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Abstract This research is carried out in the framework of the
program Surface Water and Ocean Topography (SWOT)
which is a partnership between NASA and CNES. Here, a
new hybrid model is implemented for filling gaps and fore-
casting the hourly sea level variability by combining classical
harmonic analyses to high statistical methods to reproduce the
deterministic and stochastic processes, respectively. After
simulating the mean trend sea level and astronomical tides,
the nontidal residual surges are investigated using an
autoregressive moving average (ARMA) methods by two
ways: (1) applying a purely statistical approach and (2) intro-
ducing the SLP in ARMA as a main physical process driving
the residual sea level. The new hybrid model is applied to the
western Atlantic sea and the eastern English Channel. Using
ARMA model and considering the SLP, results show that the
hourly sea level observations of gauges with are well
reproduced with a root mean square error (RMSE) ranging
between 4.5 and 7 cm for 1 to 30 days of gaps and an ex-
plained variance more than 80 %. For larger gaps of months,
the RMSE reaches 9 cm. The negative and the positive ex-
treme values of sea levels are also well reproduced with a
mean explained variance between 70 and 85 %. The statistical
behavior of 1-year modeled residual components shows good

agreements with observations. The frequency analysis using
the discrete wavelet transform illustrate strong correlations
between observed and modeled energy spectrum and the
bands of variability. Accordingly, the proposed model pre-
sents a coherent, simple, and easy tool to estimate the total
sea level at timescales from days to months. The ARMA
model seems to be more promising for filling gaps and esti-
mating the sea level at larger scales of years by introducing
more physical processes driving its stochastic variability.
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1 Introduction

Present-day sea level change is of considerable interest be-
cause of its potential impact on human populations living in
coastal regions and on islands. The long-term changes in sea
level are mainly explained by the global warming (Church
et al. 2001). The increase of the global average sea levels
was between 1 and 2 mm/year during the twentieth century
(Church et al. 2001). Cabanes et al. (2001) have recently
shown an acceleration of the long-term trend with a rate of
2.5 mm/year between 1993 and 2000. In the future, global
average sea level is expected to increase more rapidly as a
result of anthropogenic climate change. The fifth Assessment
Report of the Intergovernmental Panel on Climate Change
(Church et al. 2013; Stocker et al. 2013) has concluded that
the global rise is of 52–98 cm by the year 2100 which would
threaten the survival of coastal cities and entire island nations.
Processes responsible for sea level changes are complex. To
help simplify the matter, it is useful to consider separately the
components related to the astronomical oscillations, surges,
and eustatic processes (Pugh 1987). Progress in the study of
climate and global change depends heavily on the creative use
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of the sea level data sets. Their measurements rely on tide
gauges which are considered one of the most reliable sources.
However, one common problem in the sea level records is the
presence of gaps (a sequence of missing values or omitted
observations) due to the malfunction of gauges under instru-
mental and/or meteorological conditions. Such problems dis-
rupt and make impossible the use of sea level records for
research and practical purposes. Moreover, the forecast of
sea level scenarios at different timescales of days to years is
needed for coastal engineering studies, operational systems,
and practical applications.

