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Abstract

Peculiarities of flux correction in the finite element context are investigated. Criteria
for positivity of the numerical solution are formulated, and the low-order transport
operator is constructed from the discrete high-order operator by adding modulated
dissipation so as to eliminate negative off-diagonal entries. The corresponding anti-
diffusive terms can be decomposed into a sum of genuine fluxes (rather than element
contributions) which represent bilateral mass exchange between individual nodes.
Thereby essentially one-dimensional flux correction tools can be readily applied to
multidimensional problems involving unstructured meshes. The proposed method-
ology guarantees mass conservation and makes it possible to design both explicit
and implicit FCT schemes based on a unified limiting strategy. Numerical results
for a number of benchmark problems illustrate the performance of the algorithm.
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1 Introduction

Many CFD problems involve transport of scalar quantities (e. g. density, temperature,
concentrations, turbulent kinetic energy and its dissipation rate) which must remain pos-
itive for physical reasons. An algorithm which fails to enforce the positivity constraint
may produce very poor numerical results. Classical upwind methods are positive but no-
toriously diffusive. At the same time, high-order methods with streamline-diffusion-like
stabilization of convective terms tend to produce spurious undershoots and overshoots in
regions with steep gradients. Therefore, some extra artificial diffusion has to be added
locally in order to suppress the nonphysical oscillations. However, a straightforward im-
plementation of this idea introduces a free parameter which depends on the solution and
is difficult to determine. Artificial viscosity methods are inevitably confronted with a
tradeoff between positivity and accuracy, whereby neither property can be guaranteed.

Most of the modern high-resolution schemes for convection dominated transport prob-
lems blend high- and low-order discretizations, so as to eliminate the numerical ripples.
This fundamental approach can be traced back to the concepts of flux-corrected-transport
(FCT), which were established by Boris and Book in their renowned paper [4]. Methods
based on flux (or slope) limiting are nonlinear and quite costly, but at the same time they
are very robust and yield non-oscillatory results with sharp resolution of discontinuities.
There exists a variety of such schemes (e. g. TVD, MUSCL, LED), most of which are
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amenable to finite difference and finite volume discretizations but constitute a challenge
to a finite element practitioner. Many popular schemes are limited to one-dimensional
problems or Cartesian grids with directional splitting. A notable exception is the gen-
uinely multidimensional formulation of the FCT algorithm proposed by Zalesak [30].

The design of high-resolution finite element schemes is difficult for a number of reasons.
The consistent mass matrix introduces considerable implicit antidiffusion which cannot be
curtailed by explicit TVD-like methods. Therefore, mass lumping is commonly employed,
which results in the loss of (fourth-order) accuracy offered by the finite element method.
Inherently one-dimensional flux limiters are applied edge-by-edge using solution values
at the associated ‘ghost’ nodes [1], [21]. This non-rigorous extension of 1D concepts
to multidimensions works well in practice but, strictly speaking, such schemes are not
positive and should be classified as artificial viscosity methods. Furthermore, transition
to an edge-based data structure as proposed by Peraire et al. [23] can be performed
only for simplicial elements with linear basis functions which have a constant gradient.
In addition, the physical fluxes have to be approximated by their linear interpolants.
In general, differential operators resulting from the Galerkin discretization cannot be
represented as a sum of fluxes from one node into another. Therefore, combining finite
element discretizations of high and low order in a mass-conserving fashion is a nontrivial
task. Even upwinding is anything but natural in the finite element context. The first-
order upwind scheme of Baba and Tabata [2] is, in fact, a node-centered finite volume
method rather than a finite element one.

An elegant finite element methodology which circumvents the above difficulties was
introduced by Löhner et al. [19], [20]. It is based on Zalesak’s edition of the FCT algo-
rithm with antidiffusive element contributions in lieu of fluxes. The FEM-FCT procedure
preserves the consistent mass matrix and is applicable to arbitrary unstructured meshes.
However, a closer look reveals that some important issues remain unresolved. The low-
order scheme is constructed by adding constant ‘mass diffusion’ to the high-order method,
and may cease to be positive for large Courant numbers. Furthermore, the antidiffusive
element contributions redistribute the mass inside the whole element rather than between
individual nodes. This results in a stronger coupling between the nodal values, so that it is
no longer possible to carry out an extra prelimiting step which is present in the monotone
finite difference FCT schemes. Consequently, the limiter may fail to preclude the arising
of spurious ripples in some cases. Last but not least, the original FEM-FCT procedure
is suitable only for explicit time discretizations which are subject to a restrictive CFL
condition. If the local Courant number does not exhibit strong variations, then the time
step is constrained by accuracy considerations, so that the use of explicit time-stepping
is justified. At the same time, the stability limitation makes explicit methods extremely
inefficient for problems with strongly varying velocities and/or mesh sizes. Therefore,
unconditionally stable implicit schemes are preferable for this class of applications. Like-
wise, the solution of steady-state problems by ‘time marching’ calls for a fully implicit
time discretization. Indeed, high temporal accuracy is irrelevant in this case, whereas
larger (artificial) time steps reduce the computational cost.

In this paper, we formulate sufficient conditions for positivity of the numerical solu-
tion and provide guidelines for enforcing them in the framework of finite element FCT
schemes. The low-order operator is constructed at the discrete level using a technique
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which is equivalent to upwinding in 1D and emulates it in multidimensions. The difference
between the high- and low-order terms admits decomposition into a sum of fluxes which
represent the mass exchange between two nodes sharing the same element. In the case
of simplex elements, the fluxes can be associated with edges of the finite element mesh.
At the same time, interacting nodes of multilinear elements do not have to be connected
by an edge. The comeback of a flux-based representation makes it possible to apply a
prelimiting of antidiffusive fluxes, which contributes greatly to elimination of numerical
ripples. Furthermore, we analyze Zalesak’s limiter from the viewpoint of the postulated
positivity criteria, and provide a new interpretation which enables us to derive a family of
implicit FEM-FCT schemes. The one based on the backward Euler time discretization is
unconditionally stable and positive. To our knowledge, no other implicit high-resolution
finite element schemes are available to date. The proposed algorithms preserve positivity,
conserve mass and provide a sharp resolution of discontinuities as demonstrated by the
numerical results for one- and two-dimensional test problems.

2 Positivity and LED criteria

Consider a generic time-dependent conservation law

∂u

∂t
+ ∇ · (vu) = ∇ · (ǫ∇u), (1)

where u is the scalar quantity to be transported, v is an externally specified velocity
field, and ǫ is a diffusion coefficient. The equation at hand is discretized on an arbitrary
(possibly unstructured) mesh. Assume that the semi-discrete problem can be represented
in the form

dui

dt
=

∑

j

cijuj,
∑

j

cij = 0, (2)

where ui are the nodal values, and cij are some coefficients depending on the procedure
employed for spatial discretization. In particular, the lumped-mass Galerkin finite element
discretization with basis functions which sum to unity at each point is seen to admit such
representation if the flow is incompressible (∇ · v = 0).

Since the coefficient matrix has zero row sum, the scheme can be rewritten as

dui

dt
=

∑

j 6=i

cij(uj − ui). (3)

Furthermore, suppose that all coefficients are non-negative: cij ≥ 0, j 6= i. Then such
scheme is stable in the L∞-norm. Indeed, if ui is a maximum, then uj−ui ≤ 0, ∀j, so that
dui

dt
≤ 0. Hence, a maximum cannot increase, and similarly a minimum cannot decrease.

As a rule, coefficient matrices are sparse, so that cij = 0 unless i and j are adjacent nodes.
Arguing as above, one can show that in this case a local maximum cannot increase, and a
local minimum cannot decrease. Schemes which possess this property will be called local
extremum diminishing (LED).

The LED criterion was introduced by Jameson [14], [15] as a convenient tool for the
design of high-resolution schemes on unstructured meshes. It implies positivity, since if the
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solution is positive everywhere, then so is the global minimum which cannot decrease by
definition. Hence, the LED property provides an effective mechanism for preventing the
birth and growth of nonphysical oscillations. In the one-dimensional case, it guarantees
that the total variation of the solution defined as

TV (u) =

∫ +∞

−∞

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

dx (4)

does not increase. For the sake of simplicity, consider homogeneous Dirichlet boundary
conditions at both endpoints. Then the total variation is given by

TV (u) = 2
(

∑

max u −
∑

min u
)

. (5)

Thus, a one-dimensional LED scheme is necessarily total variation diminishing (TVD).
This is a highly advantageous property, which has formed the basis for the development of
a whole class of non-oscillatory schemes. The advantage of the LED principle as compared
to TVD concepts is its applicability to multidimensional problems on both structured and
unstructured meshes.

