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We absolutely must leave room for doubt or there is no progress We absolutely must leave room for doubt or there is no progress and no  learning. and no  learning. 
There is no learning without posing a question. And  a question There is no learning without posing a question. And  a question requires doubt...Now requires doubt...Now 
the freedom of doubt, which is absolutely essential for the devethe freedom of doubt, which is absolutely essential for the development of science, lopment of science, 
was born from a struggle with constituted authorities... was born from a struggle with constituted authorities... FEYNMANNFEYNMANN, 1964, 1964



ANALOGIES, DIFFERENCES AND 
RELATIONS BETWEEN GENUINE 

TURBULENCE AND ITS ‘ANALOGS’

LECTURES XILECTURES XI--XIIXII

Our understanding of the general character of the smallOur understanding of the general character of the small--scale features of scale features of 
turbulent motion is very far from completeturbulent motion is very far from complete……Very few theoretical or Very few theoretical or 
experimental results have been established so that for the most experimental results have been established so that for the most part we part we 
must proceed analogy and plausible inference.must proceed analogy and plausible inference. BATCHELOR 1956,  BATCHELOR 1956,  p p 183183



Analogies in turbulence research have a special status mainly duAnalogies in turbulence research have a special status mainly due to e to 
unsatisfactory state of theory. Most analogies are aimed to lookunsatisfactory state of theory. Most analogies are aimed to look at at 
similarity between genuine turbulence and some "analogous" systesimilarity between genuine turbulence and some "analogous" system such m such 
as evolution of some passive object (e.g. scalar, vector, etc.) as evolution of some passive object (e.g. scalar, vector, etc.) polymers, polymers, 
and some other (see below) in some prescribed random (usually and some other (see below) in some prescribed random (usually 
Gaussian) velocity field. This led in many cases to exaggerated Gaussian) velocity field. This led in many cases to exaggerated and and 
consequently misleading claims on analogous behavior between theconsequently misleading claims on analogous behavior between the two two 
and consequently to misconceptions. Hence the purpose of this leand consequently to misconceptions. Hence the purpose of this lecture is cture is 
twofold. Along with critical overview of similarities the main etwofold. Along with critical overview of similarities the main emphasis is mphasis is 
given to differences rather than similarities. The primary reasogiven to differences rather than similarities. The primary reason for this is n for this is 
that (at least some) understanding of differences is expected tothat (at least some) understanding of differences is expected to aid better aid better 
understanding of both systems and avoid misconceptions associateunderstanding of both systems and avoid misconceptions associated with d with 
extending the analogies too far.extending the analogies too far.



## Reynolds analogy on transport of momentum and heatReynolds analogy on transport of momentum and heat,  ,  REYNOLDS, O. 1874REYNOLDS, O. 1874 On On 
the extent and action of the heating surface of steam boilersthe extent and action of the heating surface of steam boilers, , Proc. Lit. Phil. Soc. ManchesterProc. Lit. Phil. Soc. Manchester, , 1414, 7, 7--12.  12.  
## Study of fluid motion by means of `Study of fluid motion by means of `colourcolour bandsbands‘‘,, REYNOLDS. O. 1894REYNOLDS. O. 1894 Study of Study of 

fluid motion by means of fluid motion by means of colouredcoloured bandsbands, , NatureNature, , 5050, 161, 161----164.  164.  
## FrozennesFrozennes of of vorticityvorticity in the flow field in in the flow field in invisdidinvisdid flows (and other flows (and other solenoidalsolenoidal
fields with vanishing diffusivity, e.g. magnetic field in perfecfields with vanishing diffusivity, e.g. magnetic field in perfectly conducting fluids),tly conducting fluids),
HELMHOLZHELMHOLZ, H. 1858 , H. 1858 On integrals of the On integrals of the hydrodynamicalhydrodynamical equations which express vortex motionequations which express vortex motion. . 
Translated from German by Translated from German by P.G.TaitP.G.Tait, 1867 with a letter by Lord Kelvin (, 1867 with a letter by Lord Kelvin (W.ThomsonW.Thomson) in London ) in London 
Edinburgh Dublin Edinburgh Dublin Phil. Phil. MagMag. J. . J. SciSci., Fourth series., Fourth series, , 3333, 485, 485--512; 512; KELVIN, LORD (THOMSON, KELVIN, LORD (THOMSON, 

