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Abstract

Ž .In this paper, infragravity IG waves, forced by normally and obliquely incident wave groups,
Ž . ware studied using the quasi-3D Q3D nearshore circulation model SHORECIRC Van Dongeren,

A.R., I.A. Svendsen, 1997b. Quasi 3-D modeling of nearshore hydrodynamics. Research report
xCACR-97-04. Center for Applied Coastal Research, University of Delaware, Newark, 243 pp. ,

which includes the Q3D effects. The governing equations that form the basis of the model, as well
as the numerical model and the boundary conditions, are described. The model is applied to the
case of leaky IG waves. It is shown that the Q3D terms have a significant effect on the cross-shore
variation of the surface elevation envelope, especially around the breakpoint and in the inner surf
zone. The effect of wave groupiness on the temporal and spatial variation of all Q3D terms is
shown after which their contribution to the momentum equations is analyzed. This reveals that
only those Q3D coefficients, which appear in combination with the largest horizontal velocity
shears make a significant contribution to the momentum equations. As a result of the calculation
of the Q3D coefficients, the IG wave velocity profiles can be determined. This shows that in the
surf zone, the velocity profiles exhibit a large curvature and time variation in the cross-shore
direction, and a small — but essential — depth variation in the longshore direction. q 2000
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1. Introduction

Ž .In this paper, we apply the SHORECIRC model to the case of leaky infragravity IG
Ž .waves. SHORECIRC is a quasi-3D Q3D nearshore circulation model, which combines

the effect of the vertical structure of the IG wave particle velocity profile with a
Ž .numerical two-dimensional horizontal 2DH circulation model.

2DH models have been developed to study phenomena, such as the current circula-
tion over periodically longshore-varying bottom topographies Noda et al., 1974; Eber-

.sole and Dalrymple, 1980 and others and in closed basins with in principle arbitrary
Ž .bathymetries Wu and Liu, 1985; Wind and Vreugdenhil, 1986 . These models describe

the depth-mean current velocity and surface elevation and are based on the depth-aver-
aged and time-averaged Reynolds equations. Since time averaging is done over the
short-wave period, the effect of the short-wave motion is replaced by the radiation stress
and the short-wave-induced volume flux, which force the long-wave and current motion.
These quantities cannot be determined from the wave-averaged equations themselves
and have to be supplied to the model through a so-called Ashort-wave driverB. The
bottom boundary layer effect is replaced by a wave-averaged bottom shear stress, which
in itself is modelled as a function of the depth-averaged velocity. The turbulent shear
stresses are represented by an eddy viscosity model, which closes the equations.

These models, however, do not account for the vertical variation of the current or
long-wave velocity profiles over depth. Therefore, Q3D models were developed. In an

Ž . Ž .approach by De Vriend and Stive 1987 and Stive and De Vriend 1987 , the current is
split into primary and secondary flow profiles where the absolute magnitude of the
primary velocity vector is assumed to dominate the secondary flow magnitude. This
assumption is not valid in the case of normally incident waves. In a different approach,

Ž .Svendsen and Lorenz 1989 determined analytical expressions for the vertically varying
longshore and cross-shore currents separately for the special case of a long straight

Ž .coast. Svendsen and Putrevu 1990 formulated the steady-state version of the SHORE-
CIRC Q3D nearshore circulation model using analytical solutions for the 3D current
profiles in combination with a numerical solution of the depth-integrated 2DH equations
for a long straight coast. They split the current velocity into a depth-invariant component
and a component with a vertical variation with zero depth-mean flow. Sanchez-Arcilla et´

Ž .al. 1990, 1992 presented a similar concept.
Ž . Ž .Putrevu and Svendsen 1992 and Svendsen and Putrevu 1994 recognized that the

current–current and current–wave interactions neglected in previous investigations
Žinduce a nonlinear dispersion mechanism, analogous to the dispersion of solutes Taylor,

.1954; Elder, 1959 . This mechanism significantly augments the lateral turbulent mixing
and accounts for the difference in magnitude between the vertical and horizontal mixing
in the case of a longshore current on a long, straight coast.

The time-dependent version of this model, called SHORECIRC, was presented in
Ž .Van Dongeren et al. 1994 for the special case of longshore uniformity in both the

bathymetric and hydrodynamical conditions. The generalized Q3D governing equations
Ž .were derived in Putrevu and Svendsen 1997, 1999 , and analytical expressions for the

Ž .velocity profiles were given in Van Dongeren and Svendsen 1997b .
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The development of IG waves on a plane slope has been studied earlier using the
Ž .linearized, depth-averaged equations of motion. Symonds et al. 1982 and Schaffer and¨

Ž .Svendsen 1988 analyzed the 1D-horizontal generation of surf beat using different
assumptions about the way breaking modifies the wave groupiness. These investigations
certified that forcing of IG waves occurs both due to a varying breakpoint and
throughout the surf zone due to the changes in wave heights and groupiness in that

Ž .region. Schaffer, 1993, 1994 extended this approach to a 2DH study of edge wave¨
generation and generalized the breaking assumption by combining the two extremes
considered by Symonds et al. and Schaffer and Svendsen. In all these investigations, the¨
forcing was generated by wave groups formed by a weak modulation of a sinusoidal
carrier wave train, which made analytical solutions possible for the steady-state situation

Ž .that occurs after a long time of periodic forcing. Recently, Lippmann et al. 1997
examined the initial growth rate of such edge waves for the fully resonant case and
Ž .Chen and Guza 1998a,b studied the effect of periodic topographic variations.

In this paper, we will analyze the case of IG waves generated by normally and
Ž .obliquely incident periodic wave groups using the same forcing as Schaffer 1994 , but¨

using the fully nonlinear Q3D SHORECIRC model. This case is a natural extension of
the longshore current case studied before, where the restriction of steady, longshore-uni-
form forcing is replaced by periodic forcing.

First, we will give an outline of the derivation of the Q3D governing equations with
an emphasis on the calculation of the depth-varying velocity profiles. Then, we will
briefly describe the numerical model and its boundary conditions. The main part of this
work is devoted to the analysis of the Q3D terms in the governing equations for the case
of leaky IG waves forced by both normally and obliquely incident wave groups. In
particular, we will investigate the size of these terms relative to the AconventionalB

Ž .terms that appear in the nonlinear shallow water NSW equations. We will also show
the effect these terms have on the cross-shore long-wave envelope and show the IG
wave velocity profiles.

