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Recent studies on free-surface gravity waves over uneven bathymetries have shown
that “rogue” waves can be triggered by strong depth variations. This phenomenon is
here studied by means of spectral simulations of the free-surface Euler equations. We
focus on the case of a random, one-directional wave field with prescribed statistics
propagating over a submerged step, and consider different depth variations, up to an
almost deep-to-shallow transition (kpH ≈ 1.8 − 0.78, where kp is the characteristic
wavenumber and H the water depth). Strongly non-Gaussian statistics are observed
in a region localized around the depth transition, beyond which they settle rapidly on
the steady statistical state of finite-depth random wave fields. Extreme fluctuations
are enhanced by stronger depth variations. Freak-wave formation is interpreted as
a general signature of out-of-equilibrium dynamics, associated with the spectral
settling from the deep-water to the finite-depth equilibrium. We also document that
during such a transition the wave spectrum shows remarkable similarity with Phillips
ω−5-law for the strongest depth variations considered. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4880659]

Rogue waves represent a fascinating and challenging research subject. A variety of physical
mechanisms have been proposed as candidates for explaining the rare yet striking observations of
rogue waves in the ocean;1, 2 which mechanisms are more “realistic,” i.e., likely to occur spon-
taneously in nature, is a subject of ongoing debate. The propagation of waves over strong depth
variations, in particular, has been recognized as a favorable condition for the occurrence of extreme
waves,3 and is receiving growing attention in such context. From the modeling view point, Zeng and
Trulsen4 approached the problem in the context of the nonlinear Schrödinger equation, therefore
within the limit of a slowly varying bottom. The prediction obtained in such theoretical framework
showed a transition between two statistically steady states on each side of the depth transition,
but it did not allow to observe the enhanced probability of extreme wave events that experimental
observations revealed.3 Gramstad et al.5 and Sergeeva et al.6 obtained trends qualitatively similar to
the experimental data using one-directional Boussinesq5 and Korteweg-de Vries (KdV)6 models. In
particular, they document the emergence of extreme-wave activity near the shallow side of bottom
slopes.

Although the above studies have provided valuable insight into the wave dynamics over vari-
able bathymetry from the standpoint of extreme wave formation, there is a clear need to extend the
mathematical and numerical modeling to the fully nonlinear case. Furthermore, due to the shallow
water assumption, previous studies could not assess the relevant case of deep- to shallow-water
transitions. The present study therefore aims to provide the first, fully nonlinear numerical study
on the same physical setup. We take advantage from the ease in varying parametrically the bathy-
metric profile in a way that would be impractical to realize in experiments, and from the nearly
complete removal of measurement noise which allows to observe the high-frequency tail of the wave
spectrum.

1070-6631/2014/26(5)/051705/7/$30.00 C©2014 AIP Publishing LLC26, 051705-1
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FIG. 1. Schematic of the numerical setup employed, showing the regions where the forcing and damping terms are located.

By assuming irrotational flow and neglecting surface tension, the free-surface Euler system in
two spatial coordinates (x, y) and time t reads

ηt = −φxηx + φy, at y = η(x, t), (1)

φt = − 1
2

(
φx

2 + φy
2
) − gη + PF/ρ − PD/ρ, at y = η(x, t), (2)

∇φ · n = 0, at y = b(x), (3)

∇2φ = 0, for b(x) < y < η(x, t), 0 < x < L , (4)

where η(x, t) is the free surface elevation, φ(x, y, t) is the velocity potential, b(x) < 0 is the bottom
profile, ρ is the fluid density, g is the vertical acceleration due to gravity, n is the outward-pointing
unit vector normal to the bottom profile, PF and PD are two pressure terms employed to introduce
forcing and damping in the system, respectively, as discussed below. As we are going to apply a
spectral discretization, we assume periodic boundary conditions in the horizontal x direction from
the outset. This implies that η and ∇φ (the fluid velocity) are periodic in x, whereas φ must be
allowed to possess a non-periodic, linear part.