The LED property can be realized by the introduction of artificial diffusion or by the
use of upwind biasing in the discrete scheme. However, it was shown by Godunov that
no linear discretization method of order higher than first can guarantee monotonicity of
the numerical solution. In practice, this means that the results produced by such schemes
are overly diffusive. Superior approximations to convection-dominated transport prob-
lems can be obtained only by means of sophisticated nonlinear methods with coefficients
depending on the solution. The discretization process is typically controlled by flux or
slope limiters which adaptively switch between high- and low-order methods. A high-
order approximation is used in regions where the solution is smooth, whereas the order
is reduced in the vicinity of discontinuities so as to dampen nonphysical undershoots and
overshoots.

Recall that equations (2) and (3) correspond to a semi-discrete convection-diffusion
problem. Let us now investigate the conditions under which a LED scheme will remain
positive after the time discretization. If a standard one-step θ-scheme is employed, the
fully discretized equation reads

un+1
i − un

i

∆t
= θ

∑

j 6=i

cij(u
n+1
j − un+1

i ) + (1 − θ)
∑

j 6=i

cij(u
n
j − un

i ), 0 ≤ θ ≤ 1. (6)

The choice of parameter θ specifies the type of time-stepping. The extreme cases θ = 0
and θ = 1 define the well-known forward and backward Euler methods. Both of them are
first-order accurate with respect to the time step ∆t. The method corresponding to θ = 1

2

is known as the Crank-Nicolson scheme, which is second-order accurate. Furthermore,
the following theorem holds:

Positivity Theorem.

A local extremum diminishing scheme discretized in time by the backward Euler method

is unconditionally positive. Other time-stepping schemes (0 ≤ θ < 1) preserve positivity

under an appropriate CFL-like condition.
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Proof.

Let us first prove the unconditional positivity of the backward Euler method. In this
case, the time discretization is fully implicit, so that the last term in the right-hand side
of equation (6) vanishes. Assume that the discrete solution un+1 is negative at some nodes
and denote by k the node at which the global minimum is attained. The new solution at
this node satisfies

un+1
k = un

k + ∆t
∑

j 6=k

ckj(u
n+1
j − un+1

k ). (7)

By the inductive assumption, the old solution un must be non-negative everywhere. The
coefficients ckj are also non-negative due to the LED property, so un+1

k < 0 implies that
un+1

j −un+1
k < 0 for some j. However, this leads to a contradiction, since un+1

k was chosen
to be the global minimum. Hence, the positivity of un is inherited by un+1.

Now let us tackle θ < 1. The above considerations for the implicit term show that the
discrete scheme (6) will preserve positivity if the explicit term satisfies the inequality

un
i + ∆t(1 − θ)

∑

j 6=i

cij(u
n
j − un

i ) ≥ 0 ∀i. (8)

As long as un
i ≥ 0 and cij ≥ 0, it is sufficient to require that

1 + ∆t(1 − θ) min
i

cii ≥ 0, (9)

where cii = −
∑

j 6=i cij are the diagonal elements of the original coefficient matrix defined
by equation (2). This condition provides the desired positivity criterion, which can be
used for the time step control. �

In essence, the above theorem represents a generalization of the discrete maximum
principle to time-dependent convection-diffusion problems. It lays the groundwork for
the construction of positivity-preserving numerical schemes, and we will see shortly how
this can be accomplished in the framework of the FEM-FCT methodology.

3 Mass conservation

Conservation of mass is crucial to the design of numerical methods for the bulk of transport
problems [13]. In particular, a failure of the algorithm to conserve mass may cause shocks
to propagate with wrong speed if nonlinear conservation laws (e. g. the inviscid Burgers
equation) are considered. Non-conservative numerical schemes can produce unacceptable
results also in many other cases, so they should be typically avoided.

The conventional Galerkin finite element discretization conserves mass in an integral
sense. Indeed, the weak formulation of equation (1) reads

∫

Ω

[

∂u

∂t
+ ∇ · (vu) −∇ · (ǫ∇u)

]

w dx = 0, ∀w. (10)

The associated semi-discrete system is obtained by using an approximation of u in a
suitable finite-dimensional space and applying the basis functions ϕi in lieu of w. For
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customary finite elements, we have
∑

i ϕi ≡ 1, so that the sum of all equations yields the
original conservation law in the integral form:

d

dt

∫

Ω

u dx = −

∫

S

(vu − ǫ∇u) · n ds, (11)

where n is the unit outward normal. It can be seen that the total mass in Ω changes only
due to convective and diffusive fluxes through the boundary.

Finite volume methods apply formulation (11) directly to each element of the trian-
gulation, so that mass conservation is enforced not only globally but also locally. This
corresponds to a piecewise-constant finite element discretization (discontinuous Galerkin
methods). Flux correction in the finite volume framework is straightforward. The ob-
jective of this paper is to extend the available FCT machinery to linear and multilinear
finite element approximations.

While the standard Galerkin discretization is conservative, this favorable property may
be lost in the quest to get rid of nonphysical oscillations which contaminate numerical
solutions to convection-dominated problems. For instance, the most straightforward and
inexpensive algorithm ‘inspired’ by the FCT procedure would be:

1. Solve the transport equation by a high-order scheme prone to oscillate.

2. Estimate the upper and lower solution bounds using some a-priori knowledge
and/or numerical results produced by a monotone low-order scheme.

3. ‘Trim’ the high-order solution so as to make it stay within the bounds.

Unfortunately, this approach is not to be recommended for an obvious reason: it doesn’t
conserve mass. This is a quite instructive example, since any other non-conservative
limiting technique is equally unreliable but almost certainly more expensive. If the above
algorithm is to be employed, it should be complemented by an extra postproccessing step
for the recovery of the lost mass [17].

4 Structure of diffusion operators

It is well known that the Galerkin discretization is unstable for pure convection problems.
Therefore, the discrete scheme must contain enough dissipation (of physical or numerical
origin) to damp out the instabilities. Furthermore, properly tuned artificial diffusion is
the key tool for rendering a numerical scheme positive and local extremum diminishing.
The structure of the involved diffusive terms is of primary importance for subsequent
considerations, so it is worthwhile to study it in some detail. The most common discrete
diffusion operators encountered in finite element schemes for transport problems are:

• The discrete Laplacian operator

d∆
ij =

∫

Ω

∇ϕi · ∇ϕj dx,

which typically results from the discretization of physical diffusion terms. It is also
referred to as the ‘stiffness matrix’.
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• The streamline diffusion operator

ds
ij =

∫

Ω

v · ∇ϕi v · ∇ϕj dx,

which represents artificial diffusion in the streamline direction added in order to
stabilize the convective terms. It can be arrived at in different ways.

The concept of streamline diffusion was introduced by Brooks and Hughes [5] and
employed within a consistent Petrov-Galerkin formulation. A similar approach was
followed by Johnson [16] and his collaborators. The least-squares formulation [6]
also gives rise to a streamline diffusion operator of the form above. Furthermore,
streamline diffusion terms can be attributed to higher-order temporal approxima-
tions afforded by Taylor-Galerkin methods [8].

• The mass diffusion operator

dm
ij =

∫

Ω

ϕi(ϕj − δij) dx,

which is given by the difference between the consistent mass matrix MC and its
diagonal counterpart ML obtained by the row-sum mass lumping. Mass diffusion
has proved to be particularly useful for the construction of low-order finite element
schemes to be combined with high-order ones in the FCT framework (see below).

In spite of their different nature and appearance, discrete diffusion operators possess some
common features. The most important ones are the symmetry

dij = dji (12)

and zero row/column sums
∑

j

dij =
∑

i

dij = 0 (13)

(for basis functions satisfying
∑

i ϕi ≡ 1). A tensor D having these properties can be
treated as a generalized diffusion operator and constructed so as to provide an appropriate
modification of the numerical scheme.

The application of a discrete diffusion operator to the vector of nodal values yields

(Du)i =
∑

j

dijuj =
∑

j 6=i

dij(uj − ui) (14)

due to the zero row sum property. Let us define the flux fij from node j into node i as
fij = dij(uj − ui). Then

(Du)i =
∑

j 6=i

fij, fji = −fij. (15)

Hence, diffusive terms can be decomposed into a sum of numerical fluxes similar to those
encountered in conservative finite difference schemes. Each node receives contributions
from all nodes sharing an element with it. Mass conservation is guaranteed, since the
fluxes representing mass transfer from one node into another are equal in magnitude and
opposite in sign. Consequently, it is safe to limit such fluxes, and this can be done in an
essentially one-dimensional fashion.
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5 Standard FEM-FCT procedure

Before embarking on the development of high-resolution finite element schemes using the
flux-based representation of (anti-) diffusive terms, let us recall the FEM-FCT procedure
due to Löhner et al. [19]. Building on an earlier paper by Parrott and Christie [22], it has
established the framework for implementation of Zalesak’s multidimensional limiter [30]
for finite element approximations on unstructured meshes. FEM-FCT employs constant
mass diffusion to construct the low-order scheme and delegates the role of antidiffusive
fluxes to element contributions. This constitutes a viable approach but, as we are about
to see, there is some room for improvement.

