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COMPUTATIONS OF STEEP GRAVITY WAVES BY A REFINEMENT 

OF DAMES-TULIN'S APPROXIMATION" 


JEAN-MARC VANDEN-BROECK~ AND TOUVIA MILOH* 

Abstract. Water waves in water of arbitrary depth and solitary waves are calculated numerically using 
new series truncation methods. The techniques use a refinement of Davies' approximation first proposed by 
Tulin. Accurate numerical solutions are obtained for all values of the steepness up to the limiting 
configuration with a 120" angle at the wave crest. It is shown that the proposed numerical procedure 
is equivalent to the method of Havelock. The method of Michell is included as a particular case. 
A comparison with previous numerical methods, such as boundary integral equation techniques, is given. 

Key words. gravity waves, free surface flows, series truncation 

AMS subject classifications. 76B15, 76E30 

1. Introduction. Over the past 200 years, many analytic and numerical results on 
water waves have been reported. In particular, very accurate solutions were calculated 
for waves close to their limiting configuration (see Schwartz [I], Cokelet [2], Longuet- 
Higgins [3], Vanden-Broeck and Schwartz [4], Longuet-Higgins and Fox [5], Williams 
[6], Chen and Saffman [7], Byatt-Smith and Longuet-Higgins [81, Hunter and 
Vanden-Broeck [9], and references cited in those papers). 

Davies [lo] derived an approximate solution for water waves in water of infinite 
depth. His idea was to modify the free surface condition so that an exact solution can 
be obtained by analytic continuation. His solution is as good as the linear theory for 
waves of small amplitude. It has, in addition, the remarkable property of predicting 
the correct angle of 120" at the crest of the highest wave. 

Tulin [Ill  found a refinement of Davies' approximation. He derived a new 
formulation of the water wave problem by correcting Davies' approximation so that 
the exact free surface condition is satisfied. To the best of our knowledge, this 
interesting refinement has not been used previously to compute very steep waves. 

Another well-known accurate method for calculating the highest wave was 
introduced by Michell [12] and later used by Olfe and Rottman [13], Vanden-Broeck 
[14], and others. The idea is to represent the complex velocity by a power series in 
which the singularity associated with the 120" angle at the crest is removed by 
introduction of an appropriate multiplicative factor in the representation. Havelock 
[15] generalized Michell's method to steep waves by assuming that the same singular- 
ity as in Michell's method occurs above the fluid for waves of amplitude less than the 
highest. However, Grant [I61 and Schwartz [I] demonstrated that an analytic continu- 
ation of the flow above the fluid produces a different singularity from the one 
assumed by Havelock [15]. Vanden-Broeck [14] pointed out that the assumption of the 
"wrong" singularity in Havelock's method does not imply that the expansion should 
diverge in the flow domain and on the free surface. In fact, his numerical results show 
that this "wrong" singularity above the fluid improves the convergence and that 
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accurate results for waves of arbitrary amplitude can be obtained by Havelock's 
method. 

In this paper we present new numerical procedures to calculate waves in water of 
arbitrary depth and solitary waves. The schemes are accurate and easier to implement 
than boundary integral equation methods. 

First we compute water waves in water of infinite depth by using the refinement 
of Davies' approximation proposed by Tulin [ll]. Our numerical method uses series 
truncation and collocation. Accurate results are obtained for waves of arbitrary 
amplitude up to the limiting configuration with a 120' angle at the crest. We show 
that our numerical procedure is equivalent to the method of Havelock [15]. Since we 
do not assume anything about singularities outside the fluid, the equivalence of the 
methods can be used to explain the puzzling success of Havelock's method (i.e., the 
fact that the introduction of the "wrong" singularity outside the fluid improves the 
convergence). 

Our next result generalizes the procedure to compute waves in water of finite 
depth. The idea is to expand the cube of the complex velocity in a power series. The 
results are in agreement with those of Cokelet [2], Vanden-Broeck and Schwartz [4], 
and Williams [6]. 

Finally we adapt the numerical procedure to compute solitary waves of arbitrary 
amplitude. The scheme generalizes the method used by Hunter and Vanden-Broeck 
[9] to calculate the highest solitary wave. Our numerical calculations confirm the 
results obtained by Byatt-Smith and Longuet-Higgins [8] and by Hunter and Vanden- 
Broeck [9] via boundary integral equation methods. 

The problem is formulated in $2. Davies' approximation, its refinement, and the 
computation of waves in water of infinite depth are also described in $2. The 
generalizations to water of finite depth and to solitary waves are presented in $03 
and 4. 

