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ABSTRACT

Simulated along-track ocean altimetry data were used to implement the use of a nonlinear dynamic

propagator to perform three-dimensional (time and 2D space) interpolation of mesoscale sea surface height

(SSH). The method is an inverse approach to processing altimetry data unevenly sampled in time and space

into high-level gridded altimetry maps. The inverse approach, similar to the standard objective mapping,

contains some correction terms to the innovation vectors to account for nonlinear dynamics. Another key

improvement is to solve for the covariance functions through a Green’s function approach. From the Ob-

serving System Simulation Experiments carried out to simulate a three-satellite constellation over the Gulf

Stream region, the newmethod can significantly reducemapping errors and improve the resolving capabilities

compared to the standard linear objective analysis such as that used by the AVISO gridding.

1. Introduction

Merging along-track ocean altimetry data into contin-

uous maps in time and space is a challenging exercise that

is extremely useful for research and applications. In

particular, it provides synoptic views of the geostrophic

currents and ocean dynamic content, not directly given by

the along-track data. The most common gridded altime-

try reconstructions (e.g., AVISOmaps, http://www.aviso.

altimetry.fr/duacs/, Aviso, 2015) from the available con-

stellation of satellites are based on linear state analysis

(following Bretherton, et al. 1976) with predefined time

and space covariance models (e.g., Le Traon et al. 1998).

The mesoscale sea surface height (SSH) captured by

altimetry satellites is principally dominated by quasi-

geostrophically balanced dynamics (outside of the

equatorial zone) that evolve with typical time scales of a

few weeks and spatial scales of a few hundreds of

kilometers. The linear mapping analyses, as they have

been performed so far, capture a significant part of these

mesoscale dynamics (e.g., Ducet et al. 2000). These dy-

namics are known to be dominated, in large part, by the

first baroclinic mode (e.g., Wunsch, 1997). Although

well captured by the linear mapping, the actual evolu-

tion of the first baroclinic mode, especially at short

spatial scales, is strongly nonlinear, which may limit the

performance of the mapping. In Ubelmann et al. 2015,

we have shown that accounting for the simplest non-

linear representation of the first baroclinic mode SSH

evolution allows for significantly reducing interpolation

errors between two fields of SSH, through the so-called

dynamic interpolation. The fields of SSH were trans-

ported forward and backward by a nonlinear propagator

conserving the potential vorticity expressed in the first

baroclinic mode framework. This direct forward/back-

ward approach, easy to implement, demonstrated the

concept of dynamic interpolation, but was not directly

applicable to observations unevenly sampled in time and

space. In this present study, we propose to implement the

use of this nonlinear propagator in an inverse approach,
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similar to the standard mapping analysis, allowing to

process realistic along-track observations (of any distri-

bution, with noise).

In the first section, we will briefly review the standard

linear mapping analysis as commonly used for ocean al-

timetry data. Based on the same approach but introducing

a correction term to the innovations, accounting for pre-

dictable nonlinear evolutions, we will propose in section 2

the implementation of a propagator in the analysis to

perform dynamic mapping. The method will be finally

tested with Observing System Simulation Experiments

(OSSEs) in the Gulf Stream region, described and ana-

lyzed in section 3 globally and as a function of scale.

2. The standardmapping methods for altimetry data

The mapping methods commonly used for merging

multisatellite altimetry data are based on a three-

dimensional (time and space) linear analysis, applied

to sea level anomaly (SLA) observations with respect

to a background state (mean dynamic topography) and

predefined time and space covariance functions for the

departure from the background state.

General formulation

If x is the true state to estimate (referenced to the

background) defined on a regular grid in space and time,

the observations y0 can be expressed as follows:

y
0
5Hx1 e

i
, (1)

where H is the observation operator and ei is the mea-

surement error (instrument and geophysical errors).