The process of flux correction starts with introducing a strong artificial diffusion into
a high-order scheme, so as to enforce positivity of the numerical solution. According to
the Godunov theorem, this inevitably degrades the accuracy of the method to first order.
The crux of the FCT approach consists in reducing the error by adding a compensating
antidiffusion in regions where the solution is smooth and the Taylor series expansion
makes sense. The standard FEM-FCT procedure as proposed by Löhner et al. [19], [20]
involves six algorithmic steps which can be summarized as follows:

1. Discretize the governing equation using an explicit high-order finite element method
with an appropriate stabilization of convective terms.

2. Perform mass lumping and insert a discrete diffusion operator into the high-order
scheme to construct a non-oscillatory low-order method.

3. Invoke the low-order scheme to compute a provisional solution uL which is supposed
to preserve positivity.

4. Compute the antidiffusive element contributions Fe needed to recover the high ac-
curacy of the original method.

5. Limit the antidiffusive element contributions so as to preclude the formation of new
and the enhancement of existing extrema.

6. Apply the corrected antidiffusive element contributions to uL in order to obtain the
end-of-step solution un+1.

The limiting strategy employed in step 5 is crucial to the performance of the method.
It amounts to multiplying the antidiffusive element contributions by certain correction
factors which vary between zero and unity. The final solution un+1 is given by

un+1
i = uL

i +
∑

e

αeFe,i, 0 ≤ αe ≤ 1. (16)

Here Fe,i denotes the antidiffusive contribution of element e to node i. The control of arti-
ficial dissipation is executed by monitoring the smoothness of the solution and adaptively
selecting the correction factors so as to switch between the diffusive low-order solution
(αe = 0) and the oscillatory high-order solution (αe = 1). The objective of the flux limiter
is to utilize the antidiffusive element contributions to the greatest extent possible without
generating nonphysical wiggles and violating the positivity constraint. The ins and outs
of the FEM-FCT algorithm are elucidated below.
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High-order scheme

The governing equation discretized in space and time by an explicit high-order method
can be cast into the form

MC∆u = R, (17)

where MC denotes the consistent mass matrix, ∆u = un+1 − un is the vector of nodal
increments, and the load vector R comprises the convective and diffusive terms evaluated
at the old time level. Löhner et al. employed a two-step Taylor-Galerkin method of the
Lax-Wendroff type. However, any other explicit finite element scheme is feasible.

The solution to problem (17) clearly satisfies

ML∆uH = R + (ML − MC)∆uH . (18)

Here the superscript H refers to the high-order scheme, and ML is the (row-sum) lumped
mass matrix, which is known to possess the conservation property [13]. The second term
in the right-hand side represents the antidiffusion built into the consistent mass matrix,
which makes it possible to obtain time-accurate solutions to transient problems albeit at
the expense of solving a (well-conditioned) linear system at each time step.

Low-order scheme

The accuracy offered by the consistent mass matrix has to be foregone by linear positivity-
preserving schemes. Löhner et al. [19] perform mass lumping and add explicit mass
diffusion to transform the high-order method into a low-order one:

ML∆uL = R + cd(MC − ML)un, (19)

where the superscript L denotes the low-order scheme, and cd is some constant diffusion
coefficient. In particular, the choice cd = 1 yields [10], [25]

MLuL = MCun + R, (20)

which corresponds to the high-order method with mass lumping carried out only in the
left-hand side. This technique converts the one-dimensional Lax-Wendroff method into

a scheme which is stable and monotone for Courant numbers |ν| ≤
√

2
3
. This is more

restrictive than the CFL condition for the classical upwind discretization. Furthermore,
no information is available about the behavior of the solution in more general settings.

Adding sufficiently large constant diffusion to achieve monotonicity can be traced back
to the original SHASTA scheme of Boris and Book [4]. While this approach has been used
successfully by many authors, it may fail in some cases. Hence, the diffusion coefficient
cd and the time step ∆t should be chosen with care to obtain non-oscillatory results.

Antidiffusive element contributions

Note that if we subtract (19) from (18), the unwieldy term R vanishes. Furthermore,
∆uH − ∆uL = uH − uL, so that the antidiffusive element contributions are given by

Fe = M−1
L

∣

∣

∣

e
(M̂L − M̂C)(cdû

n + ∆ûH). (21)
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The above notation is to be understood in the following sense. The local antidiffusion
operator M̂L−M̂C is constructed from element mass matrices and acts upon the function
values at the nodes of the element. This results in a vector with length equal to the number
of local degrees of freedom. Finally, its elements are divided by the corresponding diagonal
entries of the global matrix ML to yield the antidiffusive element contributions.

Solution bounds

The admissible solution range is determined by searching for local extrema in the low-
order solution uL [4] and in the old solution un [30]. Löhner et al. estimate the solution
bounds u

max

min by the following three-step algorithm:

1. Assemble u∗ from the nodal values of uL or un, whichever is greater/smaller:

u∗
i =

max

min
{uL

i , un
i }. (22)

2. Compute the maximum/minimum value of u∗ within each element:

u∗∗
e =

max

min
u∗

i , i ∈ Ne. (23)

3. Pick the maximum/minimum value of u∗∗ over all elements containing the node:

u
max

min

i =
max

min
u∗∗

e , e ∈ Ei. (24)

Thus, the unknown solution un+1 at any node should be bounded by the maximum and
minimum values of uL and un at the stencil associated with this node.

Screening the old solution along with the low-order one was proposed by Zalesak to
alleviate ‘peak clipping’ inherent to the SHASTA scheme. This was shown to yield a con-
siderable improvement for a number of test configurations. However, this generalization
may produce numerical ripples for other problems, e.g. those involving a variable velocity.
Therefore, it is prudent to set u∗ ≡ uL as in the original method of Boris and Book.

Limiting strategy

The limiting process is based on Zalesak’s multidimensional flux correction algorithm [30].
Six auxiliary quantities are defined for each node:

• P±
i , the sum of all positive/negative antidiffusive element contributions to node i:

P±
i =

∑

e∈Ei

max

min
{0, Fe,i}. (25)

• Q±
i , the maximum/minimum admissible increment for node i:

Q±
i = u

max

min

i − uL
i . (26)
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• R±
i , the least upper bound for the correction factors which guarantees no over-

shoot/undershoot at node i:

R±
i =

{

min{1, Q±
i /P±

i }, if P±
i 6= 0,

0, if P±
i = 0.

(27)

The correction factors must be chosen so that the antidiffusive element contributions
acting in concert are unable to create nonphysical extrema. A suitable limiter is given by

αe = min
i∈Ne

{

R+
i , if Fe,i ≥ 0,

R−
i , if Fe,i < 0.

(28)

It is conservative enough to guarantee that the constraint umin
i ≤ un+1

i ≤ umax
i is satisfied

at all nodes. Hence, the final solution will preserve positivity if the low-order one does.
However, numerical ripples of low amplitude can and do occur in some cases.

6 Alternative FEM-FCT procedure

The representation of antidiffusion in terms of element contributions restricts the choice of
artificial diffusion operators and prevents the use of some inherently one-dimensional flux
correction tools. An alternative formulation is offered by the flux-based decomposition of
(anti-) diffusive terms introduced above. High-resolution finite element schemes of this
type were proposed in [10], [25], [26]. The structure of the (constant) mass diffusion
operator was utilized to develop artificial viscosity, FCT, and TVD-like methods building
on the concept of modulated dissipation. In this section, we will follow a similar approach
while using the rigorous LED criteria to develop both explicit and implicit FCT schemes.

Low-order scheme

The quality of the low-order method is of great importance for the overall performance
of an FCT algorithm. If the low-order solution ceases to be positive, oscillatory results
will certainly ensue. Furthermore, a perfect low-order scheme should contain just as
much artificial diffusion as is necessary to enforce the positivity. This would facilitate the
task of limiting and preclude excessive smearing. For finite difference or finite volume
discretizations, the best candidate for the low-order scheme is clearly the upwind method.
An example of a finite element FCT algorithm using upwind as the low-order scheme
can be found in the paper of Parrott and Christie [22]. However, upwinding is rather
cumbersome and unnatural in the finite element context, which has led Löhner et al. [19]
to replace it by mass diffusion with a constant coefficient.

Adding the same amount of diffusion everywhere is computationally efficient, but the
resulting method is not optimal as far as accuracy is concerned. If the free parameter is
chosen too large, the scheme is overdiffusive, and the stability range is reduced. At the
same time, insufficient artificial diffusion may lead to the arising of spurious extrema which
are transmitted to the final solution. These shortcomings were recognized by Georghiou
et al. [12], who attempted to design variable ‘optimal’ diffusion coefficients depending on
the local Courant number as in the upwind finite difference method. This seems to be a

11



poor remedy, since the ‘improved’ FEM-FCT algorithm can be expected to work well only
on very regular meshes and may fail to preserve positivity. In what follows, we will pursue
the same goals as Georghiou et al. but construct the low-order scheme in a different way,
which does reconcile the conflicting demands for accuracy and positivity.