2. Q3D governing equations

In this section, we will give an overview of the depth-integrated, time-averaged
governing equations of the SHORECIRC model. For a more thorough derivation of
these equations for the case of depth-uniform currents we refer to the procedure given

Ž . Ž .by Phillips 1977 and Mei 1983 , and for the more general case of depth-varying
Ž .currents to Putrevu and Svendsen 1991, 1997, 1999 and Van Dongeren and Svendsen

Ž .1997b .
The conservation of mass equation is given by

Ez E z

q u d zs0 1Ž .H a
Et Ex yha o

Ž .where z is the surface elevation of the long or IG wave motion, u is the total velocitya

of the long and short waves. The index a represents the horizontal x and y directions.
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Fig. 1. Definition sketch.

Ž .z is the vertical coordinate, defined from the still-water level SWL up. h is theo
Ž .still-water depth and hsh qz is the total depth. See Fig. 1 for a definition sketch.o

After turbulence averaging, the total horizontal velocity can be split into a depth-uniform
˜long-wave part V , a depth-varying long-wave part V and a short-wave contributiona 1a

u , so thatwa

˜u x , y , z ,t sV x , y ,t qV x , y , z ,t qu x , y , z ,t 2Ž . Ž . Ž . Ž . Ž .a a 1a wa

We define u '0 below trough level and define the short-wave-induced volume fluxwa

above the trough level as

z

Q ' u d z 3Ž .Hwa wa
zt

where z denotes the trough level of the short-wave motion. The total flux Q can thent a

be written as

z z˜Q ' u d zsV hq V d zqQ 4Ž .H Ha a a 1a wa
yh yho o

Since the depth-averaged velocity is chosen such that

˜Q sV h 5Ž .a a

Ž .we have from Eq. 4 that

z
V d zsyQ 6Ž .H 1a wa

yho

Ž .With this result, Eq. 1 can be written as

Ez E
˜q V h s0 7Ž .Ž .a

Et Exa

The horizontal conservation of momentum can be expressed as

E E E E zz˜ ˜ ˜V h q V V h q V V d zq u V qu V d zŽ .H Hž / ž /b a b 1a 1b wa 1b wb 1a
Et Ex Ex Exyh za a ao t

S BEz 1 E t tz b b
syg h qz y S y t d z q y 8Ž . Ž .Ho a b a b

Ex r Ex r ryhb a o
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where b is index notation for the horizontal x and y directions, t represents theab

turbulent shear stresses, t S is the surface stress and t B is the bottom stress. Theb b

radiation stress is defined as1

1z 2S ' pd qru u d zyd r gh 9Ž .Ž .Hab a b wa wb a b 2yho

Ž . Ž .The governing equations, Eqs. 7 and 8 , are readily solvable numerically in terms
of Q and z if the depth variation of the long-wave velocity V is known. Toa 1a

determine this would require a full 3D grid and therefore a large computation time. In
order to reduce the computational time, we use analytical solutions for the vertical

Ž . Ž .variation of the long-wave current velocity to calculate the integrals in Eqs. 7 and 8 .
Ž .In this way, the integrals can be written in terms of analytically determined coefficients

multiplied by spatial derivatives of the depth-averaged parameters Q and z . In thisa

so-called Q3D approach, only a two-dimensional numerical model is needed.
The mathematics of replacing the depth-dependent terms with depth-invariant coeffi-

Ž .cients is shown in Appendix A. Substituting the final expression, Eq. 38 , from
Ž .Appendix A into Eq. 8 , the Q3D horizontal momentum equations finally become

E E
˜ ˜ ˜ ˜V h q V V hqM qA Vž /b a b a b a bg gž /

Et Exa

˜ ˜ ˜E EV EV EVa b g
y h D qD qBbg ag a bž /Ex Ex Ex Exa g g g

S B˜ ˜Ez 1 ES E EV EV t ytab a b b b
qgh q y hn q y s0 10Ž .t ž /Ex r Ex Ex Ex Ex rb a a b a

Ž . Ž .Eqs. 7 and 10 are the Q3D equations. They are the generalized version of the
Ž .equations given in Svendsen and Putrevu 1994 for the special case of steady motion on

a cylindrical coast. The dispersive D terms are generalizations of the results found by
Ž . Ž .Taylor 1954 and Fisher 1978 . It is important to note here that all the terms in Eq.

Ž . Ž0.10 are functions of either the depth-averaged quantities or the V velocities, which1b

Ž .we can determine from Eq. 30 . In this form, the governing equations can readily be
coded in a numerical model, which solves the 2DH equations numerically while using

Ž .the semi-analytical solution of Eq. 30 to represent the effect of the depth-varying
Ž .currents or IG waves .

In the remainder of the paper, we will simplify the calculation of the velocity profiles
by assuming that they exhibit a quasi-steady response to the forcing. This, in other
words, means that the time scale of the motion is sufficiently large so that the

Ž .acceleration term in Eq. 30 can be neglected. The details are shown in Appendix B.

1 Ž .This definition is symbolically similar to Mei 1983 , who uses a different definition of u , however. Hewa
zrequires H u d zs0.yh wao
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3. Numerical solution and boundary conditions

In the version of the SHORECIRC model used here, the governing equations are
solved using a central finite difference scheme on a fixed spatial grid with an explicit
second-order Adams–Bashforth predictor and a third-order Adams–Moulton corrector
time-stepping scheme.

On the artificial, seaward boundary of the computational domain, an absorbing–gen-
erating boundary condition is imposed. This boundary condition, which was described in

Ž .detail in Van Dongeren and Svendsen 1997a , is capable of simultaneously generating
incoming and absorbing outgoing waves with a minimum of reflection.

At the landward side of the domain, a shoreline boundary condition based on a
simple inundation-drainage procedure is implemented. It is based on a control volume
approach in which water is stored in or drained from the shorewardmost wet cell. The

Ž .procedure is described in detail in Van Dongeren and Svendsen 1997b . On the lateral
Ž .shore-normal boundaries, we use a periodicity condition.

Ž .The SHORECIRC model has previously been compared to Visser’s 1984 laboratory
Ždata of the longshore current profile under monochromatic wave forcing Svendsen and

. Ž .Putrevu, 1994 , to Kostense’s 1984 laboratory data of IG waves under normally
Ž .incident bichromatic wave group forcing Van Dongeren et al., 1995 , and to Haller and

Ž . Ž .Dalrymple’s 1999 laboratory data of a rip current system Haas et al., 1998 . In
Ž .addition, the model has been applied DELILAH 1990 field data of shear wave motions

Ž . ŽSvendsen et al., 1997 and to field data of IG wave motions Van Dongeren et al.,
.2000 . However, the authors know no laboratory data of IG wave motion under

obliquely incident bichromatic wave groups to compare the present numerical results to.

