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[1] One year of directional buoy measurements comprising the period from May 1994 to
April 1995 acquired in deep ocean waters by an offshore heave-pitch-roll buoy are
used for the assessment of the directional wave spectra retrieved from synthetic aperture
radar (SAR) images using the Max-Planck-Institut (MPI) scheme. SAR is the only sensor
so far deployed from satellites that can provide measurements of the directional wave
spectrum with high spatial and temporal coverage when operating in the so-called SAR
wave mode. Millions of SAR wave mode imagettes have been and are still being acquired
over all oceanic basins yielding a powerful data set for investigating wind waves.
However, directional spectral information retrieved from SAR images has not yet been
assessed against in situ measurements. For the first time, detailed validations of the main
wave parameters, that is, significant wave height, mean direction of propagation, and
mean wavelength, are performed. It is shown that in terms of these parameters the
first-guess spectra taken from the wave model WAM are in better agreement with the
buoy measurements than the MPI scheme retrievals. When considering only the longer
waves in the part of the spectrum observed by SAR, on the other hand, the algorithm
performs at least as well as the third-generation WAM wave model. In addition to the
limitations of the MPI scheme in extending the spectral information beyond the high wave
number cut-off, an observed misinterpretation of wind sea energy as swell by the MPI
scheme is shown to be caused by the use of a quasi-linear approximation of the imaging
model in the numerical iteration procedure.
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1. Introduction

[2] The launch of the first European Remote Sensing
Satellite (ERS-1) in 1991 was a turning point for the
continuous observation of the detailed spectral properties
of ocean wind waves and for the investigation of their
climatology. For the first time the two-dimensional direc-
tional wave spectrum became available with high spatial
and temporal coverage over all oceanic basins through the
wave mode of the synthetic aperture radar (SAR). With the
subsequent launch of its successors ERS-2 and ENVISAT,
over 10 years of global measurements and millions of SAR

wave mode (SWM) imagettes have been and are still being
acquired in quasi-real time, yielding a unique opportunity
for the improvement of our understanding of the mecha-
nisms that govern the growth and evolution of waves.
[3] The potentialities of these data are enormous. The

better estimation through numerical simulations of the
wave field using past forcing winds to compute
the climatologies (hindcasts) or for wave forecasts has
practical importance for activities such as for ship routing,
offshore engineering, coastal management, and fisheries.
To achieve improvements, wave models have to rely on
detailed spectral measurements which are available, with
adequate spatial and temporal coverage, only from sensors
onboard satellites.
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[4] Advances in our understanding of surface wave
processes translating into better estimates through numerical
simulations will necessarily require improvements in satel-
lite remote sensing retrievals and more comprehensive
schemes for the assimilation of this information into wave
models. Present operational methods are still based on the
relatively simple optimal interpolation schemes [Lionello et
al., 1992; Hasselmann et al., 1997; Voorrips et al., 1997].
So far, only significant wave heights (SWH) obtained from
altimeters have been assimilated operationally into wave
models. However, despite its positive impact on forecasts,
the use of an integral parameter such as SWH still has
limitations since the averaged energy has to be distributed
somehow over the entire spectrum. The use of more
sophisticated methods (such as the Green’s Function Method
proposed by Bauer et al. [1996]) that take advantage of the
detailed spectral information yielded by SAR have not yet
been implemented operationally but have already shown the
potentialities of the technique. Variational methods are able to
track swell component back in time and space and so correct
the forcing wind at a time preceding the available observa-
tions, promising better forecasts in coupled atmosphere-
ocean models. More advanced spectrum assimilation
methods using the adjoint technique and the Kalman
filter should be further explored although their feasibility
has already been demonstrated [de las Heras et al., 1994;
Voorrips et al., 1999].
[5] The retrieval of the directional wave spectrum from

SAR images is not, however, a trivial exercise. There are
two main limitations in the SAR ocean wave imaging
mechanisms. First, there is a 180� directional ambiguity
observed in frozen images. This problem has been solved
with the launch of ENVISAT carrying the Advanced Syn-
thetic Aperture Radar (ASAR) which computes two suc-
cessive images resolving the propagation direction. Second,
the SAR imaging mechanism is strongly nonlinear owing to
the vertical orbital movements induced by the waves which
causes a Doppler offset in the image plane with smearing
and loss of information beyond a high wave number cut-off.
These limitations require the use of additional information,
in general a first guess wave spectrum from a model, to
solve the ambiguity and to augment the spectral information
in the high wave number part of the spectrum.
[6] The problem of directional ambiguity and lack of

information beyond a high wave number cut-off has been
tackled by three different methods. The basic difference in
their strategies lies in how they address the problem of
reconstructing the directional spectrum beyond the high
wave number azimuthal cut-off and hence filling in the
spectral gap in the wind sea part of the spectrum
[Hasselmann and Hasselmann, 1991; Hasselmann et al.,
1996; Krogstad et al., 1994; Mastenbroek and de Valk,
2000].
[7] The first retrieval algorithm was developed at the

Max-Planck-Institut (MPI) by Hasselmann and Hasselmann
[1991], and an improved version was presented later
[Hasselmann et al., 1996]. They proposed an expression
for the mapping of a wave spectrum onto a SAR image
spectrum together with a technique to invert the mapping
relation. The second retrieval scheme to be proposed
[Krogstad et al., 1994] is a simplified version of the
MPI scheme which uses a quasi-linear approximation of

Hasselmann and Hasselamann’s full nonlinear forward
mapping relation. The Semi-Parametric Retrieval Algorithm
(SPRA) [Mastenbroek and de Valk, 2000], the third retrieval
scheme, employs the wind information from the scatter-
ometer that is operating simultaneously with the SAR.
Therefore there is no need for a first guess from a wave
model since they apply a parameterized wind sea spectrum.
In this work we will discuss the performance of the MPI
retrieval scheme. For more details about the MPI scheme
see Hasselmann and Hasselmann [1991] and Hasselmann
et al. [1996]; a revision of the main features of the SAR
ocean wave imaging mechanisms together with a detailed
description of the retrieval algorithm is presented by
Violante-Carvalho and Robinson [2004].
[8] Voorrips et al. [2001] (hereinafter referred to as

VMH01) compared the MPI and the SPRA schemes against
several nondirectional buoys deployed mostly off the North
American coast. In that work it became clear that both
schemes have room for improvement, and that their main
deficiencies lie in how to augment the spectral information
beyond the azimuthal cut-off. However, one of the most
striking characteristics of SAR data, its directional spectral
information, was not considered. The main problem for
such a comparison is a lack of available directional buoy
data in deep water. The few directional buoys available to
VMH01 were not included in their analysis because they are
moored in relatively shallow coastal waters, where one
would expect a greater spatial variation of the wave param-
eters when compared to the more spatially homogeneous
situations in the open sea. The present work aims to validate
the MPI retrieval scheme using for the first time directional
wave data from a heave-pitch-roll buoy moored in deep
water.