If the flow is incompressible, equation (1) can be written in the non-conservative form:

∂u

∂t
+ v · ∇u = ∇ · (ǫ∇u). (29)

Let the spatial discretization be performed by the standard Galerkin finite element method.
This yields a semi-discrete problem of the form

MC

du

dt
= KHu, (30)

where MC is the consistent mass matrix, and KH is the discrete transport operator, which
has zero row sum, so that

(KHu)i =
∑

j 6=i

kH
ij (uj − ui). (31)

In general, the Galerkin scheme (30) is not local extremum diminishing, which manifests
itself in the tendency to oscillate (especially in convection-dominated cases). However,
the LED criteria at our disposal reveal what measures need to be taken in order to obtain
a usable low-order method.

First of all, we employ mass lumping to remove the implicit antidiffusion intrinsic to
the consistent mass matrix. The resulting scheme can be cast into the form (3) and would
possess the LED property if all coefficients kH

ij , j 6= i were non-negative. This suggests
the following rule for the construction of the low-order transport operator:

KL = KH + D, (32)

where D is a tensor of modulated dissipation. It is designed so as to eliminate all negative
off-diagonal entries of the high-order operator:

dii = −
∑

k 6=i

dik, dij = dji = max{0,−kH
ij ,−kH

ji}, ∀ i < j. (33)

In essence, this corresponds to applying one-dimensional diffusion operators associated
with the (fictitious) segments connecting the adjacent nodes. The global matrix assembly
is performed in a standard way. It is easy to verify that D has zero row- and column
sums, and thus enjoys all properties of generalized diffusion operators including mass
conservation. Note that if physical diffusion is strong enough, so that the coefficients are
non-negative from the outset, then no artificial diffusion is added. Hence, in diffusion-
dominated cases the matrices KH and KL are identical.

If the velocity field in equation (1) is not divergence-free, a local accumulation of
the conserved quantity can occur. Therefore, the formation of physical extrema must be
reckoned with. For compressible flows, the low-order operator KL constructed as above
consists of a LED part K1 and a diagonal residual part K2. The Positivity Theorem can be
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readily extended to such schemes, whereby the extra ‘reactive’ term affects only the upper
bound for the time step. Hence, the numerical algorithm will be positivity-preserving
under a proper CFL-like condition. Depending on the sign of ∇ · v, the admissible time
steps may be greater or smaller than those for the incompressible case. As a matter of
fact, the fully implicit scheme may become conditionally positive for ∇·v << 0. However,
this is very unlikely to happen for any practical flows of interest.

In any event, the semi-discrete low-order scheme reads

ML

du

dt
= (KH + D)u = KLu, (34)

that is

mi

dui

dt
=

∑

j

kH
ij uj +

∑

j 6=i

dij(uj − ui) =
∑

j

kL
ijuj, (35)

where mi denote the diagonal entries of the lumped mass matrix. It is notable that the
difference between the high- and low-order discretization of the transport terms admits
decomposition into fluxes.

According to the Positivity Theorem, the backward Euler time discretization of this
problem is unconditionally positive (at least for weakly compressible flows), while other
time-stepping schemes preserve positivity as long as

∆t ≤
1

1 − θ
min

i
{−mi/k

L
ii | kL

ii < 0}. (36)

This positivity condition gives a practical estimate of the maximum admissible time step.
It is influenced by the degree of implicitness θ and by the ratio mi/k

L
ii. Hence, excessive

artificial diffusion not only degrades the accuracy of the method but also requires taking
smaller time steps. This is exemplified by the scheme (20), whereby the Lax-Wendroff
method was augmented by mass diffusion of constant magnitude.

Example

Let us illustrate the construction of low-order operators by a one-dimensional example.
Consider the pure convection equation

∂u

∂t
+ v

∂u

∂x
= 0 (37)

discretized on a uniform mesh of linear elements. For the sake of simplicity assume that
the velocity v is constant and positive. The involved element matrices have the form

M̂L =
∆x

2

[

1 0
0 1

]

, K̂H =
v

2

[

1 −1
1 −1

]

. (38)

After the global matrix assembly, the central difference approximation of the convective
term is recovered at interior nodes:

dui

dt
= −v

ui+1 − ui−1

2 ∆x
. (39)
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The minimum amount of artificial dissipation sufficient to enforce positivity is pro-
portional to d̂12 = v/2. The corresponding discrete diffusion operator restricted to one
element is given by

D̂ =
v

2

[

−1 1
1 −1

]

⇒ K̂L = v

[

0 0
1 −1

]

. (40)

The resulting low-order scheme is seen to be equivalent to the upwind finite difference
method in the interior:

dui

dt
= −v

ui − ui−1

∆x
. (41)

Obviously, this is the least diffusive linear scheme which preserves positivity. The associ-
ated CFL condition reads:

v
∆t

∆x
≤

1

1 − θ
. (42)

In particular, the fully explicit scheme is positive for Courant numbers up to unity.

To summarize, our technique for the construction of positive low-order operators re-
duces to standard upwinding for pure convection in one dimension and, unlike the ad hoc

algorithm of Georghiou et al. [12], it is applicable to arbitrary meshes and multidimen-
sional problems. Moreover, the resulting scheme is less diffusive than the upwind method
in the presence of physical diffusion. A distinct advantage of the proposed approach is
that the artificial diffusion operator is assembled at the discrete level and depends only
on the location and magnitude of negative off-diagonal entries. The origin of discrete
transport operators doesn’t matter, so that finite element matrices resulting from the
discretization of 1D, 2D and 3D problems can be treated in exactly the same way.

Explicit FEM-FCT formulation

As already mentioned above, it is worthwhile to reformulate the FEM-FCT procedure in
terms of internodal fluxes. Let us first consider the fully explicit time-stepping. In this
case, the Galerkin method lacks stability for large Peclet numbers, so some stabilization
is required for the convective terms. A suitable candidate for the high-order scheme is
the Taylor-Galerkin method proposed by Donea et al. [9].

The governing equation (1) is discretized in time using a Taylor series expansion in
the time step ∆t up to the second order:

un+1 = un + ∆t un
t +

(∆t)

2

2

un
tt. (43)

The first-order time derivative is provided directly by the original conservation law. If
the flow is incompressible and the diffusion coefficient is constant, we have

un
t = −v · ∇un + ǫ∇2un. (44)

Assuming that the velocity field is stationary or ‘frozen’, the second-order time derivative
can be calculated as follows [9]:

un
tt = −∇ · (vun

t ) + ǫ∇2un
t

= (v · ∇)2un + ǫ∇2(un
t − ǫ∇2un) + ǫ∇2un

t

= (v · ∇)2un + 2ǫ∇2

(

un+1 − un

∆t

)

+ O(∆t, ǫ2). (45)
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After the substitution of these expressions into the Taylor series (43), one obtains the
time-discretized scheme

[1 − ∆tǫ∇2]
un+1 − un

∆t
= −v · ∇un + ǫ∇2un +

∆t

2
(v · ∇)2un. (46)

Its global accuracy is O((∆t)2, ǫ2∆t), which implies that it is of second-order in time,
since usually ǫ2 ≤ ∆t. For pure convection problems, this method is identical to the
standard Lax-Wendroff finite element scheme. At the same time, it features good stability
properties in diffusion-dominated cases.

The Galerkin spatial discretization applied to the weak formulation of equation (46)
yields a linear system of the form

MC∆uH = ∆tKHun +
(∆t)

2

2

DSun. (47)

For notational simplicity, the consistent mass matrix was redefined to comprise the implicit

diffusive contribution. The extra term (∆t)
2

2
DSun results from the second-order time

discretization and caters for proper stabilization. Integration by parts is employed to
relieve it from the second-order spatial derivatives:

ds
ij =

∫

Ω

ϕiv · ∇(v · ∇ϕj) dx = −

∫

Ω

v · ∇ϕi v · ∇ϕj dx

−

∫

Ω

ϕi∇ · v v · ∇ϕj dx +

∫

Sout

ϕiv · n v · ∇ϕj ds. (48)

The first term in the right-hand side is seen to be a streamline diffusion operator. In
contrast to other methods of streamline diffusion type, no artificial parameter needs to
be fitted. The amount of stabilization is naturally fixed by the coefficient of the second-
order term in the Taylor series expansion. An investigation of Lax-Wendroff schemes
by means of the modified equation method reveals that the introduced dissipation just
counterbalances the intrinsic negative diffusion which renders the explicit Euler/Galerkin
scheme unstable for pure convection problems. For an in-depth study of Lax-Wendroff
and Taylor-Galerkin methods the reader is referred to [8].

