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Water Waves Induced by a Fluctuating Tangential Stress*

Takeshi Ujrs*

Abstract: In the framework of linear wave theory both the effects of tangential and normal
stresses on the water waves are discussed without the assumption of irrotational water motion.
A formal solution initially at rest with level surface and developed under the actions of the
surface stresses depending arbitrarily on time and sinusoidally on space is obtained.

A progressive wave type tangential stress whose wave number and frequency are satisfying
the dispersion relation of the water waves is shown to be equivalent to the normal stress of
the same type on the growth of the waves except the phase relations between the stresses
and the water motion. The growth rate of the waves induced by the tangential stress is also

shown to be quite insensitive to the actual value of the viscosity.

The rotational part of the water motion can dominate only in the early stage of wave
generation and becomes negligible with the growth of the waves relative to the irrotational
part of the motion even in the case where the motion is induced by the tangential stress

alone. Therefore it is not reasonable to neglect effect of the tangential stress on wind waves
even if the developed wind waves seem to be irrotational.

1. Introduction

A sight seen in near shore region of the sea
in the wind blowing seaward from the land or
wind waves in a wind-wave tunnel, give us the
impression that the water surface is dragged by
the wind. The wind blows horizontally over
the water surface, so it is natural to consider
that the wind stress also mainly acts horizentally
on the surface.

It is well known that a wind blowing over a
ocean surface makes a drift current which is
inevitably rotational motion of the water and
can not be generated without the effect of the
viscosity of the water at the surface. Therefore
the momentum of the flow is transferred form
the air to the water by the effect of the vis-
cosities of the fluids. If it be so, it seems
unlikely that the momentum is uniformly trans-
ferred from the air to the water rather than not
uniformly.
sider that the presence of ups and downs of the
water surface makes some differences between
the magnitudes of time rate of the momentum
transfer at the ups and the downs. In this
case, the ununiformity of the magnitude of the

For example, it is natural to con-
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momentum flux propagates on the water surface.
If the ups and downs take the form of a wave
train, the ununiformity propagates just with the
phase velocity of the wave train independently
of the wind velocity blowing over it. It is
interesting that whether the phase velocity of
the wave train is larger than the wind velocity
or not, the situation mentioned above seems to
be quite unchanged. This suggests a possibility
of an exitation mechanism of a wave train whose
phase velocity is faster than the wind velocity
blowing over it.

Here a question arises whether a propagating
ununiformity of time rate of the momentum
transfer from the air to the water by the vis-
cosities has some effects on wave generation and
growth or not.

Available theories are classified into twao
groups 7.e. some of them stand on the hypoth-
esis of irrotational motion of water, accord-
ingly the effect of a fluctuating tangential stress
can not be included in them, and the others do
not. Some of the former are as follows.

It was known that in certain circumstances
Kelvin-Helmholts instability may arise at the
surface of separation of two fluids when there
is a finite difference between the velocities on
the two sides of the surface on the hypothesis
of irrotational motion for frictionless fluids
(LaMB, 1932, pp. 373-375). The predicted
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critical value of the velocity of the wind {mini-
mum wind velocity to generate wind waves)
relative to the water is in disagreement with
observations (JEFFREYS, 1924).

A model of a resonance mechanism between
a component of random surface pressure distri-
bution associated with the onset of a turbulent
wind and the free surface wave having the
same wave number as the component, was
proposed by PHILLIPS (1957). In a parallel shear
flow over a water surface disturbed by waves,
MILES (1957) made the calculation of the wave
induced pressure component in phase with the
wave slope on the basis of the inviscid Orr-
Sommerfeld equation. A combined effect of
these two kinds of pressure fluctuations owing
to turbulent wind and induced by waves on
generation and growth of the water waves was
considered by PHILLIPS (1969).
that the growth rates predicted from these
theories are smaller than the observations exe-
cuted by SNYDER and CoX (1966) and BAR-
NETT and WILKERSON (1967). The observed
spectra of ocean waves have respectable amount

It was shown

of energy in the components whose phase veloc™
ities are faster than mean wind velocity, clearly’
this can not be explained by these theories.

The extension works of these theories in
which the effect of the wave induced variation
of the turbulence of wind and weak wave-wave
interaction studied by HASSELMANN (1962) are
introduced to overscome the weak points of
them, have been developing (IMASATO, 1976;
IcHIKAWA and IMASATO, 1976).

As the second group, JEFFREYS (1924) intro-
duced at first, sheltering concept to illustrate
pressure distribution relative to water surface
elevation, and next, he introduced the hypothesis
of skin friction. In both cases the motion of
water was not assumed irrotational. In the
former case the tangential stress was set zero
at the surface and the wvalue of sheltering
coefficient estimated from critical wind velocity
leads to overestimate of growth rate of wind
waves in comparison with observations, In the
latter case the surface pressure was given by
Bernoulli’s equation on the assumption of irro-
tational air flow and the tangential stress was
set to be proportional to the square of the air
velocity at the surface. Though he denied
himself the latter theory because of the dis-
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agreement of the critical wind velocity estimated
by the theory with observations, his theory
does not mean that the tangential stress can
not have any effect on the waves but means
that the stress can have some.

It was shown by LAMB (1932, pp. 625-631)
that in an equilibrium state, both of normal
stress and tangential stress can independently
maintain a train of waves in the form of ¢'®*9%
respectively, where i=+/—1, £ is the wave
number, o the frequency. The stresses necessary
to maintain a train 7 are

(1.1}

Tyy=—4 iukon, T.y=4 puron

where 74, and 7., are normal and tangential
stresses in the form of %799 respectively, y
the coefficient of viscosity of water.