2. Collocated Data Set and Wave Data

2.1. Buoy Measurements

[9] Campos Basin, in the coast off Rio de Janeiro
(Figure 1), is the most important petrolic basin in Brazil.
Tens of platforms are located in this area responsible for
over 75% of the oil produced by the country, with several
offshore operations taking place daily. In addition, the
surrounding area holds a high urban concentration with
strong commercial and industrial activities. A heave-pitch-
roll buoy was deployed during the period from March 1991
to March 1993 and from January 1994 to July 1995 at the
position 22�310S and 39�580W in a depth over 1000 m
around 150 km offshore. Meteorological data (wind speed
and direction, air temperature, and air pressure) as well as
sea surface data (intensity and direction of currents,
temperature, and salinity) were also acquired. The wave
spectrum is calculated using classical Fourier analysis, and
the spreading function is estimated using the Maximum
Entropy Method [Lygre and Krogstad, 1986]. More details
about the buoy and how the spectral analysis was per-
formed are provided by Violante-Carvalho et al. [2004].
[10] This data set yields a unique opportunity to investi-

gate the retrievals of wave spectra from SAR images. In the
first place, directional buoy measurements in deep water are
scarce. The buoys under the supervision of the National
Oceanic and Atmospheric Administration (NOAA) are
located mainly in relatively shallow waters and are almost
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all omni-directional. The location of buoys in shallow
waters introduces an additional complication to any sort
of analysis due to the spatially high gradients of the wave
parameters compared to the more homogeneous situations
encountered in the open ocean. The other well-known
source of wave measurements is the network deployed in
relatively shallow waters in the North Sea which are, in their
majority, directional buoys. Nevertheless, when passing
over this region the ERS SAR is often switched to image
mode which yielded only a few SWM imagettes during the
several years of SAR measurements [Mastenbroek and de
Valk, 2000].
[11] Another interesting characteristic of the wave mea-

surements used in this work is their geographical location.
Right under the line of the Tropic of Capricorn, Campos
Basin is strongly affected by swell all the year round with
the low-frequency band containing most of the spectral
energy measured by the buoy. As pointed out by VMH01,
the larger the energy in the part of the spectrum unobserved
by SAR, the more difficult the retrieval schemes have in
estimating the low-frequency swell. Consequently, one
would expect a better performance of the retrieval in this
area.

2.2. The WAM Wave Model

[12] In the present study a workstation version of the
wave model WAM cycle 4 is run to yield the first guess for
the MPI scheme. WAM is a third-generation wave model
and has been so far the most validated model running
operationally at several forecasting centers (see the WAM

Book for more details about the validation exercises and the
model characteristics [Komen et al., 1994]). The wave
spectra are computed every hour on a latitude-longitude
grid with a spatial resolution of 1� covering the whole South
Atlantic basin from the equator line to 72�S and from 74�W
to 30�E, which totals 7488 grid points. The spectral reso-
lution is 25 frequencies with a logarithmic frequency
distribution ranging from 0.042 Hz through 0.41 Hz and
24 directions with a directional resolution of 15�. The wind
field at 10 m height used to drive the wave model is from
the Atmospheric General Circulation Model (AGCM)
which is run by the European Centre for Medium-Range
Weather Forecasts (ECMWF). Two data sets are used. The
first one is the ECMWF Re-Analysis which comprises the
period from 1991 to February 1994, and the second one is
the ECMWF Operational Analysis, from March 1994 to
December 1995. Both data sets have a latitude-longitude
resolution of 1.125�, and the wind field is computed every
6 hours.
[13] The version of the WAM model that runs opera-

tionally at the ECMWF has been assimilating significant
wave heights obtained from altimeters continuously since
August 1993. Since we are also comparing the estimates
of the wave model used as first guess to the retrieval
against buoy measurements, the possible influence of the
assimilation could be assessed using in addition spectra
from the ECMWF WAM. However, in our period of
interest the only data set including 2D spectra is the
ERA (ECMWF Re-analysis), but at the time of develop-
ment of this work only the year 1993 had been validated

Figure 1. South Atlantic and position of the buoy in Campos Basin in the southeastern coast of Brazil.
The shaded areas are the oil fields.
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and released. Although the investigation of the influence
of the assimilation on the MPI retrievals comparing runs
with and without assimilation would be of great value, the
use of the results of the WAM model without any sort of
modification on the estimates of significant wave height
(SWH) has an extra appeal. If one seeks to search for
deficiencies in the numerical model through detailed
spectral comparisons against buoy measurements, the
spurious influence of the assimilation of altimeter data
would make the interpretation of the discrepancies more
complicated.

2.3. ERS SAR Wave Mode Spectra

[14] SAR is the only instrument so far deployed from
satellites that is capable of measuring the full directional
wave spectrum and therefore of allowing the complete
characterization of a sea state. In SAR image mode the
instrument acquires 100 � 100 km images with resolution
around 30 � 30 m, but owing to onboard storage limita-
tions, it can be operated only with a ground station in sight.
The SAR wave mode (SWM) was introduced to overcome
this coverage limitation since the much smaller 10 � 5 km
imagettes are stored onboard and transmitted once per orbit
to ground stations. With similar resolution to the image
mode, SWM are acquired every 30 s yielding an along-track
sampling every 200 km and a cross-track spacing of 1000–
2000 km with a total of around 1500 images collected every
day.
[15] The retrieval of two-dimensional ocean wave spectra

from SAR image variance spectra requires the use of
inversion schemes which take into account the strongly
nonlinear SAR ocean wave imaging process [Hasselmann
and Hasselmann, 1991]. In order to estimate a complete
wave spectrum it is necessary to reverse the distortions
caused by motion effects and to blend the SAR measure-
ment with prior information, for example, taken from
numerical wave models.
[16] The first algorithm to achieve this was proposed by

Hasselmann et al. [1996]. The method is based on a two-
loop cost function minimization procedure, where the
structure of the wave spectrum, i.e., the number and the
spectral shape of the different wave systems (partitions), is
taken from a prior spectrum. The wavelength, wave height,
and wave propagation direction of the partitions are then
adjusted iteratively to improve the consistency of SAR
measurement and wave spectrum.
[17] A first statistical analysis of the MPI scheme was

carried out by Heimbach et al. [1998] based on a global data
set of 3 years of ERS-1 data. Although this study showed
the potential of the SAR data in particular for providing
information on longer waves, a rigorous validation with in
situ data has not been carried out so far.
[18] It is important to note that the performance of an

inversion algorithm depends on both the numerical
retrieval procedure and the physical model used to
describe the SAR ocean wave imaging process. It is well
known that the theoretical imaging model used in the
MPI scheme has strong uncertainties in particular with
regard to the so-called hydrodynamic modulation mecha-
nism [Melsheimer et al., 1998]. Apart from giving infor-
mation on ocean wave physics, the analysis presented in
this study can also help to improve the understanding of

the SAR imaging process and thus to optimize future
retrieval methods.

2.4. Collocated Data Sets

[19] A data set was constructed which matches the SAR
wave mode acquisitions with the corresponding data avail-
able from the wave buoy. The collocation criteria applied to
match the data from each source are that the maximum
distance between the SWM imagette and the WAM
spectrum used as first guess was 50 km and the maximum
time separation was 30 min. For the comparison between
retrieved wave spectra and buoy measurements the max-
imum allowed distance and time difference were 150 km
and 90 min, respectively, yielding a total of 105 matched
spectra evenly spaced over the 1-year period considered.
The mean value of SWH of the 105 spectra measured by
the buoy is 1.88 m. The ratio between the mean SWH of
components longer than 12 s (HS12

) and mean SWH
considering the whole spectral domain (HSt

), that is,
HS12

/HSt
is equal to 33%, which means that on average

around one third of the wave energy is at the low-
frequency part of the spectrum. In relation to the satellite
track, both paths were equally selected, with 49% of the
cases consisting of descending orbit and 51% ascending.