The matrix DS can be turned into a generalized diffusion operator by neglecting the
last two integrals in the right-hand side of (48). The former one vanishes for divergence-
free velocity fields. The latter one switches off stabilization terms normal to the boundary.
This modification was found to preclude the arising of instabilities and spurious pressure
boundary layers at the outlet [3]. However, we will neglect boundary correction for the
time being and discuss it in some detail a bit later.

The presented Taylor-Galerkin method is only conditionally stable. Moreover, the
consistent mass matrix leads to a reduced stability domain as compared to the associated
finite difference scheme [8]. Second-order temporal accuracy can also be achieved e. g. by
handling the second-order term implicitly while retaining the explicit treatment for the
first-order term [29]:

un+1 −
(∆t)

2

2

un+1
tt = un + ∆t un

t . (49)
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This scheme is unconditionally stable for pure convection problems and can be used as the
high-order method. Note that the computational overhead connected with the implicit
treatment of the streamline diffusion term is insignificant, since a consistent mass matrix
problem has to be solved anyway. In addition, the matrix at hand remains symmetric. At
the same time, the unconditional stability of this method cannot be duly utilized in the
FEM-FCT framework. As long as the convective term is discretized explicitly, the time
step will be constrained by the positivity condition for the low-order scheme.

There exist many other promising high-order methods, but a detailed analysis and
comparison of their characteristics would be beyond the scope of this paper. Instead,
we will demonstrate how the simple methods presented above can be combined with the
affiliated low-order scheme of ‘upwind’ type. The discrete system (47) implies that

ML∆uH = ∆tKLun − (MC − ML)∆uH − ∆t(KL − KH)un +
(∆t)

2

2

DSun. (50)

The low-order transport operator KL is constructed as explained in the previous section.
It can readily be seen that the difference between the high- and low-order scheme is
represented by the last three terms in the right-hand side. They originate from discrete
(anti-) diffusion operators and lend themselves to decomposition into fluxes. Hence, the
flux-corrected end-of-step solution un+1 is sought in the form:

miu
n+1
i = miũi +

∑

j 6=i

αijfij, αji = αij, (51)

where ũ denotes the provisional low-order solution computed from

miũi = miu
n
i + ∆t

∑

j

kL
iju

n
j . (52)

The involved antidiffusive fluxes fij are given by

fij = −mij(∆uH
j − ∆uH

i ) − ∆t dij(u
n
j − un

i ) + (∆t)
2

2
ds

ij(u
n
j − un

i ),

fji = −fij, i < j. (53)

They offset the error induced by mass lumping, ‘upwinding’, and the first-order time dis-
cretization. If the semi-implicit Taylor-Galerkin method (49) is employed, the streamline
diffusion contribution should be evaluated using the high-order solution uH instead of un.
The selection of correction factors αij will be addressed below.

Implicit FEM-FCT formulation

In order to eliminate or alleviate severe stability restrictions due to the explicit-time
stepping, let us explore the potential of implicit methods. Of primary interest are the
backward Euler and the Crank-Nicolson scheme. Both of them are unconditionally sta-
ble and can be used as the high-order method in conjunction with the Galerkin spatial
discretization. No extra stabilization of convective terms is required in this case.

Let the implicit schemes of high- and low-order be related by the formula

(ML−θ∆tKL)∆uH = ∆tKLun−(MC −ML)∆uH −∆t(KL−KH)[θuH +(1−θ)un]. (54)
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The discrete antidiffusion operators responsible for the high-order accuracy can be easily
identified. If they are omitted, the positive low-order scheme is obtained. The proposed
FCT algorithm is based on the following representation of the end-of-step solution:

miu
n+1
i − θ∆t

∑

j

kL
iju

n+1
j = miũi +

∑

j 6=i

αijfij, αji = αij, (55)

where ũ stands for the positivity-preserving solution to the explicit subproblem

miũi = miu
n
i + (1 − θ)∆t

∑

j

kL
iju

n
j . (56)

The backward Euler method corresponds to θ = 1, so that ũ ≡ un. In case of the Crank-
Nicolson scheme, ũ is seen to be an intermediate solution at the time instant tn + ∆t/2
computed by the explicit low-order scheme.

According to the relation (54), the antidiffusive fluxes are defined by

fij = −mij(∆uH
j − ∆uH

i ) − θ∆t dij(u
H
j − uH

i ) − (1 − θ)∆t dij(u
n
j − un

i ),

fji = −fij, i < j. (57)

The computation of the high-order solution uH requires solving a non-symmetric lin-
ear system. Furthermore, the scheme (55) is implicit for θ > 0, so that another algebraic
system with the matrix of the low-order operator has to be solved after the flux correc-
tion step. If iterative solvers are employed, the computed high-order solution provides a
reasonable initial approximation to the final solution.

A remark is in order concerning the application of implicit schemes to nonlinear prob-
lems like the inviscid Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0, (58)

which constitutes a one-dimensional prototype of the Euler and Navier-Stokes equations.
In this case, the matrices KH and KL depend on the unknown solution, so that additional
outer iterations are necessary. It will be noted that the linearization of the problem using
a constant extrapolation in time can entail a loss of mass and alter the shock speed.

The simplest iterative treatment of nonlinearities is afforded by a fixed point defect
correction method. In each time step, the approximate solution and the transport operator
are successively updated as follows:

u(l+1) = u(l) − C−1[MCu(l) − θ∆tKH(u(l))u(l) − MCun − (1 − θ)∆tKH(un)un], (59)

where l is the outer iteration counter, and C is a suitably chosen ‘preconditioner’. The
iteration process is terminated when the residual is small enough or l exceeds a given limit.
As a rule, the ‘inversion’ of matrix C is also performed by some iterative procedure. Hence,
a certain number of inner iterations per cycle is required. It is worth mentioning that the
equation does not have to be solved very accurately at each outer iteration. A moderate
improvement of the residual is sufficient to obtain a good overall accuracy.
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Setting C = ML − θ∆tKL(u(l)), that is using the low-order operator as the precondi-
tioner, we obtain the following nonlinear iteration scheme:

MLu(l+1) − θ∆tKL(u(l))u(l+1) = MLun + (1 − θ)∆tKL(un)un + F (u(l), un), (60)

where F (u(l), un) comprises all pertinent antidiffusive terms (cf. equation (54)), which can
be decomposed into fluxes as described above. Flux correction can be performed after
each outer iteration or just once after the high-order solution has converged. In either
case, positivity of the numerical solution is secured.

Limiting strategy

Now that the difference between the high- and low-order solutions to the linear or nonlin-
ear transport equation is available as a sum of raw antidiffusive fluxes fij, the algorithm
for the selection of correction factors αij comes into play. The flux limiter is a key element
of the FEM-FCT procedure, which needs to be adapted to the new formulation. Below
we work out a unified limiting strategy applicable to both explicit and implicit schemes.

Explicit FCT schemes can benefit from canceling all antidiffusive fluxes directed down
the gradient of ũ:

fij := 0, if fij(ũi − ũj) < 0. (61)

This test should be applied before the flux correction step. Its purpose is to ensure that
the flux does not smooth the low-order solution. To put it another way, an antidiffusive
flux is not allowed to be diffusive. When this happens, small-scale numerical ripples can
be produced even though the solution remains positive. Hence, the limiter is positivity-
but not monotonicity-preserving [7].

The prelimiting of antidiffusive fluxes can be traced back to the celebrated SHASTA
scheme. Zalesak also mentioned this approach in passing but did not promote its regular
use. He argued that the majority of antidiffusive fluxes act to steepen the gradient, while
the effect of (61) is minimal and cosmetic in nature. This remark has discouraged the use
of prelimiting in FCT algorithms based on Zalesak’s multidimensional limiter. Apparently,
this is not the sole reason why this optional step is missing in the FEM-FCT procedure of
Löhner et al. The replacement of antidiffusive fluxes by element contributions makes the
prelimiting impossible to carry out for multidimensional problems. Only the restitution of
a flux-based formulation enables us to apply this technique in the finite element context.

DeVore [7] has rediscovered the preprocessing of antidiffusive fluxes as a way to achieve
monotonicity and demonstrated that it can lead to a dramatic qualitative improvement of
dynamic simulation results. Even for simple test problems with discontinuous solutions,
remarkable ‘esthetic’ improvements are observed (see the numerical examples below).
Therefore, the prelimiting step is to be included in explicit FCT algorithms. In our
experience, it remains relevant also for the implicit schemes introduced in this paper.

Let us proceed to the algorithm for selection of correction factors. It is largely equiva-
lent to Zalesak’s limiter but is derived and interpreted in a quite different way. As before,

we denote by u
max

min

i the maximum and minimum solution values at the stencil Si which
consists of the node i and its nearest neighbors:

u
max

min

i =
max

min
ũj, j ∈ Si. (62)
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It should be borne in mind that the positivity-preserving auxiliary solution ũ = uL(tn+1−θ)
depends on the concrete time-stepping scheme. The old solution un is no longer used in
the computation of local extrema for the reasons which will become clear shortly.

