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We use a multiple-scale expansion approach to average the wave action balance equation
over an ensemble of sea-surface velocity fields characteristic of the ocean mesoscale and
submesoscale. Assuming that the statistical properties of the flow are stationary and
homogeneous, we derive an expression for a diffusivity tensor of surface wave action
density. The small parameter in this multiple-scale expansion is the ratio of surface
current speed to gravity wave group speed. For isotropic currents, the action diffusivity is
expressed in terms of the kinetic energy spectrum of the flow. A Helmholtz decomposition
of the sea-surface currents into solenoidal (vortical) and potential (divergent) components
shows that, to leading order, the potential component of the surface velocity field has no
effect on the diffusivity of wave action: only the vortical component of the sea-surface
velocity results in diffusion of surface wave action. We validate our analytic results for
the action diffusivity by Monte Carlo ray-tracing simulations through an ensemble of
stochastic velocity fields.

Key words:

1. Introduction

Surface gravity waves are an important route by which the ocean exchanges energy, mo-
mentum, heat, and gases with the overlying atmosphere (Cavaleri et al. 2012; Villas Bôas
et al. 2019). Sea-surface currents modify the wavenumber, direction, and amplitude of
surface waves, and affect the spatial variability of the wave field. The effect of currents
on waves under the WKB approximation has been well studied (Kenyon 1971; Peregrine
1976; White & Fornberg 1998; Heller et al. 2008; Gallet & Young 2014; Henderson et al.
2006). But the sparseness of ocean current observations makes it difficult to explicitly
account for wave-current interactions in numerical surface wave models. Thus, instead of
explicit resolving sea-surface currents, a statistical approach to the effect of currents on
surface waves is required.

Recent studies of surface wave-current interactions (e.g., Ardhuin et al. 2017; Quilfen
et al. 2018; Quilfen & Chapron 2019) show that the sea-state variability at meso- and
submesoscales (1-150 km) is dominated by the variability of the current field. At these
scales, horizontally divergent motions associated with tides, inertia-gravity waves, and
fronts contribute significantly to the surface kinetic energy (Bühler et al. 2014; Rocha
et al. 2016; D’Asaro et al. 2018). If surface gravity waves respond differently to divergent
than to rotational flows — and we show here that they do — then changes in the dominant
regime of surface currents can result in significant changes in the surface-wave field. This
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2 A. B. Villas Bôas and W. R. Young

offers the possibility that observations of surface gravity waves might be used to probe
the structure of submesoscale ocean turbulence.

In the context of internal gravity waves, McComas & Bretherton (1977) showed how
scale-separated wave interactions can be analyzed with the WKB approximation and
understood as diffusion of wave action. The induced-diffusion approximation of McComas
& Bretherton has recently been developed and extended by Kafiabad, Savva & Vanneste
(2019, KSV, hereafter) to obtain an action-diffusion equation for the scattering of internal
gravity waves by mesoscale ocean turbulence. In section 2 and in appendix A we use the
formalism of KSV to derive an expression for a diffusivity tensor of surface wave action;
we show that the horizontally divergent component of the sea-surface velocity has no
effect on action diffusivity. In section 3 we consider the simplifications that result from
assuming that the sea-surface velocity has isotropic statistics. In section 4 the analytic
results are tested with Monte Carlo ray-tracing through an ensemble of stochastic velocity
fields.