For the numerical solution of the system (1)–(4), we employ a spectral conformal mapping
method extended to the case of variable bottom. For details we refer the reader to Viotti et al.7

A well-known limitation of the potential-flow formulation lies in the assumption that no wave
breaking occurs, which in practice limits the maximum wave steepness that one can consider. In
the conformal-mapping method, wave breaking typically manifests as a dramatic loss of accuracy
(which can be detected, for instance, as a significant violation of volume conservation), if not as a
full breakdown of the computation. Therefore, it is necessary to seek for a compromise between the
degree of nonlinearity and the numerical accuracy.

We intend to simulate a one-directional random wave field propagating toward a depth transition.
In order to embed such a setup within a periodic computational domain, we employ a plateau-like
bathymetric profile, and we introduce wave-maker and damping layer according to the configuration
shown in Figure 1. In doing so, we effectively implement an inflow-outflow regime within the
periodic domain.

The bottom bathymetry is defined as

b(x) = −H1 + 1
2 (H1 − H2) [tanh((x − x1)/δ1) − tanh((x − x2)/δ2)] ,

where H1 (H2) is the depth of the deep (shallow) region, x1 and x2 are the centers of the depth
transitions of thickness δ1 and δ2. In order to obtain the desired wave characteristics and avoid
spurious effects, both wave generation and absorption need to be devised carefully. The wave-maker
consists of a pneumatic generator

PF (x, t)/ρ = f (x)N (t ; ω0, σ0),

characterized by a shape function f(x), and a temporal law N(t; ω0, σ 0), which is a Gaussian random
process with power spectrum given by P(ω) = A√

2πσ0
exp

[− 1
2 (ω − ω0)2/σ 2

0

]
. The wave-maker

peak frequency ω0, bandwidth σ 0, and amplitude A are tuned in order to target a desired sea state
with prescribed wave steepness and frequency. The shape function f(x), is also shaped as a Gaussian,
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with a thickness consistent with the typical wavelength associated with ω0. The wave absorber is
implemented as linear damping

PD(x, t)/ρ = d(x)φ (x, η(x, t), t)

localized by means of the shape function d(x) (see Figure 1). The choice of d is delicate in relation
to spurious effects such as wave reflection and pile-up. The latter consists of fluid accumulation
inside the damping layer, and can alter significantly the water depth in the rest of the wave tank.
Both effects are effectively reduced by distributing a weak damping over a large area, which clearly
comes at the cost of reserving a consistent portion of the computational domain for the damping
layer. Time series of the surface elevation are recorded on a grid of gauge locations along the tank.
In order to ensure good resolution in frequency, we perform run-time data storage at every time step,
furthermore, the conformal mapping method requires an interpolation every time η is evaluated at a
given location in physical space. The time series produced in a single run contain about 1300 wave
periods, accounting for the startup transient. We further average over two independent realizations.
This appears sufficient for a satisfactory convergence of all statistical quantities considered in this
study.

The medium being non-homogeneous, statistical quantities are defined locally in space. The
sea state generated by the wave-maker is characterized by a local characteristic frequency ωp (close
but not equal to the wave-maker peak frequency ω0), a corresponding wavenumber kp that follows
from the linear dispersion relation in finite depth ω2

p = gkp tanh kph (with h(x) = −b(x)), a spectral
bandwidth 	ω, and an average steepness s, defined as

ωp =
∫ +∞

0 ωS(ω)dω∫ +∞
0 S(ω)dω

, 	2
ω =

∫ +∞
0 (ω − ωp)2S(ω)dω∫ +∞

0 S(ω)dω
, s =

√
2kpηstd,

where S(ω, x) is the power spectral density of the time series η(x, t), ηstd = 〈(η − 〈η〉)2〉1/2 is the
standard deviation of η (1/4 of the significant wave height, according to one common definition1),
and 〈 · 〉 denotes time-averaging. In order to characterize the emergence of extreme events, we also
introduce skewness and kurtosis (or flatness) of the surface elevation, which are, respectively, given
by

λ3 = 〈(η − 〈η〉)3〉/η3
std, λ4 = 〈(η − 〈η〉)4〉/η4

std − 3.

