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The results of mode-processing measurements of broadband acoustic wavefields made in the fall of

2004 as part of the Long-Range Ocean Acoustic Propagation Experiment (LOAPEX) in the eastern

North Pacific Ocean are reported here. Transient wavefields in the 50–90 Hz band that were

recorded on a 1400 -m long 40 element vertical array centered near the sound channel axis are

analyzed. This array was designed to resolve low-order modes. The wavefields were excited by a

ship-suspended source at seven ranges, between approximately 50 and 3200 km, from the receiving

array. The range evolution of broadband modal arrival patterns corresponding to fixed mode

numbers (“modal group arrivals”) is analyzed with an emphasis on the second (variance) and third

(skewness) moments. A theory of modal group time spreads is described, emphasizing complexities

associated with energy scattering among low-order modes. The temporal structure of measured

modal group arrivals is compared to theoretical predictions and numerical simulations. Theory,

simulations, and observations generally agree. In cases where disagreement is observed, the reasons

for the disagreement are discussed in terms of the underlying physical processes and data

limitations. VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4707431]

PACS number(s): 43.30.Bp, 43.30.Dr, [AMT] Pages: 4409–4427

I. INTRODUCTION

Understanding of the physics of sound propagation in a

fluctuating ocean is important in many applications includ-

ing underwater communication, navigation, underwater

imaging, passive and active target localization, and tomogra-

phy. Prior to 1989 experimental work in the deep ocean that

was designed to elucidate issues relating to the basic physics

of forward scattering of sound made use of, for the most

part, point-to-point geometries; see Munk et al. (1995) for a

review. Beginning in 1989 with the Slice89 experiment (see

references in the following text), isolated hydrophones in ex-

perimental work were largely replaced by vertical line arrays

(VLAs). The work reported here represents a continuation of

the trend toward analyzing wavefields in the deep ocean that

are excited by a transient compact source and measured on a

VLA. In this paper, measurements made as part of the

Long-Range Ocean Acoustic Propagation Experiment

(LOAPEX)—see Mercer et al. (2005, 2009)—are analyzed.

A modal description of the acoustic wavefield in the 50 to

90 Hz band is employed. The modal content of the measured

LOAPEX wavefields is estimated and compared to numeri-

cal simulations and theoretical predictions as a function of

propagation range. The modal analysis presented here is

made possible because the wavefields in this experiment

were measured on a VLA.

Previous VLA-based acoustic wavefield measurements

in the deep ocean have been used to investigate a variety of

topics. In the Slice89 experiment (Worcester et al., 1994;

Cornuelle et al., 1993; Duda et al., 1992), broadband acous-

tic signals were transmitted from a moored source to a 3-km
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long VLA of 50 hydrophones at a range of 1000 km. A com-

parison between measured and predicted (mostly with the

use of ray theory) broadband acoustic arrival patterns was

made, and fluctuations in measured wavefronts were quanti-

fied. No modal analysis of the Slice89 data has been

attempted because the receiving array was too sparse to

resolve modes in the relevant 200–300 Hz frequency band.

In November 1994, the Acoustic Engineering Test (AET)

(Worcester et al., 1999; Colosi et al., 1999; Colosi et al.,
2001) was conducted as part of the Acoustic Thermometry

of Ocean Climate (ATOC) program. In that experiment,

acoustic signals were transmitted from a moored broadband

source with 75 Hz center frequency in the eastern North

Pacific Ocean. The wavefield was recorded on a 700-m long

20 element VLA at a distance of 3252 km. Analyses of this

data set addressed a number of questions including the accu-

racy with which gyre- and basin-scale ocean temperature

variability can be measured using tomographic methods

(Worcester et al., 1999), the vertical resolution that can be

obtained at multimegameter range (Worcester et al., 1999)

and the influence of smaller-scale processes like internal

waves and mesoscale eddies on acoustic variability (Colosi

et al., 1999). It was shown (Colosi et al., 1999) that predic-

tions of pulse spread and wave propagations regime using

U–K theory (Flatté et al., 1979) were in serious disagree-

ment with the observations. An alternative ray-based

interpretation of the AET measurements was provided by

Beron-Vera et al. (2003). Additional ATOC program experi-

ments were performed involving transmissions from Pioneer

Seamount to VLAs near both Hawaii and Kiritimati. Modal

analyses of those data in the 60–90 Hz band, with an empha-

sis on low-order modes, has been presented (Wage et al.,
2003; Wage et al., 2005). In the first paper (Wage et al.,
2003), a short-time Fourier framework for broadband mode

estimation was developed. The second paper (Wage et al.,
2005) analyzes mode coherence at long ranges in the ATOC

experiment and focuses on modal statistics. Concurrent with

the LOAPEX experiment, and utilizing the same VLAs, the

SPICEX experiment was performed with a focus on energy

in the 200–300 Hz band. Those data have been analyzed

with an eye toward elucidating scattering of energy into

deep shadow zones (so-called shadow zone arrivals) by Van

Uffelen et al. (2009, 2010); closely related theory is

described by Virovlyansky et al. (2011).

The present paper, which focuses on low-order modes in

the 50–90 Hz frequency band, complements these earlier

VLA-based studies of deep ocean underwater sound fields.

The data analyzed here were measured on a 1400-m long 40

element vertical array centered near the sound channel axis.

This array was designed to resolve low-order modes. The

wavefields were excited by a ship-suspended source at seven

ranges, between approximately 50 and 3200 km, from the

receiving array. The focus of the analysis is on the range

evolution of broadband modal arrival patterns corresponding

to fixed mode numbers, referred to in the following text as

“modal group arrivals.” Both the second (variance) and third

(skewness) moments of broadband distributions of energy

with fixed mode number are considered. Attention is limited

to the first ten propagating modes. There are two reasons for

this limitation. First, only these modes are well resolved by

the receiving VLA. Second, the theoretical treatment of scat-

tering (mode coupling) among this group of modes requires

special care that is not needed to describe higher order

modes; this topic is discussed in detail in the following text.

An important aspect of this paper is the integration of our

data analysis to the underlying theory of modal group time

spreads. The basic elements of the theory of modal group

time spreads are described in Udovydchenkov and Brown

(2008) and Virovlyansky et al. (2009). An extension of the

basic theory that focuses on low-order modes is described in

the following text. The extended theory presented here is

shown to describe some aspects of the data very well.

Before proceeding it is useful to provide a brief over-

view of the assets and geometry of the LOAPEX experiment.

The experiment was carried out in September and October

of 2004 in the eastern North Pacific Ocean. In the experi-

ment, broadband signals in the 50–90 Hz band were trans-

mitted using a ship-suspended acoustic source. The resulting

transient sound fields were recorded on two moored VLAs in

close proximity to one another. Transmissions were made at

eight stations, seven of which were chosen to lie approxi-

mately on a single geodesic path that passes through the

receiving array. The geometry of the experiment is shown in

Fig. 1. These seven stations were nominally at ranges of 50,

250, 500, 1000, 1600, 2300, and 3200 km from the receiving

arrays, thereby providing measurements of the range evolu-

tion of the wavefield. The acoustic source was suspended at

one or more depths (350, 500, or 800 m) at each of the seven

transmission stations. Signals of different types were trans-

mitted; here only signals consisting of phase-modulated m-

sequences are analyzed. The length of each transmission was

1023 digits of the m-sequence with one digit equal to two

cycles of the carrier frequency. Two center frequencies for

broadband transmissions were used: 75 Hz for 800 m source

depth transmissions and 68.2 Hz for 350 and 500 m source

depth transmissions. The two receiving VLAs were sepa-

rated by approximately 5 km horizontally. One of the VLAs,

hereafter referred to as the SVLA (shallow VLA), consisted

of 40 hydrophones with 35 m spacing, covering depths

between approximately 350 and 1750 m, centered

FIG. 1. Geometry of the LOAPEX experiment in the eastern North Pacific

Ocean. Two vertical line arrays of hydrophones were deployed at the loca-

tion denoted “SVLA and DVLA”. The source was suspended from the ship

at seven stations labeled “T50”,“T250”,…,“T3200” at one or more depths

(350, 500, or 800 m).
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approximately on the sound channel axis. Only measure-

ments from the SVLA are considered in this paper.

The remainder of this paper is organized as follows. The

following section provides an overview of the theory of

modal group time spreads. Most of this discussion focuses

on an extension of the basic theory to correctly treat low

mode numbers. In Sec. III, the processing of the LOAPEX

data prior to mode-processing is described. In Sec. IV, the

construction of modal pulses in LOAPEX suitable for statis-

tical analysis is presented. This includes 75 Hz center fre-

quency near-axial source (800 m depth) transmissions with

transmission ranges up to 500 km, 68.2 Hz center frequency

near-axial source (500 m depth) transmissions with transmis-

sion ranges of 2300 and 3200 km, and 68.2 Hz center fre-

quency off-axial source (350 m depth) transmissions with

transmission ranges up to 3200 km. Some challenges relating

to the variations of the signal-to-noise (SNR) ratio in these

pulses with transmission range are explained. In Sec. V,

mode-processed wavefields and the statistics of modal ar-

rival pulses are compared to full wave numerical simulations

and estimates based on a theoretical formulation. A summary

of our results is given in Sec. VI.