According to the previous studies, there are three methods
for estimating the sea level: harmonic analyses, dynamical,
and statistical. The classical harmonic analyses are specialized
techniques able to take advantage of the “deterministic” nature
of tidal processes, the dominant component of the total sea
level in determined beaches, which is modeled as the sum of a
finite set of sinusoids at specific frequencies. For dynamical
methods, physical models are used to derive fine scale winds
and atmospheric surface pressures from the large-scale climate
simulated by the coarse global climate model. For the alterna-
tive statistical methods, relationships between meteorology
and sea level heights are developed from observations or sim-
ulations of the recent past and present day. These relationships
must be capable of explaining the sea level variability, and for
predictive purposes, the climate changes projections (Von
Storch and Reichardt 1997). The classical harmonic analyses
can well predict the deterministic process of astronomical tide;
however, they are not enough to reproduce the total sea level
since surge components are not taken into consideration. Re-
garding the dynamical methods, simulations require calibra-
tions, large data sets of bathymetry, and boundary conditions.
These methods take significant logistic efforts and time for
their high computational costs (Flather et al. 1998; Flather
and Williams 2000; Lowe et al. 2001). Such requirements
are less restrictive, with respect to available acknowledg-
ments, for statistical methods, whose progress are significant-
ly considered, nowadays, for the sea level forecast. Here, com-
monly used methods for reconstruction of the sea level are
based on single linear, multiple linear, and nonlinear regres-
sions. The samplers were also applied (Dergachev et al. 2001;
Kondrashov and Ghil 2006; Moffat et al. 2007; Musial et al.
2011). Hilmi et al. (1997) was developed a stochastic model of
short-term variations of sea level in the St. Lawrence estuary
(Canada) using autoregressive moving average (ARMA)
model. An innovative approach of artificial neural networks
(ANN) was used by Pashova et al. (2013) as a nonparametric
modeling framework for the nonlinear sea level forecasting
and filling the missing values in the daily sea level series.
However, statistical methods are limited to mathematical con-
cepts and cannot be accurate for the physical forecast of the
sea level needs for further analyses. The intent of the present
research is to propose a new hybrid model for filling gaps of

missing data and forecasting the sea level by combining the
classical harmonic analyses with the statistical methods. Here,
an autoregressive moving average technique is implemented
and applied to the sea level with the aim of filling gaps in
hourly time series and forecasting the sea level variability
for days to months.

The remainder of this paper is organized as follows. A new
hybrid model is developed in section 2 for estimating the total
sea level in oceans and coastal areas. The Atlantic sea and the
eastern English Channel (western France) are selected in sec-
tion 3 as a case of study for accurate applications. Modeled
results are also presented and validated with observed data. In
the last section, the implications of obtained results are
discussed. Concluding remarks and further works are finally
suggested.

2 Methodology

Coastal water levels are influenced by a variety of astronom-
ical, meteorological/oceanographical, and tectonic factors, the
most readily apparent being the tides. At times, these factors
interact in a complex way to elevate water levels significantly
above normal tide level. Storms, which develop low atmo-
spheric pressure, are the most common cause of elevated wa-
ter levels. Strong winds and large waves contribute also in the
sea surface perturbations in oceans and coastal zones. There-
fore, the total sea level (SL) is composed of different compo-
nents: (1) the mean sea level (MSL), (2) the vertical local
movement (VLM) described by the vertical reference datum
for water level and related to the subsidence and tectonic de-
formations of land, (3) the astronomical tide (AT), and (4) the
residual surges (S):

SL ¼ VLM þ MSL þ AT þ S ð1Þ

The MSL is influenced by longer-term climate fluctuations
related to global warming. The VLM results from the glacial
isotactic adjustment, tectonics, subsidence, and sedimenta-
tion; it changes on decadal and longer timescales and affects
the global mean sea level. Both components (MSL and VLM)
are gathered to a new component MSLV (MSLV=MSL+
VLM) since they are characterized by linear evolutions, spe-
cifically at the timescales analyzed in the research. So, Eq. 1
can be expressed as the following:

SL ¼ MSLV þ AT þ S ð2Þ

The AT are directly forced by the gravitational effect of the
moon, and to a lesser extent, the sun, and other planets on the
water mass of the oceans. Tides, considered as a large signal in
the ocean, are characterized by a broad hump with a low-
frequency maximum and a decline at higher frequencies.
Superimposed components are a number of sharp tidal peaks
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near diurnal and semidiurnal frequencies, and sometimes a
broader peak associated with Coriolis or inertial effects. They
move from the deep ocean to coastal shallow water as a wave
or a combination of waves. The residual surges S are defined
as the difference between the relative observed water level and
the AT. The dynamical analysis of the sea level requires the
separation of the deterministic signal of the AT from the sto-
chastic behavior of the residual surges S (Tawn and Vassie
1989). The main purpose of the decomposition of the tide
gauge records is the timescales of variability. In this way, the
specific circumstances of each component fluctuation can be
clearly observed, in order to provide the conditions for the in-
depth study of its variation.