If we note Bs,t as the expected covariance matrix of x

and R the covariance matrix of measurement error

between all pairs of observations, the state estimate xa
is given by

x
a
5B

s,t
HT(HB

s,t
HT 1R)21y

0
, (2)

where y0 is the observation vector of SLA and T de-

notes matrix transpose. For mesoscale circulations,

covariance matrices Bs,tH
T (between grid and obser-

vation space) and HBs,tH
T (in observation space) can be

typically filled explicitly with the following C function,

depending only on the distance dr and the time offset dt

(e.g., Arhan and Colin de Verdiére 1985):
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5 hSLA2i3 f (dr)3 g(dt) , (3)

where hSLA2i is the variance of SLA. In space (and for

dt5 0), the Fourier transform of this covariance

function gives a power spectrum with a 24 slope for

wavelength �L and flat for wavelength �L. Here

L5 150 km is a typical value corresponding to a power

spectrum generally similar to what is observed from

along-track data (with an eddy band at approximately

250 km). In time (and for dr5 0), the equivalent fre-

quency power spectrum is flat for t � t0, with a sharp

cutoff for t � t0. The westward propagation of eddies

can also be accounted for by coupling dt and dr in Eq.

(3) in a translating space as performed today in Aviso

maps (e.g., AVISO 2015). In the experiments carried

out for this study in the Gulf Stream current, we did

not find a significant impact of accounting for west-

ward propagation, so we will not consider it. Finally,

the R matrix is chosen accordingly with the

best knowledge of measurement error. This error

contains instrument error generally dominant at

wavelength ,80 km and known to be uncorrelated,

contributing to the diagonal terms of R. Other mea-

surement errors, mostly from imperfect geophysical

corrections, may contribute to off-diagonal terms (of

larger scales).

3. The dynamic mapping using a nonlinear propagator

a. The state estimation problem

As described in Ubelmann et al. (2015), it is pos-

sible to use a very simple but nonlinear propagator to

account for a predictable part in the time evolution of

the SSH signal, and as a result reduce the errors of the

state estimate between SSH fields given at different

times. In this section, we propose defining the state

estimate problem using the nonlinear propagator

with an inverse approach similar to the standard

mapping method summarized above. This new im-

plementation will allow dynamic reconstructions

from realistic along-track data unevenly sampled in

time and space.

The nonlinear propagator applied to a state of SSH is

the time integration of Eq. (4) where the potential vor-

ticity q and the current functionc are defined in Eqs. (5)

and (6):
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›q

›t
1 J(c, q)5 0, (4)

q5=2c2
1

L2
R

c, and (5)

c5
g

f
SSH . (6)

This propagator M provides a transformation of the SSH

field in time; it can be integrated forward and backward.

HereM naturally tends to diminish with time as there is no

energy input but some numerical diffusion. However, we

found that predictability skills decrease at a faster rate. We

therefore propose to apply attenuation factor e2[(t2tref)/tp]
2

to

the propagator, where t is the time variable and tp is the time

of predictability (possibly varying with the wavelength).

The goal is to estimate the true state of SLA at a par-

ticular time (time of analysis, noted tref in the following),

xtref, from an ensemble of observations in a time window

centered around tref. The true state at any time t around

tref, noted xt, can be decomposed into a predictable term

explained by the propagator integrated from tref (either

forward or backward) and a nonpredictable term xtnr ac-

counting for all other nonresolved dynamics:

xt 5M(xtref)1 xtnr , (7)

where M(xtref) is the predictable term and xtnr is the

contribution (from tref to t) of the nonresolved dy-

namics. For t5 tref by definition, M5 I and xtnr 5 0.