II. OVERVIEW OF THE THEORY OF MODAL GROUP
TIME SPREADS

This section contains an overview of theoretical results

relating to modal group time spreads (Udovydchenkov and

Brown, 2008; Virovlyansky et al., 2009; Makarov et al.,
2010). The simplest theoretical results do not correctly treat

near-axial (low mode number) scattering. Emphasis is given

here to an extension that correctly accounts for low mode-

number scattering. The objective of this section is to provide

a framework for interpretation of the mode-processed fields

described in Secs. IV and V. The phrase “modal group

arrival” is used here to describe the contribution to a transient

wavefield corresponding to a fixed mode number, and the

phrase “modal group time spread” is used to describe the

temporal spread of a modal group arrival. It is assumed

that the sound speed structure can be decomposed as

c(z)þ dc(z, r), where c(z) is the range-independent back-

ground sound speed structure, and the perturbation term

dc(z,r) is dominated by internal-wave-induced variability. In

the LOAPEX environment, this is a good approximation for

propagation ranges up to 1000 km; at longer ranges, an adia-

batic approximation, which is described in Sec. III, is used to

treat the range-dependent background structure. The pertur-

bation term dc(z, r) leads to mode coupling, which is treated

stochastically. This decomposition of the sound speed struc-

ture allows a simple perturbation treatment to be used. The

results are based on asymptotic (WKB) mode theory.

A. Basic theory

At each angular frequency x¼ 2pf, the acoustic normal

modes wm(z) satisfy the equation

d2wm zð Þ
dz2

þ x2 c�2 zð Þ � p2
m

� �
wm zð Þ ¼ 0; (1)

together with an appropriate pair of boundary conditions. It

is assumed that the boundary conditions are such that those

conditions together with Eq. (1) define a Sturm–Liouville

problem, thereby guaranteeing that the normal modes consti-

tute a complete orthogonal set of functions over the relevant

depth domain (the contribution from evanescent modes is

assumed to be negligibly small). The modes are real and are

assumed to be normalized, $(wm(z))2 dz¼ 1. The constant pm

in Eq. (1) is a separation constant. Asymptotically, each

mode is associated with a discrete value of the action. For

nonreflecting modes (or rays), the action I is defined as

I prð Þ ¼
1

p

ð ẑðprÞ

�zðprÞ
c�2 zð Þ � p2

r

� �1=2
dz: (2)

Here c ẑ prð Þð Þ ¼ c �z prð Þð Þ ¼ 1=pr, where �z and ẑ are lower

and upper turning points, respectively, and pr is the horizon-

tal component of the slowness vector. In the background

environment, both pr and I are constants following rays and

modes. For nonreflecting modes, the modal quantization

condition, which defines I¼ I(m, x) where m is mode num-

ber, is

xI pmð Þ ¼ mþ 1

2
; m ¼ 0; 1; 2; ::: (3)

This equation defines a discrete set of pr values, denoted pm.

A simple, but important, observation is that both m and I are

nonnegative. Our use of Eq. (3) involves a simple form of

ray-mode duality between the continuous ray variable I and

the discrete modal variable m. The range and travel time of a

ray double loop are R(pr)¼�2pdI/dpr and T(pr)¼ 2pI(pr)

þ prR(pr), respectively. Modal energy at range r arrives at

time t¼ Sg(m, x)r where Sg is the group slowness,

Sg prð Þ ¼
T prð Þ
R prð Þ

: (4)

Modal dispersion is controlled by the waveguide invariant,

b m;xð Þ ¼ � @Sg

@pr
: (5)

Asymptotically b depends only on pr; the quantization con-

dition, Eq. (3), picks out the relevant pm values and, in turn,

the dependence of b on m and x. Consistently with WKB

approximation, b depends only on the ratio (mþ 1/2)/x.

Therefore, the change of frequency in the quantization con-

dition (3) does not change the structure of the b (m) depend-

ence, but only requires linear rescaling of the mode number

axis.

There are three contributions to modal group

time spreads, which combine approximately in quadrature

(Virovlyansky, 2006; Udovydchenkov and Brown, 2008;

Virovlyansky et al., 2009; Makarov et al., 2010),

Dtm rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt2bw þ Dt2

d þ Dt2s

q
: (6)

Here
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Dtbw ¼ Dfð Þ�1; (7)

where Df is the frequency bandwidth of the acoustic source,

Dtd ¼ �
2pIcb Icð Þ

R Icð Þfc
rDf (8)

is the deterministic dispersive contribution, where fc is the

center frequency of the acoustic source and Ic is defined by

the condition 2p fcIc¼mþ 1/2. For large mode numbers, the

scattering-induced (associated with mode coupling) contri-

bution to a modal group time spread is

Dts ¼ 4p3=2 b I0ð Þj j
R I0ð Þ

B

3

� �1=2

r3=2: (9)

Here B is the diffusivity of action defined by the condition

I rð Þ � I0ð Þ2 ¼ Br, where I0¼ I(r¼ 0), and the overline

denotes expected value (or an ensemble average). A simple

derivation of Eq. (9) (Udovydchenkov and Brown, 2008)

makes use of a discrete scattering model in which the action

associated with a ray or mode experiences a sequence of in-

dependent random kicks. Note that as energy diffuses in

action in the ray description, it also diffuses in mode number,

taking discrete steps, according to the quantization condition

(3). The derivation of Eq. (9) requires I rð Þ ¼ I0; thus both Ic

and I0 lie at the center of fixed-m action distributions. For

most purposes, it is unnecessary to notationally distinguish

between these quantities. All four measures of time spread

[(6)–(9)] characterize full widths of temporal distributions at

the e�p/4 amplitude level, which is approximately the same

as the half-amplitude level. Consistent with this choice of

Dt, assuming that distributions are approximately Gaussian,

the variance of each amplitude distribution is (Dt)2/2p (for

each of the four choices of Dt). For correct comparison of

theoretical predictions with numerical simulations and data,

it is important to chose the bandwidth Df in Eqs. (7) and (8)

in a consistent way. Here we have chosen Df¼ fc/4. This

choice is justified in the following text and discussed to-

gether with observations made regarding the spectrum of the

LOAPEX acoustic source.

B. Low mode numbers

The principal limitation of Eq. (9) is that the derivation

of this expression does not invoke the constraint that I� 0.

Because of that limitation, the validity of Eq. (9) is limited

to I0 �
ffiffiffiffiffi
Br
p

, i.e., to large mode numbers. The focus of this

paper is on low mode numbers, so an alternate approach to

the estimation of Dts is required. A framework for addressing

this problem, which we now review, was provided in

Virovlyansky (2006) and Virovlyansky et al. (2007, 2009)

using results from the theory of stochastic differential equa-

tions. It was shown that, at ranges in excess of a few com-

plete ray cycle distances, multiple weak uncorrelated

scattering events lead to a particularly simple Fokker–Planck

equation, which governs the evolution in range of the proba-

bility density function of action,

@P

@r
¼ @

@I

B

2

@P

@I

� �
: (10)

Let P(I, rjI0) denote the fundamental solution to this equa-

tion, which satisfies the initial (r¼ 0) condition P(I, 0jI0)

¼ d(I � I0). Given knowledge of P(I, rjI0), statistics as a

function of range of any function of I, including modal group

time spreads, can be computed. To compute the statistics of

modal group arrivals, one makes use of the simple result that

the arrival time of energy with action history I(r) is

T rð Þ ¼
Ð r

0
Sg I r0ð Þð Þdr0 together with the definition of the

expected value of the action �I ¼
Ð

IP I; rjI0ð ÞdI and a Taylor

series expansion of Sg(I) around the expected value of the

action, Sg Ið Þ � Sg
�Ið Þ þ S0g

�Ið Þ I� �Ið Þ ¼ Sg
�Ið Þ þ 2pb �Ið Þ=R �Ið Þð Þ

I � �Ið Þ. The expected value of T is

�T ¼ Sg
�Ið Þrþ 2pb �Ið Þ

R �Ið Þ

ðr

0

dr0
ð

dI I � �Ið ÞP I; r0jI0ð Þ ¼ Sg
�Ið Þr;

(11)

where we have used
Ð

P I; rjI0ð ÞdI ¼ 1. The expected squared

spread in T is

T � �Tð Þ2 ¼ 2pb �Ið Þ
R �Ið Þ

� �2

r2
t ; (12)

where

r2
t ¼

ðr

0

dr1

ðr

0

dr2

ð
dI1ðI1 � �Iðr1ÞÞð

dI2ðI2 � �Iðr2ÞÞPðI1; I2; r1; r2jI0Þ: (13)

Here P(I1,I2,r1,r2jI0) is a joint probability density function,

which, in turn, depends on a conditional probability density

function. (Recall that P(a \ b)¼P(a; b)P(b)¼P(b; a)P(a)

where a \ b denotes the intersection of a and b, and P(a; b)

is the conditional probability of a given b). An expression

for P(I1, I2, r1, r2jI0) that was used for theoretical estimates

of modal group time spreads is derived in the Appendix.