W.) 1880 W.) 1880 Vibration of columnar vortex, Vibration of columnar vortex, London Edinburgh Dublin Phil. London Edinburgh Dublin Phil. MagMag. J. . J. Sci.,FifthSci.,Fifth seriesseries, , 
33, 48533, 485--512.; 512.; (1910)(1910) Mathematical and physical papersMathematical and physical papers, vol. , vol. 44, , CambrCambr. . UnivUniv Press.    Press.    
## Finite diffusivity: analogy between amplification of Finite diffusivity: analogy between amplification of vorticityvorticity and magnetic field and magnetic field 
by turbulent flowby turbulent flow BATCHELOR, G.K. (1950)BATCHELOR, G.K. (1950) On the spontaneous magnetic field in a conducting On the spontaneous magnetic field in a conducting 
liquid in turbulent motionliquid in turbulent motion, , Proc. Roy. Soc. LondonProc. Roy. Soc. London, , A201A201, , 

SOME EARLY ANALOGIES



VORTICITYVORTICITY VERSUS VERSUS 
(INFINITESIMAL) MATERIAL (INFINITESIMAL) MATERIAL 

LINES  LINES  
Are they stretched in the same 
way and for the same reason?   

And what is the meaning of the 
“same way”



## VorticityVorticity amplification is a result of the kinematics of amplification is a result of the kinematics of 
turbulenceturbulence ,   ,   TENNEKES, H. AND LUMLEY, J. L. (1972)TENNEKES, H. AND LUMLEY, J. L. (1972) First course in First course in 

turbulence, MIT Press.turbulence, MIT Press. In the context of concern here a similar view originates In the context of concern here a similar view originates 
withwith TAYLOR 1937,1938TAYLOR 1937,1938 (see below)(see below)

## The physics of vortex stretching is well understoodThe physics of vortex stretching is well understood……, , see for see for 
instanceinstance, , G.K. Batchelor, An introduction to Fluid Dynamics G.K. Batchelor, An introduction to Fluid Dynamics 
(Cambridge U.P., New York, 1967); and R. H. (Cambridge U.P., New York, 1967); and R. H. KraichnanKraichnan, J. , J. 

Fluid Mech., 64, 737 (1974)Fluid Mech., 64, 737 (1974) A footnote in A footnote in E. D. E. D. SIGGIASIGGIA, (1977), (1977)

`Origin of intermittency in fully developed turbulence', `Origin of intermittency in fully developed turbulence', Phys. Rev.,Phys. Rev., 1515(4), 1730.(4), 1730.

## ……amplification of the amplification of the vorticityvorticity by vortex stretching, a wellby vortex stretching, a well--

understood mechanism in 3D Euler flow."understood mechanism in 3D Euler flow." POMEAUPOMEAU, Y. AND , Y. AND 

SCIAMARELLASCIAMARELLA, D. (2005), D. (2005) An unfinished tale of nonlinear An unfinished tale of nonlinear PDEsPDEs: Do solutions of : Do solutions of 
3D incompressible Euler equations blow3D incompressible Euler equations blow--up in finite time? up in finite time? PhysicaPhysica,, D205D205, 215, 215