3. Statistical Validation of ERS SAR Retrievals
and WAM Estimates Against Buoy Measurements
of Significant Wave Height, Propagation Direction,
and Mean Frequency

3.1. Methodology

[20] In the work by Hasselmann et al. [1996] a partition-
ing method based on the original idea proposed by Gerling
[1992] was introduced into the MPI retrieval scheme
[Hasselmann and Hasselmann, 1991] in an additional
iteration loop. In this improved version of the retrieval
scheme, after the minimization of the cost function the
two-dimensional wave spectrum is divided into different
wave systems. Each one of them is represented by a set of
mean parameters, that is, significant wave height, propaga-
tion direction, and mean frequency. Wave systems from the
observed SAR wave spectrum are cross assigned with wave
systems from a first guess, and the later iterations are
modified to match the mean parameters of the observed
wave systems. The result is that the retrieved SAR wave
spectrum is smoother in the high wave number cut-off, the
region between the observed and non-observed part of the
SAR spectrum. In addition, the reduction of the number
of spectral values, from 600 bins of 25 frequencies and
24 directions into a number of wave systems, each one
represented by some mean parameters, suits very well the
requirements of wave data assimilation into models. In
the present work the wave systems extracted using the
partitioning scheme proposed by Hasselmann et al.
[1996] are used for the intercomparison.
[21] Different wave systems of different spectra are cross

assigned to each other (SAR � Buoy and WAM � Buoy)
based on the following criteria.
[22] 1. The coordinates of the two partitions must be

within some critical distance to each other in k space. A
wave system of a spectrum Awith wave numbers (kx

a, ky
a) is

cross assigned with a wave system of a spectrum B with
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wave numbers (kx
b, ky

b) if their normalized squared distance
in k space is less than some arbitrary value, thus reading

kax � kbx
� �2þ kay � kby

� �2

ka 2x þ kb 2x

� �
þ ka 2y þ kb 2y

� � � 0:75:

The arbitrary value of 0.75, the same as suggested by
Hasselmann et al. [1996], suits well as a first constraint.
However, by itself, this criterion is not enough to ensure a
reliable match.
[23] 2. In the work by Hasselmann et al. [1996], four

different classes of wave systems are proposed based on the
wave age—wind sea, old wind sea, mixed wind sea–swell,
and swell. In the present work, different wave systems are
cross assigned if they are of the same type, that is, if both
wave systems are pure wind sea (we are not considering old
wind sea and mixed wind sea–swell) or both wave systems
are swell.
[24] 3. To eliminate spurious partitions the peaks must be

above an arbitrary frequency-dependent energy threshold
value,

emin ¼
20 � 10�6

f 4p þ 3 � 10�3
;

where fp is the peak frequency of the wave system.
[25] 4. If more than one partition fulfills the previous

conditions, the closest one is chosen.
[26] Each partition is considered to be an independent

wave system generated by different meteorological events
and is fully characterized by its significant wave height,
mean direction of propagation, and mean frequency. As
described by Hasselmann et al. [1996] each wave system is
defined by an inverted catchment area consisting of spectral
points with ascents running into a local peak. Therefore
mean parameters can be determined by integrating over the
spectral interval ( f, q) to which the partition belongs,
defined as follows: (1) Significant wave height (SWH) is
4

ffiffiffiffiffi
Et

p
where Et is the total energy of a wave system,

Et ¼
Z

S f ; qð Þdfdq; ð1Þ

(2) mean direction is

arctan

Z
S f ; qð Þ sin qdfdqZ
S f ; qð Þ cos qdfdq

0
BB@

1
CCA; ð2Þ

and (3) mean frequency is

EtZ
S f ; qð Þf �1dfdq

: ð3Þ

[27] However, the intercomparison of mean parameters
based on the cross assignment of different wave systems,
each one a component of the full two-dimensional spectrum

S(f, q), has two drawbacks. In the first place, there is a
limitation in the retrieval of the directional spectrum from
buoy measurements. From spectral analysis of the three
time series acquired by the buoy, that is, the elevation and
two orthogonal inclinations in the east and north directions,
one can recover the one-dimensional spectrum S( f ) and the
first four Fourier coefficients, obtained for example from
the relations presented by Long [1980]. The limitation in
the number of coefficients that can be determined is due
to the fact that there are only three time series available.
The expansion of the spreading function D( f, q) as a
Fourier series as proposed by Longuet-Higgins et al.
[1963] is truncated after the second harmonic causing
negative lobes, which is not suitable since D(f, q) is
always positive definite. Other different approaches have
been proposed for the representation of the spreading
function (and therefore for the reconstruction of the
directional spectrum) which can be divided into two main
groups, parametric and nonparametric methods. In para-
metric methods such as those proposed by Longuet-Higgins
et al. [1963] and Donelan et al. [1985], D( f, q) has a
prescribed form and a controlling parameter which depends
on the peak frequency. However, these methods are not
consistent when wind sea and swell co-exist in the same
frequency band since they tend to fit a single peak in
between both wave directions [Young, 1994]. In contrast to
parametric methods, nonparametric methods such as the
Maximum Entropy [Lygre and Krogstad, 1986] do not
impose any analytical form for the representation of D( f,
q). In these methods a particular solution from the feasible set
of all solutions consistent with the data is selected by
minimizing a cost function. However, again owing to the
limitation in the number of Fourier components yielded by a
heave-pitch-roll buoy, the directional distribution is under-
determined, implying that the directional spectra retrieved
from buoys have a degree of uncertainty.
[28] In addition to the limitation of single point measure-

ments such as wave buoys for reconstructing the directional
spectrum, the use of mean parameters for the intercompar-
ison based only on the cross assignment of wave systems
has a second drawback. One of the main difficulties in the
cross assignment is the association of a wave system in one
spectrum with its counterpart in another spectrum, for
example to intercompare the two-dimensional spectrum
retrieved from the buoy against the two-dimensional wave
spectrum from the model or from SAR. Quite often the SAR
wave spectra contain more partitions than the WAM spectra
and than the buoy spectra, possibly owing to noise or to
limitations in the retrieval scheme [Hasselmann et al.,
1996].
[29] Although the criteria listed above seem to be rigorous

enough to guarantee the right selection, the cross-assignment
procedure may select nonassociated wave systems. There-
fore we also apply a second approach where rather than the
two-dimensional spectrum the one-dimensional spectrum is
used for the intercomparison. From the first Fourier compo-
nents that are directly measured by the buoy, one can reliably
retrieve the one-dimensional energy density spectrum S( f )
and some other mean parameters. The two-dimensional
directional spectra retrieved from SAR and computed by
the WAM are integrated to provide the frequency spectrum
S( f ) along with the directional distribution and the first
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Fourier coefficients a1( f ) and b1( f ) (see similar approaches
in, for example, work of Voorrips et al. [1997] and Wyatt et
al. [1999]). Comparisons are made of parameters over
specific frequency bands: 4 s to 6 s, 6 s to 8 s, and so on
up to 16 s to 18 s. The mean parameters over specific
frequency bands are calculated as follows (using the method
presented byKuik et al. [1988]): (1) SWH is 4