Before presenting results for the low mode number problem,

we note that the preceding results can be used to derive

Eq. (9). To see this, first note that with B constant the funda-

mental solution to the Fokker–Planck equation (10) on an

I-domain extending from �1 to þ1 is a Gaussian with the

mean I0 and the variance Br,

P I; rjI0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pBr
p e�

I�I0ð Þ2
2Br : (14)

From Eq. (14) it follows that �I ¼ I0 and �T ¼ Sg I0ð Þr. Using a

well-known expression (Beichelt, 2006, pp. 357, 358,

387–389) for the joint normal distribution, the square root of

the rhs of Eq. (12) reduces to ð2
ffiffiffi
p
p
Þ�1

times the rhs of Eq.

(9)—after replacing �I by I0. (The factor of 2
ffiffiffi
p
p

is required

for consistency of spread estimates according to our defini-

tions of Dt). These observations provide the link between

Eqs. (9) and (12) for large mode numbers ðI0 �
ffiffiffiffiffi
Br
p
Þ.
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Equations (10)–(13) also apply to near-axial scattering,

corresponding to small mode numbers, for which the condi-

tion I� 0 is a critically important restriction. A foundation

for treating this problem is the observation by Virovlyansky

(Virovlyansky et al., 2007; Virovlyansky, 2006; Virovlyan-

sky et al., 2006) that the Fokker-Plank equation (10) admits

an exact solution in the presence of a reflecting boundary at

I¼ 0. The fundamental solution is

P I; rjI0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pBr
p e�

I�I0ð Þ2
2Br � e�

IþI0ð Þ2
2Br

� �
: (15)

With this P(I, rjI0), some integrals that describe statistical

quantities of interest can be evaluated (keeping in mind that

the relevant I-domain is [0,1)). For example,

I rð Þ ¼
ffiffiffiffiffiffiffiffi
2Br

p

r
e�

I2
0

2Br þ I0 � erf
I0ffiffiffiffiffiffiffiffi
2Br
p (16)

and

I rð Þð Þ2 ¼ I2
0 þ Br; (17)

so the variance is

r2
I rð Þ¼ I2� I

2¼ I2
0þBr�

ffiffiffiffiffiffiffiffi
2Br

p

r
e�

I2
0

2Brþ I0�erf
I0ffiffiffiffiffiffiffiffi
2Br
p

 !2

:

(18)

Some important properties of these expressions are: (1)

I 0ð Þ¼ I0; (2) r2
I 0ð Þ ¼ 0; and (3) I rð Þ increases monotoni-

cally with increasing r (so there is a preference, on average,

for mode coupling toward higher mode numbers). These

properties are illustrated in Fig. 2. Equation (13) remains

valid with the modified P(I, r,jI0) (15) (provided the appro-

priate joint probability density function is used). Unfortu-

nately, it does not appear to be possible to evaluate or

otherwise simplify those integrals.

Figure 2 shows numerical simulations designed to illus-

trate the difference between time spreads based on Eqs. (14)

and (15). As noted in the preceding text, if r2
t was evaluated

using Eq. (14), then it would be equal to (B/3)r3. Thus the dif-

ference between r2
t and (B/3)r3 can be attributed to the differ-

ence between near-axial/low mode number (15) and off-

axial/high mode number (14) scattering. The right panel of

Fig. 2 shows a family of rt(r) curves (normalized by r3/2),

each corresponding to an initial condition in which energy is

contained in a single mode m0. Those curves are seen to be

bounded by two asymptotes. For small r, r2
t ’ B=3; for large

r, r2
t ’ B=6. Small/large m0 values rapidly/slowly approach

the large r asymptote. This behavior can be explained by not-

ing that for m0 large and r small, there is negligible energy

near the I¼ 0 “boundary,” whereas for m0 small and r large,

the I¼ 0 “boundary” is felt by essentially all of the energy

present. While the qualitative behavior shown in Fig. 2 is

both insightful and important, that figure is of limited value

in terms of describing modal group arrivals during LOAPEX.

The principal limitations of Fig. 2 are that those simulations

do not account for: (1) the scattering-induced travel time

bias, i.e., the fact that in general for low mode numbers
�T 6¼ Sg I0ð Þr; and (2) the fact that experimentally many mode

numbers are excited at r¼ 0. Also note that the discussion in

the preceding text including the validity of Eq. (12) is limited

to the case when b �Ið Þ=R �Ið Þ does not vary significantly along

the propagation path. Under typical experimental conditions,

R �Ið Þ is not expected to vary rapidly within a small group of

modes, but variations of b �Ið Þ may be significant.

C. A simple numerical model

An unfortunate conclusion to be drawn from the preced-

ing discussion is that the constraint I� 0 precludes, so far as

FIG. 2. (Left panel) Mean value of the action distribution as a function of range for several initial values of mode number m0 computed using Eq. (16). Signif-

icant energy redistribution toward higher mode numbers is observed for m0 . 10. (Middle panel) Variance of action as a function of range for several values

of m0 computed using Eq. (18). The high mode number asymptotic result, corresponding to linear growth of variance, is shown as a dotted line. (Right panel)rt

(defined in the text) divided by r3/2 for different initial values of mode number m0 at 75 Hz computed using Eq. (13). The limiting behavior at I0 �
ffiffiffiffiffi
Br
p

is

shown as a dotted line.
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we are aware, derivation of an analytical expression that

accurately describes modal group time spreads for small m.
This challenge has been addressed by developing a very sim-

ple numerical model that accounts for all of the theoretical

elements that were just described. Predictions based on the

simple model are described throughout the remainder of this

paper as “theory-based model predictions.” Such theory-

based model predictions are compared in the following text

to estimates of modal group time spreads derived from LOA-

PEX observations and from full wave numerical simulations.

Here the simple theory-based model is described.

Like the estimate (9), the key assumption underlying the

treatment of the scattering-induced contribution to modal

group time spreads is the diffusive spreading of energy in

action. The model makes use of an ensemble of solutions to

the equation T rð Þ ¼
Ð r

0
Sg I r0ð Þð Þdr0, where I(r) is a random

walk with a reflecting (I� 0) boundary. Because of the con-

nection between ray and modal description through the quanti-

zation condition (3), this equation allows estimation of a

modal energy arrival time, which is the same as the travel

time of the corresponding ray arrival. Random walk simula-

tions with a reflecting boundary were previously used by

Virovlyansky (Virovlyansky, 2006; Virovlyansky et al., 2007)

to investigate low-mode scattering. In our simulations, both

the group slowness structure Sg(I) and the diffusivity B are

measurement-based estimates. Many (typically millions)

action histories were used in each simulation. Initial condi-

tions were chosen to mimic experimental conditions. To

approximately account for non-uniform excitation of modal

amplitudes by the compact source, the number of initial condi-

tions for each value of I0 was taken to be [wmN] (square brack-

ets denote the nearest integer; N¼ 50 000 was chosen for all

simulations), where wm ¼ ðwmðzs; fcÞ=max
m
jwmðzs; fcÞjÞ2 is

proportional to the square of the modal function at the source

depth and at the carrier frequency; the arbitrary normalization

constant in this formula was chosen so that wm¼ 1 for the

modal function with the largest amplitude at the source depth

and at the carrier frequency. This approximation to the initial

condition is consistent with the ray density (number of initial

rays assigned to each I0, and hence to each m) being propor-

tional to the wavefield intensity. Each ray in the ensemble

undergoes an independent random walk (with reflection at

I¼ 0). At the final range, all arrival times (or the correspond-

ing values of Sg) are split into bins and a histogram represent-

ing the density of rays, which is proportional to the relative

wavefield intensity, as a function of arrival time and action is

computed. This procedure gives a prediction of the temporal

distribution of scattered energy at the final range as a function

of I. By making use of the quantization condition (3), eval-

uated at the center frequency of the transmission, dependence

on I can be converted into dependence on mode number m
resulting in a prediction of the temporal distribution of scat-

tered energy as a function of mode number. Note that this pro-

cedure estimates modal amplitudes at the source only up to a

constant, and it does not account for variations of amplitudes

of modal excitation with frequency at the source location.

Absolute amplitudes of arrivals can not be computed using

this method, but some statistics of modal arrivals can be

estimated.

To account for the deterministic dispersive and recipro-

cal bandwidth contributions to modal group time spreads,

Dtd and Dtbw, two perturbations are added to each scattered t
value at the final range. These perturbations are randomly

drawn from Gaussian distributions the variances of which

are (Dtd)2/2p and (Dtbw)2/2p. [The reason for including the

factors of 2p is explained following Eq. (9).] If all of the I0

values that contribute to a particular m satisfy I0 �
ffiffiffiffiffi
Br
p

and

if Sg(m) is a slowly varying function, the procedure that we

have just described gives, to an excellent approximation,

Gaussian distributions with mean t¼ Sg(m)r and variance

(Dtm)2/2p (6). In other words, the procedure that we have

described reduces to Eqs. (6)–(9) as a special case. We have

used this special case as a test of our numerical algorithm. If

the condition I0 �
ffiffiffiffiffi
Br
p

is not satisfied, the simulated distri-

butions are generally non-Gaussian, and their first moments

may deviate significantly from t¼ Sg(m)r.