2. The induced diffusion approximation

For linear deep-water surface waves, the Doppler-shifted dispersion relation is

ω(t,x,k) = σ + k ·U(t,x) , (2.1)

where k = (k1, k2) is the wavenumber, σ =
√
gk is the intrinsic wave frequency, with

k = |k| and g the gravitational acceleration. Also in (2.1), U(t,x) = (U1, U2) is the
horizontal current at the sea-surface. Provided that U(t,x) is slowly varying with respect
to the waves, i.e., the temporal scales of variations in the current field are longer and the
spatial scales are larger than those of the waves, wave kinematics is described by the ray
equations. Using index notation the ray equations are

ẋn = ∂knω = cn + Un , and k̇n = −∂xn
ω = −Um,nkm , (2.2)

where cn = ∂knσ(k) is the group velocity. Under the same assumptions, wave dynamics
is governed by the conservation of wave-action density A(x,k, t)

∂tA+ ẋn∂xn
A+ k̇n∂knA = 0 , (2.3)

with ẋn and k̇n given by (2.2) (Phillips 1966; Mei 1989).
We follow KSV and develop a multiple-scale solution that enables one to average (2.3)

over the ensemble of velocity fields U (see appendix A). Assuming that the statistical
properties of U are stationary and homogeneous, one finds that

∂tĀ+ cn∂xnĀ = ∂kjDjn∂knĀ , (2.4)

where Ā denotes the ensemble average of A. The diffusivity tensor Djn in (2.4) is
expressed in terms of the two-point velocity correlation tensor

Vim(x− x′) def
= 〈Ui(x)Um(x′)〉 . (2.5)

Because of the assumption of spatial homogeneity, Vim depends only on the separation
r = x−x′ of the two points. The most convenient formula for explicit calculation of Djn
is the Fourier space result

Djn =
kikmk

4πc

∫
qjqnṼim(q)δ

(
q · k

)
dq , (2.6)
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where c = g/2σ is the magnitude of the group velocity and

Ṽim(q) =

∫
e−ir·qVim(r) dr (2.7)

is the Fourier transform of Vim(r). (In (2.6) and (2.7) the integrals cover the entire
two-dimensional planes (q1, q2) and (r1, r2) respectively.) The diffusivity in (2.6) is
the two-dimensional equivalent of (A7) in KSV. Our appendix A derivation, however,
assumes only spatial homogeneity and stationarity of the velocity U , and does not require
incompressibility of U .

One can verify from (2.6) that Djnkn = 0 and therefore there is no diffusion of wave
action in the radial direction in k-space. Fast surface-wave packets propagate through a
frozen field of mesoscale eddies and thus preserve the absolute frequency

√
gk + U · k.

But with ε� 1 (appendix A) the Doppler shift U · k is small relative to
√
gk and so, at

the order of (2.6), the wavenumber k is constant. Thus absolute frequency conservation
underlies the absence of radial k-diffusion.

3. Diffusion of wave action density by isotropic velocity fields

The derivation of (2.6) makes essential use of the assumption that the spatial statistics
of U are spatially homogeneous. We now make the further assumption that the statistical
properties of U are also isotropic and investigate the contributions of vertical vorticity
and horizontal divergence to Djn. We follow Bühler et al. (2014) and represent the velocity
field with a 2D Helmholtz decomposition into rotational (solenoidal) and irrotational
(potential) components

(U, V ) = (φx − ψy, φy + ψx) . (3.1)

The streamfunction ψ and velocity potential φ have the two-point correlation functions

Cψ(r) = 〈ψ(x)ψ(x′)〉 , and Cφ(r) = 〈φ(x)φ(x′)〉 . (3.2)

If the velocity ensemble is not mirror invariant under reflexion with respect to an axis in
the (x, y)-plane, then there might also be a “cross-correlation” between ψ and φ

Cψφ(r)
def
= 〈ψ(x)φ(x′)〉 = 〈ψ(x′)φ(x)〉 . (3.3)

Because of isotropy, the scalar correlation functions introduced in (3.2) and (3.3) depend
only on the distance r = |r| between points x and x′. Therefore, ∂ri = ∂xi

= −∂x′
i
. Using

the notation r = (r1, r2), the V11 component of the velocity autocorrelation tensor in
(2.5) can be expressed in terms of the scalar correlation functions as

V11(r) = 〈U(x)U(x′)〉 , (3.4)

= 〈ψyψy′〉 − 〈ψy′φx〉 − 〈ψyφx′〉+ 〈φxφx′〉 , (3.5)