As is well known, for a Gaussian random process we have λ3 = λ4 = 0, which makes such high-order
moments sensitive detectors of non-Gaussian features.

Before we proceed to showing the numerical results, we introduce a system of nondimensional
units by normalizing upon the time scale τ = 1/ω0 and the length scale � = g/ω2

0.
As a first case of study, we reproduce one of the experiments reported by Trulsen et al.,3 which

offers a good benchmark for our numerical method and setup. We choose the data set “case 1” in
the above reference, since it realizes the closest condition to a deep- to shallow-water transition (the
nominal values reported by Trulsen et al.3 are H1 = 0.6 m and kpH1 = 1.6 in the deep side, H1

= 0.3 m and kpH2 = 0.99 in the shallow side). Experimental data are nondimensionalized upon g
= 9.8 m/s2 and ω0 = 5 s−1 (assumed equal to the nominal peak frequency reported in the same
paper), and bathymetric parameters are also scaled accordingly. Numerical simulations are initialized
from the quiescent state η = φ = 0. Following the activation of the wave-maker, a statistically steady
state in which the energy dissipated inside the damping layer balances the energy injected by the
wave-maker, is attained in about 2000 dimensionless time units (≈300 wave periods), as shown in
Figure 2(a).

A stringent yet physically meaningful criterion for assessing the overall numerical accuracy is
offered by the amount of computational volume “leakage.” In simpler setups, such as that of a soliton
propagating over a submerged step, our scheme shows a clean exponential convergence. The trend
reported in Figure 2(b) appears consistent with exponential accuracy at short times, whereas for long
times the global accuracy appears somewhat degraded. This fact is not unexpected, as various sources
of numerical error are present in the simulations which eventually pollute the nominal accuracy of
the numerical scheme for long times. For instance, sharp-crested waves which appear as rare events
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FIG. 2. Numerical replica of the “case 1” experiment reported by Trulsen et al.3 (a) Time history of the total energy per unit
length and unit density, from the wave-maker activation at t = 0 (for N = 16 384). (b) Absolute volume variation per unit
length versus time for different resolutions. N represents the number of dealiased Fourier modes employed. The total energy

is given by E = K + P = 1
2 ρ

∫ L
0

∫ η

b

(
φ2

x + φ2
y

)
dydx + 1

2 ρ
∫ L

0 η2dx , the total volume is given by V = ∫ L
0 (η − b)dx .

are affected by larger numerical error at high frequency, and small truncation errors are introduced
by the specific technique used to map the bathymetric profile in conformal space.8 The discretization
using N = 16 384 (dealiased) Fourier modes provide a spectral resolution about 100 times larger
than the characteristic wavenumber kp. Based on this testing, we decided to employ this resolution
in our simulations.

The x-dependent statistics obtained from our simulations are reported in Figure 3, along with
the corresponding experimental data. The standard deviation (panel (a)) shows that we realized
a very similar wave amplitude before the depth transition. The rightmost experimental data point
suggests an attenuation of the significant wave height in the shallow side not present in the numerical
simulation, but the experimental results are arguably affected by a certain amount of dissipation.
Skewness (panel (b)) also matches accurately. In particular, the peak that occurs just beyond the
depth transition is well resolved. In this regard, we observe a clear improvement with respect to the
result obtained with a weakly nonlinear model.5 Kurtosis (panel (c)) is also reproduced consistently,
even though, as expected, it is affected by a larger statistical noise. In particular, the negative-kurtosis
signature typical of intermediate-depth regimes9 is evident.