ffiffiffiffi
et

p
where et is

the total energy over the frequency band from fmin till fmax,

et ¼
Z fmax

fmin

S fð Þdf ; ð4Þ

(2) mean direction is

arctan
b1 fð Þ
a1 fð Þ


 �
; ð5Þ

and (3) mean frequency is

etZ fmax

fmin

S fð Þf �1df

: ð6Þ

Naturally fmax and fmin delimit the frequency band interval,
and the Fourier coefficients a1( f ) and b1( f ) are also
calculated over the same interval. The main advantage of
this second approach is that no type of directional
distribution is imposed and the mean parameters, including
direction of propagation and directional spread, are
determined directly by the first Fourier coefficients.
Moreover, the intercomparison is performed using specific
frequency bands rather than individual wave systems
which will ensure that only related information will be
intercompared.
[30] Although the intercomparison of the one-dimensional

spectra over specific frequency bands seems to be more
rigorous than the cross assignment of partitioned wave
systems, both approaches will be presented and discussed

in the following. Wave systems from the partitioning
scheme have been used so far in some assimilation exercises
[Hasselmann et al., 1997; Dunlap et al., 1998] and in
another intercomparison study [Heimbach et al., 1998].
For assimilation purposes the use of individual partitions
seems to be the most operationally feasible solution. How-
ever, as commented earlier, the cross assignment of wave
systems is subject to a degree of uncertainty that, at best,
needs to be investigated. There is a trade-off between being
sufficiently rigorous to ensure the correct selection and the
need to avoid imposing excessive constraints and therefore
unreasonably reducing the number of matches.

3.2. Significant Wave Height

[31] In order to validate the performance of the MPI
retrieval scheme and the WAM model against buoy mea-
surements, we calculate the energy of all wave components
integrating over the whole frequency domain, as in

HSt ¼ 4

Z
S fð Þdf

� �1=2

: ð7Þ

The scatterplots of significant wave height of SAR and
WAM against buoy measurements are shown in Figure 2,
and their statistics are compared in Table 1. The
performance of the wave model is superior to the SAR, in
terms of bias, standard deviation, and normalized RMS
error. Although the MPI scheme uses the WAM spectra as
first guess to the inversion, the results of SWH retrieved
from SAR are worse. The scatter in the WAM is about 25%
lower than the scatter in the SAR retrievals, with the MPI
scheme adding its own error. The same was observed in
VMH01, but in that work the correlation between both
WAM-Buoy and SAR-Buoy was higher, probably because
they have selected a narrower collocation window (max-
imum time and distance of 30 min and 80 km between SAR
and buoy measurements) and owing to the fact that altimeter
data have been assimilated into the ECMWF WAM model

Figure 2. Scatterplots of significant wave height (SWH) calculated using equation (7) and the
comparison statistics in Table 1. (a) SWH computed by the WAM model against buoy measurements.
(b) SWH retrieved from SAR against buoy measurements. The line of slope unity is also shown.
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used in their comparison. However, the values of normal-
ized RMS error that we find are very similar to the ones
obtained by VMH01. In our results the mean value of SWH
retrieved by the MPI scheme is 9.6% higher than the mean
value of SWH computed by the WAM, which is consistent
with the results reported by Dunlap et al. [1998].
[32] In the imaging of wind waves by SAR the radial

velocity of the sea surface caused by the orbital motions of
the waves results in an azimuthal displacement due to the
Doppler effect of a moving target. As a consequence, there is
a loss of information in the azimuth direction beyond a high
wave number cut-off. This cut-off wave number is sea state
dependent, but in general, waves shorter than 150/200 m
propagating parallel to the satellite track are not mapped
directly by SAR. In the MPI scheme in general a wave model
is used as a first guess to augment the spectral information
beyond the cut-off and to resolve the directional ambiguity
inherent in frozen images. Therefore, to investigate the
performance of the MPI scheme in the low wave number
band where waves are mapped directly onto the SAR image,
we calculate the energy of the wave components longer than
225 m (or periods longer than 12 s in deep water),

HS12 ¼ 4

Z f2

f1

S fð Þdf
� �1=2

; ð8Þ

where f1 = 0 and f2 = 1/12 Hz.

[33] The scatterplots of the low wave number wave
heights using equation (8) are shown in Figure 3 and the
comparison statistics in Table 2. In contrast to the results
presented in Figure 2 and Table 1, the performance of the
MPI retrieval scheme is as good as the WAM model for
values of significant wave height in the low-frequency
band of the spectrum. Apart from the fact that the WAM
results are virtually bias free, the MPI retrievals have a
standard deviation and a normalized RMS error of the
same order as the WAM. These results are in contrast with
those presented in VMH01, where the WAM results
compare slightly better with buoy measurements than the
MPI retrievals, even considering only the low-frequency
part of the spectrum.
[34] There are two main differences between our com-

parisons and the ones presented by VMH01, the colloca-
tion criteria and the wave model used as first guess to the
inversion. In VMH01 a narrower collocation window, both
in time and space, was imposed which to some extent
would explain their greater correlation when considering
the energy of the spectrum over the whole frequency
interval using equation (7). In VMH01, most of the buoys
are located in relatively shallow waters where one would
expect a greater variability of the wave parameters when
compared to the more spatially homogeneous situations
encountered by the deep water buoy in Campos Basin.
However, when considering the frequency band directly
mapped onto SAR images (equation (8)), our results are
very similar to the ones presented in VMH01, which
indicates that our coarser collocation criteria is not the
cause for the discrepancy.
[35] The second main difference between the present

study and VMH01 is that although both use the spectra
calculated by the WAM model as first guess to the inver-
sion, in VMH01, altimeter data have been assimilated into
the ECMWF WAM version. In this paper, no assimilation
was used in the model forecasts, and the spectra computed
by the WAM are the direct result of the physics behind the

Table 1. Statistics of the Comparisons Against Buoy Measure-

ments of Significant Wave Height (SWH) Calculated Using

Equation (7)a

Points Bias St Dev NRMSE corr

WAM 105 0.04 0.44 0.22 0.79
SAR 105 0.22 0.59 0.31 0.71

aStatistics include bias, standard deviation (St Dev), RMS error
normalized with the RMS buoy wave height (NRMSE), and correlation
(corr).

Figure 3. Same as Figure 2 but for values of HS12
(equation (8)) and the comparison statistics in Table 2.