= −∂2r2C
ψ + 2∂r1∂r2C

ψφ − ∂2r1C
φ . (3.6)

Similar calculations for the other components of Vim result in

Vim = Vψim + Vψφim + Vφim , (3.7)

with

Vψim =

[
−∂2r2 ∂r1∂r2
∂r1∂r2 −∂2r1

]
Cψ , Vφim = −

[
∂2r1 ∂r1∂r2

∂r1∂r2 ∂2r2

]
Cφ , (3.8)

and Vψφim =

[
2∂r1∂r2 ∂2r2 − ∂

2
r1

∂2r2 − ∂
2
r1 2∂r1∂r2

]
Cψφ . (3.9)
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The Fourier transform of (3.8) and (3.9) follows with ∂ri 7→ iqi and is equal to

Ṽψim(q) =
(
q2δim − qiqm

)
C̃ψ(q) , Ṽφim(r) = qiqmC̃

φ(q) , (3.10)

and Ṽψφim(q) =
(
qiq
⊥
m + q⊥i qm

)
C̃ψφ(q) , (3.11)

where q⊥ = (−q2, q1) is the perpendicular vector to q = (q1, q2). Also in (3.10) and (3.11)

C̃ψ(q) = 2π

∫ ∞
0

Cψ(r)J0(qr) rdr , (3.12)

with J0 the Bessel function of order zero, is the Fourier transform of the axisymmetric
function Cψ(r). The expressions for C̃φ(q) and C̃ψφ(q) are analogous to (3.12).

Substituting (3.10) and (3.11) into (2.6) we have

kikmṼim(q) = k2q2C̃ψ(q) + · · · (3.13)

where · · · above indicates the three other terms that arise from contracting (3.10) and
(3.11) with kikm. Each of these three terms, however, contains a factor k · q. Courtesy
of δ(k · q) in the integrand of (2.6), the · · · in (3.13) makes no contribution to Djn and
the diffusivity tensor reduces to

Djn(k) =
k3

4πc

∫
q2qjqnC̃

ψ(q)δ
(
q · k

)
dq , (3.14)

where the integral covers the entire (q1, q2)-plane. The diffusion tensor in (3.14) does not
depend on the velocity potential φ. Using δ(q · k) to evaluate one of the two integrals in
(3.14) one obtains

Djn(k) =
1

2πc

[
k22 −k1k2
−k1k2 k21

] ∫ ∞
0

q4C̃ψ (q) dq . (3.15)

It is remarkable that the compressible and irrotational component of the velocity field,
produced by the velocity potential φ, makes no contribution to the action diffusion tensor
in (3.15). Dysthe (2001) shows that in the weak-current limit (that is ε� 1 in appendix
A) the ray curvature is equal to ζ/c where ζ = ψxx + ψyy is the vertical vorticity of the
surface currents; see section 68 of Landau & Lifshitz (1987) and Gallet & Young (2014)
for alternative derivations. These ray-tracing results rationalize the result in (3.15) that
diffusion of surface-wave action by sea-surface currents is produced only by the vortical
component of the sea-surface velocity.

This effect is illustrated in figure 1, where we show ray trajectories obtained from
numerically solving the ray equations (2.2) for waves with period of 10s propagating
through three different types of surface flows (purely solenoidal, purely potential, and
combined solenoidal and potential). These synthetic surface currents were created from
a scalar function with random phase and prescribed spectral slope (q−2.5 in this case).
In panel A this function is used as a streamfunction ψ to generate an incompressible
vortical flow. In panel B the same function is used as a velocity potential φ to generate
an irrotational horizontally divergent flow. In panels B and E, with pure potential flow,
the ray trajectories are close to straight lines i.e., there is almost no scattering. The flow
in panel C is constructed by summing the velocity fields in A and B. Even though the
flow in C is twice as energetic as that in A, the ray trajectories in D and F are very
similar. This is a striking confirmation of (3.14): the diffusivity is not affected by φ.

