to a steady solution (Figure 32).

Applying the BDBarth scheme results in a considerable reduction of this viscosity and
allows a good prediction of the expected vortices (Figure 33). The results show that the
average pressure on the front combustion chamber is equal to about 466250Pa. From the
results of Figure 33, the acoustic frequency can be evaluated as about 3500Hz. Solutions
obtained with variants of the BD scheme are presented in Figure 34.

8 Concluding remarks

This work has focused on the consistency question for stretched meshes when a particular
class ofupwindschemes is applied. These schemes apply on triangulations, with unknowns
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Figure 34: C1 test case: Pressure at a point on the front combustion chamber. This is a
zoom of Figure 33 with three curves, to illustrate the variations induced by three possible
choices of the function f(x) (cf. (66)). The optionf(x) = x2 (BDsquare) is slightly better
thanf(x) = x (BDBarth); f(x) =

p
x (BDroot) gives the worst result.

located on vertices.

For this purpose, we gather and complete a global view of several modern approxima-
tion schemes: finite-element, finite-volume, distribution schemes.
A family of upwind Godunov-type finite-volume schemes is then extracted for investigating
which subset may satisfy the proposed criterion ofconsistency in stretching.
In order to havenecessary conditions, we performed a truncation analysis for several typical
sets of regular meshes and proposed some design criteria for building better schemes.
We show in particular that the Barth cell allows the corresponding finite-volume scheme to
satisfy the proposed criterion.
Some numerical experiments illustrate that our point of view is reasonable.
While bringing some answers, this paper let many questions pending.
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Firstly, a general analysis for unstructured stretched meshes is missing. It would be
interesting to investigate under which conditions these schemes would be convergent for
stretched meshes.

Secondly, although we have presented several different points of view in the derivation
of the presented schemes, the extension to other types of elements is not straightforward:
which strategy will be adequate for quadrilaterals, for tetrahedra, etc.

Answers to these kinds of questions are of paramount interest for design of new schemes
for modern Reynolds-averaged Navier-Stokes calculations on unstructured meshes involv-
ing stretching and possibly anisotropic adaption devices.
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Appendix I. Relation to existing finite-volume schemes

The purpose of this appendix is to verify that choosing a particular barycenter with
weights (�s, �m, �l) for the Barycentered Diamond scheme is equivalent to choosing a
Finite-Volume scheme relying on a barycenterC of the vertices with weights (�s, �m, �l).
We use the notation of Figure 17.

We write
�
�Tmn

�
l
as the normal of a cell built by joining the middle of each edge of the

triangle (Ism, Iml, Ils) to a pointC in the triangle,

�
�Tmn

�
l

=

8>><
>>:

( ~CIsm)
? if ~mn = ~sm;

( ~CIsl)
? if ~mn = ~ls;

( ~CIml)
? if ~mn = ~lm:

(79)

In order to determine the barycenter corresponding to this scheme, we will write
�
�Tmn

�
l

in terms of ~sm, ~ml and~ls.

Properties of the barycenter coordinates:

Property 1:

~CP = �cs
~sP + �cm

~mP + �cl
~lP ; 8C of T;8P; (80)

Property 2:

�cs + �cm + �cl = 1: (81)

Writing (80) for the particular cases whereP is equal toIsm, Iml andIsl, we obtain:8>><
>>:

~CIsm = �cs
~sIsm + �cm

~mIsm + �cl
~kIsm;

~CIml = �cs ~sIml + �cm ~mIml + �cl
~lIml;

~CIsl = �cs ~sI ls + �cm ~mI ls + �cl
~lI ls:

(82)
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Since by definitionIsm, Iml, Ils are the middle of respectively,~sm, ~ml and~ls, for any
pointP we can write 8>>>>>><

>>>>>>:

~PIsm =
1

2
( ~Ps+ ~Pm);

~P Iml =
1

2
( ~Pm+ ~P l);

~P Ils =
1

2
( ~P l + ~Ps):

(83)

In particular, Equations (83) are verified in the case where the pointP is equal tos, m
or l which enables us to express vectors involving the middle points in Equations (82) in
terms of the vertices of the triangle. Equations (82) become8>>>>>><

>>>>>>:

( ~CIsm)
? =

1

2

�
(1� 2�cs) (

~ls)? + (1� 2�cm) (
~lm)?

�
;

( ~CIml)
? =

1

2

�
(1� 2�cm) ( ~sm)? + (1� 2�cl ) (

~sl)?
�
;

( ~CIls)
? =

1

2

�
(1� 2�cl ) (

~ml)? + (1� 2�cs) ( ~ms)
?
�
:

(84)

Identifying Equations (84) with Equations (49) (in which the numbersi, j andk have been
replaced bys,m andl respectively), we obtain8>><

>>:
�s = 1� 2�cs;

�m = 1� 2�cm;

�l = 1� 2�cl :

(85)

Equations (85) give the relation which, with any pointC used to build a finite-volume
cell, associates a barycenter with weights (�s, �m, �l). Particular cases are presented in
Table 1.
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