III. LOAPEX DATA PROCESSING

Recall that in LOAPEX transmissions at multiple depths

and ranges were recorded on the SVLA. On each hydro-

phone on the SVLA linearly scaled acoustic pressure was

recorded in a 2-byte integer format. Specially coded signals

(m-sequences) were transmitted to achieve high SNR, so the

recorded data was match-filtered against the reference

sequence. Several additional timing corrections, mooring-

motion corrections, and source motion corrections were

applied. Also, note that environmental data are needed to

construct simulated acoustic wavefields and to compute the

modes that are used to perform mode filtering. After mode

filtering is performed, the statistics of modal group arrivals

are computed. In this section, some details are provided

about those processing steps that are performed prior to

mode filtering.

A. Environmental data

Mode filtering is most naturally done using modes con-

structed using the sound speed profile at the SVLA [recall

Eq. (1)]. Sound speed profiles were constructed from meas-

urements made on the SVLA. There were 10 MicroCAT

(SBE 37) sensors (Sea-Bird Electronics, Inc., 2003a) that

measured temperature and salinity and 14 MicroTemp (SBE

39) sensors (Sea-Bird Electronics, Inc., 2003b) that meas-

ured only temperature. Those sensors were attached to the

SVLA mooring at known depths spanning the water column

between about 150 and 2875 m. Linear interpolation on a

temperature-salinity diagram was used to infer missing val-

ues of salinity at depths of MicroTemp sensors. Because the

deepest MicroCAT sensor was only at about 900 m, meas-

urements of salinity from deep CTD (conductivity-tempera-

ture-depth) casts at transmission stations T50 and T250 were

used to augment missing salinity profiles in deep water. Note

that reconstruction of salinity profiles below 2875 m does

not influence the modal analysis because those depths are

not covered by the SVLA. The Del Grosso (Del Grosso,

1974) formula was used to compute sound speed profiles.

These profiles were updated approximately every 7 min

throughout the entire experiment. Modes were computed in

4414 J. Acoust. Soc. Am., Vol. 131, No. 6, June 2012 Udovydchenkov et al.: A modal analysis of broadband wavefields

Downloaded 08 Jul 2012 to 134.246.166.168. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



every profile using KRAKEN normal mode code (Porter, 1991;

Jensen et al., 2000). Note that eigenmodes are frequency-

dependent, so they have to be computed for each frequency

within the band of interest. We used 256 frequencies cover-

ing the bandwidth from 37.5 to 112.5 Hz. Linear interpola-

tion (across frequency) was used to construct eigenmodes at

intermediate frequencies when needed.

Ideally, to compare results of data processing with nu-

merical models and theoretical predictions, one needs to

know the environment along the entire propagation path.

During the experiment, seven deep CTD casts were made

(see Fig. 3, left panel), one at each transmission station. In

addition, underway CTD (UCTD) measurements were made

in the upper 350 m approximately between T50 and T1600

transmission stations. A set of full water column profiles

was derived by Lora Van Uffelen (personal communication)

from the UCTD measurements by objectively mapping

them onto the Levitus World Ocean Atlas 2005 database.

However, for the analysis presented in this paper, we

assume that the sound speed profile along the propagation

path can be represented as a range-independent background

profile c(z) on top of which a range-dependent sound speed

perturbation dc(z, r), due to internal waves, for example, is

superimposed. This assumption holds well between about

T1000 and SVLA. Note also in this regard that the existing

theory described in Sec. II does not account for strong mes-

oscale variability in the background sound speed structure.

While full wave numerical simulations can be performed in

environments with background range-dependence, we

decided to use the same environmental structure [back-

ground c(z) plus perturbation dc(z, r)] in those simulations

to make interpretation and comparison of results easier.

Therefore we have constructed four different background

profiles, shown in the middle panel of Fig. 3 and labeled

C50, C250, C500, and C1000. These are range-averaged

profiles from the set derived by Van Uffelen over the re-

spective range. As described in the following text, some-

what better agreement between data and full wave

numerical simulations is achieved for transmissions from

T50 if a profile constructed from the Seabird measurements

(at the SVLA) is used as the background profile for those

simulations. This profile (time-averaged over the entire time

of transmissions from T50 station) is labeled C50SB in the

middle panel of Fig. 3 and is clearly different from C50 con-

structed by objective mapping. For theoretical predictions

and full wave numerical simulations, we use C50SB profile

for transmissions from the station T50 and will use the

range-averaged UCTD-based profiles C250, C500, and

C1000 for transmissions from T250, T500, and T1000 sta-

tions, respectively.

FIG. 3. (Left panel) Sound speed profiles computed from deep CTD casts made at seven LOAPEX stations. (Middle panel) Sound speed profiles used as back-

ground c(z) for numerical simulations and theoretical predictions. C50SB profile was used instead of C50 profile for simulations and theoretical predictions for

transmissions from T50. The SVLA array geometry is also shown. (Upper right panel) Waveguide invariant dependence on mode number at 75 and 68.2 Hz

for profiles shown in the middle panel. (Lower right panel) Modal “cross-talk” diagram computed in C50SB profile at 75 Hz using time-averaged hydrophone

depths.
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Finally, note that the deep CTD measurements made

along the LOAPEX track clearly show strong range depend-

ence past 1000 km range, but the number of measurements is

insufficient to construct a mesoscale-resolving range-de-

pendent environment. To approximately account for this

background range dependence, we make use of an adiabatic

approximation. Under this approximation, we replace the

true source depth with the effective source depth in the

C1000 environment that lies on the same action surface as

the true source depth in the correct local environment

(T1600, T2300, or T3200). Then the same modes are excited

in the C1000 environment by the effective source that are

excited by the true source in the local environment. This

leads to the following transformed depths: at T1600, from

350 to 301 m; at T2300 from 350 to 235 m and from 500 to

406 m; at T3200 from 350 to 209 m and from 500 to 379 m.

These corrections are important for quantifying the

scattering-induced excitation of low-order modes when the

wavefield is excited by the off-axial source.

As described in Sec. II, theory predicts that determinis-

tic dispersive and scattering-induced contributions to modal

group time spreads are proportional to the waveguide invari-

ant b(m, f). Figure 3 shows b(m, f) curves for the two center

frequencies used in the experiment: 75 and 68.2 Hz in each

of the environments considered. To construct these curves

we computed Sg(m) in each profile using Eqs. (3) and (4) and

then used a high order (15–20) polynomial to obtain a good

fit to Sg(m). After that, b(m) was computed using Eq. (5).

These curves show that although b(m) is different in the dif-

ferent background profiles that we have constructed, for all

modes of interest (m¼ 0, 1,…, 9) b � �0.2. Unfortunately,

the fact that only first 10 modes are resolved imposes a great

constraint on verifying the importance of b(m) in the estima-

tion of modal group time spreads. In all of the environments

that we have constructed, b(m) is close to zero for mode

numbers between approximately 25 and 30; consistent with

theoretical predictions, full wave numerical simulations in

these environments reveal very small time spread for those

modes. Unfortunately the LOAPEX observations do not

allow those modes to be resolved to test the theory.

B. Measured acoustic wavefields

In this subsection, the construction of acoustic wave-

fields, i.e., measured absolute intensities (resulting from the

transmission of a short pulse equal in duration to one digit of

the m-sequence) as functions of absolute arrival time and

depth is described. For mode filtering, the data has to be

sampled on a vertical line array at a single range from the

acoustic source. The nominal SVLA ranges are 44.714,

244.7, 484.7, 984.7, 1594.7, 2294.7, and 3194.7 km for

T50,…,T3200, respectively. Six phase (timing) corrections

must be applied to the measurements. The first timing cor-

rection that was applied is 1 ms and is due to the first sample

occurring 1 ms after the nominal reception time. The second

correction is 3.4 ms and accounts for the total instrumenta-

tion processing delay. The third correction accounts for

clock drift (which was measured). These corrections are triv-

ial to apply. The fourth correction is the source delay. This

correction is due to the phase response characteristics of the

source. This correction has been estimated as described in

Chandrayadula (2009) by comparing peaks of wavefield

intensities at each depth for all T50 800 m source transmis-

sions for the two early stable arrivals with ray travel time

predictions made using EIGENRAY code (Dushaw and Colosi,

1998). The average among all T50 75 Hz 800 m transmis-

sions source delay was estimated to be 14.7 ms and is in

good agreement with the number reported in Chandrayadula

(2009). It is assumed that the source delay is constant for all

transmissions. The fifth correction is due to the motion of

the source and therefore, deviation of the actual transmission

ranges from the nominal. The source position was updated

every period of the transmitted m-sequence (27.28 and 30 s

for signals with 75 and 68.2 Hz center frequencies, respec-

tively). The processing gain associated with Doppler correc-

tions for source motion was estimated to be a few tenths of a

decibel for most transmissions, and infrequently approxi-

mately a half a decibel (Andrew et al., 2010). Those correc-

tions were not implemented in the results presented here.