In accordance with the FCT theory, all antidiffusive fluxes which try to accentuate a
local maximum or minimum must be completely canceled:

αij = 0, if ũi = umax
i , fij > 0 or ũi = umin

i , fij < 0. (63)

If this applies to all fluxes into the node i, we are done. Otherwise, the remaining fluxes
have to be limited so as to comply with the positivity constraint. It is noteworthy that
the right-hand side of our schemes (51) and (55) admits the following representation:

RHS = miũi +
∑

j 6=i

αijfij = miũi + ciQi, ci =

∑

j 6=i αijfij

Qi

, (64)

where the multiplier Qi is chosen to be

Qi =















Q+
i = umax

i − ũi, if
∑

j 6=i αijfij > 0,

Q−
i = umin

i − ũi, if
∑

j 6=i αijfij < 0,

1, if
∑

j 6=i αijfij = 0.

(65)

By virtue of (63), we have Qi 6= 0, so that no division by zero takes place. Furthermore,

the coefficient ci is always non-negative. Let the local extremum u
max

min

i be attained at a
node k adjacent to the node i. Then the antidiffusive term exhibits a LED structure, and
we obtain

RHS = miũi + ci(ũk − ũi) = (mi − ci)ũi + ciũk, ci ≥ 0. (66)

In light of the above, the proposed FEM-FCT schemes will preserve positivity provided
that mi ≥ ci. This important observation frames a general rule for the selection of
correction factors αij.

It remains to show that Zalesak’s limiter does possess the desired properties. Let us
restate it for our flux-based formulation. The quantities P±

i and R±
i are redefined as

P±
i =

1

mi

∑

j 6=i

max

min
{0, fij}, R±

i =

{

min{1, Q±
i /P±

i }, if P±
i 6= 0,

0, if P±
i = 0.

(67)

Since now the nodes exchange mass on a bilateral basis, the flux limiter is given by

αij =

{

min{R+
i , R−

j }, if fij ≥ 0,
min{R+

j , R−
i }, if fij < 0.

(68)

It is independent of the number of spatial dimensions and can be easily implemented as a
‘black-box’ routine which computes the correction factors given an array of antidiffusive
fluxes for each pair of neighboring nodes.

The condition (63) is automatically satisfied, since Q±
i = 0 spells R±

i = 0 and αij = 0.
Hence, any enhancement of local extrema is neutralized by the limiter. Furthermore, the
following estimate holds:

∑

j 6=i

αijfij ≤
∑

j 6=i

αij max{0, fij} ≤ miR
+
i P+

i ≤ miQ
+. (69)
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In much the same way, it can be verified that

∑

j 6=i

αijfij ≥
∑

j 6=i

αij min{0, fij} ≥ miR
−
i P−

i ≥ miQ
−
i . (70)

This proves that the corrected antidiffusive fluxes satisfy the constraint mi ≥ ci. Recall
that the left-hand sides of our FEM-FCT schemes pose no hazard to positivity. According
to the Positivity Theorem, the backward Euler method with flux correction is uncondi-
tionally positive for incompressible flows. For highly compressible flows, the time step
may depend on the divergence of the velocity as explained above. The Crank-Nicolson
scheme is subject to a positivity condition for the auxiliary problem (56), but the admis-
sible Courant numbers are twice as large as those for the explicit Lax-Wendroff scheme.

Treatment of outflow boundaries

Let us make some final remarks regarding the treatment of outflow boundaries. It turns
out that FCT schemes can malfunction when applied to problems with smooth solutions
(i.e. in situations when flux correction is actually redundant). This major deficiency
manifests itself in spurious ripples emanating from the outflow boundary and propagating
into the computational domain. A typical example will be presented below. The wiggles
can be cured by (local) mesh refinement, but it is necessary to understand their origins in
order to find a better remedy. It goes without saying that a failure to cope with smooth
solutions seriously compromises the practical utility of the method even if it provides an
excellent resolution of shocks and contact discontinuities.

The pathological behavior of the FCT algorithm apparently occurs due to the lack
of proper boundary adjustment. Similar problems are observed when Petrov-Galerkin
methods are applied without boundary correction for the streamline diffusion terms [3].
At the same time, consistent Lax-Wendroff and Taylor-Galerkin schemes do incorporate
the necessary modification. It is given by the surface integral which arises naturally from
integration by parts of the second order term (see above). Inclusion of similar integrals
into the Galerkin least squares formulation also yields the desired effect [11].

In most cases, streamline diffusion methods without boundary modification still pro-
duce acceptable solutions. However, boundary anomalies can be considerably aggravated
by flux correction. This can be attributed to a nonphysical natural boundary condition
implied by the low-order scheme. For simplicity, consider a one-dimensional pure convec-
tion problem and recall that in this case the boundary condition is to be prescribed only
at the inflow boundary, i.e. at the endpoint where the velocity is directed into the domain.
The positivity of the low-order scheme is enforced by adding strong discrete diffusion to
the underlying high-order scheme. This is equivalent to solving a parabolic convection-
diffusion equation with homogeneous Neumann boundary condition at the outlet. Hence,
the low-order solution will exhibit a kink whenever the exact solution has a non-vanishing
derivative at the outflow boundary. At the same time, high-order methods handle smooth
profiles with ease and provide a much better approximation to the exact solution at the
boundary. This discrepancy seems to be the reason why FCT schemes sometimes produce
saw-like profiles given smooth initial data.
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In fact, the homogeneous Neumann boundary condition is a direct consequence of the
conservation property of discrete diffusion operators. If we add artificial dissipation while
requiring strict mass conservation, the numerical solution will be forced to bend so as to
prevent any nonphysical diffusive flux through the boundary. Hence, it is worthwhile to
reconsider the concept of mass conservation and endorse the outflow of mass due to nu-

merical diffusion. The aforementioned boundary integrals represent in essence numerical
fluxes which cater for a consistent boundary treatment.

A feasible strategy motivated by the above considerations is to construct the discrete
low-order transport operator so as to leave the rows corresponding to outflow boundary
nodes unchanged. To this end, we can replace formula (33) by

dii = −
∑

k 6=i

dik, dij = max{0,−kH
ij }, dji = 0 (71)

if i is an interior node and j is a node on the outflow boundary. Note that the symmetry
of antidiffusive fluxes fij = −fji is lost for boundary nodes, so that the limiter and the
assembly process have to be modified appropriately.

For our one-dimensional example, we obtain

D̂ =
v

2

[

−1 1
0 0

]

⇒ K̂L =
v

2

[

0 0
1 −1

]

, (72)

which is equivalent to adding the missing boundary integral. It is noteworthy that all
off-diagonal entries of the low-order transport operator are still non-negative, so that the
positivity of the low-order solution is guaranteed. This will also be the case e.g. for bilinear
elements provided the velocity and mesh size do not exhibit abrupt changes in proximity
to the outflow boundary. A proof for the case of a uniform mesh and a constant velocity
is available. It is quite straightforward and will not be presented here.

Another simple way to get rid of ripples is to abstain from adding any artificial diffusion
in the boundary layer, i.e. set dij = dji = 0 if i or j belongs to the outflow boundary.
This approach preserves the symmetry of fij and is probably to be preferred because of
its lower complexity. Boundary adjustment should not be applied to convection-diffusion
problems with Dirichlet boundary conditions prescribed at the outlet.

7 Numerical examples

Let us substantiate the proposed FEM-FCT methodology by a number of one- and two-
dimensional examples. The Lax-Wendroff and Crank-Nicolson schemes are second-order
accurate in time and produce virtually identical numerical results. Hence, it suffices to
examine the behavior of the Lax-Wendroff (LW/FCT) and backward Euler (BE/FCT)
methods. Unless otherwise indicated, the 1D solutions were obtained on a uniform mesh
of 100 linear elements, whereas a Cartesian mesh of 128 × 128 (due to the quadtree data
structure for the mesh) bilinear elements was employed for the 2D examples. The time
step was chosen rather small in most cases in order to reduce the temporal error for
the first-order accurate backward Euler method. However, some solutions for Courant
numbers exceeding unity are also presented.
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Convection of a step function

As a classical one-dimensional test problem, consider pure convection of a discontinuous
step function with unit velocity. The time step ∆t is set equal to 10−3 which corresponds
to the Courant number ν = 0.1. The first method to be evaluated is the explicit FEM-
FCT scheme based on the Lax-Wendroff time-stepping. The numerical results at t = 0.5
are depicted in Figure 1. Here and below, the dash-dotted line stands for the initial data,
and the dotted line designates the analytical solution.