The methodology developed in this research aims to fore-
cast the hourly SL during days, months, and years by combin-
ing different types of models: (1) a linear regression for the
long-term component of MSLV, (2) a deterministic model of
harmonics for AT, and (3) a stochastic model of ARMA for the
residual surges S. An overview of the proposed methodology
is displayed in Fig. 1.

2.1 The sea level trend

The MSLV trend was estimated by a linear regression of the
mean annual values (Eq. 3), calculated from the hourly time
series of sea level. These mean annual values were filtered

from years with less than 80 % of data and the outliers out
of the 95th percentile.

MSLV tð Þ ¼ aþ b:t ð3Þ

where a and b are constants.

2.2 The astronomical tides

The difference between the total SL and MSLV, previously
evaluated, represent both harmonic (AT) and residual (S) com-
ponents (Eq. 2). The separation between tidal and nontidal
energy is an important task in any analysis of oceanic time
series. In classical harmonic analysis, the tidal forcing is
modeled as a set of spectral lines, i.e., the sum of a finite set
of sinusoids at specific frequencies. These frequencies are a
combination of six fundamental frequencies arising from
planetary motions (Godin 1972). Many of the more important
frequencies, known also as harmonic components, have
names such as BM2,^ BK1^, etc. Classical harmonic analysis
were used for the prediction of astronomical tides by the de-
termination of the resulting phase/amplitude of each given
sinusoid in a determinist way. This analysis is based on a
series of algorithms and FOTRAN codes (Godin 1972;
Foreman 1977, 1978) through a MATLAB package known as
T-TIDE (Pawlowicz et al. 2002). The tidal response was
modeled as:

AT tð Þ ¼ b0 þ b1t þ
X N

k¼1
ake

iσk t þ a−ke
iσk t ð4Þ

where N constituents are used. Each constituent has a frequen-
cy σk which is known from the development of the potential,
and a complex amplitude ak which is not known, although if
AT(t) is a real time series ak and a−k are complex conjugates.
The model estimates Eq. 4 by using a least-square method and
applying phase and the nodal corrections (Pawlowicz et al.
2002). In this work, the longest continuous time series (with-
out gaps) of the component SL(t)−MSLV(t), was selected to
determine the harmonic coefficients and predict the astronom-
ical tides.

2.3 The residual surges

The stochastic component of the sea level is represented by
the residual surges S. Its prediction needs high statistical
models to be investigated. In this research, an ARMA model
was used. This method seems to be the most adequate and
suitable technique for the forecast of sea level since it assumes
a temporal dependence of the random variables.

ARMA model is a kind of commonly used stochastic time
series model, popularized by Box et al. (1994), although the
AR (autoregressive) and MA (moving average) models have
been previously known and used as an adequate approach ofFig. 1 An overview the proposed methodology for the sea level forecast
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the AR and MA terms modeling in models. The basic idea of
this method consists of the following: some time series is a set
of random variables depends on the time t, although the single
sequence values that constitute the time series is uncertain;
however, the changes of the entire sequence has a pattern to
follow. By analyzing it through the establishment of the cor-
responding mathematical model, we can get a better under-
standing of the structure and the characteristics of time series
and achieve the optimized prediction results within the mini-
mum variance (Galman and Disney 2006; Yi 2008).

The ARMA models assume that data are stationary, mean-
ing that their mean and variance do not change with time.
However, these models require the marginal distribution asso-
ciated with the stochastic process under study to be normally
distributed, which may not be the case in our case. Therefore,
with the aim of preserving the original marginal distribution,
the stochastic process of our variable Swas transformed into a
normalized Gaussian to obtain a new stochastic process with
random variables Sn by the use of the following transforma-
tion (Liu and Der Kiureghian 1986).