Finally, the most difficult correction to apply accounts for re-

ceiver mooring motion. Mooring motion data for all 40

hydrophones was recorded approximately once an hour

throughout the entire experiment. Unfortunately, these

records contain many gaps, and in some instances only the

upper 20 hydrophones or the lower 20 hydrophones were

navigated. The data that correspond to transmission times

when no navigation data are available for either part of the

array (T1000 75 Hz 800 m source transmissions and part of

the T1000 68.2 Hz 350 m transmissions) are not analyzed in

this paper. At times when the navigation data are available

for only half of the array, an empirical orthogonal function

(EOF) fit was used (Emery and Thomson, 2004). This

method was previously applied to the LOAPEX data set by

Chandrayadula and Wage (Chandrayadula and Wage, 2008).

We have used a slight variation of this method, as described

in Lin et al. (2010), that uses a damped (rather than trun-

cated) EOF expansion. Each time series was demeaned

before applying the EOF analysis to avoid most of the

energy being assigned to the EOF representing the mean

state.

There are two types of errors contributing to the result-

ing wavefields associated with mooring motion corrections.

First, there are uncertainties in the mooring position esti-

mates. These errors are known from the navigation solutions,

and they were used to estimate position uncertainties when

EOF fitting was required. It was estimated that typically

these errors in displacements do not exceed a few meters

(usually 3 m or less) for all hydrophones. The second source

of errors results from the approximation used to correct

phases of wavefields due to mooring displacement from the

nominal range. The following argument shows that these

errors are negligible. Assuming a typical horizontal mooring

displacement of 50 m from the nominal position, and a maxi-

mum perturbation to the phase slowness (among the first 10

modes and between 55 and 95 Hz computed from hydro-

graphic data using KRAKEN) of Dpr¼ 0.0016 s/km, the esti-

mated phase error is Du¼ 2pfDprr � 0.04 � 2p. In this

analysis, the mean value of the phase slowness among the
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first 10 modes at the center frequency computed from Sea-

bird data was used for mooring motion corrections.

To compute absolute intensities the raw data recorded in

“counts” was converted to Pascals using the linear scaling

factor (963 lPa/count). Care is required to keep track of

processing gain from the match-filtering procedure and other

processing steps. In addition one needs to know the source

level for every transmission. Source level estimates were

taken from the cruise report (Mercer et al., 2005). The

source level varied from transmission to transmission as

described in Appendix 2 of that report. When the source

level was not documented it was assumed to be proportional

to the 10� log10 (voltage� current) and missing values

were filled in using linear interpolation.

An important decision in the construction of acoustic

wavefields is how much coherent averaging of receptions

should be done to improve SNR. Coherent processing gain

of successive receptions typically varies between approxi-

mately 10� log10(n) (where n is the number of transmissions

being averaged) for short times and at shorter ranges, and

near-zero for long times and at longer ranges. The results

presented here were obtained by averaging receptions over

5 min. (which corresponds to 11 transmissions at 75 Hz and

10 transmissions at 68.2 Hz) for transmissions from stations

up to T1600 (and confirming that in most cases the gain of

10� log10(n) was achieved) and over 18 min. (36 transmis-

sions) for transmissions from stations T2300, and T3200

(however, observing that often the deviation from the

10� log10(n) gain regime is significant). Those averaging

times were chosen in part for convenience (averaging was

done over one data file). We did not attempt to find optimal

averaging times for every transmission. Questions related to

the loss of coherence deserve a separate study, but they are

outside of the scope of this paper. Coherent stacking was

done after mode processing individual receptions.

C. Numerically simulated acoustic wavefields

To construct numerically simulated wavefields for com-

parisons with data and theory, the RAM acoustic propaga-

tion model (Collins and Westwood, 1991; Collins, 1993)

was used. Internal-wave-induced sound speed perturbations

were modeled using the procedure described by Colosi and

Brown (Colosi and Brown, 1998). Range-averaged buoyancy

frequency N(z) and acoustic fluctuation strength parameter

l(z)¼�(q/c)Dcpot/Dqpot (where cpot and qpot are potential

sound speed and potential density, respectively) profiles

were estimated from hydrographic data collected during the

LOAPEX. Other internal wave field parameters used were

E¼EGM (the nominal Garrett–Munk strength parameter),

jmax¼ 30, kmax¼ 2p/400 m, and kmin¼ 2p/3276.8 km. The

internal wave perturbation field was sampled in range every

100 m. The RAM model allows computation of absolute

transmission loss, so, with knowledge of the source level,

absolute values of wavefield intensity can be computed and

compared with the data. The acoustic source spectrum was

chosen to have the shape of a Hanning window with peak at

the center frequency and zeros at f0 � f0/4 and f0þ f0/4 (con-

sistent with the discussion above Df � f0/4). This choice will

be discussed in Sec. V. Satellite-derived bathymetry (Smith

and Sandwell, 1997) was used with the bottom properties

similar to those given in Stephen et al. (2009). The bottom

has three “bathymetry-following” layers, i.e., their thickness

is given relative to the seafloor depth. The top layer of sedi-

ment is 40 m thick with compressional velocity of 1.6 km/s,

linear gradient of density from 1.35 to 1.41 kg/m3, and

attenuation of 0.2 dB/wavelength. The second layer is

1000 m thick with compressional velocity linearly increasing

from 4 to 5.4 km/s, a linear gradient of density from 2.542 to

2.7632 kg/m3, and attenuation of 0.05 dB/wavelength. The

third layer is a half-space with compressional velocity

5.4 km/s, density 2.7632 kg/m3, and attenuation linearly

increasing from 0.05 to 10 dB/wavelength over 100 m, and a

constant value of 10 dB/wavelength below. Bottom reflected

energy strongly interferes with the energy contained in the

first 10 modes only at short ranges. Therefore, for all numeri-

cally simulated wavefields at ranges of 1000 km and more,

the bottom was assumed to be highly attenuating (with

attenuation 10 dB/wavelength) to avoid numerical instabil-

ities. The range step used in the RAM simulations was 79 m

for T50 simulations and 50 m for all other simulations. The

depth increment was 1 m in all simulations.

D. Comparisons of measured and simulated acoustic
wavefields

Before looking at the modal statistics and making com-

parisons of data-based estimates with theoretical predictions,

it is useful to compare data-based and numerically simulated

wavefields in the time-depth domain. For convenience, we

refer to transmissions made with a 800 or 500 m deep source

as “axial” source transmissions, and all transmissions made

with a 350 m deep source as “off-axial” source transmis-

sions. The reason for this separation is qualitatively different

behavior of energy redistribution among acoustic modes dur-

ing propagation. An “axial” source initially excites all modes

and the wavefield produced by such a source has a strong

late finale near the sound channel axis (in the environments

considered). However, an “off-axial” source initially does

not excite energy in low order modes (or corresponding rays

with small grazing angles). These energy levels are popu-

lated along the propagation path due to scattering, and corre-

sponding wavefields do not have a strong late near-axial

finale. The relative energy in the finale grows as the propaga-

tion range increases. One of the goals of the LOAPEX

experiment was to study how the energy scatters into low

mode numbers along the propagation path.

Figures 4 (“axial” source) and 5 (“off-axial” source)

provide a comparison of the LOAPEX data and numerically

simulated wavefields. One example is plotted for each trans-

mission configuration (range, center frequency, source

depth). The data pulses are coherently averaged as described

in Sec. III B. The top two rows compare measured and simu-

lated wavefield intensities as functions of depth and time.

The bottom three rows compare three “cross sections” made

at approximately 500, 1000, and 1500 m depth. In general,

the agreement between colored subplots (between measure-

ments and simulations) is better at short ranges than at longer
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ranges. One reason for disagreement is the presence of vari-

ability in the background sound speed structure that is not

accounted for in numerical simulations. However, some fea-

tures present in these plots are worth emphasizing. First, the

absolute levels of intensities at T500 and T1000 agree very

well with values reported in Van Uffelen et al. (2009). (Note

that in that paper the center frequency of acoustic source was

250 Hz, suggesting that intensity levels should be slightly

lower, which is exactly as observed). Second, the agreement

of absolute levels of intensities of early arrivals at T50 is

very good (within a fraction of a dB difference for axial

source transmissions from T50). Third, at T250, arrival times

of peaks mostly agree well, but the differences in absolute

amplitudes are a few decibels. Fourth, careful examination

of subplots corresponding to T50 transmissions suggests that

the pulse shape generated by the source is not symmetric in

time (it has longer trailing edge). Note that the time scale on

each plot was chosen consistent with the scale chosen for the

modal analysis presented in Sec. IV.

IV. MODAL PULSES IN LOAPEX

This paper is concerned with the range evolution of

modal pulses in LOAPEX. To address this topic, one needs

to isolate broadband contributions to the wavefield from

individual mode numbers and then study the statistics and

range evolution of these distributions. In this paper, we focus

on the first 10 modes resolved by the SVLA (first 2 modes

for T2300 transmissions). In this section, mode filtering and

computation of statistics of modal arrivals is discussed.