2. Periodic waves in water of infinite depth. 

2.1. Formulation. We consider two-dimensional periodic waves of wavelength A 
and phase velocity c propagating under the influence of gravity g at the surface of a 
fluid of infinite depth. A frame of reference in which the waves are steady is chosen, 
and dimensionless variables are introduced by taking A as the unit length and c as the 
unit velocity. The effects of compressibility, viscosity, and surface tension are ne- 
glected. 

We introduce Cartesian coordinates with the x-axis at the mean water level and 
the y-axis directed vertically upward. Gravity is acting in the negative y-direction. We 
define the complex potential f = 4 + i t j  and the complex velocity w =u - iu. Here 4 
is the potential function, t j  is the stream function, u is the x component of the 
velocity, and v is the y component of the velocity. Without loss of generality we 
choose t j  = 0 on the free surface and 4 = 0 at one crest. 

Next we define the function 5= T - it3 by the formula 

The condition of constant pressure ( p = 0) on the free surface can be written as 
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where 

We eliminate y from (2.2) by differentiating (2.2) with respect to 4. Using the 
identity 

we obtain 

This completes the formulation of the problem. We seek w( f )  as an analytic function 
of f ,  periodic with period 1, which tends to 1as I)+ -w and which satisfies (2.5) on 
the free surface IC, = 0. 

2.2. Davies' approximation. Following Davies [lo], we use the trigonometric 
identity 

sin38 4 
sin 8 = -+ - sin3 8 

3 3 

to rewrite (2.5) as 

Davies' approximation consists of neglecting the last term in (2.7). Thus (2.7) becomes 

From (2.6), we see that Davies' approximation replaces sin 8 by sin38/3. This 
approximation is good for waves of small amplitude for which 8 is small. 

Next we rewrite (2.7) as 

Here R denotes the real part. Since the function in the squared brackets in (2.9) is an 
analytic function of f ,  analytic continuation implies 

in IC, < 0. Here k is a real constant. 
Using the fact that (+0 as IC, + -a,we find that k = -(2n-/3~). 
We introduce the new function 
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and rewrite (2.10) as 

Equation (2.12) is a simple differential equation whose solution is 

Here A is a constant of integration. Using (2.11) and (2.13)' we obtain the exact 
solution 

(2.14) w = [ l  +Ae-i$f 

The shape of the free surface can be obtained by integrating (2.4). By requiring (2.14) 
to be a periodic function of f with period 1, we obtain the dispersion relation 

The dispersion relation (2.15) agrees with the well-known linear theory. However, it 
does not predict the nonlinear dependence of p on the amplitude of the wave. 

The constant A in (2.14) is a measure of the amplitude of the wave. For A small, 
the wave is close to a linear sine wave. For A = - 1, the wave reaches its limiting 
configuration with a stagnation point at the crest of the 'wave. A remarkable feature 
of Davies' approximation is that it predicts the correct angle of 120" at the crest of the 
limiting configuration. This can easily be checked by expanding (2.14) near f = 0. This 
suggests that a refinement of Davies' approximation should provide very accurate 
solutions for waves of arbitrary amplitudes including the limiting configuration with a 
120" angle at the crest. 

2.3. Refinement of Davies' approximation. In this section we review the refine- 
ment of Davies' approximation introduced by Tulin [Ill. We first rewrite the exact 
boundary condition (2.7) as 

Davies' approximation neglects the last term in (2.16). We now take this term 
into account by defining, with analytic continuation, an analytic function P(  f )  whose 
real part satisfies 

Then (2.16) becomes 

Since the function in the squared brackets in (2.18) is an analytic function of f ,  
analytic continuation implies 

in IC, < 0. Here t is a real constant. Using the condition + 0 as IC, + -a,we find 
from (2.19) that R[P( f )] +0 as IC, + -a.Since P(  f )  is defined up to an arbitrary 
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additive imaginary constant, we can assume without loss of generality that P (  f )  + 0 
as I,!J + -a.It follows from (2.19) that t = -(2%-/3p). 

Using (2.11), we rewrite (2.19) as 

Next we introduce a change of variable from f to y, such that (2.20) takes the 
same form as (2.12), namely, 

Using (2.20), (2.21), and the chain rule, we obtain 

The solution to (2.21) is 

Our problem now is to find y such that (2.17) and (2.22) are satisfied. This is 
achieved numerically in the next section. 

2.4. Numerical results. Since the right-hand side of (2.22) is an analytic function 
of f with period 1,we can represent it by a series expansion in powers of ePizTf. Thus 
we write 

Substituting (2.24) into (2.22) and integrating term by term, we obtain 

Using (2.25) and (2.23), we see that the periodicity of F implies 

(2.26) b , = p - 1 .  