Sn ¼ Ф−1 F Sð Þ½ � ð5Þ

where F is the cumulative distribution function (CDF) of the
marginal distribution associated with the original stochastic
process S andФ(.) is the CDF of the standard normal random
variable. Once transformed, the stochastic temporal depen-
dence of the random variables of the process Sn is reproduced
by ARMA model with the incorporation of the temporal
structure.

The univariate ARMA (p,q) process Sn is mathematically
expressed as:

Sn tið Þ ¼
X P

j¼1
Ф jSn ti− j

� �þ ε tið Þ−
X q

j¼1
θ jε ti− j

� � ð6Þ

with p autoregressive parameters Ф1, Ф2,…, Фp, and q mov-
ing average parameters θ1, θ2,…, θq. The term ɛ in Eq. 6
stands for an uncorrelated normal stochastic process with
mean zero and variance σ2. Stochastic process ɛ is also re-
ferred to as white noise, innovation term, or error term. As
illustrated in Eq. 6, Sn illustrates a linear combination of white
noises, and as such, the marginal distribution associated with
its stochastic process is necessarily normal to characterize the
autocorrelation structure. Note that the extreme data are by
definition independent, and contain no information about
autocorrelations.

Then, the p+qmodel parameters should be estimated. Two
current methods can be used for this problem: least-squares
and the maximum likelihood estimations. Since there are var-
ious reasons to keep the model order as low as possible, in-
formation criteria may be introduced to combine the need for a
good fit with the principle of parsimony. The criterion used in
this research is Akaike’s Information Criterion (AIC) which

joins the residual variance on the one hand and the method
orders on the other. The analyst’s aim is then to minimize such
a criterion. In order to find the number of AR and MA param-
eters, autocorrelation functions (ACF) and partial autocorrela-
tion functions (PACF) should be calculated. Once ARMA
parameters are estimated, the autocorrelation structure is in-
corporated into the output time series, reproduced by the
ARMA model. This method was applied to estimate the re-
sidual surges during a selected gap (g) of missing values
elapsed from tn-g and tn.

The continuous time series of the residual S previous to the
gap g (S(t1), S(t2), …, S(tn-g)) should be used to fit the model
parameters (Eq. 6). Then, the missing values of the gap (S(tn-
g), S(tn-g+1), S(tn-g+2), …, S(tn)) were simulated hourly. The
length of gapes considered in the present analysis varies from
days (3, 6, 12, 18, 24, and 30 days) to months (6 to
12 months).

a. Autoregressive ARMA model using the single variability
of the residual surge

In this part, a simple application of ARMA model was
carried out with only the use of a continuous series S(t1),
S(t2), …, S(tn-g). The detailed simulation of the model can be
summarized in the following sequential steps:

& Step 1: Conversion of variable S to a normal distributed
variable Sn, according to Eq. 5, for the continuous domain
[t1, tn-g]. The performance of the model increases with the
length of this domain.

& Step 2: Fit Sn to Eq. 6, obtaining the ARMA parameters
(Ф and θ) and errors ɛ.

& Step 3: Simulation of the missing values of the gap g
having an independent normal errors ɛg with the same
variance of ɛ obtained from step 2.

& Step 4: Calculation of Sn during the interval [tn-g, tn] using
Eq. 5, the ARMA parameters (from step 2) and ɛg (from
step 3).

& Step 5: Conversion of Sn(tn-g), Sn(tn-g+1),…, Sn(tn) to S(tn-
g), S(tn-g+1),…, S(tn) using the following expression relat-
ed to Eq. 5:

F−1 Ф Snð Þ½ � ð7Þ

b. Autoregressive ARMA model using the residual surges
and a new climate parameter Pc

The residual surge S was investigated together with a cli-
mate parameter Pc being linked to the meteorological condi-
tions and sea level variability. In this case, the implementation
of ARMA model was carried out taking into consideration
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both variables S and Pc. During the time period of the gap g,
the local statistical distribution of the missed residual values is

assumed to be directly related to the distribution of the climate
parameter Pc. According to this hypothesis, we can ameliorate
our estimation of the CDF of the residual within the gap F(Sg)
using the values of S associated to time periods during which
Pc has a statistical behavior similar toPcg (Pcwithin the gap) .
In order to do that, we look for the subset of S according to the
following expression:

F eSg
� �

¼ S et� �
; ∀ et ∈ t1; tn−g

� �
: Pc et� �

< max Pcg
� �

and Pc et� �
> min Pcg

� �

ð8Þ
eF ¼ F eSg

� �
≈F Sg

� � ð9Þ

Here, the steps 1 and 5 of the previous detailed simulations
are transformed to steps 1’ and 5’ as follows:

& Step 1’: In order to convert S to Sn, we use eF instead of F
(Eqs. 8 and 9).

& Step 5’: We use eF in the inverse transformation from the
normalized fitted values to the real ones.

3 Case study: application to the eastern English Channel
and the North Atlantic Sea (western France)

3.1 Data

The hourly sea level records were obtained from tide gauges
of six stations located in the western side of France deployed

FRANCE

AT
LA

N
TI

C 
SE

A

Brest

Cherbourg
Dieppe

Rochelle

Arcachon

S.J de Luz

UNITED 
KINGDOM

Fig. 2 Study area and localization of tide gauges: the eastern English
Channel (Dieppe, Cherbourg) and the North Atlantic Sea of western
France (Brest, Rochelle, Arcachon, and S.J. de Luz)

Arcachon S.J de Luz

Brest

Dieppe

Rochelle

Cherbourg

Fig. 3 Sea level components at studied stations: the astronomical tides AT(t) (grey points), the residual surges S(t) (white line), and the component SL(t)
−MSLV (black line)
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in the English Channel and the North Atlantic Sea. These
stations (Fig. 2) are operated and maintained by the national
French center of oceanographic data REFMAR (http://refmar.
shom.fr/fr /maregraphes_french-tide-gauges-data).
Observations are referenced to tide gauge zero which
corresponds to hydrographic zero level. The used tide gauge
records cover a period of 42 years from 1970 to 2012.

Here, the sea level pressure (SPL) was selected as the cli-
matic parameter Pc since it is strongly linked with different
physical processes (waves, winds, etc.) and the sea level
height, as demonstrated by previous studies (Moron and
Ullmann 2005). The SPL records at studied stations, extracted
from the NOAA website (http://www.ncdc.noaa.gov/oa/
climate/research/slp/#desc), were considered as a forcing to
predict the stochastic variable S using the ARMA model.

3.2 Sea level components

The sea level signal, including the tidal and nontidal compo-
nents (SL(t)−MSLV(t)), was calculated by the algorithm T-
TIDE to extract the astronomical tides during the longest con-
tinuous segment of time, selected for each station (section 2).
The tidal component AT(t), estimated from the phases and the
amplitudes of the different harmonics, is displayed in Fig. 3.
Tides are between 6 and −6 m in Dieppe with the most impor-
tant height of sea level compared to the other stations. They
decrease between −4 and 4 m at Cherbourg, Brest, and
Rochelle; they vary from −3 to 3 m in Arcachon and S.J. de
Luz. Simulated harmonic variability of studied stations differs
from each other in the frequency of amplitude of the

oscillations. The root mean square error (RMSE) would to
range between 20 and 50 cm if we approximate the astronom-
ical tides to the total component SL(t)−MSLV(t) without con-
sidering the residual surges S. This latter was obtained from
the difference between SL(t)−MSLV(t) and AT(t) as shown in
Fig. 3. This component shows high frequency oscillations
with small amplitudes less than 1 m and short wavelengths.