4. Application: leaky IG waves

In the following, we will investigate the effect of the Q3D terms on IG waves due to
normally and obliquely incident wave groups, but limit the investigation to the case of
leaky IG waves.

The wave groups consist of two sinusoidal short-wave components that have a
slightly different frequency, but have the same incident direction of propagation at a

Ž .given depth Schaffer, 1994 . As the obliquely incident wave groups propagate towards¨
shore at the group speed c , they refract towards the shore-normal direction whereby itg

is assumed that both short-wave components refract in the same way and that they do
not diverge. The incoming bound IG wave forced by the wave groups propagates with
the groups. As the wave groups approach the beach and the short waves are dissipated,
this incoming IG wave is modified by the wave group transformation and is released. It
will then reflect from the shore and propagate and refract seawards as a free long wave
Ž .see Fig. 2 for a definition sketch .

In the following, this process will be illustrated by analyzing the linearized model
Ž .results and comparing to the linear, analytical solution by Schaffer 1994 . Then, we will¨

show the effect that the nonlinear terms in the 2DH shallow water equations have on the
solution, and finally we will discuss the relative importance of the Q3D terms.
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Fig. 2. Definition sketch of obliquely incident and obliquely reflected IG waves.

4.1. Comparison to the linear analytical solution

We first consider the linearized governing equations for the time-varying motion on a
plane beach connected to an offshore shelf. For reference, the linearized equations of

Ž .continuity and momentum solved by Schaffer 1994 read¨

Ez EQa
q s0 11Ž .

Et Exa

EQ Ez 1 ESb a b
qgh q s0 12Ž .o

Et Ex r Exb a

We consider the analytical short-wave forcing generated by a wave group consisting
of two sinusoidal short waves that have a slightly different frequency but have the same
direction of propagation. Given this short-wave forcing, the radiation stress S can beab

Ž .written as generalizing from Schaffer, 1994¨

S x , y ,t sr gP H 2 1q2dcos 2q , hGhŽ . Ž .Ž .ab a b 1 b

S x , y ,t sr gP g 2 h2 1q2d 1yk cos 2q , hFh 13Ž . Ž . Ž . Ž .Ž .ab a b o b

where H is the height of the carrier wave and the wave height modulation dsH rH1 2 1

is the ratio of the wave heights of the secondary wave to the primary wave in the group.
In this formulation, it is assumed that d is small. k is the breaking location parameter
Ž .Schaffer, 1994 , where a value of ks0 implies that the breakpoint is in a fixed¨
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location, irrespective of the individual wave height, and that wave groupiness is
Ž .transmitted into the surf zone according to the Schaffer and Svendsen 1988 model. A¨

value of ks1 implies that the breakpoint is moving on the time scale of the wave
Ž .groups according to the Symonds et al. 1982 model. In the surf zone, the saturated

breaking criterion is H sg h , and P is the nondimensional shape parameter for the1 o a b

short waves. Using sine wave theory for the short waves, the shape factor P in Eq.ab

Ž .13 is defined as

1 2kh k k 2kho a b o
P s 1q q d 14Ž .ab a b2ž /16 sinh2kh sinh2khko o

where k are components of the wave number of the carrier short-wave motion andab

d is the Kronecker delta.ab

Ž . Ž . Ž .The phase function is defined following Schaffer 1994 , his Eqs. 5 and 6 , as¨
x

2qs K d xqK yyDv t 15Ž .H x y
0

The forcing frequency Dv is the difference frequency between the frequencies v1

and v of the two short waves in the group2

Dv'v yv s2ev 16Ž .1 2

where e is the frequency modulation between the two waves in the wave group and v

Ž .is the mean of v and v . In Eq. 15 , K and K are the x and y components of the1 2 x y

wave number of the wave group, or in other words, they are the x and y components of
the difference between the wave number components of the two short waves, k Ž1. andx

k Ž2.. After some manipulation, this can be rewritten asx

k 1 sin2u iŽ1. Ž2.K 'k yk s2e y 17Ž .x x x ž /cosu n ni s

where nsc rc and u is the angle of incidence of the short waves with respect to theg i

normal, and the subscript s denotes conditions on the shelf. We also have

ksinu iŽ1. Ž2.K 'k yk s2e 18Ž .y y y ns

Ž Ž . Ž ..for the variation in the longshore direction consistent with Schaffer’s 1994 Eq. 8 .¨
The alongshore wave number is constant under Snell’s Law for parallel depth contours.

In the model formulation, we have chosen to retain the idea of considering a coastal
Ž Ž .slope rising from an outer, gentler slope equivalent to the shelf in Schaffer’s 1994¨

.analysis rather than the plane slope to infinitely large depth recommended by Lippmann
Ž .et al. 1997 . The reasons are the following. On the outer slope, we assume that the

depth varies so gently that the waves stay in local equilibrium and that at the toe of the
coastal slope, the set-down wave corresponds to the equilibrium bound wave. This

Ž .avoids the difficulty encountered by, e.g., Lippmann et al. 1997 in justifying the use of
long-wave theory in the deepwater part of their plane slope. It also enables us to specify
the conditions at the toe as a simple boundary condition for the inflow to the coastal
slope. This gives a much more flexible approach than the restricted case of a plane slope
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Ž .studied by Lippmann et al. 1997 . In the present study, we limit the analysis to a plane
coastal slope to facilitate a comparison to analytical results, but it should be emphasized
that the model can be run on an arbitrary bottom topography.

On the shelf we will assume an equilibrium bound long wave

1 SŽ1.
x x

z sy 19Ž .i 2r gh ycŽ .s gs

where the subscript s denotes conditions on the shelf and SŽ1. is the time-varying part ofx x
Ž .Eq. 13 , which propagates in the direction of the wave groups. This solution was first

Ž .found by Longuet-Higgins and Stewart 1962 .
In the linearized version of the model, we impose a no-flux condition at the

still-water shoreline. At the lateral boundaries, we impose periodicity. The longshore
domain length is put equal to the longshore projection of the IG wave length.