Starting from a linear system of equation of
motion and boundary conditions, HAMADA ez
al, (1963) calculated a characteristic value of
complex frequency of a water wave component
under the assumption that each magnitude of
fluctuating tangential and normal stresses is
proportional to surface elevation with a complex
Their calculation shows that a tangential
stress T,y has a equivalent effect on waves to

factor.

the normal stress #,,= —iT4y.

By adopting an approximation about the
boundary-layer beneath a water surface,
LONGUET-HIGGINS (1968) showed that a vari-
able tangential stress 7., is precisely equivalent
to a normal stress 7T,,=—if,, in quadrature
with the tangential stress as to the effect on
waves, and the corresponding rate of growth
of the waves is less than |t:4]/2 pc, where p is
the density of water and ¢ the phase velocity
of the waves. Under the assumptions that the
horizontal component of the orbital velocity in
the waves at the surface is much larger than
the additional velocity in the boundary layer
due to the fluctuating tangential stress, and the
dissipation due to the viscosity 1s negligibly
smaller than the work done by the tangential
stress at the surface, he gave the relation

a7

[z2y]/2 pc

The conclusive results about the effect of a
tangential stress fluctuation on waves have not
been obtained yet, so let us consider only the



‘Water Waves by Tangential Stress 191

effect of a fluctuating tangential stress on waves
in contradistinction to that of normal one out
of many mechanisms which are concerned in
momentum transfer between the atmosphere
and the sea. When we come to the conclusion
that the effect of a fluctuating tangential stress
can have only negligibly smaller effect than
that of normal one, the hypothesis of irrotational
water motion can be an excellent approximation
to the problems of wind waves, and it is also
effective to simplify the analysis of the problems.
On the other hand, when the reverse is the
case, it requires sufficient grounds for the justi-
fication of the each introduction of the irro-
tational-hypothesis to the problems of wind
waves. In this case, evaluation of the magni-
tude of rotational part of the water motion
induced by the fluctuating tangential stress and
its variation with time also seem to be worth-
while subject to investigate for better under-
standing about the physical processes occurring
at the air-water interface and for the inter-
pretation of the experimental results measuring
particle velocity of the water accompanied with
wind waves.

Restating the end of this study, among the
many mechanisms which take a part of mo-
mentum iransfer from the air to the water,
only the effect of a fluctuating tangential stress
on wave generation and growth is clarified in
comparison with the effect of a normal one.

2. Fundamental equations

To investigate the problem mensioned above,
let us consider the water motion which is as-
sumed in two dimensions, of which one (') is
horizontal, and the other (y") is drawn vertically
upwards from the undisturbed water surface
and to be induced by a tangential stress fluctu-
ation and normal one acting on the surface,
where the prime mean the dimensional. Let
us also suppose that there are no limits to the
water and no changes of the amplitudes of the
stress fluctuations in the direction of 2’ and the
depth of the water is infinite, and the motion
is infinitely small and has been generated
originally from rest.

Linear equations of the motion nondimension-
alized using wave number & and frequency o
with incompressibility assumption of water,
reduce to the forms

ouw  dp .
IR rad
av )
— —_ 2 —
% 3 +aFv—g 2.1
with
du dv
a—.x—+5§ =0 (2.2)

where x=kz’, y=xy’, t=0t’, u=(c/)u’, v=
(k/o)’, p=(p'/oXK/0)?, a=vk?/o, g=g'k/c*
and ¢/ is time, 2’ the horizontal velocity
component, v’ the vertical one, v the kine-
matic coeflicient of viscosity of water, p’ the
pressure, g the density of water and ¢’ the
acceleration of gravity.

Hereafter constants and variables are dimension-

less unless they are used with notice. The

above equations are satisfied by

90 00
M—H—'(:)“;-Fu, 'Z)——‘—a“y‘—“’v (23)
and
oD
pﬁa—t— Y 2.4
provided
Vo =0 2.5

i 00

a—t—:aszZ and a—t:aV"’"& (2.6)
where @ is a scalar function of =z, ¥y and ¢, #
the rotational part of horizontal velocity com-
ponent and ¥ the vertical one. The equation

o 0
T + E =0 2.7
is also satisfied as a result of Eqs. (2.2), (2.3)
and (2.5) (LAMB, 1932, pp. 625-626).
Neglecting second order terms, kinematic
surface condition becomes
a7y
Fraaid at y=0 (2.8)
where 7 is surface elevation. If P,, denote
normal stress and P., the tangential stress, the
dynamical conditions at the surface are
ov oy

Py==ptlaz —Tos 29
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and

ov  Ou
ra=i( 7+ 5)

where T=T"5*/p0? and T" is the surface tension.
If the depth of water be infinite, the condition
of no motion at the bottom are

+ 2.10)

.10

#=0=0=0, as y—>—0

The condition that the motion is initially at rest
gives

H=p=p=0=0 at =0  (2.12)

3. Formal solutions

Using Green’s formula, the solution of Eq.
(2.6) satisfying the initial condition (2.12) can
be expressed by the normal derivative of it at
the boundary. The expression becomes

0§, €, 7)

oo H
a(x, 1Y, t):S S alr aC
- ]Q

_dEde BD)

>

where ¥ is the Green’s function of the second
kind satisfying

%2‘—20 at {=0 and ¥=0 as {——oo

The Green’s function ¥, the solution of

(3.2)