Because Djnkn = 0, the diffusive flux of wave action, −Djn∂knĀ, is in the direction of

k⊥ = kθ̂ where (k, θ) are polar coordinates in the k-plane and θ̂ is a unit vector in the
θ-direction. Using these polar coordinates simplifies the ∂kj and ∂kn derivatives on the
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Diffusion of surface waves 5

Figure 1. Illustration of the effects of different surface flow regimes on the diffusion of surface
waves. Surface flow fields are shown on the top row and the respective ray trajectories in the
bottom row. Panels A and D show solenoidal flow; panels B and E potential flow. Panels C and
F show a combination of solenoidal and potential flows (the velocity in panel C is the sum of
the velocities in panels A and B). The mean kinetic energy of A and B are equal, whereas panel
C has twice that of A and B. All rays are initialized from the left side of the domain at x = 0
with direction θ = 0◦ and period equal to 10s.

right of (2.4) so that the averaged action equation becomes

Āt + c cos θĀx + c sin θĀy = αĀθθ , (3.16)

where

α(k) =
1

2πc

∫ ∞
0

q4C̃ψ (q) dq . (3.17)

To conclude this section we express α in (3.17) in terms of the energy spectrum of the
solenoidal component of the velocity Ẽψ(q), related to C̃ψ(q) by

Ẽψ(q) =
q3

4π
C̃ψ(q) . (3.18)

The spectrum is normalized so that the root-mean-square velocity of the solenoidal
component, Uψ, is

U2
ψ = 〈ψ2

x〉 = 〈ψ2
y〉 = 1

2 〈|∇ψ|
2〉 =

∫ ∞
0

Ẽψ(q) dq . (3.19)

Then α(k) can be written as

α(k) =
2

c

∫ ∞
0

qẼψ(q) dq . (3.20)

The total energy spectrum is Ẽψ(q) + Ẽφ(q), where Ẽφ(q) is obtained by ψ 7→ φ in
(3.19). But as anticipated in figure 1, the diffusivity α(k) in (3.20) depends only on the
spectrum of the solenoidal component, Ẽψ(q).
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4. A numerical example using ray tracing

Equation (3.16) has an exact solution that can be used to test (3.20). Begin by noting
that

d

dt

y
Adxdydθ = 0 , (4.1)

where the integrals above are over the whole (x, y)-plane and over −π < θ 6 π. This is,
of course, conservation of action. Multiplying (3.16) by cos θ and integrating over (x, y, θ)
one obtains

d

dt

y
cos θ A dxdydθ = −α

y
cos θ A dxdydθ . (4.2)

Combining the time integrals of (4.1) and (4.2) we find

〈cos θ〉 = 〈cos θ〉0 e−αt , (4.3)

where 〈〉 denotes the action-weighted average and 〈cos θ〉0 is the initial value of 〈cos θ〉.
At large times 〈cos θ〉 → 0 with an e-folding time α−1: this is long-time isotropization
of the wave field by eddy scattering. To investigate short-time scattering, consider for
simplicity an initial condition such as that in figure 1 in which 〈cos θ〉0 = 1. Then if
αt� 1 it follows from (4.3) that

〈θ2〉 ≈ 2αt . (4.4)

To test our analytic result for the diffusivity α, we numerically integrate the ray-
tracing equations (2.2) for surfaces waves with initial period of 10s propagating through
an ensemble of stochastic velocity fields created by assigning random phases to each
Fourier component of the stream function ψ and velocity potential φ.

The energy spectrum of the sea surface velocity is modelled with power laws Ẽψ(q)
and Ẽφ(q) ∝ q−n, with q1 < q < q2 and no energy outside the interval (q1, q2). The
spectra are normalized with prescribed mean square velocities U2

ψ and U2
φ as in (3.19).