3.3 Estimation of the residual surges

a) Estimation using the single variability of residual surges

The forecast of the hourly residual S was performed by the
univariate autoregressive model ARMA for short gaps of 3, 6,
and 12 days. Results are displayed in Fig. 4 where the simu-
lated and observed data are plotted. As seen, the variability is
well reproduced by the ARMA model. However, the magni-
tudes of the level are not fully enclosed. A better forecast of

Arcachon S.J de Luz

Brest

Dieppe

Rochelle

Cherbourg

Fig. 4 Forecast of the residual surge S(t). Application of the univariate ARMA model for gaps of 3, 6, and 12 days

Table 1 RMSE between observed and modeled residual component S.
Error values are calculated in centimeters

3 days 6 days 12 days

Dieppe 9 16 20

Cherbourg 8.8 13.6 14.6

Brest 8.3 12.1 14.6

Rochelle 7.8 13 15

Arcachon 7.6 13 15

S.J. de Luz 7.1 10.8 11.4
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the real data can be observed for 3 days where both
trends and magnitudes are reproduced. The RMSE be-
tween modeled and observed measurements varies be-
tween 10 and 20 cm; it increases with the length of gaps
and shows low values in S.J. de Luz and high ones in
Dieppe (Table 1).

& Estimation using the variability of the residual surges and
the SLP

In this part, the forecast of the residual surges was per-
formed using the sea level pressure. Firstly, the relation be-
tween both parameters was investigated as seen in Fig. 5

Fig. 5 Scatter plot of the residual surges S(t) versus the pressure SLP (bar). The linear fitting function is also shown
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where a scatter plot of S versus SLP is presented. The linear
regressions, observed between the pressure and the nontidal
component of the sea level, seem to be similar at all studied
stations. It can be approximated to a linear function a.x+b
where a is of 97.9–110 and b is of 9.9–12. However, data
differ in their distribution between stations. They display more
dispersion in Dieppe and Cherbourg compared to Arcachon
and S.J. Luz where the most of data are strongly gathered.

There, linear approximations are not suitable to resolve the
complexity of the physical relations between the residual
surges and the sea pressures. High accuracy regression
methods are required to explain most of the variability be-
tween the water elevations and the pressure in the ocean and
coastal zones.

In the next part, the SLP data were used to simulate the
hourly residual surges by ARMA for gaps 3, 6, and 12 days.
Observed andmodeled residuals are compared in Fig. 6. Here,
the model encompasses the trend and the magnitude of the
residual oscillations with an RMSE less than 5 cm (Table 2).
The RMSE increases slightly at Dieppe and Cherbourg; it
decreases at Arcachon and S.J. de Luz. The high values of
surges observed along the gap are well reproduced by the
model with a mean explained variance of 75 %. For example,
the 74 % of the high values of S, observed between 22 and 25
May 1982 at Dieppe, are strongly correlated with the modeled
data; while 82 % of the negative variability produced between
18 and 22 August 1989 is modeled at S.J. de Luz.

Furthermore, the goodness of the forecast was checked for
periods more than 12 days. The first time, model simulations

were performed for gaps of 18, 24, and 30 days. Three exam-
ples in Dieppe, Brest, and Arcachon are presented in Fig. 7
where modeled and observed data are shown. The RMSE
ranges generally between 6 and 8 cm. The peaks of high
variability, produced during stormy events, are well simulated
and seem to be better enclosed by the model for shorter gaps.
The mean explained variance of the peak correlations with
observed data is of 70 % at Dieppe, 73 % at Brest, and 78 %
at Arcachon.

For scales larger than days, a gap of 6 months was used to
forecast the residual component at studied stations. An exam-
ple of this simulation at Brest, between 11 June and 11 De-
cember 1990, is shown in Fig. 8a. The highest RMSE reaches
an order of 9.2 cm. The observed high values of the residual
show good agreements more than 70%with simulated results.

The statistical behavior of the 1-year modeled data was
compared to observations as seen in Fig. 8b where the

Arcachon S.J de Luz

Brest

Dieppe

Rochelle

Cherbourg

Fig. 6 Forecast of the residual surges S(t). Application of the univariate ARMA model, using SLP distribution, for gaps of 3, 6, and 12 days

Table 2 RMSE between observed and modeled residual component S.
Error values are calculated in centimeters

3 days 6 days 12 days

Dieppe 4 4.3 4.5

Cherbourg 3.8 4 4.2

Brest 3.3 3.8 4

Rochelle 3.5 3.8 4.2

Arcachon 3.2 3.7 4.1

S.J. de Luz 2.8 3.4 3.8
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probability distribution density function (PDF) and the
QQplot diagram are displayed. The Gaussian behavior of the
observed nontidal component is clearly emphasized by simu-
lated data. Both graphs illustrate high statistical similarities
between the observed and modeled distributions. Few differ-
ences can be observed for the lowest and the highest values
where the model underestimates the extremes with a mean
explained variance between 18–30 %.