A BIT OF HISTORYA BIT OF HISTORY -- II

VON VON KARMANKARMAN (1937)(1937) assumedassumed that the that the 
expressionexpression ∑∑ii∑∑kkωωiiωωkk∂∂uuii//∂∂uukk is zero in is zero in 
the meanthe mean and that heand that he ((vKvK )) cannot see any cannot see any 
physical reason for such a correlationphysical reason for such a correlation.                    .                     
TAYLOR (1937)TAYLOR (1937) conjectured that thereconjectured that there is a is a 
strong correlation betweenstrong correlation between ωω33²² andand
∂∂uu33//∂∂xx33 so thatso that (the mean of)(the mean of) ωω33²² ∂∂uu33//∂∂xx33 is is 
not equal to zeronot equal to zero ((xx33 is directed along is directed along vorticityvorticity))
and showed  and showed  experimentallyexperimentally that this is really the case,that this is really the case,
TAYLORTAYLOR (1938)(1938)

A small digression reminding a big mistakeA small digression reminding a big mistake



It is a rather common view (and misconception) that the prevalenIt is a rather common view (and misconception) that the prevalence of vortex stretching is due to the ce of vortex stretching is due to the 
predominance of stretching of material lines. This view originatpredominance of stretching of material lines. This view originates  withes  with TAYLOR 1938:TAYLOR 1938:
## Turbulent motion is found to be diffusive, so that particles whiTurbulent motion is found to be diffusive, so that particles which ch 
were originally neighbors move apart as motion proceeds. In a were originally neighbors move apart as motion proceeds. In a 
diffusive motion the average value ofdiffusive motion the average value of dd²²/d/d00

22 continually increases. continually increases. 
It will be seen therefore .., that the average value ofIt will be seen therefore .., that the average value of ωω²²//ω₀ω₀²²
continually increasescontinually increases.                                                               .                                                               
##.... the interesting physical argument that.. the interesting physical argument that 〈〈ωωiiωωjjssijij〉〉 is positive is positive 
because two particles on average move apart from each other and because two particles on average move apart from each other and 
therefore vortex lines are on average stretched rather than therefore vortex lines are on average stretched rather than 
compressedcompressed , , HUNT 1973HUNT 1973..
## The relative diffusion of a pair of probe particles in grid tuThe relative diffusion of a pair of probe particles in grid turbulence at high rbulence at high 
Reynolds numbers is treated as the most clearReynolds numbers is treated as the most clear--cut cut manifestaionmanifestaion of vortex of vortex 
stretchingstretching. . MORI & TAKAYOSHI, 1983.                                                               .                                                               
## The latest example is found inThe latest example is found in DAVIDSON (2004, DAVIDSON (2004, p.259. )) : : However, since However, since 
materialmaterial--line stretching seems to be a norm for the broader class line stretching seems to be a norm for the broader class 
of of kinematicallykinematically admissible fields, it should also be the norm for admissible fields, it should also be the norm for 
the narrower class of dynamically admissible velocity fields, anthe narrower class of dynamically admissible velocity fields, and d 
so one should not be surprised that vortexso one should not be surprised that vortex--line stretching, like line stretching, like 
material line stretching, is seen in practicematerial line stretching, is seen in practice . . 



CHORINCHORIN (1994)(1994) points to the problematic aspect of such a view:points to the problematic aspect of such a view: Vortex Vortex 
lines are special lines, and constitute a negligible lines are special lines, and constitute a negligible 
fraction of all lines (there is one vortex direction at fraction of all lines (there is one vortex direction at 
each point, but an infinite number of others). All each point, but an infinite number of others). All 
arguments that involve averages with respect to a arguments that involve averages with respect to a 
probability measure may fail to hold  in a negligible probability measure may fail to hold  in a negligible 
fraction of cases, and thus one cannot conclude fromfraction of cases, and thus one cannot conclude from
(5.1) ((5.1) (i.ei.e d/dtd/dt<|<|δδx (t)|x (t)|²²>0>0)) that vortex lines stretch, even in that vortex lines stretch, even in 
isotropic flow, isotropic flow, but ends with a the statement thatbut ends with a the statement that This conclusion This conclusion 
is, however, eminently plausibleis, however, eminently plausible.                                                               .                                                               
Indeed, it is plausible, since it is observed in the laboratory Indeed, it is plausible, since it is observed in the laboratory and in numerical and in numerical 
simulations.  But the underlying reasons/processes are still notsimulations.  But the underlying reasons/processes are still not understood unlike in understood unlike in 
case of passive material lines.case of passive material lines.