For n 6= 2 the integral in (3.20) is evaluated as:

α =
2

c

(n− 1)

(n− 2)

(q2−n1 − q2−n2 )

(q1−n1 − q1−n2 )
U2
ψ, (4.5)

whereas for n = 2

α =
2

c

q1q2
q2 − q1

ln

(
q2
q1

)
U2
ψ . (4.6)

We take q1 = 2π/150km and q2 = 2π/1km and spectral slopes n = (5/3, 2.0, 2.5, 3.0).
For each n we consider three cases corresponding to the three columns in figure 1:
◦ Uψ = 0.1m s−1 and Uφ = 0;
� Uψ = 0 and Uφ = 0.1m s−1;

+ Uψ = 0.1m s−1 and Uφ = 0.1m s−1.
Figure 2 summarizes the results by showing

〈
θ2
〉

as a function of time obtained by
averaging 2000 rays. The results are in agreement with (4.4) using α obtained from (4.5)
and (4.6). In particular there is good agreement between 〈θ2〉 for case ◦ and the analytic
result (solid lines). As expected, the potential component of the velocity has no effect
on the diffusion of wave action. Thus in case � — pure potantial flow — there is no
diffusion of action. In case + the flow has twice as much kinetic energy (and shear) as
in cases ◦ and �. But doubling the strength of the flow, by adding a φ component, does
not significantly increase action diffusion above that of case ◦.

We also verified that Monte Carlo results are in agreement with (4.3) when αt ∼ 1
(not shown).
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Diffusion of surface waves 7

Figure 2. Comparison between the ray tracing ensemble average (markers) and the analytical
solution (solid lines). Here we show the results for an energy spectrum with spectral slopes
following a q−n power-law where n = 5/3, 2, 2.5, or 3. Circles ◦ are the result for solenoidal
flows; diamonds �, for potential flows; and crosses + for the combination of solenoidal and
potential. The solenoidal and potential flows have mean square velocity 0.01 m2/s2, whereas the
combined flow + has mean square velocity 0.02 m2/s2. The initial period and direction of the
waves are 10s and 0◦, respectively.

5. Conclusions

Our expression for the action diffusivity in (2.6) assumes that the WKB approximation
is valid and that U/c � 1. Typical sea-surface currents are of order 0.1m s−1 while the
swell band has group velocities that exceed 5m s−1. Thus U/c � 1 is not restrictive.
Our analysis also neglects effects associated with vertical shear of the flow, which would
modify the Doppler-shifted dispersion relationship (Kirby & Chen 1989).

We derived an expression for the diffusivity of surface wave action in (2.6) and
demonstrated that for isotropic surface currents the action diffusivity can be expressed
in terms of the kinetic energy spectrum of the flow as in (3.20). This result shows
that the potential component makes no contribution to action diffusion. Our results are
illustrated both qualitatively (figure 1) and quantitatively (figure 2) by numerical solution
of the ray equations. Although the numerical examples presented here were obtained for
synthetic flows having random phase, the results are also valid in the presence of coherent
structures, such as axisymmetric vortices, as long as the statistics remain isotropic (not
shown). To leading order, there is no difference between the diffusivity obtained for rays
propagating through a pure solenoidal flow and the same solenoidal flow with the addition
of an equally strong potential component. In other words, provided that U/c � 1, the
horizontally divergent and irrotational component of the sea-surface velocity has no effect
on the action diffusion of surface gravity waves.

Recent studies motivated by the upcoming Surface Water and Ocean Topography
(SWOT) satellite mission have found that surface kinetic energy spectra in the ocean
are marked by a transition scale from balanced geostrophic motions (horizontally non-
divergent) to unbalanced horizontally divergent motions such as inertia-gravity waves
(e.g., Qiu et al. 2018; Morrow et al. 2019). At scales shorter than this “transition” scale,
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8 A. B. Villas Bôas and W. R. Young

the kinetic energy spectrum of the potential component of the currents has been observed
to dominate over the solenoidal component. In this regime, only a small fraction of the
total kinetic energy of the flow would be contributing to the diffusion of surface wave
action.