Recall (e.g., Brown et al., 1996; Udovydchenkov and

Brown, 2008) that to perform the mode filtering of transient

wavefields one needs to: (1) Fourier transform measured

time histories at each depth; (2) perform mode filtering at

FIG. 4. (Color online). Absolute wavefield intensities as functions of absolute arrival time and depth are shown. Data and numerically simulated wavefields

are compared. The top two rows show one example of the wavefield for each transmission configuration. The center frequency of the source is 75 Hz and the

source depth is 800 m for T50, T250, and T500; and 68.2 Hz and 500 m for T2300 and T2300 transmissions. The bottom three rows compare measured and

modeled wavefield intensities at 500, 1000, and 1500 m depth.
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each frequency to isolate contributions to the wavefield from

each mode number; and (3) inverse Fourier transform to con-

struct transient contributions to the wavefield at each mode

number (modal pulses). The mode filtering procedure relies

on the orthogonality of normal modes and on the complete-

ness of the set of eigenmodes. These functions are computed

using the KRAKEN normal mode code.

A. Mode processing

There are several choices available for the mode filter

including direct projection (DP, or sampled mode shapes),

Moore–Penrose pseudo-inverse mode filter (PI), diagonally

weighted mode filter (DW), or a maximum a posteriori
mode filter (MAP) (Tindle et al., 1978; Buck et al., 1998;

Wage et al., 2003; Wage et al., 2005; Golub and Van Loan,

1996). All of these filters are expected to perform well if

properly configured. The mode filtering problem is naturally

formulated as a linear inverse problem subject to an energy

conservation constraint (Udovydchenkov et al., 2010);

ideally solutions have small expected errors and good resolu-

tion (little cross-talk) and satisfy the energy conservation

constraint.

In this paper, the Moore–Penrose PI mode filter was

chosen because this filter effectively eliminates cross-talk

between mode estimates and does not rely on any a priori in-

formation about the data or ad hoc parameters. The problem

of solving the Helmholtz equation (1) for normal modes is

generally formulated for a continuous medium, and solutions

to this equation are continuous functions. These continuous

functions are orthonormal and form a complete set. How-

ever, the DP mode filter relies on the orthogonality of

sampled modal functions. Even though the number of hydro-

phones used in LOAPEX should be enough to resolve the

first 10 modes, it is easy to come up with a configuration of

the array covering the same depth aperture, for which DP fil-

ter will not work (for example, if spacing between hydro-

phones increases with depth). Because we are not using

nominal hydrophone depths to construct wavefields but

instead use the actual hydrophone depths for each transmis-

sion (filling the gaps in the mooring motion data with EOFs

when necessary), the PI mode filter was chosen to avoid this

potential problem. Under typical LOAPEX conditions, we

expect that both DP and PI mode filters will perform well.

Also note that PI mode filter satisfies the energy conserva-

tion condition.

FIG. 5. (Color online). Same as Fig. 4, except that 68.2 Hz center frequency and 350 m source depth is used.
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The SVLA was designed to resolve the first ten modes.

The SVLA has 40 hydrophones with mean depths shown in

the middle panel of Fig. 3. The modal “cross-talk” matrix

shown in Fig. 3 confirms that these modes are well resolved.

This matrix (Wage et al., 2003; Wage et al., 2005) was com-

puted as 20� log10 wT
s ws

� �
, where ws is the matrix contain-

ing modal shapes at 75 Hz sampled at mean hydrophone

depths during transmissions from T50. It is concluded that

for all transmissions (except T2300, where data from lower

part of the SVLA are not available), the first 10 modes

(m¼ 0, 1, 2,…, 9) are adequately resolved. The same plot

constructed for the T2300 transmissions (upper half of the

SVLA, not shown) suggests that for those transmissions

modes m¼ 0 and m¼ 1 are resolved.

B. Modal group time spreads

To obtain reliable estimates of modal arrival statistics,

one has to carefully consider the effects of variable SNR

(which is generally low at long range) in the transmissions

and presence of other signals (especially bottom reflections

at short range). This subsection describes the algorithm that

was used to compute modal statistics.

After coherently averaging modal pulses as described in

Sec. III B, the acoustic wavefield was “time-gated” to dis-

card bottom reflected signals (mostly at T50) and possibly

high levels (often in the form of spikes) of ambient noise in

low mode numbers at times where those arrivals can not be

attributed to the transmitted signal (mostly at ranges of

1600 km or more). The reference sound speed c0 was taken

to be 1.478 km/s. The corresponding reference arrival time is

t0¼ r/c0 (where r is the transmission range). The time win-

dow around t0 was chosen to be 60.5 sec for T50 and

[�0.75; 0], [�1; 0], [�2; 0], [�3; 0], [�5; 0] and [�8; 0] s

for T250,…, T3200, respectively. Data outside of these win-

dows were discarded. The resulting subsets were visually

inspected to make sure that no signal had been discarded.

Time windowing is necessary to eliminate any noise that can

filter into low order modes at times significantly different

from the signal arrival time and degrade estimates of pulse

statistics. A noise floor level for every mode in every pulse

was estimated using the 5 s long window that precedes the

signal window. The maximum amplitude of the contribution

from the noise was computed for every pulse and every

mode number, and the data below these thresholds were dis-

carded. Note that generally (especially at short transmission

ranges) the noise floor estimated using this method is monot-

onically decreasing with increasing time between the two

successive transmissions. This is due to reverberations pres-

ent from the previously transmitted pulse that gradually

decay until the next pulse arrives. It was noted that for axial

source transmissions from T50 after these steps were per-

formed the SNR was very high, sometimes as high as 50 dB.

However, because of the differences between the actual

pulse shape (the spectrum of the signal radiated by the

source is non-Gaussian and not symmetric) and the idealized

pulse shape used in numerical simulations and theoretical

estimates, the inclusion of the entire signal in the computa-

tion of modal statistics makes the comparison difficult. In

addition, when the SNR is low, modal group time spreads

may be largely underestimated when most of the pulse

energy is below the noise floor and is discarded together

with the noise. For this reason, when the SNR was higher

than 20 dB, the signal 20 dB or lower than the peak was

zeroed. The first, second, and third moments were computed

for every modal arrival for every pulse. Before converting

estimated standard deviations into modal group time spreads

consistent with conventions used in Eq. (6), the widths of

pulses in the absence of noise were estimated. An idealized

Gaussian pulse was constructed and standard deviations as a

function of truncation level were computed (to mimic vari-

able SNR). The data-based standard deviations were multi-

plied by the ratio of standard deviation of a Gaussian pulse

with infinite SNR to the standard deviation of a Gaussian

pulse with a given finite SNR. While this procedure, of

course, can not recover the structure of the pulse below the

noise floor, it eliminates the problem of time spreads being

largely underestimated when SNR is small. Note that if this

correction is not applied, the time spread of any isolated

pulse approaches zero with SNR approaching zero (for

example, the data pulse shown in Fig. 6 corresponding to the

m¼ 1 off-axial source transmission from T250). Skewnesses

were computed as centered third moments of modal pulse

amplitudes normalized by the standard deviation cubed for

every mode number,

c mð Þ ¼
Ð

t� �t mð Þð Þ3qm tð ÞdtÐ
t� �t mð Þð Þ2qm tð Þdt

	 
3=2
; (19)

where �t mð Þ ¼
Ð

tqm tð Þdt, and qm (t) denotes the normalized

(unit area) modulus of the pressure time history (measured

or simulated) corresponding to the mode number m.
Figure 6 shows examples of modal pulses for the first 10

modes for each transmission configuration. Mode amplitudes

are plotted on a logarithmic scale with dynamic range of

20 dB on each subplot. To interpret this figure, recall that a

Gaussian shaped pulse is parabolic on this scale. There are

three sets of curves plotted. Black curves show modal pulses

obtained from the LOAPEX data and red curves show simu-

lated modal pulses. These two sets of curves are normalized

together to the peak value in the data (except T2300, where

peak values from the model were used) at each transmission

range (so this figure allows comparison of the amplitude of

mode m in the data to the amplitude of mode n in the simula-

tion at a fixed range). The green curves correspond to theoreti-

cal predictions based on the model described in Sec. II C. The

value of B¼ 1.0� 10�7 s2/km was used for all axial source

transmissions and B¼ 1.5� 10�7 s2/km for all off-axial

source transmissions. These values are consistent with previ-

ously reported estimates in (Udovydchenkov and Brown,

2008; Virovlyansky et al., 2007; Virovlyansky, 2006).

Because these simple theoretical predictions cannot estimate

absolute amplitudes of arrivals (only relative amplitudes are

estimated), intensities shown by green lines are normalized

separately (to the peak value at each transmission range).

Several important conclusions can be drawn from

Fig. 6. First, at T50, it is evident (again) that the pulse shape
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used in the experiment is not symmetric in time because it

has a long trailing edge. Second, one can easily see from

these plots whether a particular group of modes is excited or

not. As expected, an off-axial source does not excite low

order modes at short ranges. However, the relative levels of

excitation in measured and simulated wavefields agree well

but do not agree with theoretical predictions. An explanation

for this discrepancy was found in the presence of bottom-

reflected energy that interferes with main arrival. While bot-

tom reflected signals do not contain any low mode number

energy, the spacing between hydrophones in the SVLA is

too coarse to discriminate the low mode energy from

very high angle energy (bottom interacting energy with

m Z 100). This hypothesis was confirmed by performing

mode filtering of the data records past 30.3 s in transmissions

from T50 (not shown) that contain only bottom-reflected

arrivals. The third observation is the presence of persistent

bias in arrival times for almost all modes for transmissions

from T250. This observation suggests that C250 profile used

for numerical simulations is not a good representation of the

mean profile along the propagation path and is cold-biased.