(%+ VE)YIT: —8(Ri— Ry

where R:=(£,(,7), Rs=(x,y,t) and & the
Dirac’s delta function, which is satisfying the
boundary condition (3.2) is obtained by the
reflection method of constructing Green’s func-

tion. It is
0, for t—7<0,
| 1 (x—8)2+(y—0)2 =)+ y+02
=4 ¢e" dal-1) +e” dait—7)
47Ea(t—z'){ }
for t—7>0 (3.3)
This expression changes Eq. (3.1) into
exp{_(x_é)g'*_’yg}
- (=1 da(t—7)
#(x,y, )= S_w ‘0 onli—1)
Py
X LSS dé dr (3.4)
at ¢=0

un

In application to simple-harmonic motion, the
equations are shortened if we assume complex
factor such as ¢, and in the end let us reject
If oi/ay,
at y=0, is assumed to have the form

imaginary parts of our expressions.

o .
S, =T

the expression (3.4) gives

,yZ
R ey v
0 Vi—z
Xjf(t) dr

Using the continuity relation (2.7) and the
boundary conditions at the bottom (2.11), this
gives

a(x,y, 6)= j Z‘e”‘g
(3.5)

u__ow
dx 9y
—o— L
Ve ‘e"p{_“‘f _4a<t—r>}
_lx/"?F e jo—-- - A de
. .Aa  [reTreD)
D=—i x/TL' So ‘/t;;f(T)dT
v yz
Xj_w exP{—lla(t—r)}dy
and
00 Ja [t
'5;;* '\/E e So '\/t_z_f(‘l')df
x r v }d 3.6
. exp{~4a(t_7) Y 3.6
On the surface these become
o~ \/7d mst, ,ejf,(t_”
= v e o it JF@)dr
z
P= ~z’ae“‘§ e I f(z)dr
0
0 00 _ .Ja , (fet
R i R AL
and
Z—Z- = ae”-‘[;e*“ ¢Of()dr 3.7
respectively.

At the water surface Eq. (2.4) is denoted by
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)
p=g 3.8
After elimination of p from the normal stress
condition (2.9) using the relation (3.8), partial
differentiation with respect to # transforms the

stress condition into

b2l 3P o0 0
a2 2 9% T By
_ PV 3Py
=(g+T)+2a —— P I Pahy v , for y=0

where the relation (2.3) and (2.8) are used.
Since the system of equations is linear, all vari-
ables have space factor e, provided one of
which has the factor, Therefore, notations

Pyy=€pyy(®), Pay=e'p,(f)

and @ =e'+¥(z) (3.10)

are allowed, considering that @ must satisfy
Laplace’s equation. Using these notations,
relation (3.9) is written in the form

¢5 ¢

S-+Gp=he  (3.11)

where G=¢g+ 7T and A(¢) is time dependent part
of the right hand side of Eq. (3.9), and is
expressed by f(#) with aid of Eq. (3.7),

Py

W) =—- —zaGS et -\

\/d a t —a(rt—'r)
—Zza\/ﬁ; —%SO Jioe - fe)dr

The solution to (3.11) satisfying the initial
conditions

2 -
¢—-a—t-—0 at =0

appropriate to a state of rest, is expressed in
the form

#t)= S h(x)e™ =) gin {w(—)ldr (3.12)

where o= VG —at.

The tangential stress condition (2.10) is also
transformed by using Eqgs. (2.3), (3.7) and (3.10)
into

i ta [t _ o,
6=~ 5 fO— 5| e pras

t g b (3.13)
a

Equating ¢(2) appearing in (3.12) to that of (3.13)

leads to an integral equation that f{#) must

satisly (KODAIRA, 1974),

N T va
ZzaSO{——zaGg (- )f(r)a’r——.?m‘/n_ Fr3

0 g—(g-1) 8,y ®
- — —a(i—g)
S
¢
X sin {w(t—8)} dﬁ—cﬂa)g e =" firydr
0

—aaf(D)+wp.y, =0 3.14)

where p,, and p., should be given externally.
The solution f{z) to the equation (3.14) for given
external stresses pyy and p., is connected with
the water motion through Eqs. (3.5), (3.6) and
(3.12). To find the solution f(£), the Laplace
transformation will be useful because integrals
appearing in the equation have the form of
convolution,

The Laplace transformation of Eq. (3.14) is

) o ALY 2iayas
e e O e )
o, L
()} oL ity
+oL{pay)=0 (3.15)

where s is a parameter of the Laplace trans-
formation and

L= S e

In Eq. (3.15), the term
appears, this comes from

(55
Vit Vs+ta

It is a double-valued function of s, when s is
considered in the complex plane. To remove
double-valued character from the function, let
cut the plane of s along the straight line from
the point, s= —a, with the angle ¢ between the
line and the real exis from the point to oo,
the cut line must be set not to cross the domain
in which the Laplace transformation and the

including 1/ +/s+a
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inversion,
f(z)~—l—gm°°L(f) igs, 70
- 27!7l 7—ioo € 5 r>
are defined. Hence the relation

T 3
—Lh<= .
2< <27L' (3.16)

(s+a)(2mL( ’ ”) {(s+a)2+w2}L(sz)]

must be satisfied, and the argument of s+a
should lie in the range

0>Arg (s+a@)>0—2x% 3.17)

as 1/+/s+a must be real and positive when s
is real and positive,
From Eq. (3.15) the expression

L(f)=

(3.18)

as{—(s+a)—2a(s+ a)+4a v/a vs+a—2a—o?}

is given,

from Eq. (3.18). They are

| o Py
Js+a[21aL( Pn

Neglecting space factor e?*, the expressions of the other variables at the surface are given

)-ls+ar+at) g

L@)=

Vas{—(s+a)*—2a(s+a)+4a v/a s+ a—2a—a?}

% L( Pllﬂ)+l{(s_|_a)2+a)2}L<P:2/)

s{—(G+a)—2a(s+a)+da va s+ a—2a— ot}

)+z<2 Jas Vst at @+ o)L puy)

s{—~(s+a)2—2al(s+a)+da v/ a /s+a—2a? —?)