Perhaps the most important application of our results is in the realm of operational
surface wave models. Wave models, such as WaveWatch III, solve the action balance
equation (2.3) with additional terms to account for wind forcing, non-linear interactions,
and wave dissipation (WAVEWATCH III Development Group 2009). Explicitly solving
for wave-current interactions in surface-wave models poses two main challenges: it is
computationally costly and surface current observations at scales shorter than 100 km
are rare (Ardhuin et al. 2012). The wave action diffusivity calculated here can be easily
implemented as an additional term in operational wave models allowing the effects of
the currents to be accounted for based on statistical properties of the sea-surface velocity.
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Appendix A. The induced diffusion approximation

In this appendix we reprise the KSV multiscale derivation of the induced diffusion ap-
proximation showing that the KSV assumption that U is incompressible is not necessary.
All that is required is spatial homogeneity of the statistical properties of the sea-surface
velocity U .

We follow KSV and introduce a parameter ε
def
= |U |/c � 1 into the conservation

equation of wave action (2.3) by writing Um 7→ εUm. With slow space and time scales
X = ε2x and T = ε2t, the action equation (2.3) becomes

∂tA+ cn∂xn
A+ ε2∂TA+ ε2cn∂Xn

A+ εUn∂xn
A+ ε3Un∂Xn

A− εkmUm,n∂knA = 0 . (A 1)

With the expansion A = A0(X,k, T ) + εA1(x,X,k, t, T ) + · · · we satisfy the leading-
order equation. Then at O(ε1):

∂tA1 + cn∂xn
A1 = kmUm,n ∂knA0 , (A 2)

with solution

A1 = km

∫ t

0

Um,n(x− τc) dτ ∂knA0 . (A 3)

At order ε2 the problem is

∂tA2 + cn∂xn
A2 + ∂TA0 + cn∂Xn

A0 = kiUi,j(x)∂kjA1 − Ui(x)∂xi
A1 . (A 4)

Pulling out ∂kj from the first term on the right of (A 4) and recombining we obtain

∂tA2 + cn∂xn
A2 + ∂TA0 + cn∂Xn

A0 = ∂kjkiUi,j(x)A1 − ∂xi
(Ui(x)A1) . (A 5)

None of these manipulations require Ui,i = 0. Assuming spatial homogeneity and taking
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Diffusion of surface waves 9

the average over an ensemble of velocity fields, here denoted by an overbar, the last term
on the right of (A 5) is the fast-x derivative of an average, which is zero. In the limit of
t→∞, and using the expression for A1 in (A 3), we find

∂T Ā+ cn∂XnĀ = ∂kjDjn∂knĀ . (A 6)

where Ā is the average of A0, defined as an average over an ensemble of velocity fields
and

Djn(k) = kikm

∫ ∞
0

〈Ui,j(x)Um,n(x− τc)〉 dτ . (A 7)

We now write Ui(x) and Um(x− cτ ) in terms of inverse Fourier transforms, such as

Ui(x) =

∫
eiq·xŨi(q)

dq

(2π)2
. (A 8)

After substituting these representations into (A 7), calculations involving the identity〈
Ũi(q)Ũm(q′)

〉
= (2π)2δ

(
q + q′

)
Ṽim(q) (A 9)

show that

〈Ui,j(x)Um,n(x− τc)〉 = eiq·τc
∫
qjqnṼim(q)

dq

(2π)2
, (A 10)

where Ṽim(q) is the Fourier transform of Vim(r), as in (2.7). Substituting (A 10) into
(A 7), switching the order of the integrals, and using∫ ∞

0

eiq·τc dτ = πδ(q · c) = πkδ(q · k)/c , (A 11)

we obtain Djn in (2.6). In (A 11) we have parted company with KSV by taking advantage
of the isotropic dispersion relation of surface gravity waves — that is c = ck/k — to
simplify δ(q · c).
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