In the following case, the frequency modulation is chosen as ´s0.1, the mean
frequency of the short waves is vs1.8 sy1 and the frequency of the IG wave is
Dvs0.36 sy1. The breaking index is gs0.75, and in order to illustrate the effect of
the wave groupiness inside the surf zone, we choose first to consider the case of a fixed

Ž .breaker location by, i.e., ks0 in Eq. 13 . The beach slope is chosen as h s1r20.x

The other input parameters are the shelf depth, h , the carrier wave frequency v, thes

height H of the carrier wave on the shelf, and the amplitude modulation d .1,s

This large number of seemingly independent parameters makes this a complicated
Žproblem to specify. However, analysis of the problem formulation Van Dongeren and

.Svendsen, 1997b shows that these parameters can be cast into three controlling
dimensionless parameters, which read

gh2
x2 y2S s s6.31=10 20Ž .D 2h Dvs

h 1 c Hb g ,s 1,s
s s0.3 21Ž .(h g c hs g ,b s

ks0 22Ž .
Ž .Notice that this is a reduction from the five parameters used by Schaffer 1993 .¨

Here, S is equivalent to the slope parameter Ssh Lrh of Svendsen and HansenD x
Ž .1976 for IG wave motion.

The values chosen above for these parameters imply that the short waves will break
at h rh s0.3. In choosing these parameters, we have also made sure that the incidentb s

Ž .wave groups travel in intermediate to deep water on the shelf since n sc rcs0.721 ,s g

and that the waves break at a location so that there is a considerable surf zone width.
The grid spacings used in the numerical solution are D xsh r3, D ysh and thes s

Courant number ns0.7. By comparison with the results for smaller grid sizes, it is
found that this grid spacing gives sufficient accuracy all the way to the shoreline.

First, we will consider the special case of normally incident wave groups, which force
2D surfbeat. Fig 3a shows the comparison of the envelopes of the total long-wave
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Ž .Fig. 3. Envelope of the total long-wave motion vs. depth: present linearized model solid line and Schaffer’s¨
Ž . Ž . Ž . Ž .1993, 1994 analytical solution dashed line : a normally incident wave groups u s08; b obliquelyi,s

incident wave groups u s22.378. The breakpoint is located at h rh s0.3.i,s o s

motion. The solid line indicates the present linearized model and the dashed line
Ž . Ž .indicates the analytical solution by Schaffer and Svendsen 1988 and Schaffer 1993 .¨ ¨

The agreement is very good, which confirms the accuracy of the numerical computa-
tions. The small discrepancies are due to the coarser resolution of the numerical model.

The envelope represents the maximum and minimum surface elevation and is
normalized by d a2rh , where a sH r2. This normalization is chosen such that the1 s 1 1

Ž .incoming bound long wave becomes an O 1 quantity, which can be seen from a scaling
Ž .analysis of the dimensional Eq. 19

1 SŽ1. r gd a2 d a2
x x 1 1

z sy sO sO 23Ž .i 2 ž / ž /r r gh hgh ycŽ . s ss gs

where we have used the expression for the time-varying part of the radiation stress in
Ž .Eq. 13 .

The shore normal coordinate is made dimensionless by h , so that h rh s0s o s

corresponds to the still-water shoreline and h rh s1 to the toe of the slope. Theo s

breakpoint is located at h rh s0.3 in this case.o s

Fig. 3b shows the comparison between the present model and the analytical solution
Ž .by Schaffer 1994 for the case of an angle of incidence on the shelf of u s22.378,¨ i,s

which corresponds to an alongshore wave length of the IG wave of 150 m. The angle of
incidence is less than the limiting angle of incidence u max s37.078, so that the IG wavei,s
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motion is AleakyB, i.e., the outgoing long waves reach the shelf and are not trapped. The
angle of the outgoing long wave on the shelf will then be u s39.18. The agreement isr,s

Ž .again very good, which confirms the accuracy of the linear part of the numerical
solution.

4.2. Nonlinear 2DH and Q3D terms

As a next step, we will include in the model the nonlinear terms so that the governing
equations correspond to the nonlinear shallow water equations with forcing. At the
landward side of the domain, we impose the shoreline boundary condition described in
the previous section in order to allow for run-up and run-down.

Ž .Fig. 4 shows the envelope of the short-wave-averaged surface elevation dashed line .
ŽComparing to the linear solution which is a linear superposition of the steady set-up and
Ž . .the long-wave envelope in Fig. 3 a and plotted here as the dash-dotted line , we see that

including the nonlinear terms shifts the nodes and anti-nodes of the envelopes and
changes the amplitudes of the anti-nodes.

Ž . Ž .If we include the Q3D terms using Eqs. 1 and 10 , the cross-shore envelope of the
Ž .surface elevation changes even more see Fig. 4, solid line . The Q3D terms have a large

effect on the envelope in the surf zone and in the area around the breakpoint, a point that
will be discussed in more detail below. The nodes of the envelope, however, do not
seem to have shifted significantly relative to the 2DH solution for this particular case.

Fig. 4. Envelope of the surface elevation of the IG wave with an angle of incidence of u s08 vs. cross-shorei,s
Ž . Ž .distance: linear analytical solution by Schaffer and Svendsen 1988 dash-dotted line ; SHORECIRC without¨

Ž . Ž .Q3D terms dashed line ; SHORECIRC with Q3D terms solid line . The breakpoint is located at h rh s0.3.o s
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For the case of obliquely incident wave groups, Fig. 5 shows the envelope of the
Ž .short-wave-averaged surface elevation dashed line . Again, comparing to the linear

solution, the nonlinear terms shift the nodes and anti-nodes in a similar way as was
noticeable in the normally incident case. Here also, the Q3D terms have the largest
effect on the envelope in the surf zone and particularly in the area around the breakpoint.

Fig. 6 shows a snapshot of the surface elevation at a particular time for the obliquely
incident case. To better illustrate the pattern, we have shown three wave lengths in the
longshore y direction.

For comparison, Fig. 7 shows the snapshot of the surface elevation at approximately
the same time instance in the case when the linearized model with the same input
conditions is used.

4.2.1. Time and depth Õariation of the IG waÕe particle Õelocities
In order to calculate the Q3D terms in the momentum equations, we have to

Ž .determine the vertical variation of the IG wave particle velocities from Eq. 45 . It is
illustrative to use this numerical output and plot the IG particle velocity profiles at
various locations and at various time instances.

Fig. 8 shows the IG particle velocity profiles for three different locations on the
Ž .slope: h rh s0.42, 0.17 and 0.07 and at five time intervals of the IG wave period.o s

Fig. 5. Envelope of the surface elevation of the IG wave with an angle of incidence of u s22.378 vs.i,s
Ž . Ž .cross-shore distance: linear analytical solution by Schaffer and Svendsen 1988 dash-dotted line ; SHORE-¨

Ž . Ž .CIRC without Q3D terms dashed line ; SHORECIRC with Q3D terms solid line . The breakpoint is located
at h rh s0.3.o s
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Fig. 6. Snapshot of the surface elevation using the Q3D model.