L(®)=
(s+2 )L( Duy
Lig)=
and
pyy
L
Lip= (

2y )+z-<s+a—z Vastata)L(pe)

where the relation {3.7), (3.13) and

L<v>=L(j;vdz)%L(v):%u:(ﬁ)—f:@}

are used. Eqgs. (3.19) will be also obtained by
direct operation of the Laplace transformation
on Egs. (2.3), (2.4), (2.5) and (2.6), and on
boundary conditions. The inversions of Egs.
(3.18) and (3.19) give f, %, ¥, ¢ and 7 with
arbitrarily time dependent stresses, pyy and p.y.

4, Examples

To weigh the effect of tangential stress of a
progressive wave type on the water motion
against that of a normal stress of the same
type, two cases are examined. In the first,
the normal stress alone is assumed to act on
the surface, i.e.

Puv=aet™ 0, p, =0 “.D

s{—(s+a)P—2a(s+a)+4a va/s+a—2a®—a?}

(3.19)

where « is a constant. In the second, th®
acting stress is interchanged,

Prv=0, poy=ceit="" 4.2)

Applying the conditions (4.1) and (4.2) to the
last of Eqgs. (3.19), the two expressions

L(np)
- —ia

(r a+z)(r a)(r? +2ar 4aJaJr+2a2+w2)

and

Lin)
—iolr— 21/ax/r+a)
(r —a+)(r— a)(r?+2ar— 4a\/a1/r+2a2+a)2)

4.3)

are obtained respectively, where the suffix, I,
denotes the first case and, II, does the second,
and r=s+a. The space factor e is neglected
in the notation of » and, hereafter, it is also
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neglected in the notations of # and ¥. Since
both of the denominators and the numerators
of Egs. (4.3) are polinominals of /7 and the
orders of 4 » in the latters are less than those
in the formers, 8, they can be decomposed in
the form of sum of their partial fractions,

85 G
L = - 1 -
W=E =,
and
8 CH, J
L = T 4‘4
(7o) j§1 J r—B; 4.4

where C;,; and Cp, ; are constants given by

—ia

T (8—8m

m,mxj

Cr, =

and

Cip. 1= —ia(f—2 %gﬁi ta) (4.5)

I (B~ fm)

m,mxg

and Bj (=1, ....s are the solutions of

(22 —a+ i)zt —a) (x4 2ax?
—da Jaxr-+2a2+a?)=0

The first four of them are
fr=+a—i, Pr=—+ a—i,
Bs=va, fi=—+a

Since both of the numerators of the expressions
(4.3) do not have the term including v 77, the
equalities

S M

8
Cri= .Z Gy, =0 (4.6)
1 Ji=1

are given, then » can be written in the form
& ¢
M= ZICI, 1 DR
i~

and

3
rr= 'Zl Crir, 3 Dy(t)e 4.7
=

by the equalities (4.6), where the factor e %
appears due to the relation r=s+« and

I3 e_ﬁjzt

w . B, j
D{t)y=pefit -7 abift dt
fi=peiter ) el

To find the behaviour of p as £—o0, 8 (4=5, ... 8
must be known, but it is expected that when
the relation between the wave number and the
frequency of the acting stress is approximated
by the dispersion relation of water waves, the
stress makes a significant effect on waves. For
the waves whose frequency is 1.0 Hz,

a=vi?/o=2.6 X106

is obtained using the values 0=2x(s""), £ =2xr)%/
980 (cm=Y) and »=10"%(cm?s7!). So we can
assume a®€1l=~w. Under the condition, the

relations
[Re(BDI<|Im(8p)], j==5,...,8  (4.8)

are obtained as follows. Since 8j(s=3,....5 are
solutions of

244 2ax° —4a Vax+ 222+ @ =0 (4.9

the substitution in the above equation for x=
a+iB, where a and 8 are real, gives the equa-
tions

at—6a28 4 2a0t—2af?
—davaa+2a®+a?=0  (4.10)

and
B —afftaa—av a)y=0

which must be simultaneously satisfied by real
a and 8. B=0 is not a solution, because under
the condition, Eq. (4.10) can not be satisfied by
real «, therefore

ala?— ) +ala— + a)=0

must be satisfied. The left hand side of this
equation can not be zero for a negative value
of @ and for a value of «a larger than + a,
provided o2> 2.