As expected, the high-order LWFE method entails undershoots and overshoots of
considerable amplitude, while the low-order solution is monotone but corrupted by ex-
cessive numerical diffusion. Flux correction brings about a dramatic improvement, but
the solution exhibits some imperfections if the prelimiting step is omitted. By far the
most accurate results are produced by the FEM-FCT method equipped with prelimit-
ing. This serves as an evidence that the preprocessing of antidiffusive fluxes is a valuable
complement to the FCT procedure.

Let us compare these results with those obtained by the fully implicit BE/FCT scheme
(see Figure 2). Even though the Courant number is rather small, the backward Euler
method is seen to be diffusive because of the first-order time discretization. At the same
time, it is not as oscillatory as the LWFE scheme. The implicit ‘upwind’ method yields
essentially the same results as its explicit counterpart. It is evident that the implicit
FEM-FCT algorithm also does a very good job in combining the advantages of high-
and low-order schemes. The nonphysical oscillations are filtered out completely, while the
slope of the profile remains the same. As the time step is refined, the accuracy approaches
that of the explicit LW/FCT scheme.

Inviscid Burgers equation

The inviscid Burgers equation (58) is a standard model problem for nonlinear convection
in one dimension. It is frequently employed to assess the ability of numerical methods
to deal with formation and propagation of shocks. Let us start with a discontinuous
initial profile and simulate its evolution up to the time t = 0.4. The numerical solutions
produced by the FEM-FCT schemes are displayed in Figure 3. The nonlinearity was
treated by the fixed point defect correction method as described above.

It turns out that the effect of the prelimiting step is not so pronounced in this setting.
Furthermore, the LW/FCT and BE/FCT yield solutions of comparable quality. At the
same time, the fully implicit scheme is unconditionally positive and can be applied at
Courant numbers greater than unity. An example for ∆t = 2∆x demonstrates that large
time steps degrade the accuracy, but the numerical solution still looks quite reasonable.
Note that in all cases the shock propagates with correct speed, which implies that the
mass is conserved.

Convection of a cosine wave

Let us come back to linear convection problems with constant velocity v = 1. If the initial
data is smooth enough, then the conventional Galerkin method performs remarkably well.
As a matter of fact, it was used to compute the dotted reference solution for the cosine
profile in Figure 4. Hence, flux correction is superfluous in this case. However, it is often
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Figure 1. Convection of a step function. Lax-Wendroff/FCT scheme, t = 0.5.
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Figure 2. Convection of a step function. Backward Euler/FCT scheme, t = 0.5.
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Figure 3. Inviscid Burgers equation. Solution at t = 0.4.
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Figure 4. Convection of a cosine wave. Solution at t = 0.5.
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impossible to detect such situations a priori. For most practical CFD applications, the
smoothness of the unknown solution varies in space and time. Therefore, the numerical
method should be capable of handling both smooth and discontinuous data.

The first plot in Figure 4 reveals that the FCT algorithm in its original form can
pollute the high-order solution by spurious ripples which can be traced back to the outflow
boundary. The time step was deliberately chosen very small in this example, since this
was found to amplify the perturbations. Any of the techniques for boundary correction
proposed above makes it possible to restore the smoothness of the solution and obtain
accurate results. The BE/FCT scheme remains stable and positive for Courant numbers
beyond unity, although the amplitude of the wave is dampened appreciably.

Stretching/compression by a variable velocity

The next two examples illustrate the performance of our FEM-FCT schemes for linear
convection problems with velocity depending on the spatial coordinate. The non-uniform
velocity field is intended to expose the behavior of the methods under circumstances when
a physical growth or decay of extrema occurs. It is important to ascertain that the flux
limiter is able to distinguish between physical and nonphysical extrema.

Consider a step function which is convected and spread by the variable velocity field
v = x as shown in Figure 5. In this case, both LW/FCT and BE/FCT deliver non-
oscillatory but quite diffusive numerical results. Note that the left border of the profile
is resolved considerably better than the right one, since the Courant number increases
with x. It should be emphasized that the observed smoothing is not a deficiency of flux
correction. In fact, the high-order method produces an equally diffusive solution with
oscillations superimposed on it.

If the transported profile undergoes compression rather than stretching, the algorithm
performs much better. This is exemplified by Figure 6, where the velocity is taken to be
v = 1−x. In this case, the mass gradually accumulates in the center of the computational
domain. The solutions obtained by the LW/FCT and BE/FCT schemes are virtually
identical and exhibit superb accuracy.

Convection of monotone profiles

The last one-dimensional test problem deals with the convection of monotone data. Let
the initial profile be a smooth approximation to the Heavyside step function. The front
is chosen to be rather steep, so that flux correction is required to preclude the arising of
undershoots and overshoots.

The numerical solutions produced by the FEM-FCT schemes in the case of constant
velocity v = 1 are compared with each other and with the exact solution in Figure 7. The
explicit LW/FCT scheme provides an excellent resolution of the front, while the implicit
BE/FCT scheme is moderately diffusive for ‘large’ time steps. It can be seen that both
methods are free of false antidiffusion inherent e.g. to the popular superbee limiter [27].
Thus, no artificial steepening of the profile takes place.

Convection of the same function with the variable velocity v = x is investigated in
Figure 8. The qualitative behavior of the methods is essentially the same as in the case of
constant velocity. It is noteworthy that, in contrast to the stretching of a discontinuous
pulse, no pronounced extra smearing is observed.
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Figure 5. Stretching by the variable velocity field v = x. Solution at t = 1.0.
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Figure 6. Compression by the variable velocity field v = 1 − x. Solution at t = 1.0.
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Figure 7. Convection of a monotone profile with v = 1. Solution at t = 1.0.
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Figure 8. Convection of a monotone profile with v = x. Solution at t = 1.0.
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Steady-state convection-diffusion in 1D

As we have seen, the fully implicit BE/FCT scheme is quite diffusive for transient convec-
tion problems. At the same time, it appears to be very attractive as an iterative solver for
(quasi-) steady-state convection-diffusion equations. Indeed, the steady-state solution can
be obtained by applying a FEM-FCT method to the associated time-dependent problem.
Possible nonlinearities can be treated in the same iterative loop. The temporal accuracy
of the method does not matter in this case, since the time step is merely an artificial
parameter which determines the convergence rates. In fact, local time-stepping can be
employed [3]. As long as the accuracy of the converged solution depends entirely on the
spatial discretization, it is expedient to choose the time steps as large as possible, so as to
reduce the computational cost. This makes explicit schemes non-competitive, since they
are subject to a restrictive CFL condition. Moreover, the numerical solution produced
e.g. by the Lax-Wendroff method is affected by the streamline diffusion depending on the
artificial time step. Hence, steady-state problems call for an implicit treatment.

Consider the one-dimensional stationary convection-diffusion equation

v
∂u

∂x
− ǫ

∂2u

∂x2
= 0, u(0) = 1, u(1) = 0

for v = 1 and ǫ = 10−2, which corresponds to the Peclet number Pe = 100. This
is a singularly perturbed elliptic problem, which is characterized by the presence of a
sharp front next to the outflow boundary x = 1. The boundary layer develops because
the solution of the reduced problem (ǫ = 0) does not satisfy the homogeneous Dirichlet
boundary condition imposed for the full problem.

Let us discretize the domain by a uniform mesh of 10 linear elements and compare the
results produced by the backward Euler scheme without and with flux correction. As an
initial guess, we take the straight line u0 = 1−x. The obtained solutions are displayed in
Figure 9. The standard Galerkin method reduces to the central difference approximation,
which is seen to be oscillatory for the coarse mesh under consideration. Remarkably,
the flux-corrected steady-state solution is nodally exact. Actually, even the ‘low-order’
method yields excellent results in this case. Recall that the tensor of artificial dissipation
is constructed in such a way that it just compensates the lack of physical diffusion. If any
physical diffusion is present, then less artificial diffusion is required to enforce positivity.
Thus, for ǫ > 0 the low-order scheme is less diffusive than the classical upwind method.
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Figure 9. Steady-state convection-diffusion in 1D, ǫ = 10−2.
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Convection of a discontinuous profile in 2D

Let us proceed to the two-dimensional examples. The first one shown in Figure 10 is a
direct generalization of the 1D problem dealing with the uniform convection of a step
function. In the 2D case, the computational domain is a unit square. The velocity is
constant and equal to unity in each coordinate direction: v = (1, 1). Homogeneous
Dirichlet boundary conditions are prescribed at the inflow boundaries x = 0 and y = 0.
A discontinuous initial profile is transported along the streamlines, which are parallel to
the diagonal y = x.

The numerical solutions at the time instant t = 0.5 obtained by the prelimited
LW/FCT and BE/FCT schemes corroborate the diagnosis made on the basis of the one-
dimensional examination. Both methods succeed in the elimination of nonphysical wig-
gles and preserve the steepness of the profile fairly well, unlike the underlying low-order
scheme. However, the temporal error induced by the backward Euler time-stepping is
still non-negligible for the employed time step ∆t = 10−3. It is evident that the second-
order LW/FCT scheme outperforms the first-order BE/FCT scheme when it comes to the
time-accurate solution of transient convection problems.