The motion is a result of the forcing by the obliquely incident wave groups, and of the
incoming IG wave and the obliquely reflected IG wave. It is important to notice that the

Fig. 7. Snapshot of the surface elevation using the linearized model.
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Ž .Fig. 8. IG wave profiles for three locations h rh s0.42, 0.17 and 0.07 and for five time instances of theo s

IG wave period. The breakpoint is located at h rh s0.3.o s

Ž Ž ..steady part of the short-wave forcing Eq. 13 drives a steady longshore current, which
is included in the figure, and that the time-varying part of the forcing causes a variation
of the velocity profiles over an IG period, so in essence, the picture shown in Fig. 8
corresponds to an IG wave motion riding on top of a relatively strong current.

Since the breakpoint is located at h rh s0.3, the location h rh s0.42 is outsideo s o s

the surf zone. The IG wave velocity profiles at that location show a slight curvature in
the cross-shore direction and essentially vary linearly with depth in the longshore
direction. The two locations inside the surf zone show much more variation. Also, the
cross-shore velocity profiles vary significantly over one IG wave period, especially at
h rh s0.07.o s

The details of the variation of the velocity profiles can better be seen in Fig. 9, which
Ž .shows the projections of the profiles in the longshore and cross-shore direction. Fig. 9 a

Ž .shows the cross-shore velocity the AundertowB normalized by the local long-wave
celerity c s gh vs. normalized depth at h rh s0.42, which is located well outside(o o o s

the surf zone, for 10 intervals per IG wave period. It can be seen that the profiles are
slightly curved and, also, that the vertical gradient varies substantially with time. This is

Ž . Ž .due to the time-varying forcing f in Eq. 45 , which is a function of the radiationx

stress gradients, the pressure gradient and the gradients in the short-wave velocities.
Ž .Fig. 9 b shows the longshore velocity V at the same location outside the surf zone.

Due to the relatively small angle of incidence of the short-wave groups, the forcing
induced by the short waves in the y direction is also small. This means that these
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Fig. 9. IG wave particle velocities in the cross-shore and longshore direction normalized by the longwave
Ž .celerity c vs. normalized depth for 10 intervals per IG wave period: a Cross-shore velocity U ato

Ž . Ž . Ž . Ž .h rh s0.42; b Longshore velocity V at h rh s0.42; c U at h rh s0.17; d V at h rh s0.17; eo s o s o s o s
Ž .U at h rh s0.07; and f V at h rh s0.07.o s o s

profiles are fairly linear with only a slight curvature. The mean over depth is nonzero
Ždue to due to the lateral mixing which is mostly dispersive Svendsen and Putrevu,

.1994 .
Ž . Ž .The cross-shore profiles in Fig. 9 c and e exhibit the typical characteristic

time-varying undertow profile inside the surf zone that was previously shown by
Ž .Putrevu and Svendsen 1995 and tested against laboratory data by Smith and Svendsen

Ž . Ž . Ž .1995 . The longshore profiles in Fig. 9 d and f are slightly more tilted than the
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Ž .longshore current profile in Fig. 9 b because inside the surf zone, a strong mean forcing
is present due to the difference between the radiation stress gradient and the pressure
gradient. The time variation of the longshore profiles is not very large due to the fact
that inside the surf zone the short-wave groups have refracted to near normal incidence.

4.3. RelatiÕe magnitude of Q3D coefficients

The relative magnitude of the Q3D coefficients can be calculated directly from the
model results under the assumption of quasi-steady state. The analytical approximations

Ž . Ž .used are given in Appendix B as Eqs. 50 – 53 .
For the case of normally incident wave groups, Fig. 10 shows the variation in the

cross-shore direction of the Q3D coefficients for five time intervals per IG wave period.
In the figure, h rh s0 corresponds to the still-water shoreline and h rh s1 to the toeo s o s

of the beach. Although the results are presented in dimensional form, the important
feature of this figure is that it gives an indication of the variation of the magnitude of
these coefficients. It is also emphasized that the coefficients appear in the equations as

˜ Ž .coefficients to terms involving the depth-averaged velocity V defined by Eq. 5 or thea

gradients of those velocities. Therefore, the importance of the entire terms in the
governing equations will also be discussed below.

Ž .In Fig. 10, we have split the M term in Eq. 35 into an integral termx x

z Ž0. Ž0.C s U U d z 24Ž .Hx x 1 1
yho

and a term for the surface contribution

Ž0.E s2U z Q 25Ž .Ž .x x 1 w x

so that

M sC qE 26Ž .x x x x x x

In the case of shore-normal flow considered here, all the y components are zero, and
coefficients involving y components are not shown. All other coefficients show a large
time variation over an IG wave period, especially when compared with the magnitude

Ž .found for the case of no groupiness ds0 , indicated by the thick line. This indicates
that even a small temporal and spatial variation in the forcing induces an increased
curvature in the velocity profiles, which increases the Q3D terms. This aspect will be
discuss in more detail for the case of obliquely incident wave groups. Note that in this
and following figures, the magnitude of some of the coefficients increases with the
cross-shore coordinate. This is due to the fact that powers of the total depth appear in

Ž . Ž .Eqs. 50 – 53 .
For the case of obliquely incident wave groups at an angle of u s22.378, Figs.i,s

11–13 show the variation in the cross-shore direction of these Q3D coefficients for five
time intervals per IG wave period. These figures give an indication of the magnitude of
these coefficients relative to each other.

Fig. 11 shows that the B and D coefficients exhibit a quite large variation over an IG
wave period, which indicates that the local time-varying forcing is very important. It can
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Fig. 10. Magnitude of Q3D coefficients vs. cross-shore distance h rh for five intervals per IG wave periodo s
Ž . Ž . Ž . Ž . Ž .for the case of u s08: a B ; b D ; c C ; d E ; and e A . The case of no groupiness isi,s x x x x x x x x x x x

indicated by the thick solid line. The still-water shoreline is located at h rh s0 and the breakpoint ato s

h rh s0.3.o s

also be seen that the magnitude of all coefficients is significantly larger than the
Ž .magnitudes, which would have been found for the case of no groupiness ds0 , which

is indicated by the dashed line. The values increase significantly across the breakpoint,
since the AundertowB profiles become much more curved inside the surf zone due to the
increased forcing. Because of the simple short-wave modeling, this transition in curva-
ture occurs very rapidly, which increases the cross-shore gradients of the Q3D coeffi-
cients. The figure shows that the B coefficients are in general larger than theab
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Fig. 11. Magnitude of B and D coefficients vs. cross-shore distance h rh for five intervals per IG waveo s
Ž . Ž . Ž . Ž . Ž . Ž .period for the case of u s22.378: a B ; b D ; c B ; d D ; e B ; and f D . The case of noi,s x x x x x y x y y y y y

groupiness is indicated by the thick solid line. The still-water shoreline is located at h rh s0 and theo s

breakpoint at h rh s0.3.o s

˜Ž .corresponding D coefficients, but since these coefficients are multiplied by EV rExab g g