Over the time window, the better M performs, the

smaller xtnr is. If we use Eq. (7) in Eq. (1), we obtain

y
0
5H[M(xtref)1 xtnr]1 e

i
. (8)

The inverse problem consists of estimating xtref from the

ensemble of observations y0. However, the nonlinearity of

the operatorM prevents direct application of a linear least

squares analysis. To solve this problem, we suppose that

we knowafirst guess of the state at the reference time, xtrefg ,

sufficiently close to the truth xtref so that the propagator

response to the guess error (xtrefg 2 xtref) is quasi linear:

M(xtref) ’ M(xtrefg )1M[xtref 2 xtrefg ] , (9)

where M is the linearized propagator around the guess

xtrefg . In practice, xtrefg will be first obtained by a linear

mapping, and then iteratively updated with the dynamic

mapping solution, as detailed in the next section. By

using Eq. (9), Eq. (8) becomes:

y
0
2H[M(xtrefg )2Mxtrefg ]5HMxtref 1Hxtnr 1 e

i
. (10)

From this expression with linear rhs operators and

known lhs terms, we can apply the least squares analysis

to estimate xtref, similarly to what was done from Eq. (1)

to Eq. (2):

xtrefa 5B
s
MTHT(HMB

s
MTHT 1C

nr
1R)21

3fy
0
2H[M(xtrefg )2Mxtrefg ]g , (11)

where Bs is the covariance matrix for xtref, in space only

because xtref is for a given time. Term Cnr is the co-

variance matrix for the nonresolved dynamics in obser-

vation space, whose parameterization will be given later,

and R is the observational error covariance matrix.

Equation (11) defines the solution of the dynamic in-

terpolation problem.We can verify that if the propagator

M is linear,M5M; the innovation term is the same as in

the standard mapping. Term BMTHT is the covariance of

the true signal between the grid and observation loca-

tions, and HMBMTHT 1Cnr is the covariance of the true

signal in observation space, accounting for the resolved

dynamics HMBMTHT plus the independent nonresolved

dynamics (Cnr). Therefore, ifM is linear, the problem is

equivalent to a standard linear mapping.

b. Resolution in a reduced space using Green’s
functions

In the general case where M is the linearized propaga-

tor of M, the operator HM (from the model grid at the

time of analysis to observation space at all times) of size

(nobs,ngrid) would be burdensome to compute and store.

However, since the expected wavelengths that can be re-

solved by altimetry mapping are limited (typically higher

than 150km), it is not necessary to operate the linearized

propagator on the full model grid. If we transform the

model grid in a reduced Fourier space containing a finite

range of wavelengths, it is possible to consider only the

linear response of a finite number of modes through the

Green function approach (e.g.,Wunsch, 1996,Menemenlis

et al. 2005). To do so, we define a 2D Fourier orthogonal

basis on which xtref can be decomposed as follows:

xtref 5Ghtref , (12)

where htref is a vector of parameters to estimate, rep-

resenting the amplitudes of the normalized Fourier

modes defining the solution xtref and G is the linear

transformation from the Fourier space to the grid space.

If we substitute xtref with Ghtref and xtrefg with Ghtref
g ,

where htref
g is the vector of parameters for the guess, and

if we note G5HMG, Eq. (10) becomes

y
0
2HM(xtrefg )1Ghtref

g 5Ghtref 1 xtnr 1 e
i
, (13)

where G is the Green function matrix, representing the

linear response (around the guess) of the modes in the
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observation space (i.e., at observation times and loca-

tions). Its computation will be detailed in the follow-

ing section. From any guess xtrefg (and its corresponding

htref
g parameters) the lhs terms of Eq. (13) can be com-

puted (through backward/forward nonlinear propagator

integration) and the rhs terms are linear operators.

Hence, the least squares analysis can be applied to es-

timate the parameters htref, similarly to what was done

from Eq. (1) to Eq. (2):

htref
a 5PGT(GPGT 1C

nr
1R)21

3[y
0
2HM(xtrefg )1Ghtref

g ] , (14)

where P is the covariance matrix of the parameters htref.