COCKE (1969) proved the following important results.  The first result is thaproved the following important results.  The first result is that t 
the length of an infinitesimal material line element, the length of an infinitesimal material line element, l l ≡≡ ||ll||,, increases on average in increases on average in 
any isotropic random velocity fieldany isotropic random velocity field**. Similarly, . Similarly, CockeCocke showed that an infinitesimal showed that an infinitesimal 
material surface element, N, identified by its vector normal,material surface element, N, identified by its vector normal, NN, increases on average , increases on average 
in an any isotropic random velocity field as well.in an any isotropic random velocity field as well.** ** Two important points have to Two important points have to 
be stressedbe stressed.  .  FirstFirst,, the results of the results of CockeCocke are based on statistics of  are based on statistics of  ‘‘allall’’ material lines material lines 
having the property that infinitely many lines pass through eachhaving the property that infinitely many lines pass through each point (whereas point (whereas 
typically only one typically only one vorticityvorticity line is passing through a point line is passing through a point –– recall the statement by recall the statement by 
ChorinChorin: : All arguments that involve averages with respect to a All arguments that involve averages with respect to a 
probability measure probability measure (i.e. all material lines) may fail to hold  in a may fail to hold  in a 
negligible fraction of casesnegligible fraction of cases (i.e. vorticity lines only).
___________________________________________________________________________________________________________________________________________________                      ___________________                       
*  *  For references on more details and a review of other related issFor references on more details and a review of other related issues see ues see TSINOBER 2001, P.. 48 AND ON.                    .                    
****More precisely More precisely CockeCocke showed that showed that ln[ln[〈〈l(t)l(t)〉〉/l(0)] /l(0)] ≥≥ 00, and , and ln[ln[〈〈N(t)N(t)〉〉/N(0)]/N(0)]≥≥ 00 for all for all t>0t>0 with equality holding with equality holding 
only if there is no fluid motion at all. Arguments similar to thonly if there is no fluid motion at all. Arguments similar to those by ose by CockeCocke (1969) show that (1969) show that 〈〈llpp(t(t))〉〉 ≥≥ llpp (0)(0) and and 
〈〈NNpp(t)(t)〉〉 ≥≥ NNpp(0)(0) for any for any p > 0p > 0 ((MONIN AND YAGLOM, 1975, PP. 579 - 580).).



SecondSecond, the results by , the results by CockeCocke are purely are purely kinematickinematic: the flow does not : the flow does not ‘‘knowknow’’
about material lines and does not have to be a real one, i.e. toabout material lines and does not have to be a real one, i.e. to satisfy the satisfy the 
NavierNavier--Stokes equations and/or to be observable in laboratory or elsewhStokes equations and/or to be observable in laboratory or elsewhere ere --
the only requirement is that the flow should be random and isotrthe only requirement is that the flow should be random and isotropic. For opic. For 
example, this result is true for a Gaussian velocity field as weexample, this result is true for a Gaussian velocity field as well, which is ll, which is 
important for the purpose of comparison of material line elementimportant for the purpose of comparison of material line elements, which are s, which are 
passive, and passive, and vorticityvorticity, which is not. Namely, the , which is not. Namely, the enstrophyenstrophy production in a production in a 
Gaussian isotropic field vanishes identically in the mean Gaussian isotropic field vanishes identically in the mean 〈ω〈ωiiωωkkssikik〉〉 ≡≡ 00, but , but 
〈〈lliillkkssikik〉〉 >>00!                                                               !                                                               
On the qualitative level the results by On the qualitative level the results by CockeCocke were confirmed in a number of were confirmed in a number of 
DNS experiments both for real and artificial flow fields (DNS experiments both for real and artificial flow fields (DRUMMOND, 1993; 