In the frequency domain, the comparison between 1-year
observed and modeled residual components was also per-
formed using discrete wavelet analysis (Fig. 9). The energy
spectrum of the simulated residual shows good agreements
with observations. Four frequency bands were extracted from
the full spectrum: 350, 200, 105, and 50 days (Fig. 9a). Re-
constructed signal demonstrates that the variability of the dif-
ferent bands seems to be enclosed by the modeled frequency
showing high similarities with observations. This similarity
increases for high frequency bands (50 and 105 days) with
an explained variance of 86 %. Only, a mean of 72 % of the
low frequency bands (200 and 350 days) is reproduced.

& Estimation of the total sea level

Using the previous results, the total sea level SL can be
calculated by the sum of the astronomical tide AT, the residual
surges S, and the component MSLV. Examples with different
length of gaps (from days to months) were simulated at stud-
ied stations. The modeled total sea level was simulated using
(1) the deterministic method of harmonic analysis and (2) the
new hybrid model combining the linear regression, the har-
monic analysis, and the ARMA method using the physical
forcing SLP to forecast the three main components MSLv,
AT, and S, respectively. An example of these simulations can
be illustrated in Fig. 10. The use of the single analysis har-
monics (grey circles in Fig. 10a) could not approximate the
variability of the total sea level (black line in Fig. 10a) with a
RMSE more than 50 cm. The new hybrid model simulates the
total sea level with a mean RMSE of 15 cm. The grey bands
shown in Fig. 10 in 15–19 and 25–29 October 1989 illustrate
the ameliorated results from the first to the second forecast.
The grey circles of modeled records, using the harmonic

Arcachon

Brest

Dieppe

Fig. 7 Forecast of the residual surges S(t). Application of ARMA model, using SLP distribution, for gaps of 18, 24, and 30 days
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analysis, underestimate the amplitude of the sea level oscilla-
tions, especially during neap tides (Fig. 10a). This error is
recovered the forecast is clearly improved by the use of the
hybrid model (Fig. 10b).

4 Discussions and conclusions

A methodology was developed to estimate the short to
medium-term variations of hourly sea level using an
autoregressive moving average (ARMA) model. Modeling
both astronomical tides and residual surges at timescales of
days to months is required to a better understanding of chang-
es in climate events, which is currently on the main concerns
relating the climate change. The methodology was

implemented with the aim of filling the missing values in the
time series of hourly sea level and forecasting its variability.

The astronomical components were calculated using the T-
TIDE algorithm and the tide level was simulated. The residual
surges, obtained by the difference between SL(t)−MSLV and
AT(t) was estimated using univariate ARMA model. Two
methods were proposed in this research: (1) ARMA using
only the time series of the residual surges and (2) ARMA
using a coupling between the residual surges and an exterior
climate parameter having significant correlations with sea lev-
el changes. Here, the sea level pressure was used as the climate
parameter since it experiences strong linkages with the resid-
ual surges. This methodology was applied to a case study in
the eastern English Channel and the North Atlantic Sea of
western France using six tide gauge records of sea level.

a)

b)