Since the Fourier modes are orthogonal in space (by

definition), P is diagonal and the variance terms must be

chosen accordingly with the expected power spectrum of

SLA, given for example by the Fourier transform of the

autocorrelation function in Eq. (3). The solution of this

equation, expressed in a reduced space, can be ex-

pressed back in the grid space by applying xtrefa 5Ghtref
a .

The main task is the computation ofG and the definition

of an appropriate parameterization for Cnr, described in

the following.

c. Computation of G matrix

For a given column j of the G matrix, note that G:,j is

the linear response of the propagator to the single mode

G:,j, in the observation space. To obtain the linear re-

sponse of the propagator, we propagate the mode with

amplitude a and rescale it after the propagator in-

tegration. Therefore, G:,j has the following expression:

G
:,j
5HMG

:,j
5H

2
4M(xtrefg 1aG

:,j
)2M(xtrefg )

a

3
5. (15)

The factor a should be small enough so that the response

to the perturbation aG:,j is linear, but large enough to

avoid the effect of numerical truncation errors along the

integration. In practice, there is a wide range of possible

a (typically of the order of a millimeter in SSH) leading

to the same matrix. As shown by Eq . (15), the compu-

tation of G requires the backward/forward propagator

integration (over the time window containing the ob-

servations around tref) of all the single modes. Practi-

cally the amount of computation can still be reasonable

since the propagator integration is very efficient.

d. Parameterization of Cnr matrix

As mentioned earlier, we impose the variance of the

propagator to decrease with time away from tref, fol-

lowing e2[(t2tref)/tp]
2

, where tp is the time of predictability,

reflecting the skills of the propagator. However, the total

variance of the true signal is not expected to decrease,

but to remain constant because of unrepresented bal-

ance between dissipation and energy inputs. The latter

will be implicitly considered in the nonresolved dynamics

through theCnr matrix. Let us consider two locations in the

time–space domain, r1, t1 and r2, t2 and denote dr5 r2 2 r1
and dt5 t2 2 t1. Here t1 and t2 are defined from the refer-

ence time of analysis. If we assume that the total signal fol-

lows the covariance of Eq. (2), hSLA2i3 f (dr)3 g(dt),

and that the propagator signal follows the same model

with the exponential decay, and finally that M(xtref)

and xtnr are independent, we have hSLA2i3 f (dr)3
g(dt)5 hSLA2i3 f (dr)3 e2(t2

1
/t2p)e2(t2

2
/t2p) 1Cnr, where the

Cnr function is the covariance of the nonresolved dy-

namics between the two locations. If we use the function

g given in Eq. (3), the covariance model Cnr is the

following:

C
nr
5 hSLA2i3 f (dr)[e2(dt/t0)

2

2 e2[(t2
1
1t2

2
)/t2p]] . (16)

This covariance function Cnr will be used to fill the Cnr

matrix, expressed in the observation space.

4. The OSSEs

a. Experiment setup

The outputs of an ocean general circulation model

(OGCM) are used in the following as a reference truth

from which an observation system is simulated, pro-

viding synthetic altimetric observations along virtual

satellite tracks. The mapping methods presented above

will be tested using these synthetic observations and the

analyzed states will then be compared with the truth for

performance estimation.

The OGCM fields come from a global MITgcm sim-

ulation at 1/168 horizontal resolution (Hill et al. 2007;

Menemenlis et al. 2008) provided by the ECCO project.