GIRIMAJI AND POPE, 1990; HUANG, 1996; YEUNG, 1994) and laboratory ) and laboratory 
experiments (experiments (LÜTHI ET AL., 2005).                                                 ).                                                 



•Frozenness in large 
scales

In an In an inviscidinviscid flowflow
DDωω//DDtt =  (=  (ωω·∇·∇))uu;  ;  DDll//DtDt == ((ll·∇·∇))uu
D(D(ωω--ll))//DDtt =  {(=  {(ωω--ll))·∇·∇}}uu
So So ωω == l  l  at all timesat all times if initially  if initially  ωω –– l =l = 00;                                   ;                                   
However, in a flow with  However, in a flow with  ν≠ν≠ 00 whatever smallwhatever small

〈ω〈ωiiωωkkssikik〉〉 ≈≈ ν〈ων〈ωii∇∇22ωωii〉〉,,
i.e. the vortex lines are not frozen into the fluid at whatever i.e. the vortex lines are not frozen into the fluid at whatever high  Reynolds high  Reynolds 
number number –– otherwise how the otherwise how the enstrophyenstrophy production can be approximately balanced production can be approximately balanced 
by  viscous terms again at any by  viscous terms again at any –– whatever large whatever large –– Reynolds numberReynolds number. . In In othetrothetr
words in slightly viscous flows words in slightly viscous flows frozennesfrozennes is meaningless. Just like the claim that is meaningless. Just like the claim that 
turbulence is slightly viscous at whatever large Re.turbulence is slightly viscous at whatever large Re. In this context the question: In this context the question: 
what happens with  what happens with  enstrophyenstrophy/strain production as /strain production as ν→ν→00 is of special interest. is of special interest. 



The above is not entirely new (at least in part)The above is not entirely new (at least in part)
. . .  . . .  a material line which is initially a material line which is initially coinsidingcoinsiding with with 
a vortex line continues to do so. It is thus a vortex line continues to do so. It is thus 
possible and convenient to regard a vortexpossible and convenient to regard a vortex--line as line as 
having a continuing identity and as moving with having a continuing identity and as moving with 

the fluidthe fluid ((In a viscous fluid it is, of course, In a viscous fluid it is, of course, 
possible to draw the pattern of vortex lines possible to draw the pattern of vortex lines 
at any instant, but there is no way in which at any instant, but there is no way in which 
particular vortexparticular vortex--line can be identified at line can be identified at 
different instantsdifferent instants).). BATCHELOR, BATCHELOR, 19671967 ,  ,  p. 274p. 274



WHAT ARE THE MAIN WHAT ARE THE MAIN 
PROBLEMS WITH THE ABOVE PROBLEMS WITH THE ABOVE 

MISCONCEPTION? MISCONCEPTION? --A SUMMARYA SUMMARY



First,First, the vortex lines are not frozen into the fluid at whatever high the vortex lines are not frozen into the fluid at whatever high Reynolds  Reynolds  
number number -- otherwise how the otherwise how the enstrophyenstrophy production can be approximately balanced production can be approximately balanced 
by viscous terms.by viscous terms.
SecondSecond,, even if frozen even if frozen vorticityvorticity is not a marker, it reacts back is not a marker, it reacts back stranglystrangly: everybody : everybody 
knows what is Bioknows what is Bio--SavartSavart law, or more generally law, or more generally ∇∇²²u u == -- curl curl ωω..
ThirdThird,, even if frozen those material lines coinciding with even if frozen those material lines coinciding with vorticityvorticity are special and are special and 
not the other way around. Namely, the material line elements whinot the other way around. Namely, the material line elements which initially and ch initially and 
thereby consequently coincide with thereby consequently coincide with vorticityvorticity are special in the sense that they are are special in the sense that they are 
not dynamically passive quantities anymore and react back on thenot dynamically passive quantities anymore and react back on the flow precisely flow precisely 
as does as does vorticityvorticity. In other words, the fact that . In other words, the fact that vorticityvorticity is frozen in the is frozen in the inviscidinviscid
flow field does not mean that flow field does not mean that vorticityvorticity behaves the same way as material lines, but behaves the same way as material lines, but 
the other way around: those material lines which coincide with the other way around: those material lines which coincide with vorticityvorticity behave behave 
like like vorticityvorticity, because they are not passive anymore as are all the other mate, because they are not passive anymore as are all the other material rial 
lineslines: : the rules of the rules of democarcydemocarcy do not apply to sciencedo not apply to science..