Solving (2.24) for P(  f )  and substituting into (2.17) yield 

m1 i2%-F 
3 ( 1+ bne-2i.nf(2.27) [ I - ) ]1 + F  = [ p - x j] on +-0.

3(F  + 1) n = l  

Here R and I denote the real and imaginary parts, respectively. 
Relations (2.25) and (2.23) give an expression for F in terms of the coefficients 

b, : 

Substituting (2.28) into (2.27) yields an equation for the coefficients b,. We shall refer 
to this equation as the equation a. We solve the equation a numerically. 
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We truncate the infinite series in the equation a after N - 1 terms and 
determine the N + 1 unknowns b,, b,, . . . ,bN-,, p, and A by collocation. Thus, we 
introduce the N collocation points 

We satisfy the equation a at the collocation points (2.29). This yields N nonlinear 
algebraic equations. Following Cokelet [2], we define the parameter .z2 by 

Here w(0) and w(1/2) denote the values of the complex velocity at a crest and a 
trough, respectively. The parameter .z2 serves as a measure of the amplitude of the 
wave. It ranges between 0 and 1. For .zL small, the wave is close to a linear sine wave. 
For .z2 = 1, the wave reaches the limiting configuration with a stagnation point and a 
120" angle at the crest. The quantities w(0) and w(1/2) are evaluated in terms of the 
unknowns from (2.11) and (2.28) with f = 0 and f = 1/2, respectively. The last 
equation is given by (2.30) with a prescribed .z2. Thus for a given value .z2, we have a 
system of N + 1 equations for the N + 1 unknowns b,, b,, b,, . . .,bN-,, p,  and A. 
This system is solved numerically by Newton's method. 

Numerical values of p versus .z2 are shown in Table 1for values of N. We also 
show for comparison the values obtained by Cokelet [2]. 

2.5. Discussion of the results. Table 1 shows that the numerical procedure in 
$2.4 gives accurate results for all values of .z2 between 0 and 1. In particular, it shows 
that p is not a monotonic function of .z2 (see Longuet-Higgins [3] and Cokelet [2]). In 
fact Longuet-Higgins and Fox [5]showed analytically that p oscillates infinitely often 
as the wave of maximum height is approached. The method of 02.4 is a refinement of 
Davies' approximation. It reduces to Davies' approximation if all the coefficients b,, 
n = 1,2,.. . ,N - 1are set equal to zero. The accuracy of the results for steep waves is 
related to the fact that Davies' approximation already predicts an angle of 120" for the 
highest wave (see the end of 02.2). 

Some further insight into the method can be gained by noticing that (2.28) 
assumes implicitly that w3 can be expanded in powers of e-,'"f. This suggests that 
results similar to those of 02.4 can be obtained in a simpler way by writing 

TABLE1 
Values of p for various values of s2 in water of infinite depth. The 

last column contains values previously calculated by Cokelet [21. 

E N=60  N=80  N  = 120 Cokelet 
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and finding the coefficients u, by collocation. To check this idea, we truncate the 
infinite series in (2.31) after N terms and find the N + 1unknowns u,, u,, .. . ,u, and 
p by satisfying (2.30) and (2.5) at the N collocation points (2.29). This leads to a 
system of N + 1nonlinear equations with N + 1unknowns. This system was solved by 
Newton's method. We found that the numerical values of p for N = 60, N = 80, and 
N = 120 agree with those listed in Table 1. This shows that the numerical procedure 
of $2.4 is equivalent to a collocation method based on (2.31). In fact, this observation 
gives a hint for a generalization for waves in water of finite depth, which shall be fully 
presented in $3. 

Michell [12], Olfe and Rottman [13], and Vanden-Broeck [I41 calculated the 
highest wave ( e 2= 1) by writing 

(2.32) 	 W = (1 - e-zi~f)J 1+ C
m 

Cne-ZirnfIn = l  

and finding the coefficients c, by series truncation and collocation. 
Havelock [15] and Vanden-Broeck [I41 calculated waves of arbitrary amplitude 

up to the limiting configuration by expressing w as 

and finding the coefficients d, and p by series truncation and collocation. 
By taking the cube of (2.32) and (2.33), we see that the expressions (2.32) and 

(2.33) are particular cases of (2.31) for appropriate choices of the coefficients u,. 
Therefore Havelock's method (2.33) is equivalent to the procedure in $2.4. Similarly, 
Michell's method (2.32) is a particular case of the procedure in 92.4 corresponding to 
the highest wave. This is confirmed by the fact that the results in Table 1 are 
essentially the same as those obtained by Vanden-Broeck [I41 using (2.33) (see Table 
I1 in Vanden-Broeck [141). Similarly, the values of p for g 2  = 1 in Table 1 are in 
agreement with the value 1.193072 obtained by Olfe and Rottman [13]. 