The Gulf Stream region has been chosen for this study,

as shown in Fig. 1. The 6-hourly output fields over 1 year

have been sampled by three virtual satellites, flying on

Joint Altimetry Satellite Oceanography Network (Ja-

son) orbits for the first two (shifted in time and space)

and on Ka-band Altimeter (ALtiKa) orbit for the third

one. The ground tracks are shown in Fig. 1. An in-

strument noise error has been added consistently with

standard values of 3.3 cm at 1Hz (;5.5-km ground

spacing) (Xu and Fu 2011)

The reference mean state (a mean dynamic topogra-

phy from which covariance matrices will be defined) is

the time-mean SSH of the simulation outputs. The ob-

servations y0 are defined by the anomaly with the mean

state plus the randomly generated instrument noise.
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b. Implementation of the mapping algorithms

The standard mapping solution has been first com-

puted following the description in section 1. The

following parameters have been chosen for the co-

variance model Eq. (3): to 5 15 days, L 5 150km, and

hSLA2i5 0:04m2. Some tests with values ranging from 5

to 30 days and from50 to 250km forLwere revealed to be

above optimal values, which happen to be close to those

currently found in the literature (e.g., Le Traon et al.

1998). This could be optimized by considering regional

and seasonal dependences in further studies. To avoid

largematrix inversions, the analysis is performed locally in

time and space: 620 day time windows and a 400-km ra-

dius are chosen, knowing that correlation vanishes

beyond a few hundreds of kilometers and beyond 20 days.

In space, the local domains overlap every 100km in zonal

and meridional directions. Once computed, the local 2D

solutions are linearly interpolated between the central

locations of analysis. Finally, the matrix R is chosen as

diagonal, consistent with the level of instrumental error.

The dynamic mapping solution has then been com-

puted following the description in section 2. The re-

duced Fourier basis G is a 2D decomposition with

wavelengths ranging from 100 to 800km, where 800km

is the diameter of the local zone on which a single

analysis is performed. The time windows are also

620 days.With this range of wavelength, the 2D Fourier

decomposition is composed of 192 modes, with each

wavenumber containing two modes: a sine and a cosine.

The diagonal of the Q matrix is filled with the expected

power spectral densities given by the Fourier transform

of the autocorrelation function Eq. (3). The R matrix is

kept identical to the standard mapping case. The first

guess used to compute the Gmatrix is the solution from

the standard mapping. As described in section 2, the

computation of a single G column is performed through

the forward/backward propagator integration of the

guess plus a small mode amplitude, minus the in-

tegration of the guess, and finally renormalized. An

example of how a single mode evolves through that in-

tegration of the guess is shown in Fig. 2: a single column

of the G matrix is the integrated field (as represented in

the bottom-right panel) located at observation points in

time and space. The exponential decay of the propa-

gator has been optimally set to tp 5 14 days. With this

value, the Cnr matrix is filled following Eq. (16).

Then, the solution htref
a can be computed by inverting

(GPGT 1Cnr 1R) and computing the product Eq. (14).

The solution in the grid space is finally given by

xtrefa 5Ghtref
a . Since xtrefa is closer to the truth than xtrefg

from the standard mapping solution, it is worth

iterating a few times by updating the guess xtrefg with the

solution xtrefa , so that the linearity hypothesis Eq. (9) is

better verified. Convergence is typically obtained after

three or four iterations.

FIG. 1. (top) Snapshot of the reference SSH over the domain of interest and ground tracks of

the constellation of satellite considered in the OSSEs. (bottom). Sampled SSH along a track

(red) and synthetic observations (black) constituted of the sampled signal plus the random-

generated instrument noise.
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c. A look at the representer functions

The covariance between a particular grid point and

the rest of the domain at different times is an interesting

indicator of the mapping model characteristics. For the

standard mapping, this correlation is directly given by

the covariance model Eq. (2). For dynamic mapping, the

covariance is G0PG
T, where G0 is the Green function

matrix at the reference time (nonpropagated) and G is

the propagated Green function matrix up to a particular

time. After normalization by the variance, the correla-

tion fields have been represented in Fig. 3 for different

times and for both the standard mapping model and

dynamic mapping model. At time of analysis (central

panels) the correlations are identical; they both follow

the spatial covariance model of Eq. (3), by definition.