The mean value of SWH measured by the buoy is 0.70 m.
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model. If assimilation of altimeter data is in fact the reason
for the somewhat better performance of the WAM results
compared with the MPI retrievals in the low-frequency part
of the spectrum as presented in VMH01, then this fact
raises an interesting point about their conclusions. The main
conclusion in the work by VMH01 is that the MPI retrieval
scheme deteriorates the quality of the first guess used by the
inversion. At first, this seems to be corroborated by our
results shown in Figure 2, when the high wave number
band is considered in the calculation of SWH. However,
Figure 3 shows that the low wave number SWH retrieved
from the MPI scheme does not in fact degrade the low wave
number SWH estimated by the model and used as first
guess.
[36] One of the main characteristics of the MPI retrieval

scheme is the partitioning method discussed above which
isolates and cross assigns different wave systems from the
inverted SAR wave spectrum and the WAM first guess
spectrum. As a result, at the end of the retrieval, not only
has the directional SAR wave spectrum been recovered, but
each wave system is defined by a number of mean param-
eters as well. The reduction of the number of degrees of
freedom of the wave spectrum is a very desirable feature
that has been exploited in data assimilation studies. Figure 4

and Table 3 show the scatterplots of SWH for the cross
assignment of partitions using equation (1). The reason why
the number of partitions that were cross assigned differ
among plots (and are different from the number of spectra in
Figures 2 and 3) is that more than one partition per spectrum
might be selected. The statistics in Table 3 are similar to
those in Table 1, which indicates that the criteria for the
cross assignment listed at the beginning of this section are
rigorous enough to ensure that only related partitions will be
selected. The statistics of the wave systems whose mean
wavelength are greater than 225 m (crosses in Figure 4)
would give us insights about the performance of the
retrieval of long waves. However, the low number of points
that resulted from applying this constraint, 29 and 26,
respectively, for SAR and WAM is too small to be statis-
tically meaningful.
[37] In order to analyze the SWH retrieved from SAR

and estimated by the model in more spectral detail, we
calculate the energy of the wave components over specific
frequency bands using equation (4). The results are shown
in Figure 5. Heimbach et al. [1998] compared WAM
estimates against SAR retrievals that used the wave model
results themselves as first guess. They found a systematic
underprediction of the energy of the swell components and
an overprediction of the wind sea, whereas from our
measurements this trend was not observed. The WAM
estimates are virtually bias free whereas the MPI retrievals
show a positive bias over the whole spectral range. It is
worth mentioning, however, that for periods smaller than
approximately 12 s the information retrieved from the MPI
scheme derives from the WAM model and therefore the
retrieval is adding its own error, increasing the bias.
However, in the part of the spectrum directly observed
by SAR (periods greater than 12 s) the bias of the MPI

Table 2. Statistics of the Comparisons Against Buoy Measure-

ments of Significant Wave Height (SWH) Calculated Using

Equation (8)a

Points Bias St Dev NRMSE Corr

WAM 105 0.05 0.42 0.41 0.84
SAR 105 0.13 0.41 0.41 0.85

aStatistics include bias, standard deviation (St Dev), RMS error normalized
with the RMS buoy wave height (NRMSE), and correlation (corr).

Figure 4. Scatterplots of SWH for every partition calculated using equation (1) and the comparison
statistics in Table 3 with the line of slope unity drawn passing through the origin. (a) SWH computed by
the WAM model against buoy measurements and with mean value of SWH measured by the buoy equal
to 1.31 m. (b) SWH retrieved from SAR against buoy measurements and with mean value of SWH
measured by the buoy equal to 1.28 m. The crosses are the partitions whose mean wavelength are greater
than 225 m: periods greater than 12 s.
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scheme gradually decreases with wave period, and for very
long waves (periods longer than 16 s) it performs better
than the model with a smaller bias. The standard deviation
and the normalized RMS error of both the MPI retrievals
and the model estimates show a trend to increase with
period, the MPI scheme presenting greater errors for
waves with periods smaller than 12 s. Likewise the error
of the MPI scheme in the low wave number part of the
spectrum is of the same order as (and for longer wave-
lengths even smaller than) the WAM results.

3.3. Propagation Direction

[38] The waves measured by the buoy have two charac-
teristic features: relatively short waves with a westward
component and a northward long swell generated far away
from Campos Basin. Since the ERS satellite had a polar
orbit, the long northward swell is propagating in the
azimuth direction and the shorter westward waves travel
in the range direction. In Figure 6 we present a comparison
between the different results for the histograms of the

direction of propagation of the wave systems calculated
using equation (2). The statistics of the point by point
comparisons are presented in Table 4. The overall statistics
of the WAM-Buoy comparison appears to be better than
the SAR-Buoy with smaller errors and a greater correla-
tion. However from the point by point comparison shown
in Table 4 it is not clear whether the wave model and the
retrieval perform better for longer or shorter wave systems.
In Figure 6 it is clear that the agreement of the SAR-Buoy
comparison is much better in the northward and north-
westward direction of propagation; that is, the results of
the MPI retrievals compare better with the buoy data for
long swell.
[39] Figure 7 shows the results from calculating the

propagation direction using equation (5). The WAM results
present a very small bias for waves with periods shorter
than 10 s, but for longer waves the bias has a trend to
increase with wave period. In the part of the spectrum
observed by SAR (waves with periods longer than 12 s)
the MPI retrievals have a slightly smaller bias than WAM.
Both WAM estimates and the MPI retrievals have a
directional resolution of 15� which is of the same order
as the maximum bias found. The standard deviation and
the normalized RMS error of both WAM and MPI
directions increase with wave period.

3.4. Mean Frequency

[40] We present in Figure 8 histograms of mean frequency
of retrieved SAR andWAM estimates against buoy measure-
ments using (3), and their statistics are presented in Table 5.
Similar to the results of propagation direction, the overall

Table 3. Statistics of the Comparisons Against Buoy Measure-

ments of Significant Wave Height (SWH) Calculated Using

Equation (1)a

Points Bias St Dev NRMSE Corr

WAM 156 �0.02 0.48 0.31 0.80
SAR 143 0.05 0.64 0.42 0.69

aStatistics include bias, standard deviation (St Dev), RMS error
normalized with the RMS buoy wave height (NRMSE), and correlation
(corr).

Figure 5. Statistics of SWH compared with buoy measurements over frequency bands using
equation (4).
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statistics of the wave model are superior to the SAR results
although once again the plots should be examined carefully
for the spectral detail. The comparison of WAM results
against buoy data shows two distinct regimes; the high-
frequency band has a much better agreement than the low-
frequency part of the spectrum. This is in contrast with the
SAR-Buoy comparison where for longer waves the MPI
retrievals compare better with buoy measurements than the
model results.
[41] Figure 9 shows that both the MPI scheme and the

WAM model tend to underestimate the mean frequency of
short waves. Both WAM and SAR show a negative bias in
frequency for periods shorter than 12 s and a trend to
decrease with wave period, whereas for longer waves the
bias shows the opposite trend. Standard deviation and
normalized RMS for both WAM and SAR decrease with
wave period. The standard deviation in the band of periods
from 4 to 8 s is 5 times larger than for periods greater than
16 s. Both in terms of bias and error the MPI retrievals
perform better than WAM estimates for waves with periods
longer than 12 s.

4. Underestimation of the Mean Frequency of
Short Waves by the WAM Model

[42] The larger errors encountered in the band of short
wave components in Figure 9 could be explained by a
wrong wind input used by the WAM where the negative
bias would be related to an overestimation of modeled wind
speeds. Owing to the sparseness of observations, especially
at sea, the deficiencies of meteorological models in com-
puting the wind in the Southern Hemisphere are well
known. The selection of about 100 cases of wind measure-
ments acquired by the offshore buoy, distributed over the
whole year of analysis, yielded a good opportunity to also
validate the wind fields estimated by the ECMWF model.