Fig. 8 aModeled (grey line) and observed (black line) nontidal component for a gap of 6 months at Brest. b PDF of observed (black line) and modeled
(grey line) 1-year residual component S(t) (left side); diagram of QQplot between 1-year observed and modeled data
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Multiple gaps of short (days) to medium (months) time-
scales were studied. Results have shown that the forecast of
hourly residual component is better for short gaps. Consider-
ing the linkage between surges and SLP, the application of
ARMA has shown significant similarities between modeled
and observed data with a mean RMSE of 5.2 cm for a forecast
of short periods (3–30 days). For gaps of months, the use of
ARMA has emphasized an RMSE of 9.2 cm. For short gaps,
the distribution of the SLP is more confined which provides
stronger correlation between the residual surges and the SLP.
However, the distribution of the SLP and then the residual

surges is more dispersed for larger gaps and the relation be-
tween both data seems to be less clearly explored. One-year
gaps were also used for simulating residual surges with
ARMA. Modeled results demonstrate a good statistical repre-
sentation of the observed data with a strong correlation be-
tween the frequency bands. For similar timescales, Minguez
et al. (2012) have estimated a stochastic Lagrangian trajectory
for drifting objects in the ocean using the univariate ARMA
models. They have used this estimation to simulate different
trajectories for obtaining location probability density func-
tions at different times.

200 days 350  days

105  days50 days

a)

b)

Fig. 9 Frequency analysis of the 1-year residual component: observations (black line) and simulations (grey line). a The discrete wavelet spectrum of
data showing four main bands: 350, 200, 105, and 50 days. b Reconstructed signal for the different energy bands
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Accordingly, the goodness of filling missing values and
predicting sea level data seems to be strongly dependent on
the length of gaps and the previous continuous time series. In
fact, the predicted missing value is a linear combination of
several independent variables—the hourly sea level and sev-
eral hourly values before it. The coefficients p and q of the
univariate ARMA model were determined initially using all
available values for the hourly sea levels for a set time series.
The estimation of these coefficients is controlled by the length
of gaps as well as the available time series previous to the gap.
Several simulations of ARMA have shown that a best estima-
tion of ARMA coefficients requires a length previous time
series of 700 data for a gap of 140 missing values (20 %). This
finding seems to be interesting and agrees with the outcome of
previous studies of Pashova et al. (2013) where two artificial
neural network architectures for filling the missing values
were applied to daily mean sea level data derived from the
records of the tide gauge Burgas (located on the western Black
Sea coast). They have analyzed 5 years with gaps from 3–
4 days to 1–3 weeks and have shown that the required num-
bers of the previous values is totally 1826 data, 151 of which
are missing (8.3 %). Then, the technique of ARMA seems to
be more promising for filling gaps and forecasting the sea
level at large timescales.

The prediction of the sea level depends also on the period
of time showing missing data. In fact, this prediction is more
complex for periods of high variability and extreme values
caused by stormy events. The present model of ARMA
coupled to the SLP has shown its performance to reproduce
the peaks of surges with a mean RMSE of 10 cm for all
stations.

The proposed methodology has shown good results in the
English Channel and the North Atlantic Sea where the level of
astronomical tides is dominant and the surge events are not
significant with variability of less than 1 m. Then, the relative
error respect to the total sea level is small. However, this error
should increase for cases of study where the surge components
are relatively dominant compared to the astronomical ones.

Concluding, the proposed methodology of the sea level
forecast presents a coherent, simple, and easy to estimate the
deterministic nature of tidal processes and the stochastic
framework of surge events. Its applicability was further rein-
forced by the results obtained from the case study in the east-
ern English Channel and the North Atlantic Sea (western
France). As future works, we proposed the application of the
present methodology to another in the Pacific Sea and the
Mediterranean Basin with high residual surges. Here, the
SLP seems to be a key physical parameter which can describe
the most of the sea level changes since that more than 80 % of
the total variability can be reproduced by the use of the
ARMA model coupled to the physical process of SLP. Other
climate parameters should be taken into consideration inmany
zones such estuaries where surges are controlled by a series of
meteorological indices. Finally, the performance of the model
needs to be validated by the comparison of results to dynam-
ical models.
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a)

b)

Fig. 10 Forecast of the total sea level using a the single harmonic analyses and b the new hybrid model. The agreements between observed (black line)
modeled (grey circles) levels can be clearly illustrated within the grey bands
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