The case just examined, even though insightful, shows only a moderate kurtosis enhancement.
The other cases reported by Trulsen et al.3 exhibit stronger freak wave activity, but are obtained
by decreasing the wave frequency on the same bathymetry, whereby they consider the effect of the
same depth variation on different upstream sea states. On the contrary, here we focus on the effect
of different depth transitions with respect to a fixed upstream state. As such, we next focus on a new
set of numerical experiments defined as follows. The total domain size is L = 256π , the water depth
in the deeper region is kept constant H1 = 1.8, while H2 is varied in the range 0.55 < H2 < 0.8. We

FIG. 3. Local wave field statistics for our simulation of the “case 1” experiment reported by Trulsen et al.:3 (a) standard
deviation, (b) skewness, and (c) kurtosis of the surface elevation. Lines: numerical results. Symbols: experimental data.
Vertical lines reference the center of the depth transition x = x1.
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FIG. 4. (a) Characteristic frequency along the domain for the cases with H1 = 1.8. (b) Characteristic wavenumber along the
domain obtained from the linear finite-depth dispersion relation.

also set x1 = 270 and x2 = 470, with the corresponding thicknesses δ1 = 2 and δ2 = 4 (δ2 is larger in
order to minimize wave reflection from the second ridge). The parameters of the wave-maker are ω0

= 1 (by definition), and σ 0 = 0.25 for the bandwidth. For the damping, we use max (d(x)) = 0.05.
In Figure 4, the x-dependent characteristic frequency and the associated wavenumber are re-

ported. As shown, ωp is very close to the forcing frequency ω0 = 1, and exhibits little spatial
evolution in all the cases. On the contrary, kp is slightly larger than 1 in the deep side (whereby
we have kpH1 ≈ 1.8), and increases in the shallow side. The regime attained within the shallower
region therefore varies depending on H2, namely, we obtain kpH2 = 1.03, 0.92, 0.81, 0.78 for
H2 = 0.8, 0.7, 0.6, 0.55, respectively. In these four cases, the deep-side sea is characterized by a
spectral bandwidth 	ω ≈ 0.2, and an average steepness s ≈ 0.068. The associated Benjamin–Feir
index BFI ≡ sωp/	ω ≈ 0.35 corresponds to a subcritical regime (BFI < 1). This condition has been
targeted on purpose, as it is typical of realistic sea states where modulational instability is saturated,
and ensures a fast settling of the wave field on a near-Gaussian sea in the deep region. Furthermore,
the absence of modulational effects in the deep-side sea allows to discern the non-Gaussian effects
due to the depth transition, whereas a supercritical, narrow-banded sea state (BFI > 1) would likely
produce non-Gaussian statistics due to nonlinear focussing.8–12 The latter condition was discussed
under the NLS equation by Zeng and Trulsen,4 who observed a strongly non-Gaussian sea state de-
veloping upstream of the depth transition and then recovering near-Gaussian features in the shallow
side, where nonlinear focussing is weak or absent altogether.

Further statistics are reported in Figure 5. The standard deviation ηstd, panel (a), is essentially
constant over the entire flume. Such a result can be understood from a classic argument based on
the average energy-flux conservation. In the absence of dissipation, and assuming wave reflection is
negligible, the mean, depth-averaged horizontal energy flux, Q, is conserved throughout the wave
tank. Since in a homogeneous wave field the energy flux can be estimated as Q ≈ cg E (see, e.g.,
Whitham13), where E ≈ η2

std is the mean total energy per unit length, the variation of ηstd is set by the
variation of the group velocity corresponding to the characteristic frequency ωp. However, as shown
in Figure 5(d), cg(ωp) is weakly affected by the water depth if ωp is sufficiently close to one (cf.

FIG. 5. Local wave field statistics for different depth variations (for H1 = 1.8): (a) standard deviation, (b) skewness, and (c)
kurtosis of the surface elevation. (d) Group velocity cg = dω/dk as a function of the wave frequency ω for different water
depths H, from the nondimensional finite-depth dispersion relation.
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FIG. 6. Normalized PDFs of the free surface displacement at different x locations and for different depths H2.