Ž .,y EWrEz , which is close to zero, we can expect the D terms to be moreab

important.
We also see that the D and B coefficients are larger than the D and Bx x x x x y x y

coefficients, which are in turn larger than the D and B coefficients. This is becausey y y y

the short-wave groups refract towards the shore-normal, which means that the cross-shore
Ž .forcing f in Eq. 45 becomes dominant over the forcing in the longshore direction. Eq.x
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Fig. 12. Magnitude of C and E coefficients vs. cross-shore distance h rh for five intervals per IG waveo s
Ž . Ž . Ž . Ž . Ž . Ž .period for the case of u s22.378: a C ; b E ; c C ; d E ; e C ; and f E . The case of noi,s x x x x x y x y y y y y

groupiness is indicated by the thick solid line. The still-water shoreline is located at h rh s0 and theo s

breakpoint at h rh s0.3.o s

Ž .45 also implies that the cross-shore velocities are more curved than the longshore
velocities, which could already be seen in Fig. 9. This curvature of the velocity profiles
directly influences the magnitude of the dispersive coefficients.

Ž .For convenience, we will again split the M term in Eq. 35 into an integral termab

z

Ž0. Ž0.C s V V d z 27Ž .Hab 1a 1b
yho
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Fig. 13. Magnitude of A coefficients vs. cross-shore distance h rh for five intervals per IG wave period foro s
Ž . Ž . Ž . Ž . Ž . Ž .the case of u s22.378: a A ; b A ; c A ; d A ; e A ; and f A . The case of noi,s x x x x x y x y x x y y y y x y y y

groupiness is indicated by the thick solid line. The still-water shoreline is located at h rh s0 and theo s

breakpoint at h rh s0.3.o s

and a term for the surface contribution

Ž0. Ž0.E sV z Q qV z Q 28Ž .Ž . Ž .ab 1a wb 1b wa

so that

M sC qE 29Ž .ab a b a b
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Ž .Fig. 12 shows the dimensional values of C and E as defined in Eqs. 27 andab a b

Ž .28 , respectively. The time variation over the group period is again very significant. As
in the previous figure, the C and E coefficients are larger than the C and Cx x x x x y x y

coefficients, which are in turn larger than the C and C coefficients, due to they y y y

refraction of the wave groups towards the shore-normal.
The E coefficients are of equal magnitude and even slightly larger than the

Ž .corresponding C coefficients, especially just inside the breakpoint h rh -0.3 , whereo s

the surface velocities become large due to the large gradients in the forcing and the large
local value of the short-wave-induced volume flux Q in the breaking waves. In fact,wb

it will be shown below that the equivalent terms in the equations have a very significant
effect.2

Finally, Fig. 13 shows the variation of the A coefficients. Since this term isabg

Ž Ž .symmetrical in the first two indices as was already seen in Eq. 36 , we can reduce the
number of A coefficients from eight to six. The figure shows that the A term isx x x

much larger than all the other coefficients. It can also be seen that seawards of the
breakpoint the values of all these coefficients are larger than in the surf zone. However,

˜ ˜in the momentum equations, these coefficients are multiplied by U and V, which both
tend to zero offshore. As will be shown in the next section, this means that the
importance of these terms is relatively small offshore. The values of A varyabg

significantly across the breakpoint because they depend on the horizontal gradients of
Ž Ž ..the rapidly changing velocity profiles see Eq. 36 . This means that, in the governing

equations, we can expect some of these A terms to be large around the breakpoint. The
contribution of these and all other Q3D terms to the momentum equations will be shown
in the next section.

4.4. Analysis of Q3D contributions to the momentum equations

As mentioned the isolated analysis of the Q3D mixing coefficients given in the
previous section only gives a partial picture of the mixing effect. To fully assess the
importance of the nonlinear processes described by these coefficients, we need to look at
the corresponding terms in the equations. The analysis is performed at an arbitrary time
after the periodic state of the IG waves has been reached and is strictly speaking only
valid for this particular time. However, similar analysis of the variation for other times
show that the magnitudes of the terms in the equations at this time instance are indeed
characteristic for their magnitudes at any time in the periodic state.

We first analyze the terms in the x-momentum equation for the case of normal
Ž .incidence all terms in the y-momentum equation are identically zero . Fig. 14 shows

the most important terms in the x-momentum equation. The AconventionalB terms
Ž . Ž .Ž .shown are the pressure gradient gh EzrEx , the radiation stress gradient 1rr ES rExx x

2 For the short-wave model used here, the variation right around the breakpoint is somewhat exaggerated
due to the sudden changes in wave height assumed in that region. However, the conclusion holds also for more
realistic variations of the change in wave height at the initiation of breaking.
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Fig. 14. Magnitude of significant terms in x the momentum equation vs. cross-shore distance h rh for theo s
Ž . ŽŽ . . Ž .case of u s08: pressure gradient solid ; radiation stress gradient 1r r ES rEx dashed ; local accelera-i,s x x

˜Ž . Ž . Ž .Ž Ž .Ž .. Ž .tion dash-dotted ; EM rEx stars ; and ErEx h B q2 D q2n EVrEx dots . The still-water shore-x x x x x x t

line is located at h rh s0 and the breakpoint at h rh s0.3.o s o s

Ž .and the local acceleration. Of the Q3D terms, the EM rEx term is large only locallyx x
Ž .at the breakpoint. This is due to the choice of a fixed breaker location ks0 , which

causes the cross-shore velocity profiles to undergo a rapid change over a short distance
Žaround the breakpoint. Notice that M is equivalent to the momentum correctionx x

.factor in hydraulics. The term is positive, which leads to a negative pressure gradient in
the balance. In the inner surf zone, this term is found comparable to other terms, and is
negative, which causes an increase in the pressure gradient and explains the difference
between the envelopes of Fig. 5. Also shown is the sum of the B and D dispersivex x x x

mixing terms, which has a minor contribution to the cross-shore momentum balance.
Ž .Hence, we have confirmed that the original result of Svendsen and Putrevu 1994 that

the cross-shore momentum balance is only affected to a minor degree by the dispersive
mixing can be indeed be extended to 2DH situations.