A condition under which there is no solution
whose absolute value is less than 4/ 24/ a, i.e.
0<a< + a, obtained by the substitution in Eq.
4.9 for z=4+/ 2 y ae'r, where 2 and 7 are real
and 0<A<1, s X642 v <o

This is sufficiently satisfied in our cases, after
all the relation (4.8) is satisfied. The relation
(4.8) allows the notation

BiP=—b+ci, for Jj=5,..,8

where b and ¢ are real and 5>0. Using the
notation it is shown that
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i corenye | efment d
- C1T - e - t
t}?o ¢ SO Vi 1
s
<lime\ ¢ 4
= So Vit
— 1
=lim 2 «/Jv,‘e‘“jv e dy
£ra0 0
. 21—-et
lim =0 4,11
<mo v “4.11)

in other words, llij(t) 0, for j=5,...,8.
After all p as t~»oo is described by D)
=1, ..., 4 alone as follows,
i ae™
P @1 dia—da va ya—it5a®  *
and

- a(f4-2 va Ja—z—Za)e &

t’lféf' —1—diag—4aava—it+bat 4.12)

The amplitudes of oscillating parts of them

largely depend on the value of @?. For only
0.3
Lt
S 024 . .
9
< . .
= . )
T . .
c
© - L ]
© : *
; o1+ * . .
=
=
0 T T T T
-10 -5 0 5 10
(w?-1)/a

Fig. 1. The changes of amplitudes of water
elevation in the equilibrium state with the
value of w®*~1. The difference between 71 and
711 is so small that it cannot be expressed in
this figure. This is the case where a=107%,
but as far as the condition a€1 is satisfied,
there is no substantial change with value of a.

neighbourhood of w?=1, they become significant
value and the case is of our interest (the dis-
persion relation of free water waves is correctly
satisfied by the wave number and the frequency
of the acting stress when @*=1—¢a%). Since the
difference of the value of @® of the order a°
makes no virtual effect on the amplitude of 7,
(Fig. 1), let us set

w?=1-2a (4.13)

for the simplicity of our calculation.

The behaviours of the other variables as z—o0
under the condition (4.13) are given along the
same way denoted above, they are

ﬁza{~ 4f/2 a-p+2 }
= {4¢ ity fe
ﬂl——a—e‘“

el bl g S e
f”:a[{ 4‘</2 (l+z)+—z}e - z:|
el e o]

‘ﬁII = a(%’e_ i l)

and

(e
(4.14)

where coefficients are expressed in the form of
power series of & to the order 1, and the
difference of the value of ®® of the order «?
affects on the third order terms of each variables.

As the next step, let us calculate the motion
for early stage, @t<1. In the calculation, B;
(j=5, .-, which are four solutions of

zt+2az? —4da Vax+1=0 (4.15)

where the relation (4.13) is assumed, are
required, but unfortunately they cannot be
expressed in a simple form applicable to the
expression (4.7), so that let us make an approxi-

mation. Consider the equation

24 2ax?+yx+1=0
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Tet xo be a solution of
24-2a27+1=0

then, y=0, for x=xv and 3’(x0)= —4(xo+a) %0,
when a<{1. Therefore in the neibourhood of
y=0, inverse relation

x=g(yP=z0+ XL by’ (4.16)
Jj=1

is uniquely determined, it is shown that if « is

less than 0.1 the expression (4.16) converges at

least in the area |y|<(2.6a in virtue of Rouche’s
Theorem. Since, in our case,

y=—4a a

the requirement of convergence is sufficiently
satisfied. After substitution in Eq. (4.15) for
the expression

fr= 2 bV ar

bn are determined by setting each coefficient of
(& a)* to be zero as follows:

bo=(~1'4, b, =0, b= __%bo—l
— h—2 — l —3 —
b3—b0 s b4—§bo ) ba—o, .....

But the relation (4.13) has an effect on the
value of b4, so neglecting heigher order terms

more than a2, §; corresponding four values of
bo(e™/t, e¥/%, e/t and e™/%) become

Bs= _\/22_ A+~ ‘/42 (1-da—iava

Be= —7“%2 (1—i)+3/f (A+datiava

pr=—"2 it Y 20-pamiaVa

Bs= ~/22 (l~i)——5/42 (I+datia a

respectively.

The coefficients of partial fractions in the ex-
pressions (4.4) are given in the form of power
series of 4+ @ by substitution in the relation
(4.5) for these 8;.
appearing in the expressions (4.7) are also given
in the form of Maclaurin series in the aid of

The functions ef/* and e £4*¢

at<1, except the parts e’ and e~i*, By these
representations approximated solutions for the
early stage will be obtained, they are

N SR W G
77170({<4+2)e +4e l}

v,;za{(—i-k—;—)e‘“—l— %e“} (4.17)

and

The solutions for other variables at the early
stage will be obtained by the same method
from the expression (3.19), they are

ﬁ:a{(—é—it)e“” +—;—e”}

#H=a0(y hﬂ‘)
'51 = aO(a)

CouN g

gr=al (5 )1

fn=a{ie‘“ + (i—t)e*i‘ +ie‘”—i}
a 2 2

where

Ix)= S

t e—J:L
o VTt

0(a) and O( v/ @) are neglected terms of order a
and v @ respectively. The expressions (4.17)
and (4.18) are shown to the order 1, and these
are not affected by a change of value of «® in
the order &

The changes of the amplitudes of the vari-
ables with time expressed by Eqs. (4.12) and
(4.14) for the equilibrium state and by Eqs. (4.17)
and (4.18) for the early stage are shown schemat-
ically in Fig. 2. The evaluation of D{t)(;=s, ..., 8
using the inequality (4.11) shows that as far as
t>10%ar is satisfied, the magnitudes of the
neglected terms in Eqgs. (4.12) and (4.14) con-
sisting of Cij()f)(;:s,, .., 8, Where Cjy=5, ..., s are
constants, are smaller than one percent of the
magnitudes of the leading terms of FEqs. (4.12)
and (4.14), respectively. In case I, # and o are
much smaller than p, f and ¢, but all of them,

dat
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Fig. 2. Schematic behaviors of amplitudes of
variables for the early stage and the equilibrium
state in the case where a=10"%. Dashed lines
show the area where the solutions are not
obtained in the explicit form.