Comparison of T50 with C50 and T250 with C250 profiles

in Fig. 3 reveals that both C50 (which is not used in simula-

tions) and C250 are cold-biased with respect to the deep

CTD profiles below the sound channel axis. This is the likely

cause of the discrepancy in arrival times, but note that the

deep CTD casts provide only two measurement points along

the first 250 km and are clearly not sufficient to construct a

realistic range-dependent environment. The fourth observa-

tion is that the simple theoretical model is able to correctly

predict, qualitatively at least, the asymmetry (negative skew-

ness) of modal arrivals at long ranges. Note that the theory

predicts an envelope of arrival modal pulse, not an individ-

ual realization. The modal pulse, constructed from measure-

ments and simulations that are shown in Fig. 6 are individual

realizations of the wavefield and, of course, are not the same

as theoretical prediction. At long ranges (for example the

axial source transmissions from T3200), measurement-based

distributions of energy clearly show pronounced long lead-

ing edge and abrupt trailing edge (negative skewness), espe-

cially for the lowest mode numbers, which are correctly (at

least qualitatively) reproduced in both theoretical prediction

and simulation. This figure also shows the SNR for each

mode. While most of the modal pulses have sufficiently high

FIG. 6. Modal pulses in the LOAPEX. An example of one mode pulse for every transmission configuration is shown for the first 10 modes. Data are shown in

black, the simulated pulses are shown in red, and theoretically predicted distributions of energy are shown in green. The dynamic range on every subplot is

20 dB; the vertical grid spacing is 10 dB.
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SNR to allow modal statistics to be computed, in some

instances (most of the T2300 transmissions, for example),

low SNR makes the computation of modal statistics unreli-

able. Also low SNR and the lack of mesoscale variability in

the numerical model results in larger disagreement of arrival

amplitudes of the evanescent axial energy (corresponding to

low mode numbers) for transmissions made from T2300 and

T3200 stations with the off-axial source.

V. RESULTS

In this section, we present the results of mode pro-

cessing the LOAPEX measurements, and compare

measurement-based statistics of modal group arrivals with

both full wave simulations and theoretical predictions. The

entire LOAPEX data set has been analyzed; the number of

transmissions used in our analysis is given in Table I. Full

wave numerical simulations using RAM were done once

(with a single realization of internal-wave-induced perturba-

tion) for each transmission configuration. (Unfortunately,

computing an ensemble of wavefield realizations for each

transmission configuration would be computationally pro-

hibitive.) Theoretical estimates of modal group time spreads

were based on the theory-based numerical model described

in Sec. II C.

A. Statistics of modal pulses in LOAPEX

In this subsection, the statistics of modal group time

spreads are analyzed. The dependence of modal group time

spreads on both range and mode number is considered.

Figure 7 shows modal group time spread statistics as a func-

tion of range for each mode number. In the absence of scat-

tering, modal pulses grow, approximately linearly, with

increasing range due to dispersion. It is convenient to

remove the linear trend in modal group time spreads by con-

sidering spreads in group slowness [recall Eq. (4)], rather

than time spreads. Group slowness spreads DSg are plotted in

Figs. 7 and 8. Note that as r ! 0, DSg ! 1 because of the

constant reciprocal bandwidth contribution term (7).

Three different sets of group slowness spreads are plot-

ted on each subplot of Fig. 7. These are measurement-based

estimates (sample means over the transmissions listed in

Table I), one measure based on full wave simulations, and

the theoretical predictions. Two different measures of the

goodness of measurement-based estimates are also plotted

with vertical error bars. The outer (wider) error bars

represent the 90% confidence interval for the individual

realization (i.e., the interval within which a single estimate

of modal group time spread would fall with 90% probabil-

ity). Comparing these intervals with theoretical predictions

is misleading because the theory does not predict an individ-

ual wavefield realization, but provides the mean modal group

time spread. The second plotted measure of goodness of

these estimates is the confidence interval for the mean

(Bendat and Piersol, 2010, pp. 88–90), which shows the

interval within which the mean of the estimate would fall

with 90% probability if the entire experiment was repeated.

The confidence interval of the mean is plotted with the inner

error bars on top of each measurement-based estimate.

Many factors influence the agreement among data, sim-

ulations, and theory. For axial source transmissions (top two

rows of Fig. 7) from T50, the data usually show larger spread

than predicted by the theory. There are two reasons for this:

(1) the shape of the source spectrum and (2) bottom reflec-

tions. Modal group time spread estimates at this range are

strongly controlled by the reciprocal bandwidth contribution

(7). Estimated values of modal group time spreads at this

range suggest that the true spectrum of the source used in

LOAPEX is narrower than the spectrum of the idealized ref-

erence signal used in the processing. Based on earlier tests

of the source, our initial estimate of the source bandwidth

(full width at half amplitude) was approximately 20 Hz.

However, the modal group time spreads from T50 suggest

that the true width should be around 16 Hz. Our full wave

simulations were done with Df¼ 18.75 Hz with 75 Hz center

frequency (Df¼ 17.05 Hz with 68.2 Hz center frequency),

which is intermediate between these estimates. The second

reason for the large data-based estimates is the presence of

bottom-interacting energy. As discussed previously, this

energy is not completely filtered out by the array and results

in time spreads being larger than theoretically predicted.

Additional complications arise when a mode (or a group of

modes) is not strongly excited. This happens when the

acoustic source depth nearly coincides with the node of a

particular mode. In the axial source transmissions from T50

that are shown in Fig. 7, modes m¼ 5, 6, and 9 are weakly

excited (note that in the corresponding full wave simulations

modes m¼ 5, 8 and 9 are weakly excited). For these modes,

estimation of spreads is difficult and error bars are large.

Also, error bars are always large (sometimes outside of the

subplot) for modes that are not excited by the off-axial

source. In light of this discussion, the data that are the easiest

to analyze and show the best agreement with theory corre-

spond to T250 and T500 transmissions with an axial source.

Modal group time spreads grow monotonically with

range, but the spread in group slowness is predicted to

increase at both short and long ranges. Using Eqs. (6)–(9),

one can estimate the range at which the spread DSg is

expected to be minimal. This range is equal to

rms ¼
1

p
3

8B

� �1=3 R

bj jDf

� �2=3

: (20)

To obtain an approximate quantitative estimate of rms

we take B¼ 1.0� 10�7 s2/km, R � 50 km, Df¼ 18.75 Hz,

jbj � 0.2, giving rms � 280 km. The upper part of the Fig. 7

TABLE I. Overview of LOAPEX transmissions analyzed in this paper. The

number of transmissions used in the analysis for each transmission type and

at each range is given. Each transmission corresponds to one 1023 digit m-

sequence. The complete transmission schedule can be found in Mercer et al.
(2005).

T50 T250 T500 T1000 T1600 T2300 T3200

SVLA (km) 44.714 244.7 484.7 984.7 1594.7 2294.7 3194.7

75 Hz 800 m 330 363 462 – – – –

68.2 Hz 350 m 240 330 200 300 810 504 540

68.2 Hz 500 m – – – – – 540 612
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(corresponding to the axial source transmissions) suggests

that group slowness spread is smallest at ranges between 250

and 1000 km. Note that this minimum is very broad, its posi-

tion is mode number dependent, and Eq. (9) overestimates

near-axial spreads by a mode-number-dependent factor that

is close to 2. The latter observation leads us to expect that

the estimate rms � 280 km is slightly low. Because of all of

the factors that we have described, agreement with LOAPEX

observations is about as good as can be expected.

Figure 8 shows modal group time spreads and skew-

nesses as functions of mode number at fixed ranges. For the

T50 axial source transmission, predicted spreads are consis-

tently smaller than the data-based estimates, suggesting that

the true effective frequency bandwidth of the source was

slightly less than 18.75 Hz. Note that the “outliers” of the

simulation-based estimates correspond to weakly excited

modes. The agreement among theory, simulations, and

measurements is very good for axial source transmissions at

T250 and T500. For off axial source transmissions, the

general trend is that the larger the mode number, the better

the agreement. This is largely due to the difficulty of estimat-

ing time spreads for modes that are weakly excited.

The two bottom rows of Fig. 8 compare data-based,

simulated, and theoretically predicted skewnesses as func-

tions of mode number. Skewness error bars were computed

using the same methods that were used to compute time

spreads error bars. As expected, for the axial source trans-

missions from T50, the data-based skewnesses are positive

(because of long trailing edge in the shape of the pulse) and

simulation- and theory-based estimates are close to zero.