Initial data            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������Exact solution            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

LW/FCT, ∆t = 10−3
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������BE/FCT, ∆t = 10−3

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 10. Convection of a discontinuous profile. Initial data and solution at t = 0.5.
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Convection of a smooth profile in 2D

Our next test problem deals with the evolution of a sinusoidal profile. Consider the same
computational domain and velocity field as in the previous example and let the initial
condition be given by

u(x, y, 0) = sin(2πx) · sin(2πy).

The prescribed boundary conditions are

u(0, y, t) = − sin(2πt) · sin(2π(y − t)),

u(x, 0, t) = − sin(2πt) · sin(2π(x − t)),

so that the initial data matches the exact solution at the time t = 1.0.
The numerical results produced by the FEM-FCT schemes with boundary correction

are displayed in Figure 11. All remarks regarding the treatment of outflow boundaries
remain valid in two dimensions. The maximum norm of the solution quoted in the dia-
grams serves as an indicator of numerical damping. The diffusive nature of the BE/FCT
method is excused to some extent by its ability to operate with larger time steps.

Initial data/exact solution, ||u||∞ = 1.0            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������LW/FCT, ∆t = 10−3, ||u||∞ = 0.9969            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

BE/FCT, ∆t = 10−3, ||u||∞ = 0.9874            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������BE/FCT, ∆t = 10−2, ||u||∞ = 0.9041            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 11. Convection of a smooth profile. Initial data and solution at t = 1.0.
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Rotation of a cylinder with a slot

Let us turn to the investigation of a solid body rotation in a nonuniform velocity field
v = (−y, x). The counterclockwise rotation takes place about the center of the square
domain (−1, 1) × (−1, 1). The initial data is a cylinder with a slot defined by

u(x, y, 0) =

{

1, R < 1/3 and (|x| > 0.05 or y > 0.5),
0, otherwise,

where R =
√

x2 + (y − 1/3)2. This challenging two-dimensional benchmark problem was
considered by Löhner et al. [20], Zalesak [30] and many others.

Figure 12 demonstrates that both LW/FCT and BE/FCT produce excellent results as
long as the time step is small enough. The prelimiting of antidiffusive fluxes has proved
to be expedient for this problem. If it is omitted, the numerical solution is contaminated
by innocuous but ugly ripples. The last diagram illustrates the behavior of the implicit
scheme at large Courant numbers. Since the velocity increases with distance from the
origin, the slot is resolved considerably better than the rear of the cylinder.

Initial data/exact solution            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������LW/FCT, ∆t = 10−3
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

BE/FCT, ∆t = 10−3
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������BE/FCT, ∆t = 10−2

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 12. Rotation of a cylinder with a slot. Initial data and solution at t = 2π.
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Steady-state convection-diffusion in 2D

Finally, let us illustrate the advantages of the BE/FCT method by a two-dimensional
steady-state example. The convection-diffusion equation at hand reads

v · ∇u − ǫ∆u = 0 in Ω = (0, 1) × (0, 1),

where v = (cos 10o, sin 10o) and ǫ = 10−3. The concomitant boundary conditions are:

∂u

∂y
(x, 1) = 0, u(x, 0) = u(1, y) = 0, u(0, y) =

{

1, y ≥ 0.5,
0, y < 0.5.

A reasonable initial approximation is given by

u0(x, y) =

{

1 − x, y ≥ 0.5,
0, y < 0.5.

For practical applications, it is worthwhile to compute the stationary low-order solution
using any direct or iterative solver, and then activate the time-dependent FEM-FCT
algorithm. In this case, the cost of flux correction is minimized, since the initial guess
should be close enough to the steady-state limit. Furthermore, the use of the consistent
mass matrix is not justified for stationary problems, so that mass lumping is appropriate
also for the high-order scheme.

The numerical solutions obtained by the BE/Galerkin and BE/FCT schemes on a
uniform mesh of 32 × 32 bilinear elements are depicted in Figure 13. It is observed
that the Galerkin method without flux correction gives rise to spurious oscillations in the
boundary layer. This is obviously not the case for the flux-corrected solution, which is is
highly accurate and satisfies the discrete maximum principle. It follows that BE/FCT is
a promising solver for convection-dominated (quasi-) steady-state problems, which makes
up for its low temporal accuracy exposed in the previous examples.

BE, h = 1/32
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

BE/FCT, h = 1/32
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 13. Steady-state convection-diffusion in 2D, ǫ = 10−3.
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8 Conclusions and outlook

A new approach to flux correction for finite elements was presented. Its major high-
lights are: the novel technique for the construction of non-oscillatory low-order schemes,
the flux-based representation of antidiffusive terms, and the extension of the FEM-FCT
methodology to implicit time discretizations. The low-order transport operator was con-
structed by elimination of all negative off-diagonal entries of the discrete high-order oper-
ator. A decisive advantage of this strategy is its applicability to arbitrary finite element
matrices and the fact that it yields the least diffusive positivity-preserving method which
is superior to the upwind discretization if any physical diffusion is present. The struc-
ture of the discrete antidiffusion operator was exploited to decompose it into a sum of
internodal fluxes which can be processed in much the same way as their finite difference
counterparts. In particular, an extra prelimiting step was reintroduced to get rid of spu-
rious ripples which are generated otherwise. The flux-based algorithm is readily portable
to higher dimensions, so that the same subroutines can be used in 1D, 2D and 3D im-
plementations. The mechanisms underlying flux correction were analyzed on the basis
of rigorous positivity criteria, and an implicit version of the FEM-FCT procedure was
elaborated. A unified flux limiter was devised for explicit and implicit schemes. It was
proved that the fully implicit backward Euler method is unconditionally positive, whereas
other schemes are subject to a CFL-like condition. The upper bound for the time step is
easily computable and can be used to steer adaptive time-stepping.

The behavior of the proposed schemes was studied numerically for both evolutionary
and steady-state problems. Encouraging results were obtained for a wide range of one-
and two-dimensional examples. The best transient solutions were produced by the second-
order schemes of Lax-Wendroff and Crank-Nicolson type. The backward Euler method is
first-order accurate in time, but it constitutes an excellent solver for steady state-problems.
In addition, the implicit treatment is appropriate if a non-uniform distribution of Courant
numbers (due to adaptive mesh refinement or strongly varying velocities) makes the CFL
condition too restrictive. In other cases, explicit or semi-implicit time-stepping should
be employed for accuracy reasons. Hence, both explicit and implicit FEM-FCT schemes
belong in a CFD toolbox for convection-dominated transport problems.

Apart from the simple test problems considered in this paper, we have successfully ap-
plied the new FEM-FCT algorithms to scalar transport equations governing the evolution
of phase holdups and concentrations of species in gas-liquid reactors [18]. Such coupled
multiphase flow problems described by two-fluid models are especially sensitive to non-
physical oscillations and excessive numerical diffusion, so that the use of high-resolution
schemes is indispensable [27]. One of the feasible directions for further research is the inte-
gration of flux limiters into incompressible flow solvers for the Navier-Stokes equations in
the medium and high Reynolds number regime. Even though the presence of the viscous
term makes the velocity less susceptible to undershoots and overshoots, linear high-order
methods of the streamline diffusion type sometimes yield unsatisfactory results (e.g. in
the case of strongly anisotropic meshes). Since the cost of flux correction is rather high, it
might be used interchangeably with cheaper artificial viscosity methods. The latter ones
can be based on the same high- and low-order transport operators but use some heuristic
sensors (e.g. the local Reynolds number) to determine the blending factors.
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As elucidated in the monograph [28] and illustrated by representative benchmark
computations in [24], unconditionally stable implicit schemes appear to be particularly
attractive for the treatment of the incompressible Navier-Stokes equations. On one hand,
explicit schemes for the Burgers equation do not require any advanced linear algebra tools,
since the consistent mass matrix can be efficiently ‘inverted’ e.g. by just a few Jacobi-like
iterations using the lumped mass matrix as a preconditioner. On the other hand, the
inherent Pressure Poisson Equation represents an ill-conditioned elliptic problem which
has to be solved at each time step. Consequently, the CFL condition may become a
formidable bottleneck, so that an implicit approach is to be preferred.

It should be emphasized that implicit schemes including those with flux correction
stipulate the use of optimized multigrid techniques [24]. Otherwise the advantages of
unconditional stability cannot be realized due to a disproportionally high computational
cost per time step. Therefore, the development of properly tuned linear multigrid solvers
is one of our top priorities. Other aspects to be investigated include the application
of FEM-FCT schemes to systems of equations and locally refined unstructured grids,
combination with adaptive error control mechanisms in space and time, as well as the
extension to nonconforming finite elements and higher order approximations. These issues
are currently under research and will be addressed in forthcoming papers.
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