@, d,7, f and @, largely change their magnitudes
from the early stage to the equilibrium state
respectively. On the other hand, in case I,
the variables which largely change their magni-
tudes after ¢=1 are 1 and ¢ alone.

Some characteristic features of the water
motions in the early stage at<1 expressed in
Eqs. (4.17) and (4.18) are as follows.

(I) In both cases where a normal stress of
progressive wave type is applied on the water
surface and a tangential stress of the same type
is, the wave amplitudes develop linearly with
time because of constancy of the magnitudes
of the stresses «, and the time rates of the
developments of the wave amplitudes are «/2.
The relation between the tangential stress and
induced wave is in phase, but the normal stress
is lagging in space 90° behind the wave induced
by the applied normal stress. These are in
consistent with the results given by LONGUET-
HicGIing (1968).

(IT) In the former case where the water
motion is induced only by the normal stress,
the water motion is almost completely composed
of irrotational motion and it is substantially
consistent with a solution obtained under hy-
pothesis of irrotational water motion.

(ITT) In the latter case where only the tan-
gential stress is acting, the rotational part of
the water motion, especially &, is dominant
before t=2/ 4/ @ over the irrotational motion @,
but # does not grow with time after #=1.
Therefore the ratio of it to the total water
motion decreases with the development of the
waves,

Uil

In the equilibrium state the water motion is
described by Egs. (4.17) and (4.18) which also
seem to be good approximation for £>10%/a’r,
Some characteristic features in this stage are
as follows.

(I) The amplitudes of variables f, &, ¥, ¢ and
7 have same magnitude in both cases respec-
tively (Fig. 2). The relations of phase between
applied stress and induced water motions are
same as in the early stage.

(I} Since the ratio of 4| to 4] is 4 a and
the ratio of 19| to |@| is a in both cases, the
motion can be regarded as potential flow ap-
proximately notwithstanding that in one case
the acting stress is only normal one and in the
other the stress is only the tangential.

(IIT) The relation between an applied stress
and the surface elevation becomes approximately

1

puw, for the first case or
da © 7

=
-1 for the second
= da Pz -

These two relations are equivalent to Egs. (1.1)
given by Lamb.

In the same stage ¢>>10%/a%r, the time rate
of work per unit distance done by the surface
stress is calculated using the leading terms of
Egs. 4.14). 1t is

Pra0 =Py — 000y =02/8a, for case T or
Doyt =puy—0p/02)=0%/8a, for case II,

where the over bar means space average. The
value &?/8a of the energy flux coming through
the into the water
from the air (hereafter it is called ir-flux) is
equivalent to nondimensional form of the energy
dissipation 2ur’a®c® (Lamb’s notation) in a free
wave motion of the wave number & and the
amplitude a which is equal to dimensional value
of the amplitude of 7, or 7 in the stage (LAMB,
1932, p. 624).
In the early stage, 100 a<<at<1, it is

irrotational water motion

Doy =Py —0D/0y)=a’t/4, for case I or

Doyt = pay (—00/02 1+ i) =~ a®t/4+ a2 /2 /2 V a,
for case II,

where the value a’/4 of ir-flux is acculaig iE
the range 0<<az<1, but the value a?/v2+v a
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of the energy flux transferred from the air to
the water through rotational part of the motions
(hereafter it is called ro-flux) can not be so
accurate for ¢<C100, because the approximation
I(—y=eri/t (4.19)
used in the calculation will bring +59% error
on the absolute value and +325 on the value
of argument of the calculated value of the fux
for a value of # near 100, and they decrease
with the increase of #z. In case I, since the
rotational motion is negligibly small in com-
parison with the irrotational motion, energy is
supplied to the water only through the irrotational
motion. On the other hand in case II # have
significant value, so that energy is regarded as
to be supplied through both the irrotational and
rotational motions. The ir-flux in case I and
that in case II have the same value a?t/4 which
is equal to the magnitude necessary to make
the wave grow with the growth rate a/2.
Therefore ro-flux a?/2+4/2 /@ in case II seems
to be not able to contribute to the irrotational
water motion.

5. Discussion

In the situation same as our case II and by
adopting an approximation about a boundary-
layer under a action of a fluctuating tangential
stress, LONGUET-HIGGINS (1968) obtained the
growth rate which is equivalent to ours as
a result of two assumptions that || <|g|, i.e.
to neglect ro-flux, and energy dissipation due
to irrotational motion is negligibly smaller than
ir-flux. It is found from Eqs. (4.18) that his
first assumption should be relevant for the latter
stage £>2/4/a, because when # is less than
2/ 4 a, |i| is larger than I6|. The earlier the
stage, his second one should be the more rele-
vant. Because in the quasi-equilibrium state of
the motion, #>>10%/71a%, the time rate of energy
dissipation due to irrotational motion almost
equal ir-flux and the time rate of the energy
dissipation is directly proportional to the square
of the wave amplitude but ir-flux linearly depend
on the amplitude. Under these two assump-
tions he obtained the growth rate equal to ours.
But Egs. (4.18) give the same value a/2 of
growth rate even for £<C2/+/ a where his first
one cannot be assumed., Moreover if we take

into account that in case I the growth rate is
the same value a/2, though almost all energy
flux is ir-flux in the case, we come to a con-
clusion that ro-flux of case II can not contrib-
ute to the growth of waves. Accordingly his
first assumption is not essential.