Figure 4), whereby the very mild variation of ηstd appears consistent with the behavior of ωp(x). In
Figures 5(b) and 5(c), the local skewness and kurtosis for the same cases are shown. Spatial evolution
is absent within the deep region for both quantities as the upstream sea state is in equilibrium, on
the contrary strong fluctuations appear on the depth transition, denoting intensified freak-wave
activity. New equilibrium conditions are then recovered downstream of the depth transition. These
results are qualitatively similar to those reported in Figure 3 but the stronger depth variations
here considered cause larger statistical anomalies. We observe that the peaks of skewness and
kurtosis are sharply localized, whereby they can be challenging to resolve in wave flume experiments.
Analogous conclusions can be drawn from the numerical computations by Gramstad et al.5

The probability density functions (PDFs) obtained before, on and past the depth transition are
reported in Figure 6. As expected, only marginal departures from the Gaussian distribution are
visible in the deep region, whereas near the depth transition PDFs display heavy tails for positive
elevations which are progressively enhanced by increasing the depth transition, and represent a clear
signature of rogue-wave events. In the shallow region, PDFs settle on a markedly asymmetric shape,
but no longer exhibit heavy tails.

We next focus on the evolution of the wave spectrum along the tank. Temporal power spectra
are extracted from η time series after excluding the initial transient. The power spectra, reported in
Figure 7, span up to ten decades in magnitude from the peak to the point where the tail is overwhelmed
by numerical noise. The high-frequency noise, which is above machine-noise level, is mostly affected
by the aforementioned interpolation scheme required to invert the conformal mapping. Figure 7
shows how the transition from the deep-water to the shallow-water regime reflects on the spectrum.
The spectra associated to the transient state across the depth transition deviate dramatically from

FIG. 7. Local power spectra of the surface elevation at the locations marked on the bathymetric profile sketched below (plots
are progressively up-shifted by 104 from the previous one). Hamming window is applied to the time series before computing
the spectra, and a smoothing filter is applied subsequently. The first spectrum from the bottom is shown both before (light-blue
line) and after (dark-blue line) smoothing. The straight lines reference the ω−4 (dashed line) and ω−5 (solid line) power-laws.
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both steady-state spectra. Near the depth transition the spectral tails decay much more slowly, and
the two cases with the stronger depth transition exhibit marked consistency with Phillips ω−5 power-
law, suggesting local formation of sharp-crested waves.14 Note that the slow decaying spectral tails
provide more high-frequency contribution to ωp, which is consistent with the peaks observed in
Fig. 4(a). Beyond the depth variation, the spectrum settles rapidly on the equilibrium state, which,
as expected, is broader banded than it is in the deep side.

In closing, the results presented in this paper provide a detailed description of the response of
a progressive, random wave field to a strong depth variation. After validating our procedure against
available experimental data, we have focused on four cases characterized by the same nearly deep-
water dynamics (H1 = 1.8, kpH1 ≈ 1.8) in the deep side of the tank, and intermediate-depth (H2

= 0.8, kpH2 ≈ 1.03) to near shallow-water (H2 = 0.55, kpH2 ≈ 0.78) regimes in the shallow side. In
doing so, we focused on conditions outside the realm of validity of the Boussinesq and KdV models
employed in previous studies. We have shown the growing intensity of extreme-wave activity for
increasing depth variations, in a region localized around the depth variation. Such transition region
bridges two different statistical equilibria, and is strongly affected by non-equilibrium dynamics.

We further stress that, in the recent literature, studies are growing numerous which emphasize the
link between extreme-wave activity and spectral settling. Examples can be drawn from a number of
different contexts and regimes, such as: developing modulational instability,15, 16 random crossing-
sea,17 and bathymetric variations.3, 6 Our results contribute to reinforce a unifying viewpoint on
rogue wave dynamics, in which extreme waves are seen as a footprint of non-equilibrium dynamics,
regardless of the specific factor imposing a shift of the statistical equilibrium.

This research was supported by the European Research Council under the research Project
No. ERC-2011-AdG 290562-MULTIWAVE and Science Foundation Ireland under Grant No.
SFI/12/ERC/E2227.
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