Figure 10 is a point by point comparison of the wind speeds
measured by the buoy and the wind speeds calculated by the
ECMWF atmospheric model. The overall agreement is
good, with a correlation coefficient of 0.70 and normalized
root mean squared (rms) error of 36%. The spread is
relatively high, with a standard deviation of the order of
50% of the mean buoy wind speed. The bias of the model
wind speed is low, about 6% of the mean value measured by
the buoy, and its negative value represents an underestima-
tion of the modeled wind speed. Consequently, it seems that
the wind input is not the cause for the poorer agreement in
the high-frequency band.
[43] The underestimation of the mean frequencies cal-

culated by the WAM could be related to the spectral
discretization employed. One of the main features of
second-generation wave models is that to ensure a stable
spectral evolution, some sort of parameterization is imposed,
in general with some prescribed spectral form being applied
to the wind sea [SWAMP Group, 1985]. A third-generation
wave model such as WAM, on the other hand, computes the
wave spectrum integrating the energy balance equation
without any restriction on the spectral shape [Komen et al.,
1994; Young, 1999]. The fundamental role of the nonlinear
interactions in the growth of wind waves became clear

Figure 6. Histograms of the mean direction of propagation (direction waves go to) of (a) the WAM
estimates and buoy measurements and (b) the MPI retrievals and buoy measurements. Buoy
measurements are represented by the dashed lines, whereas the MPI and WAM are represented by the
solid lines.

Table 4. Statistics of the Comparisons Against Buoy Measure-

ments of the Direction of Propagation of the Wave Systems

Calculated Using Equation (2)a

Points Bias St Dev NRMSE Corr

WAM 156 0.93 33.50 0.37 0.88
SAR 143 4.84 53.10 0.60 0.72

aStatistics include bias, standard deviation (St Dev), RMS error
normalized with the RMS buoy wave height (NRMSE), and correlation
(corr). Bias and standard deviation are in degrees.
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during the JONSWAP experiment [Hasselmann et al.,
1973]. In the initial growth phases of fetch or duration-
limited wind seas a peak normally starts to develop at
high frequencies just after the wind begins to blow. The
nonlinear interactions cause a migration of energy from
higher frequencies to frequencies near the spectral peak.
The nonlinear interactions are also responsible for a

spectral shape stabilization, forcing the high-frequency
portion of the spectrum to decay in a manner inversely
proportional to frequency [Young and van Vledder, 1993].
The result is that as the wind continues to blow, the
spectrum broadens and the peak shifts to lower frequencies
with increasing fetch up to the point where it attains full
development.

Figure 7. Values of direction of propagation over frequency bands using equation (5).

Figure 8. Histograms of the mean frequency of (a) the WAM estimates and buoy measurements and
(b) the MPI retrievals and buoy measurements. Buoy measurements are represented by the dashed lines,
whereas the MPI and WAM are represented by the solid lines. Mean frequency is calculated using (3).
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[44] Hence the proper estimation of the wave spectrum
by a third-generation model in the initial phases of
growth is closely connected to the frequency discretiza-
tion used for high frequencies. Beyond the maximum
high frequency used in the model the wind sea growth
cannot be simulated properly since the transfer of energy
from higher frequencies through nonlinear interactions
will be neglected. Around the cut-off frequency the wind
sea peak starts to grow slowly only because of the direct
input of energy by the wind. Only after it attains a higher
spectral level do the nonlinear interactions then begin to
act and the peak gradually migrates to lower frequencies.
Thus the choice of the highest discrete frequency is
fundamental for the modeling of the wind wave develop-
ment since it will impose the initial position of the peak
in frequency space and in addition will determine the time
interval necessary for the nonlinear interactions to become
effective.
[45] The spectral discretization used in the present version

of the WAM cycle 4 is 24 directions and 25 logarithmically
spaced frequencies from 0.042 Hz to 0.41 Hz [WAMDI
Group, 1988]. Tolman [1992] has investigated numerical

errors in third-generation wave models and their influence
on the initial stages of growth. Considering scaling laws,
and the effect of the frequency range for different wind
speeds, Tolman concludes that the frequency discretiza-
tion used in the WAM produces good scaling behavior
for wind speeds of 15 to 25 m/s whereas for lower winds
the mean wave energy is overestimated and the mean
frequency is underestimated. This optimal wind speed
range is high, particularly considering tropical regions
where lower wind speeds are much more common. Using
10 years of wind measurements acquired on an oil
platform in Campos Basin, Violante-Carvalho et al. [1997]
describe typical meteorological situations encountered in
the study area, where 97% of the wind speeds observed
during this period are below 15 m/s and 74% are below
9 m/s. Thus, clearly, the mean wind speeds in Campos
Basin are lower than the optimal range for applying the
model frequency discretization.
[46] The underestimation of the mean frequency by the

WAM in the early stages of wave growth as observed in
Figure 9 could be related to the diagnostic tail added
beyond a high-frequency cut-off. The wave spectrum
estimated by the model consists of a prognostic part
which extends up to 2.5 times the mean frequency (or
maximally up to 0.41 Hz) and beyond this point a
diagnostic part represented by an f�4 tail. Therefore
beyond 0.41 Hz the model cannot simulate properly the
initial growth of the wind sea since the modeled waves
develop near the cut-off only in response to the wind
input rather than by nonlinear transfer of energy from
higher frequencies. Since the nonlinear transfer is only
triggered after a certain level, this results in a delay in the

Table 5. Statistics of the Comparisons Against Buoy Measure-

ments of the Mean Frequencies of the Wave Systems Calculated

Using Equation (3)a

Points Bias St Dev NRMSE Corr

WAM 156 �0.0017 0.0299 0.21 0.82
SAR 143 �0.0131 0.0354 0.27 0.73

aStatistics include bias, standard deviation (St Dev), RMS error
normalized with the RMS buoy wave height (NRMSE), and correlation
(corr). Bias and standard deviation are in Hertz.

Figure 9. Values of the mean frequency over frequency bands using equation (6).
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development of the wind sea peak which, in addition, is
located at lower frequencies.
[47] Tolman [1992] also shows the effect of the extension

of the high-frequency cut-off to a much higher value of
0.97 Hz and as a result the reduction of the discrepancies
with wave energies and mean frequencies closer to non-
dimensional growth curves. This underestimation of the
mean frequency of the wind sea in early stages of develop-
ment is more easily detectable through detailed spectral
comparisons like the one presented in Figure 9. When the
mean frequency is calculated over the whole spectral domain
or comparisons are performed on a global scale, as most of
the validation tests of the WAM have been so far, this
limitation of the model in the initial generation phases is
less likely to be found.