To make sure this, let us calculate horizontally
averaged time rate of energy dissipation £ due
to the water motion in the early stage. It is
expressed in the form

0 Ou \2 dv \? 0v  Ju\?)
8*&5{4@) +2(a—y) *‘(a*a‘y‘) }""”

In the stage, this can be written by

0 07 \?
S_S-ooa(gij) dy

because the conditions

?ﬁ
dy

du

ox

il
dy

i3

dv oa
oy

ax

and

>

oQ
Py
are satisfied in the stage.

The vertical distribution of #; is obtained by

a numerical integration of the expression (3.5)
with the next relation
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Fig. 3. Mean vertical distribution of #’ from
t=80 to 100 in the thin layer beneath the
surface, These are obtained by a numerical
integration of Eq. (3.5) with the condition
(4.19) at the surface in the early stage.
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given by Egs. (4.18).
at the surface

The absolute value of #;
is not a constant but fluctuate
around |d;|=a/+ @ as shown in Fig. 2, so
does the value of |#;| in the water and the
fluctuation decreases with time. As the ampli-
tude of the fluctuation is up to several percent
of |#;| at time about 100, each value of [dy]
and Arg (#;) shown in Fig. 3 is averaged from
=80 to #=100 (about three cycles) to decrease
the uncertainty of the wvalue. For the value
of time beyond 1,000 the fluctuation becomes
negligibly small and there is no noticeable dif-
ference between i at £=1,000 and the averaged
value of ;.
are calculated for three values of «, 107%, 10-3
and 107%, and in Fig. 3 log (|@;|) and Arg (&)
are plotted against 3. For all three values of
a, plotted points of each log (|#;;]) and Arg (@)
make a straight line, so an approximate ex-

Three vertical distributions of &,

pression

(5.1)

diry = gy, £) eim ™Y

where m and n are constans, seems to be
realized at least in the thin layer beneath the
surface where @, and d#;;/0y have significant
The numerical integrations give
the expressions

magnitudes.

m=0.707/ v a and a=0.708/ va (5.2

for all three values of a. Using the approxi-
mation (4.19) for the value of #; at the surface,
the expression (5.1) becomes

Ty :Re[ ‘/ad exp{i(x—t+£+ my)Jrn?j}]

This gives

(

where 7 is a constant, and & becomes

BuH

e 2 2y
—5y—) —~a~(m +n*) cos? (x—t+my+7)e

0
e2ny

-3

2
g= %— (m?+ nz)S

% {1—cos (2x—2¢+21) cos Cmy)

_ eimi ) |
B 4n -

@22 W a

by use of the values (6.2). This value of ¢ is

Ui

equal to ro-flux. Substantially all of ro-flux is
considered to be dissipated by the viscosity of
water in the shear layer of #; beneath the
surface and can not contribute to the growth
of the wave. This result is also expected from
the fact that the rotational part of the water
motion substantially does not develop after ¢=1
and speedily comes into quasi-equilibrium state
under the action of the fluctuating tangential
stress as shown in Fig. 2. Therefore it is con-
fined that the first assumption of LONGUET-
HIGGINS is needless.

The important points of our results are as
follows. A fluctuating tangential stress and a
normal one have equivalent effect on the gener-
ation and growth of waves except that the
fluctuating tangential stress induces a much
more large rotational water motion than the
normal one does in the early stage and the
phase relation between the water motion and
the fluctuating tangential stress is different from
that between the motion and the normal one.
In other words, the fact that the atmospheric
pressure is heigher on the wind-ward side of
wave crest than on the lee side has equivalent
effect on waves to the fact that tangential stress
is larger on the crest of waves than on the
troughs. Both of these two facts have the effect
to make water masses at the crests move faster
{.e. there are excesses of momentum transfer
from wind to water at the crests of wind waves,
and it is not a question whether the momentum
transfer is beared by tangential stress or normal
If we take the problem in the sence of
the response of water surface elevation to a

one.

fluctuation of time rate of momentum transfer
from wind to water, we need not distinguish a
tangential stress from a normal one in the
problems of wind wave generation and growth.

Let us think about the connection between
our results and experiments or observations.
In general, when the viscosity of a liquid is
small, a rotational motion of the liquid cannot
be brought into existence with significant magni-
tude without an action of a tangential stress,
this is consistent with our results shown above.
Therefore if a rotational water motion having
correlation to waves were observed, the obser-
vation itself is a proof of existence of a tan-
gential stress acting correlately on waves. In
the early stage the fluctuating tangential stress
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is substantially «@d#/dy at the surface, so that
the existence of it will be confirmed and the
magnitude of it will be estimated by measure-
ments of horizontal rotational wvelocity # of
water at or beneath the surface.

By the measurements of particle velocity of
water in a wind wave tunnel, OKUDA et al.
(1976) showed an existence of a viscous skin
flow in the wind-ward sides of the wind wave
crests. OKUDA et af. (1977) reported an existence
of skin friction whose intensity varies greatly
along the surface of wind waves as a function
of the phase angle, and they also reported that
the skin friction is so large that it can be con-
sidered to bear most of the shearing stress of
wind.

These experiments together with our study
not only confirm us the existence of a fluctuating
tangential stress correlated to a water surface
elevation of the actual wind waves but also
present a question whether the hypothesis of
irrotational water motion, which proved great
success in the interpretation of the propagation
phenomena of water waves, is applicable to all
problems concerning water waves, especially to
the problems of generation of wind waves.