However, with time evolving, the correlation fields be-

come very different and specific because of the propa-

gator integration. Far in time (e.g., 10 days) higher

values are encountered locally and with an offset from

the reference point, indicating that some information

can be extracted from observations farther in time in the

dynamic mapping case.

d. Results and comparison with standard mapping

The analysis with standard and dynamic mapping has

been performed on 1 years’ worth of data. The results are

presented and analyzed in this section, from both direct

FIG. 2. Scheme of the Green’s function computation. (upper left) The current guess field and (lower left) the normalized Fourier

component. The propagator integration of the current guess and the current guess plus the Fourier component with infinitesimal am-

plitude is then performed. (upper right) The result of the guess integration is shown. (lower right) The difference between the two

integrated fields, renormalized by the amplitude of the Fouriermode, is shown. This final field, collocated at observation points in time and

space, constitutes the column of the G matrix [Eq. (14)] for the corresponding Fourier component.

FIG. 3. Representers of the correlation fields between a given point at the time of analysis and the rest of the domain for different times

ranging from 210 to 110 days. (top) The fields for the standard mapping and (bottom) the fields for the dynamic mapping.
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diagnostics (error maps) and spectral diagnostics (mean

power spectral densities and spectral coherences).

Figure 4 shows themaps of error variance between the

reference run and the two sets of reconstructions over 1

year. The improvements of the dynamic solution over

the linear solution are clear in the Gulf Stream current

where the errors are reduced by almost 30% on average.

However, the improvements are not significant along

the continental shelf where the errors remain strong. In

this area, the barotropic mode (not considered in the

dynamic propagator) may be important. Further dy-

namic considerations would be therefore worth in-

vestigating, in order to account for other modes or

dynamics in such specific coastal regions. It is never-

theless encouraging that the dynamic solution with only

the first baroclinic mode is not worse than the linear

solution on the continental shelf.

Figure 5 is an illustration of the results for a partic-

ular time, showing in the left column the SSH and in the

right column the corresponding geostrophic velocity.

The top panels are the reference fields, which are in-

stant snapshots of the truth at time of analysis. The

second row is the interpolated fields with the linear

solution. As expected, from the comparison with the

truth, the large scales (largest ;500-km eddies) are

well resolved but important errors remain at smaller

scales due to the sparse observation sampling in time

and space. For example, the ;125-km eddy at 358N,

2898E is not resolved. The third row is the interpolated

fields with the dynamic solution, which is able to re-

solve smaller scales accurately. For example, the

above-mentioned eddy is partially resolved. The error

fields (the fourth and fifth rows) indicate significant

improvements consistent with the error variance di-

agnostics presented above, for both SSH and its de-

rivative geostrophic velocity.

Some scale-dependent diagnostics have been per-

formed on the whole series of analyses with respect to

the reference in order to better quantify the improve-

ments as a function of scale. Indeed, given the steep SLA

spectral slope (between 23 and 24), the error variance

diagnostic mentioned above principally reflects the

larger scale errors. It is therefore interesting to look at

spectral content, with a particular attention on the

phases indicating whether a given scale is phased or not

between the reference and the interpolation recon-

structions. The upper panel of Fig. 6 shows the power

spectral density of the reference (black), the linear in-

terpolation reconstruction (blue) and the dynamic in-

terpolation reconstruction (red). The spectrum of linear

interpolation starts dropping below the reference spec-

trum at scales above ;300 km, and has a steep drop

below 140km. However, the dynamic interpolation

spectrum seems to better represent the energy below

300km, and the firm drop only occurs at ;120 km.

However, it is important to note that correct energy does

not mean absence of errors, so comparing the phases is

relevant to assess if a given scale is well resolved or not.

To do so, the cross-power spectral densities have been

computed between the interpolated fields and the ref-

erence fields. After normalization with the square root

of the power spectral density of each field, we obtain the

so-called spectral coherence represented in the lower

panel. This diagnostic clearly reveals that the inter-

polated fields are well phased (spectral coherence close

to 1) from long wavelengths down to a range of scales

where coherence progressively drops toward zero.