5. Comparisons of Directional Wave Spectra

5.1. The Directional Spreading Retrieved From the
MPI Scheme

[48] The overall performance of the MPI retrievals is best
measured by quantitative matchup statistics such as those
obtained above, although direct comparisons of the direc-
tional spectra are interesting to enable a clearer understand-
ing of the differences through qualitative validations. We
are, however, comparing spectra obtained in rather different
ways. Remote sensing instruments like ERS SAR measure
the wave number spectrum whereas the wave model WAM
estimates the frequency spectrum. The buoy, on the other
hand, yielded the frequency spectrum S(f) from the heave
series and the first Fourier coefficients, the directional
distribution being reconstructed using the Maximum
Entropy Method [Lygre and Krogstad, 1986]. One way to
assess the differences among spectra is to determine the

Fourier coefficients by integrating the directional spectra
and to compare them with the coefficients measured directly
by the buoy.
[49] In the MPI scheme the WAM first guess wave

systems are rotated and scaled in order to adjust to the
wave systems of the inverted SAR wave spectrum.
However, their spectral forms are not allowed to vary,
which means that the spectral widths of the wave systems
retrieved from the MPI scheme are the same as those
from the first guess wave model. The importance of the
nonlinear term Snl in determining the directional spreading
has been pointed out by Donelan et al. [1985] and later
confirmed by numerical simulations of Banner and Young
[1994] and evidence from measurements [Young et al.,
1995]. In third-generation wave models the directional
spreading is computed from the integration of the source
terms where Snl forces the spectrum to a typical shape
with a relatively narrow spread around the peak that
slowly broadens at higher and lower frequencies [Young
and van Vledder, 1993]. The directional distribution
predicted by the model used by Banner and Young
[1994], however, employed the full solution of the non-
linear source term called Exact-NL. In the WAM model
the complex wave-wave nonlinear interaction term Snl is
approximated by a non-exact solution called the DIA
(Discrete Interaction Approximation) for computational
efficiency. Although the SWH computed from the WAM
model has been exhaustively tested against measurements,
the impact of the DIA on the spreading has not yet been
quantitatively demonstrated.
[50] In order to assess the performance of the MPI

scheme in estimating the directional spreading we present
in Figure 11 a swell component propagating in the azimuth
direction with its frequency spectrum and directional

Figure 10. Scatterplot of the wind speed measured by the buoy and estimated by the ECMWF model
(in m/s for a reference height of 10 m). The comparison statistics are also shown: respectively, bias,
standard deviation (st dev), RMS error normalized with the RMS buoy wind speed (nrmse), and
correlation (corr). The mean wind speed measured by the buoy is 6.5 m/s.
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spreading shown in Figure 12. The spreading is calculated
using the expression proposed by Kuik et al. [1988],

s fð Þ ¼ 2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 fð Þ þ b21 fð Þ

q
 �
 �1
2

; ð9Þ

where a1(f) and b1(f) are the first Fourier coefficients. The
overall agreement of the directional spectra is good
(compare Figures 11d, 11e, and 12a) although the model
overestimates the wind sea component in the range
direction. In Figure 12b the input wave spectrum from the
WAM slightly underestimates the value of SWH measured
by the buoy with a somewhat broader angular distribution.
As shown in VMH01, since the MPI scheme is not allowed
to narrow the spectrum width, it has no choice other than
increasing the energy level.
[51] The values of s(f) are presented in Figure 12c, where

the directional spectra of the SAR retrievals and WAM
estimates are integrated to provide the Fourier coefficients.
The values of s(f) computed from the coefficients directly
measured by the heave-pitch-roll buoy (Buoy Coef in

Figure 12c) are also shown, with the typical shape of a
narrow distribution around the peak that broadens at both
higher and lower frequencies. The directional spreading
computed by the model and retrieved from SAR presents
much the same value of directional spread at the peak of the
spectrum, which is narrower than the one calculated from
the Fourier coefficients measured by the buoy.
[52] Another case, in which there is a very long and

energetic swell component generated far away from Campos
Basin and a SWH measured by the buoy of 8.9 m, is
illustrated in Figures 13 and 14. Once again, the agreement
between spectra is good (Figures 1d, 13e, and 14a) in terms
of frequency, direction, spreading and energy. In Figure 14c
the same behavior of the spreading as in the previous case is
observed. From the two examples shown, a northward swell
and a much longer and more energetic case, it may be
concluded that the spreading computed from the model
(and therefore imposed on the spectrum retrieved by the
MPI scheme) seems to represent fairly well the spreading
directly computed from the buoy data. Although the value at
the peak is slightly narrower, the overall shape of the
directional spread retrieved by the MPI scheme describes

Figure 11. Example of a 195-m swell on 29 August 1994, 1243 UT. The top row shows SAR image
spectra, and the bottom row shows wave spectra (with the exception of the right panel). (a) WAM
image spectrum, (b) the image spectrum retrieved by the MPI scheme, and (c) the observed SAR
spectrum. (d) WAM wave spectrum and (e) the wave spectrum retrieved by the MPI scheme. (f ) Arrow
indicates the wind speed estimated by the model (no wind information available from the buoy).
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Figure 13. Example of a 345-m swell propagating northward (in azimuth direction) on 30 June 1994,
1250 UT. (a) WAM image spectrum, (b) the image spectrum retrieved by the MPI scheme, and (c) the
observed SAR spectrum. (d) WAM wave spectrum and (e) the wave spectrum retrieved by the MPI
scheme. (f) Wind speed measured by the buoy is indicated by the black arrow (first value of U10 on
top), and the wind speed estimated by the ECMWF model is indicated by the open arrow (second
value of U10).

Figure 12. (a) Wave spectrum measured by the buoy for the case in Figure 11. (b) Frequency spectrum
with the values of significant wave height. (c) Spreading function calculated using equation (9) directly
calculated from the Fourier coefficients (Buoy Coef), and from the SAR and WAM.
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very well the same trend measured by the buoy in the
selected cases.

5.2. Nonlinearities in the SAR Imaging Mechanism

[53] Nonlinear SAR degradation of azimuth waves
causes energy of high wave number waves to be trans-
ferred to low azimuthal wave numbers. In the MPI
scheme, for computational reasons, the SAR spectrum is
mapped back to the wave spectrum using a quasi-linear
approximation to the mapping relations, in contrast to the
forward mapping that uses the full nonlinear transform
[Hasselmann and Hasselmann, 1991]. The quasi-linear
term is an approximation to the full nonlinear transform
obtained by terminating the expansion after the first linear
terms where the azimuthal cut-off is retained. Mastenbroek
and de Valk [2000] and VMH01 have already discussed
the implications of neglecting the transfer of energy when
the quasi-linear approximation is employed, resulting
in the generation of spurious swell peaks in the azimuth
direction.
[54] Figures 15 and 16 show the case of a swell peak

erroneously enhanced by this effect. The frequency spec-
trum (Figure 16b) illustrates a poor first guess where the
wind sea component is underestimated by the WAM model
probably because of an underestimation of the wind input
by the ECMWF model (Figure 15f ). The energy that this
wind sea creates in low azimuth wave number through the
nonlinearities in the SAR mapping mechanisms is errone-
ously interpreted by the MPI scheme as swell, which was
already overestimated by the WAM model. The result is a
swell peak that is 10 times larger than the one measured by
the buoy. It is worth noting that although the value of SWH
computed by the model is exactly the same as the one
measured by the buoy, the frequency spectra differ enor-
mously, which demonstrates the need for detailed spectral
information in assimilation exercises.
[55] When the directional spectrum measured by the buoy

in the case illustrated in Figure 15 is used as first guess to
the inversion, the retrieved wave spectrum is that presented
in Figure 16c. The spurious peak at low frequency has
disappeared, and although the wind sea is somewhat
underestimated, the swell component is well retrieved in
terms of direction, frequency, energy and directional
spread (Figures 15d and 15e). This case demonstrates
how the nonlinearities in the SAR imaging mechanisms

may be erroneously interpreted by the MPI scheme,
causing wind sea energy to be transferred to low azimuth
wave numbers.