For the case of obliquely incident wave groups, Fig. 15 shows the most important
Ž .terms in the x- and y-momentum equations. Fig. 15 a shows the leading terms in the

x-momentum equation, which are the same as in the normal-incidence case.
Ž . Ž .The dominating terms in the y component of Eq. 10 are shown in Fig. 15 b and

Ž . Ž .c . Those terms are as can be expected the local acceleration, the pressure gradient
Ž . Ž .Ž . Ž .Ž .gh EzrE y , the radiation shear stresses 1rr ES rE y and 1rx ES rE y , the advec-x y y y

Ž .Ž .tion term ErEx Q Q rh , and the bottom friction. However, we also see that in thex y
˜Ž .Ž Ž ..longshore direction, the two Q3D terms, EM rEx and ErEx hD EVrEx arex y x x

important. The first term is significant around the breakpoint for the same reason that the
EM rEx was in the x-momentum equation. The second term is of the same order ofx x

magnitude as the 2DH terms inside the surf zone and is the same that was found to be in
Žthe dispersion of momentum in the case of a steady longshore current Svendsen and
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Ž .Fig. 15. Magnitude of significant terms in the momentum equations vs. cross-shore distance h rh . ao s
Ž . Ž .x-Momentum equation: as in the previous figure; b y-momentum equation: pressure gradient solid ,

Ž .Ž . Ž . Ž . Ž . Ž .radiation stress gradient 1r r ES rEx dashed , local acceleration dash-dotted and EM rEx stars ; cx y x y
Ž .Ž . Ž . Ž .Ž . Ž .y-momentum equation: advective acceleration ErEx Q Q rh solid , 1r r ES rE y dashed ,x y y y

˜Ž .Ž Ž .. Ž . Ž .y ErEx hD EVrEx dash-dotted and bottom friction stars . The still-water shoreline is located atx x

h rh s0 and the breakpoint at h rh s0.3.o s o s

.Putrevu, 1994 . In the present case — where the shear in the longshore current is also
large — this term is again important. This is in accordance with the observation pointed

Ž .out by Sancho and Svendsen 1997 that the forcing in longshore direction is usually an
order of magnitude smaller than in the cross-shore direction, which implies that the
dispersive terms become relatively more important in longshore momentum balance.
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This illustrates that while the Q3D coefficients may exhibit a large temporal and
spatial variation, their final contribution to the governing equations is controlled by the
local IG wave velocity and current shear with which they appear in the momentum

˜equations. In this case of a longshore uniform beach, the EVrEx shear is significantly
larger than the other velocity shears, and only those Q3D coefficients, which are
multiplied by this shear have a significant contribution. Releasing the constraint of a
longshore-uniform beach, for instance in the case of a barred beach with a rip channel,

Ž .will allow other velocity shears to become locally large so that other Q3D terms
become significant as well.

5. Conclusions

A numerical study of the forcing of leaky IG waves by normally and obliquely
incident wave groups is performed using the SHORECIRC model which incorporates
the Q3D terms generated by the depth variation of the velocity profiles. The governing
equations are derived from basic principles and include the effect of the depth variation
of the long waves by means of semi-analytical solutions.

The numerical model including the boundary conditions is described briefly. The
Ž .model’s accuracy in linearized form is verified by comparing to the analytical solution

for the linear surf beat envelope generated by a weakly modulated carrier wave
Ž .Schaffer 1993, 1994 .¨

The largest effect of the Q3D terms is in the dispersive mixing effect of the
shore-parallel momentum. This effect primarily acts to modify the mean longshore
current, which is generated by the carrier wave as described by Svendsen and Putrevu
Ž .1994 .

However, for the case of normally incident and obliquely incident wave groups,
represented as a weakly modulated carrier wave, it is shown that a slight modulation in
the wave heights of 10% due to wave groupiness causes large temporal and spatial
variations in the Q3D coefficients, relative to the case of no groupiness. The increase in
magnitude of the coefficients due to the groupiness is about a factor 2.

It is also shown that only those Q3D coefficients, which appear in combination with
the largest velocity shears, make a significant contribution to the momentum equations
and are of comparable size relative to the 2DH terms retained in conventional nonlinear
shallow water models. The largest 3D terms are the lateral dispersive mixing term and
the momentum correction factor.

These Q3D terms turn out to have a significant effect on the structure of the
cross-shore envelope of the forced IG waves, especially around the breakpoint and in the
inner surf zone. These terms cause a larger cross-shore gradient of the surface elevation
in the surf zone.

From the model equations, the vertical IG wave velocity profiles can also be
determined. For locations inside the surf zone, these exhibit a large curvature and time
variation in the cross-shore direction, and a small — but essential — depth variation in
the longshore direction. Outside the surf zone, the velocities in the longshore direction
are small, while in the cross-shore direction, only the upper part of the profile is curved.
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Appendix A. Substitution of the depth-dependent terms by depth-invariant coeffi-
cients

The replacement of the depth-dependent terms with depth-invariant coefficients can
Ž .be achieved by using the local i.e., not depth-integrated , time-averaged momentum

Ž .equations see, e.g., Svendsen and Lorenz, 1989 , which after some manipulations can
Ž .be written as Van Dongeren and Svendsen, 1997b

S BEV E EV 1 E t ytz1b 1b b b
y n syb q S y t d z yHt b a b a bž / ž /Et Ez Ez rh Ex rhyha o

˜EV EV EVb 1b 1b˜yV yV yW 30Ž .1a a
Ex Ex Eza a

where

˜ ˜E Eu w E EV EVwb w a b2b s u u yw q y n q 31Ž .ž /b wa wb w t ž /ž /Ex Ez Ex Ex Exa a b a

In this expression, w denotes the vertical short-wave velocity and n is the turbulentw t
Ž .eddy viscosity and we have expressed the turbulent shear stresses as e.g., Rodi, 1980 ,

˜ ˜EV EVa b
t srn q 32Ž .ab t ž /Ex Exb a

Ž .In Eq. 30 , small terms included in the full version of the equation have been
Ž .omitted. See Putrevu and Svendsen 1999 for a detailed discussion of the expected

magnitude of the terms in the full equation.
Ž .Eq. 30 can be solved more easily if we split the depth-varying velocity into two

parts

V sV Ž0.qV Ž1. 33Ž .1b 1b 1b
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Ž0. Ž .The first part of V is primarily the slowly time-varying component generated by1b

Ž .the local external forcing, which are the first five terms on the RHS of Eq. 30 , while
Žthe second smaller contribution is generated by the advective terms the last three terms

. Ž . Ž0.on the RHS in Eq. 30 . Hence, we can solve for V , which represents the first1b

approximation to the depth-varying part of the IG velocity profiles, which is done for the
quasi-steady state in Appendix B.