Here, it is clear that the dynamic interpolation out-

performs the linear interpolation. The wavelength of

0.5 coherence, which can be considered as a threshold

for assessing resolving capabilities, is located at

;145 km for linear interpolation and ;125 km for dy-

namic interpolation. This highlights the better resolv-

ing capabilities of dynamic interpolation over linear

interpolation. We found that unlike the power spectral

density, the spectral coherence was insensitive to the

covariance parameters. The systematic gain in the

spectral coherence, especially for scales between 125

and 250 km, seems inherent to the dynamic propagation

that allows for better resolution of the phase of small

eddies. These spectral coherences can be compared with

those obtained by Ubelmann et al. (2015) from an ide-

alized framework where interpolation was performed

between two full images of SSH.While being significant,

the relative gain from linear to dynamic interpolation is

less pronounced here. We have two explanations for

FIG. 4. (top) Variance of the difference between the linear so-

lution and the reference run in SLA. (bottom) As in (top) but with

the dynamic solution. Units: cm2.
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this. First, this more realistic case treats larger scales

(because of the limited number of nadir satellites and

the noise considered) and it was shown in Ubelmann

et al. (2015) that the relative performances were de-

creasing as scales increase, because the nonlinearity is

less important (larger scales are more linear). Second,

these realistic data are distributed all over in time and

space, whereas in the idealized case the observations

were snapshots separated in time (with no observations

in between). Since the introduction of dynamics allows

reduction of the time decorrelation, its effect should be

more pronounced when the observations suffer from

time resolution like in the idealized case by construction.

However, it is interesting to note that in this study

simulating a realistic dataset of altimeter data, the

dynamic interpolation method is still of interest in the

strong western boundary currents.

5. Conclusions

This study presented a practical implementation of

the dynamic interpolation introduced inUbelmann et al.

2015. We followed here an inverse approach resolving a

3D (space 1 time) least squares problem similar to the

standard optimal interpolation. However, unlike stan-

dard inversions following linear models, we proposed to

use a locally linearized propagator with appropriate

correction term for nonlinear evolutions of the local

state in the innovations. Significant improvements from

linear optimal mapping to nonlinear dynamic mapping

FIG. 5. Comparison of the results at one particular date, for both standard mapping and dynamic mapping. The

fields and associated residual errors are shown for (left) the SSH and (right) its derivative the geostrophic velocity.
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have been shown, which encourages applying the

method to process new maps of real altimetry data.

This method can be applied to any nonlinear propagator.

Although this simple quasigeostrophic (QG) propagator

performs efficiently in the Gulf Stream region, more so-

phisticated propagatorsmay have to be developed for other

regions. For instance, in coastal regions we may implement

topography effects, for example, through adjustment of the

Rossby radius and the addition of a barotropic mode if this

latter is dominant. Also, in the equatorial regions, the

quasigeostrophic (QG) propagator would clearly not be an

appropriate choice. Other propagators (maybe simply lin-

ear waveguides) may be developed for these regions.

This dynamic interpolation method presents some

specific features with respect to data assimilation in

OGCMs. Unlike OGCMdata assimilation, the solution is

not a model trajectory (or a sequentially adjusted model

trajectory). Here, the propagator is only used to

determine a better covariance, but the analysis is per-

formed separately from the mean sea surface height

(MSSH) background, not from a model trajectory. For

example, in the absence of observations, our mapping

solution is the MSSH, not a free model run. The term

‘‘propagator’’ is meant to distinguish from anOGCM: the

propagator only represents a deterministic SSHevolution,

not necessarily a realistic evolution with input of energy,

eddy generation, and other physics. In this sense, the dy-

namic interpolation keeps strong fidelity with the data.

Beyond the deterministic evolution accounted for, all

other dynamics are parameterized in a specific covariance

matrix, like all dynamics are in standard interpolation.
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