Egs. (4.18) show that |¢|=|a| when 1=2/ v 2
and |@|>|¢| before t=2/4a. a is estimated
as 2.6x107% for waves whose period is one
second and for waves whose period is ten
seconds a becomes very small value 2.6 x107°,
On the sea surface there are many wave com-
ponents whose period is smaller than one or
ten seconds and also exist many irregular move-
ments of water whose characteristic lengths are
smaller than the wave length of water wave
whose period is one or ten seconds. There-
fore effective value of a is much larger than
above mensioned values of a obtained by use of
the viscosity of water v=10"%(cm?s71). Yanagino
obtained the values of eddy diffusion coefficient
by scattering processes of semi-neutral particles
beneath wind waves in a wind wave tunnel
(personal communication), His values are 20
cm?s™! at the depth 1.5~3c¢m and 3.8cm?s™!
at 3~4 cm below the surface in the wind whose
velocity is 6.2m s™t. Using his minimum value
3.8cm?s™!, @ and T are reevaluated. For a
wave train whose period is one second,

a=9.8-10"%, T=64, T’'=10 seconds and

a=9.8:10"7, T=2.0-10%, T’ =54 minutes for a

wave train whose period is ten seconds, where
T is time when |d|=|¢|, and T"=T/c. These
values of 77 may be over estimate for sea waves,
because the eddy diffusion coeflicient used in the
estimation of 7 is munimum value and more
over the value is obtained by experiments in a
wind wave tunnel not in the sea, Still, these
values of T’ are the beginings of developments
of wave components whose periods are one and
ten seconds respectively. In addition to that,
Egs. (6.1) and (5.2) show that the rotational
motion # consentrates in the thin layer beneath
the surface unlike the irrotational motion @.
These make it difficult to detect the rotational
motion in the sea. And the measurements that
a water motion due to wind waves in the sea
is practically irrotational, cannot be a precise
proof that the waves are generated and developed
by an action of normal stress alone.

The main points of this study have already
stated, in addition to those let us give wings to
our imagination and think about wave breaking.
The most familiar sights appear on the sea
surface in moderate breeze or in stronger wind,
are white horses. They are beautiful in the
sunshine and threatening under dark rain clouds.
We have not been successful in the quantitative
description of this very familiar phenomenon of
wave breaking, so we would like to make a
trial of qualitative analysis of it. For the simplic-
ity of our analysis, three stages of wave breaking
The first; a crest of wave is
sharp but still water mass at the crest is moving
as a part of wave. The second; the small mass
of water which was at the crest in the first,
completely flies out into the air. The third; the
water mass has come down to the wave (Fig. 4).

(I) The wave energy of the second is smaller
than that of the first, because the water mass
in the air has potential and kinetic energies
given from the wave motion of the first. The

are assumed.

water mass has momentum too and its direction
is that of the wind.

(IT) When the water mass falls on the wave
surface, not all but most of the energy of the

The first
—>Wind

TN TN TN

Fig. 4. Typical three stages of wave breaking.

The second The third
_ C—_—
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water mass becomes the energy of turbulent
motion, but the momentum of it is transfered
to adjacent water of it. At the place where
the water mass fall, the momentum is locally
transfered to water near the falling point within
small reach of the crest, After all the transition
from the second to the third means the exist-
ence of excess of momentum transfer near the
crest, This phenomenon occurs intermittently
both in time and in space on the sea surface.
In a word, though the momentum transfer is
intermittent, there are excess of the momentum
transfer at the crests which are propagating
with the characteristic velocity of water waves.
Of course the transfered momentum makes
current but our results mensioned above show
that a part of it can be the momentum of
waves again.

The transition from the first to the second is
equivalent to the outflow of energy from waves.
And the transition from the second to the third
is inflow of the energy to the current and waves.
As the form of wind waves is not sinusoidal,
they are considered to be sum of many com-
ponent waves. The flying water mass in the
second receives the energy from wave motion
and the amount that each component wave
contribute to the energy depends on the wave
form near the crest. The amount of energy
that each wave component receives the energy
when the water mass fall, depends on the distri-
bution of the area on the sea surface where
wave breakings occur. So that it is likely that
the relative magnitudes of the outflow energy
from component waves are different from those
of the inflow energy. These considerations
show that wave breaking can be one of wave-
wave interactions taking with energy dissipation,
and this wave-wave interaction clearly different
from that studied by HASSELMANN (1962). To
separate clearly three stages of wave greaking,
we assumed that the water mass completely fly
up in the air but even in case where the water
mass does not completely fly up, the same kind
of mechanism of wave-wave interaction can be
expected.

As early as in 1964, MITSUYASU and KIMURA
experimentally suggested the existence of wave-
wave interaction accompanied wave breaking
by the measurements of wave spectrum of wind
waves in decay area in a wind wave tunnel

U

(MITSUYASU and KIMURA, 1964).
Consequently, it is shown that besides an

atmospheric pressure fluctuation, a fluctuating
tangential stress can make wind waves grow,
and besides week wave-wave interaction, there
can be another mechanism of wave-wave inter-
action. Therefore it is very dangerous to close
the right hand side of the energy balance equation

QP—ZS1+52+53+. .

D
where F' is the spectrum of wind waves and
S, Sy, S, ... are source functions representing
net transfer of energy to the spectrum, in the
form of including nothing but terms whose
quantitative description have already given.
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