The agreement for axial source transmissions from T250 and

T500 is very good. At T3200, the agreement between simu-

lations and data is good, but comparison with theory is

mostly qualitative; all skewnesses are predicted to be nega-

tive. The agreement for off-axial source transmissions is

generally very good for transmissions made from T1600 to

T3200 stations. It is also good between the data and full

wave numerical simulations at shorter ranges with the

FIG. 7. (Color online). Modal group slowness spreads as functions of range for the first ten modes. Measurement-based estimates are shown with “x”-symbols

together with 2 sets of error bars as described in the text. Full-wave-simulation- based slowness spreads are shown with open circles. Theory-based estimates

of slowness spreads are shown using filled circles. The top two rows show results for axial source transmissions; the bottom two rows show results for off-

axial source transmissions.
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caveats mentioned in the preceding text relating to weakly

excited modes. The simple numerical model tends to overes-

timate the skewnesses for transmissions made from interme-

diate ranges T250–T1000.

B. Scattering of acoustic energy into low mode
numbers

An important issue that was investigated is the range-

dependence along the propagation path of acoustic energy of

low-order modes that are not excited by an off-axial source.

To study how the energy redistributes among low order

modes due to scattering, first we need to identify an appro-

priate criterion that distinguishes an “excited” from a “not

excited” mode number. One might, for example, compute

the total energy (integrated over time) contained in every

mode pulse and argue that if this energy is less than a certain

threshold (half of the total energy in mode m¼ 10, say), then

the mode is not excited. This criterion has the shortcoming

of not allowing one to distinguish between two scenarios: (a)

a strongly excited mode, but with short duration vs (b) a

weakly excited mode with long duration. After several

attempts to quantify this effect, we decided to use instead a

“10 dB threshold” criterion. According to this criterion, we

call a mode “excited” if the peak amplitude of that mode is

less than 10 dB below the peak of any mode (among first 10)

in that transmission. This criterion proved to be robust. One

should not, however, be mislead by the term not excited. A

mode amplitude can be several decibels above the noise

floor, but for the analysis presented in this section, we call it

not excited if the peak amplitude is more than 10 dB below

the peak of any mode in that transmission. Of course, when

analyzing many transmissions of the same configuration, a

particular mode can be excited in one realization and not

excited in another. So, we prescribe the value þ1 if a mode

is excited and -1 if it is not in a particular realization. If the

mean value of the total series for a mode is nonnegative,

then we identify this mode as excited; otherwise it is not

excited. Note also that we only use this analysis for the off-

axial source transmissions.

The number of not excited modes for data, simulations,

and theoretical predictions as a function of range is given in

the Table II and plotted using color-coded vertical lines in

Fig. 8 (black for the LOAPEX data, red for RAM, and green

for theory). The mode numbers to the right from each verti-

cal line are excited, and the ones to the left are not excited.

Only at ranges of 50 and 250 km do data and simulations

deviate significantly from theoretical predictions. At both

ranges, the cause is bottom-reflected energy. The theory

does not account for bottom-reflected energy, but both simu-

lations and data show strong bottom-reflected arrivals at

T50. Recall that this energy is, in fact, not low-mode number

FIG. 8. (Top two rows) Modal group times spreads as functions of mode number for each transmission configuration. Annotation is the same as in Fig. 7.

(Bottom two rows) Measured, simulation-based, and theoretically predicted skewnesses as functions of mode number. Vertical dashed color lines on subplots

corresponding to the off-axial source transmissions separate “excited” from “not excited” modes as defined in the text.
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energy, but appears as such because of coarse spacing

between hydrophones. At ranges longer that 250 km, when

comparing data, simulations, and theory, the dividing line

between excited and not excited modes differs by at most

one mode number. We consider this agreement to be good.

VI. SUMMARY

In this paper, a modal analysis of the data recorded on

the SVLA during the LOAPEX experiment with focus on

the first 10 propagating modes was presented. The basic

theory of modal group time spreads was reviewed, and a

necessary extension for proper treatment of low order modes

was described. A simplified numerical model based on the

theory presented was developed. The entire SVLA-based

LOAPEX data set was processed and modal pulse statistics

were computed. Data-based estimates of modal group time

spreads and skewnesses were compared to theoretical predic-

tions and estimates from full wave numerical simulations.

Overall agreement among the theory, numerical simulations,

and data is good. In instances with poor agreement, the

causes were identified and explained.

Complexities associated with low mode number scatter-

ing were described in detail. It was shown that in a typical

mid-latitude ocean environment at ranges of 250 km or more

and in the 50-100 Hz band that the correct low-m modal

group time spreads estimates are approximately one half as

large as the large-m theory predicts for the lowest mode

numbers. The theoretical formulation used in this paper does

not lead to a simple analytical expression for the scattering-

induced contribution to modal group time spreads. However,

the underlying theoretical framework led to the development

of a simple numerical model based on a random walk pro-

cess with a reflecting boundary. This numerical model is ca-

pable of predicting modal group time spreads for receptions

that do not have strong interference with bottom reflected

energy (this model does not account for bottom-reflected

energy). This model is also capable of predicting skewnesses

of arrival modal pulses, but the agreement with data is

mostly qualitative (positive, near-zero, or negative).

Agreement between measurement-based estimates of

modal group time spreads and skewnesses with estimates

based on full wave simulations and theory was best for the

T250 and T500 transmissions. At shorter range (T50 transmis-

sions), receptions were complicated by the presence of bottom

reflected energy. These arrivals are not filtered out by the

SVLA and cause the estimates of modal group time spreads

to be too large. Realistic bottom properties are required to

achieve good agreement in the excited mode number cutoff

between data-based estimates and RAM-based estimates at

this short range. It was confirmed that RAM-based estimates

agree well with theoretical predictions at short ranges if a

dense simulated array of hydrophones is used and bottom-

reflected energy is properly filtered out. At longer ranges

(T1000, T1600, T2300, and T3200), low SNR and back-

ground range dependence led to some discrepancies in data/

simulation/theory comparisons. Coherent averaging was used

to improve SNR for all transmissions. Noise levels were esti-

mated for each transmission (after coherent averaging) and

each mode number. However, we did not conduct an exten-

sive study of signal coherence and did not attempt to find the

optimal averaging time or estimate the signal decorrelation

time. Agreement between modal group time spreads is gener-

ally good for all axial source transmissions for strongly

excited mode numbers. For off-axial source transmissions, the

general trend is that the larger the mode number, the better

the agreement. It is noteworthy that all skewness estimates

correctly predict negatively skewed distributions at long

ranges (transmissions from T2300 and T3200).

Unfortunately, because the SVLA only allows the reso-

lution of the first ten modes, it was not possible to fully test

the predicted dependence of modal group time spreads on b.

A shortcoming of our analysis is linked to the assumption in

the theoretical formulation that was applied that the back-

ground sound speed structure is range-independent. Even in

the LOAPEX environment where mesoscale variability was

weak, this assumption led to some ambiguities and errors.

For example, a persistent travel time bias, related to a bias in

the assumed background sound speed profile, was seen in

the T250 receptions.

In other deep ocean environments, mesoscale variability

is much more energetic than in the LOAPEX environment.

For many purposes, it is natural to treat this mesoscale struc-

ture as deterministic, i.e., as part of the background structure

to which a stochastic perturbation, generally associated with

internal waves, is superimposed. A critically important ele-

ment of any theory of sound scattering and mode coupling in

such environments is accounting for this background range-

dependent sound speed structure. This represents a signifi-

cant challenge that needs to be addressed.
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APPENDIX

In this appendix an expression for P(I1,I2,r1,r2jI0) used

in Eq. (13) is derived. The joint probability density function

TABLE II. Summary of “not excited” number of modes (defined in the

text) observed in the data and estimated using full wave numerical simula-

tion and theory as a function of range for the off-axial source transmissions.

T50 T250 T500 T1000 T1600 T2300 T3200

Data 3 4 5 4 3 0 0

Model 4 7 6 3 2 1 0

Theory 7 7 7 5 3 0 0
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P(I1,I2,r1,r2jI0) describes a random walk process I (r) with

the initial condition I (r¼ 0)¼ I0. At ranges r1 and r2

(assuming r2� r1), it takes the values I (r1)¼ I1 and

I (r2)¼ I2. Because I (r) is a Markov process,

P I1; I2; r1; r2jI0ð Þ ¼ P I2; r2 � r1jI1ð ÞP I1; r1jI0ð Þ: (A1)

Substituting Eq. (15) into Eq. (A1) yields

P I1;I2;r1;r2;jI0ð Þ¼ 1

2pB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 r2�r1ð Þ

p e
� I1�I0ð Þ2

2Br1 þe
� I1þI0ð Þ2

2Br1

� �

� e
� I2�I1ð Þ2

2B r2�r1ð Þþe
� I2þI1ð Þ2

2B r2�r1ð Þ

" #
; (A2)

which is substituted into Eq. (13) for numerical evaluation

and construction of the right panel of Fig. 2. The cross-

correlation of the two processes I1(r1) and I2(r2) is

C r1;r2ð Þ¼ I1 r1ð ÞI2 r2ð Þh i

¼
ð1

0

dI1 I1��I r1ð Þð Þ
ð1

0

dI2 I2��I r2ð Þð ÞP I1;I2;r1;r2jI0ð Þ;

(A3)

and the variance of the integrated random walk process is

r2
t ¼

ðr

0

ðr

0

C r1; r2ð Þdr1dr2: (A4)
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