3. Periodic waves in water of finite depth. We now consider waves in water of 
finite depth. The formulation of $2.1 remains unchanged except that the flow domain 
is -Q < +< 0 instead of +< 0. Here -Q denotes the value of the stream function 
on the bottom. The phase velocity c is defined as the average fluid velocity at any 
horizontal level completely within the fluid. It follows from the choice of the 
dimensionless variables that 

The value of I) in (3.1) can take any value between -Q and 0. 
Following Cokelet [2] and Vanden-Broeck and Schwartz [4], we define the 

parameter 
(3.2) 	 ro= exp[ -2.rrQI. 

The parameter r, ranges between 0 and 1. Waves in water of infinite depth 
correspond to r, =0, and solitary waves correspond to r, = 1. 

For a fmed value of r,, we seek w( f )  as an analytic function of f in -Q < I)< 0, 
which satisfies (2.5) on += 0 and the kinematic condition 

Here I denotes the imaginary part. 
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In 02.5, we showed that the refinement of Davies' approximation in water of 
infinite depth essentially assumes that w3 can be represented by the expansion (2.31). 
We now generalize (2.31) to water of finite depth by writing 

Imposing the kinematic condition (3.3), we obtain 

We truncate the infinite series in (3.4) after N terms. Using ( 3 3 ,  we have N + 1 
unknown coefficients in (3.4), namely, a,, n = 0,. ..,N. We satisfy (2.30) and (2.5) at 
the N collocation points (2.29). This leads to a system of N + 1nonlinear algebraic 
equations for the N + 2 unknowns a,, n = 0,. . . ,N, and p. 

The last equation is obtained by imposing (3.1). The integral in (3.1) is evaluated 
by the trapezoidal rule with a uniform mesh, since for periodic integrand this is highly 
accurate. In most calculations the value of I) was chosen to be -&/lo. We checked 
that the numerical results are independent of the value of -Q < I) < 0. 

The resulting system of N + 2 equations with N + 2 unknowns is solved by 
Newton's method. 

Numerical values of p versus c2 for rO= 0.5 are shown in Table 2 for various 
values of N. Similar results were obtained for other values of r,. Table 2 shows that 
our procedure converges and gives accurate results for waves of arbitrary amplitude. 
We also show for comparison the numerical values of Cokelet [2] (obtained by Pad6 
approximants) and of Vanden-Broeck and Schwartz [4] (obtained by a boundaly 
integral equation method). The advantage of the present method is its simplicity. 

Our numerical procedure gives accurate results up to the limiting configuration 
with a 120" angle at the wave crest. This is shown in Table 3, where we present values 
of the steepness (i.e., the difference of heights between a crest and a trough divided 
by the wavelength) for 0.1 I r, I0.9. We also show the values previously obtained by 
Williams [61. 

As r, approaches 1, the convergence of our scheme starts to deteriorate (see 
bottom of Table 3). Therefore we shall adapt the numerical procedure in the next 
section to solve directly the case r, = 1; i.e., we shall directly compute solitary waves. 

4. Solitary waves. We consider a two-dimensional solitary wave in an inviscid 
incompressible and irrotational fluid bounded below by a horizontal bottom. We take 
a frame of reference with the x-axis parallel to the bottom and moving with the phase 

TABLE2 
Values of y for r, =0.5 and various values of c2.The last two columns contain values 

previously computed by Vanden-Broeck and Schwartz [4]and by Cokelet [2]. 

E N = 8 0  N = 120 N = 200 Vdb, Sch Cokelet 

0.4 0.666501 0.666501 0.666501 0.666501 0.666501 
0.6 0.706443 0.706443 0.706443 0.706443 0.706443 
0.8 0.748242 0.748230 0.748230 0.748230 0.748230 
0.9 0.764411 0.764488 0.764416 0.764403 0.764403 
0.95 0.766936 0.767510 0.767818 0.767750 0.767748 
0.97 0.766797 0.767149 0.767481 0.767540 0.76754 
0.98 0.766649 0.766833 0.767042 0.767097 0.76707 
0.99 0.766504 0.766536 0.766605 0.766557 0.76648 
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TABLE3 
Values of y for the highest waves corresponding to various values of r,. 