6. Discussion

[56] One year of measurements acquired in tropical deep
waters in the South Atlantic is employed to perform
intercomparisons of wave spectra retrieved by the MPI
scheme and estimated by the WAM model. For the first
time, a scheme for the retrieval of wave spectra from ERS
SAR images was statistically validated against directional
buoy observations. Two different approaches were applied.
In the first, wave systems extracted from a partitioning
method of the directional spectrum are cross assigned and
their main parameters, that is SWH, mean direction, and
mean frequency, are intervalidated. The comparison of wave
systems, each one a constituent of the directional spectrum,
is of interest for being an operationally feasible option for
wave data assimilation studies. In the second approach, the
directional spectra retrieved from SAR images and estimated
by the model are integrated to provide the frequency
spectrum. The comparisons of the main wave parameters
are made over specific frequency bands, which ensures that
only related information is being assessed. The statistics of
SWH obtained using both approaches are very similar,
which is indicative of the suitability of the criteria employed
for the cross assignment.
[57] In a previous validation exercise where only SWH

was taken into account, VMH01 concluded that the MPI
scheme increases the bias and the error of the WAM
spectra used as first guess, even considering only the
low wave number part of the spectrum directly mapped
onto SAR images. Confirming partially their findings, we
have observed that the MPI scheme degrades the values of
SWH used as first guess for the inversion. The scatter in
the WAM-Buoy point by point comparisons of SWH is
25% lower than the SAR-Buoy scatter, indicating that the
MPI scheme adds its own error. The mean value of SWH
retrieved by the MPI scheme is about 10% higher than the
mean value of SWH estimated by the model, which is
consistent with the results presented by Dunlap et al.
[1998]. However, in contrast to the findings presented in
VMH01, we have found that the performance of the MPI
scheme, when only the low wave number part of the

Figure 14. Directional spectrum measured by the buoy, frequency spectrum, and spreading for the same
case in Figure 13.
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spectrum (waves longer than 225 m) is included in the
computation of SWH, is at least as good as the wave
model. The main difference between both studies is the
WAM model employed. The ECMWF WAM version used
in VMH01 has assimilated SWH from altimeter data
whereas our first-guess wave spectra were estimated with-
out any type of assimilation procedure.
[58] As well as the assessment of SWH, directional wave

parameters were also considered in our analysis. For short
waves the MPI scheme also degrades the retrievals of mean
direction of propagation and mean frequency, where the
model spectra used as first guess compare better to the buoy
spectra than the retrievals. However, for waves longer
than 225 m, directly measured by SAR, the performance
of the MPI scheme is at least as good as the WAM
model. However, most of the long wave energy is in the
12–14 second band, so any conclusions drawn need to
bear in mind that the results in the wave period bands
longer than 14 s are not particularly relevant. In addition to
the shortcomings of the algorithm to extend the spectral
information beyond the high wave number cut-off, another

constraint is the way that the MPI scheme deals with the
nonlinearities in the SAR imaging mechanism. The use of
the quasi-linear model to map the SAR image spectrum
back to the wave spectrum might cause the algorithm to
interpret a transfer of wind sea energy to low azimuth wave
number components as swell.
[59] Some discrepancies have been identified between the

mean frequency of short waves estimated by the model and
measured by the buoy. The underestimation of the computed
mean frequencies may be explained by an inadequate
spectral discretization employed by the model, which
appears to cause a delay in the development of the wind
sea peak. WAM and SAR retrievals perform better for longer
waves, with both bias and error decreasing slowly with wave
period.
[60] The retrieval of the directional spreading was

assessed through some selected qualitative validations. In
the MPI scheme the spectral shapes of the retrieved wave
systems are the same as their counterparts in the WAM first
guess wave spectrum. The spreading computed by a third-
generation wave model depends on the integration of the

Figure 15. An erroneously enhanced swell peak due to a poor first guess on 28 November 1994,
0141 UT. The top row shows SAR image spectra, and the bottom row shows wave spectra (with the
exception of the right panel). (a) WAM image spectrum, (b) the image spectrum retrieved by the MPI
scheme, and (c) the observed SAR spectrum. (d) WAM wave spectrum and (e) the wave spectrum
retrieved by the MPI scheme. (f) Arrows indicate the wind speed estimated by the model. The wind speed
measured by the buoy is indicated by the black arrow (first value on top), and the wind speed estimated
by the ECMWF model is indicated by the open arrow (second value of U10).
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source terms, whereas the nonlinear interactions Snl play a
key role in this process as has already been demonstrated by
simulations and in situ measurements [Donelan et al., 1985;
Young and van Vledder, 1993; Banner and Young, 1994].
The impact on the directional spread of the non-exact
approximation of the calculation of Snl, called discrete
interaction approximation (DIA), has not yet been quanti-
tatively demonstrated. However, there is considerable
uncertainty associated with the spread retrieved from
heave-pitch-roll buoys due to the limitation in the number
of time series acquired by the instrument, which means
that the buoy in this case is not a reliable reference for the
other observations. Hence a cross-validation exercise was
performed, where the spread retrieved by the MPI scheme
(and therefore estimated by the model) and computed from
the Fourier Coefficients directly measured by the buoy
were compared. The MPI and WAM results are very close
to the value computed from the Fourier coefficients.
However, a statistical validation of the retrieved spreading
against the values obtained by the heave-pitch-roll buoy
has not yet been performed. One of the main reasons for
such a lack of this type of statistical validation is the
complicated shape of the directional spreading when peaks

lie close to one another in frequency space. A possible
way forward for investigating the spreading could be a
spectral approach based on the partitioning of the directional
spectrum, where different wave systems are classified in
accordance with their mean direction, energy, frequency,
and spreading. Once different wave systems are correctly
cross assigned, their respective Fourier coefficients could
yield valuable information about their different spreading
characteristics, an approach that should be pursued in
further work.
[61] In summary, our study, the first to use open ocean

directional wave buoy data to validate SAR-derived spectra,
confirms that the MPI scheme indeed degenerates the high
wave number part of the first-guess spectrum increasing
the bias and the error of the wave parameters, that is
SWH, mean direction of propagation, and mean frequency.
However, for longer swell components it does not make
the input spectrum any worse. On the contrary, its perfor-
mance is at least as good as the WAM wave model, and
therefore what this paper shows is not that SAR has no
value in improving wave spectra, but that it cannot at
present improve on the WAM forecasts, except possibly at
the lowest frequencies. However, given the small number

Figure 16. (a) Directional spectrum measured by the buoy and (b) frequency spectrum, for the same
case as in Figure 15. (c) Frequency spectrum retrieved using the directional spectrum measured by the
buoy as first guess to the inversion. (d) Directional spectrum of the buoy measurement and (e) the
retrieved SAR wave spectrum correspondent to Figure 16c with both spectra in polar frequency-
directional plots with the wind direction represented by the arrow in the center. Circles denote frequency
at 0.1 Hz interval from 0.1 Hz (inner circle) to 0.4 Hz (outer circle). Isolines are logarithmically spaced
relative to the maximum value of the spectral energy density.
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of sample points in bands longer than 14 s, these results
should not be considered as definitive, although they do
point out the importance of making further validation
studies using directional wave buoy measurements from
deep ocean locations.
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