Ž .Following the derivation of Putrevu and Svendsen 1997, 1999 , which is omitted
here for brevity, we can define the coefficients

z1 1z z 3Ž0. Ž0.D ' V V d z 34Ž . Ž .H H Hag 1a 1gh nyh z yhto o

z Ž0. Ž0. Ž0. Ž0.M ' V V d zqV z Q qV z Q 35Ž .Ž . Ž .Hab 1a 1b 1a wb 1b wa
yho

z1 E Ehoz z 2Ž . Ž .Ž0. 0 0A 'y V V d zyV d zŽ .H H Habg 1a 1b 1bž /n Ex Exyh z yht g go o

z1 E Ehoz z 2Ž . Ž .Ž0. 0 0y V V d zyV d z 36Ž . Ž .H H H1b 1a 1až /n Ex Exyh z yht g go o

z1 1 1 1z z z z3 2Ž0. Ž0. Ž0. Ž0.B ' V V d z y V V h qz d zŽ . Ž . Ž .H H H H Hab 1a 1b 1a 1b oh n h nyh z yh yh zt to o o

1 1z z 2Ž0. Ž0.y V V h qz d z 37Ž . Ž . Ž .H H1b 1a oh nyh z to

These expressions appear when the solution for V Ž0. is substituted into the depth-de-1a

Ž .pendent integrals in Eq. 8 . We get for these integrals

zz
V V d zq u V qu V d zH H1a 1b wa 1b wb 1a

yh zo t

˜ ˜ ˜EV EV EVb a g ˜fM yh D qD qB qA V 38Ž .ab ag bg a b a bg gž /Ex Ex Exg g g

Ž .This expression is substituted into Eq. 8 to get the Q3D horizontal momentum
equations.

Appendix B. Quasi-steady-state approximation and calculation of the coefficients

Ž .If we nondimensionalize the left-hand side of Eq. 30 using

X X X XŽ0.Ž0.tsTt zsh z n sC h gh n V sc V 39Ž .(b t n b b t 1b b 1b



( )A.R. Van Dongeren, I.A. SÕendsenrCoastal Engineering 41 2000 467–496 493

where T is a typical time scale of the long-wave motion, C is a proportionality constantn

and h and c are the depth and celerity at breaking, respectively. The nondimensional-b b
Ž .ized left-hand side of Eq. 30 then becomes

Ž .XŽ0. X 0C c h ghc EV E EV(n b b bb 1b 1bXy n 40Ž .X Xt2 ž /T Et Ez Ezhb

This implies that the acceleration is small if the parameter

1 hb
<1 41Ž .(C T gn

Ž .Under these assumptions, Eq. 30 reduces to a second-order equation in z and can
be solved with two boundary conditions, for which we choose

EV Ž0. t B
1b b

s at zsyh 42Ž .o
Ez rn t

which assumes a slip velocity and an associated stress, and

z Ž0.V d zsyQ 43Ž .H 1b wb
yho

If we define
S B1 E t ytz b b

f 'b y S y t d z q 44Ž .Hb b a b a bž /rh Ex rhyha o

Ž . Ž0.and integrating Eq. 30 twice for V while applying the boundary conditions, we get1b

the velocity profile

V Ž0.sb j 2 qb jqb 45Ž .1b 1 2 3

where

fb
b s 46Ž .1 2n t

t B
b

b s 47Ž .2
rn t

b h Q1 wb2b sy h qb q 48Ž .3 2ž /3 2 h

and where the vertical coordinate z has been transformed to a new coordinate j , under
the transformation jszqh , which means that js0 at the local bottom and jshso

h qz at the mean surface elevation.o
Ž .Putrevu and Svendsen 1997, 1999 show that this expression is the first approxima-

Ž .tion to the time-dependent solution of Eq. 30 . Hence, in the quasi-steady approxima-
Žtion, the velocity profiles are quadratic and known so that the Q3D coefficients Eqs.

Ž . Ž ..34 – 37 can be expressed in terms of the coefficients of the velocity profiles.
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Ž .Equivalent to Eq. 45 , we can write

V Ž0.sa j 2 qa jqa 49Ž .1a 1 2 3

where a , a and a have the equivalent definitions for direction a .1 2 3
Ž . Ž . Ž . Ž .Using Eqs. 45 and 49 , we can then express the coefficients, Eqs. 34 – 37 , in

terms of known variables and parameters. After some manipulations, the dispersion
Ž .coefficient, Eq. 34 , can be rewritten as

1 h6 h5 3 h4

D s a b q a b qa b q a b q a b qa bŽ .ab 1 1 1 2 2 1 1 3 2 2 3 1ž /žn 63 36 4 15t

h3 h2

q a b qa b qa b 50Ž . Ž .2 3 3 2 3 3 /8 3

Notice that the result is symmetrical in a and b or, in other words, in direction.
Ž .We can write Eq. 35 as

h5 h4 h3

M sa b q a b qa b q a b qa b qa bŽ . Ž .ab 1 1 1 2 2 1 1 3 2 2 3 15 4 3

h2
2q a b qa b qa b hq a h qa hqa QŽ . Ž .2 3 3 2 3 3 1 2 3 wb2

q b h2 qb hqb Q 51Ž .Ž .1 2 3 wa

which is also directionally symmetrical.
Ž .Eq. 36 can be expressed as

7 6 51 Ea b h Ea b Ea b h Ea b Ea b h1 1 1 2 2 1 1 3 3 1
A sy q q q qabg ž / ž /n Ex 63 Ex Ex 36 Ex Ex 15t g g g g g

5 4 3Ea b h Ea b Ea b h Ea b h2 2 2 3 3 2 3 3
q q q q 52Ž .ž /Ex 20 Ex Ex 8 Ex 3g g g g

This expression is symmetrical in the first two indices.
Ž .Finally, Eq. 37 becomes

3 2h 4 h h 2
3B sy a b h q a b qa b qa b q a b qa b hŽ . Ž .ab 1 1 1 2 2 1 2 2 1 3 3 1

n 63 12 10 15t

1
q a b qa b 53Ž . Ž .2 3 3 28

which is also symmetrical.
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