The last column contains the values previously computed by Williams [6]. 

Williams 

0.137801 
0.128495 
0.114439 
0.097374 
0.079072 
0.060984 
0.043975 
0.028258 
0.013667 

velocity c of the wave. The level y = 0 is chosen as the undisturbed level of the free 
surface, and gravity is assumed to act in the negative y-direction. 

As in 92.1, we introduce the complex potential f = C$ + ilC, and the complex 
velocity w = u - iv. We choose C$ = 0 at the crest and lC, = 0 on the free surface. We 
denote by -Q the value of cC, on the bottom. Then the undisturbed depth is defined 
by 

We introduce dimensionless variables by taking H as the unit length and c as the unit 
velocity. 

On the free surface, the Bernoulli equation yields 

Here F is the Froude number defined by 

Hunter and Vanden-Broeck [91 used a procedure by Lenau [I71 to compute the 
highest solitary wave. We shall use the idea of expanding w3 (see (2.31)) to generalize 
their procedure to calculate solitary waves of arbitrary amplitude. 

We first map the flow domain into the domain It1 < 1by the transformation 

The transformation (4.4) maps the bottom of the channel onto the real diameter 
-1< t < 1 and the free surface onto the half circumference It1 = 1in the upper half 
t-plane. We use the notation t = e'" so that the free surface is described by r = 1, 
O < a < r .  

We now represent w 3as an expansion in powers of t, namely, 
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where h is the smallest positive root of 

tan n-h 
.rrh - ------ --0.

F2 

The term (1 - t2I2"n (4.5) comes from Stokes7result, which states that the asymp-
totic behavior of u - iu as 141+a is 

Next we differentiate (4.2) with respect to u.Using (4.4) we obtain 

We characterized the amplitude of the solitaly wave by the parameter 

Here u(0) is the velocity at the crest of the wave. The parameter w is similar to the 
parameter E used for periodic waves (see (2.30)). It is a measure of the amplitude of 
the solitary wave and w = 1for the highest wave. 

We now truncate the infinite series in (4.5) after N terms and determine the 
N + 2 unknowns a,, a,, . . .,a,, A, and F2 by collocation. Thus we introduce the N 
collocation points 

Here E = 5.We satisfy (4.8) at the collocation points (4.10). This yields N nonlinear 
algebraic equations. The last two equations are given by (4.6) and (4.9). Thus for a 
given value of w we have a system of N + 2 equations with N + 2 unknowns. This 
system is solved by Newton's method. 

Numerical values of F versus w for various values of N are shown in Table 4. 
The results converge as N increases. We also show some of the numerical values 
previously obtained by Byatt-Smith and Longuet-Higgins [8] and by Hunter and 
Vanden-Broeck [9]. Our calculations confirm their values. 

Finally we used our scheme to recalculate the highest solitary wave and obtained 
the value F = 1.29091, in agreement with the value given by Hunter and Vanden-
Broeck [9]. 

TABLE4 
Values of the Froude number for solitary waves correspondingto various ualues of  w .  

The last two columns contain values previously calculated by Byatt-Smith and Longuet-
Higgins [8]and by Hunter and Vanden-Broeck [9]. 

w N = 9 0  N = 290 N = 390 B, LH H ,  Vdb 



902 JEAN-MARC VANDEN-BROECK AND TOUVIA MILOH 

5. Conclusions. We have presented new numerical procedures to compute steep 
water waves. These procedures can be used to calculate waves for all values of the 
depth (i.e., from infinite depth to the solitary wave limit). Tables 1-4 show that the 
results are accurate for all values of the steepness, including the limiting configura- 
tions. The advantage of these new procedures over other methods such as boundary 
integral equation techniques is their simple implementation. 

Recent numerical calculations have shown that many two-dimensional free 
surface flows have limiting configurations with a stagnation point on the free surface 
and a 120" angle at it. These include, for example, jets and flows past submerged 
obstacles (Vanden-Broeck and Keller [18], Vanden-Broeck [19], Mekias and Vanden- 
Broeck [20], Dias and Vanden-Broeck [21], Lee and Vanden-Broeck [22], and 
Vanden-Broeck and Tuck [23]). The numerical procedures described in this paper can 
be used to describe some of these flows close to their limiting configurations. For 
example, expansions similar to (2.32) and (2.33) were used by Vanden-Broeck [I91 to 
calculate a bubble rising in a tube and by Dias and Vanden-Broeck [21] to study flows 
past submerged obstacles. 

Acknowledgment. The first author would like to thank Tel Aviv University and 
the Technion for their hospitality during the time the paper was written. 
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