MORE DIFFERENCES BETWEEN MORE DIFFERENCES BETWEEN 
VORTICITYVORTICITY AND  MATERIAL LINESAND  MATERIAL LINES



VORTICITY VERSUS MATERIAL LINESVORTICITY VERSUS MATERIAL LINES
ALIGNMENT BETWEEN THE EIGENFRAME λi OF THE RATE OF 
STRAIN TENSOR Sij AND

VORTICITY ω MATERIAL LINES l
(from 3D-PTV; Reλ=60, LUTHI ET AL 2005)



GEOMETRICAL STATISTICS GEOMETRICAL STATISTICS ALIGNMENTSALIGNMENTS



VORTICITY VORTICITY ω VERSUSVERSUS MATERIAL LINES MATERIAL LINES l
Dω/Dt  =  (ω·∇)u + ν Δω
Dl/Dt =   (l·∇)u

PRODUCTION OF  l² PTV PRODUCTION OF ω²
Again   Nonlocality



VORTEX STRETCHING VERSUSVORTEX STRETCHING VERSUS
STRETCHING OF MATERIAL LINESSTRETCHING OF MATERIAL LINES

A summary from A summary from TsinoberTsinober, 2001, p.  88, 2001, p.  88



..
## The equation for a material line elementThe equation for a material line element ll is a linear  one and the vector is is a linear  one and the vector is 
passive, i.e. the fluid flow does not `know' anything  whatsoevepassive, i.e. the fluid flow does not `know' anything  whatsoever about the vector r about the vector ll
(as any passive vector) does not exert any influence on the flui(as any passive vector) does not exert any influence on the fluid flow. The material d flow. The material 
element is stretched (compressed) locally at an exponential rateelement is stretched (compressed) locally at an exponential rate proportional to the proportional to the 
rate of strain along the direction of rate of strain along the direction of ll since the strain is independent of since the strain is independent of ll..
# # On the contrary, the equation for On the contrary, the equation for vorticityvorticity is a nonlinear partial differential is a nonlinear partial differential 
equation and the equation and the vorticityvorticity vector is an active one vector is an active one -- it `reacts back' on the fluid flow. it `reacts back' on the fluid flow. 
The strain does depend in a The strain does depend in a nonlocalnonlocal manner on manner on vorticityvorticity and vice versa, i.e. the rate and vice versa, i.e. the rate 
of vortex stretching is a of vortex stretching is a nonlocalnonlocal quantity, whereas the rate of stretching of material quantity, whereas the rate of stretching of material 
lines is a local one. Therefore the rate of vortex stretching lines is a local one. Therefore the rate of vortex stretching (compressing)(compressing) is different is different 
from the exponential one and is unknown. There are from the exponential one and is unknown. There are ‘‘fewerfewer’’ vorticityvorticity lines than the lines than the 
material ones material ones -- at each point there is typically only one vortex line, but infiat each point there is typically only one vortex line, but infinitely nitely 
many  material lines. This leads to essential differences in themany  material lines. This leads to essential differences in the statistical properties statistical properties 
of the two fields. of the two fields. 



..

## In the absence of viscosity vortex lines are material lines, bIn the absence of viscosity vortex lines are material lines, but they are  special in ut they are  special in 
the sense that they are not passive as all the other passive matthe sense that they are not passive as all the other passive material lines. But erial lines. But the the 
fact that fact that vorticityvorticity is frozen in the is frozen in the inviscidinviscid flow field does not mean that flow field does not mean that vorticityvorticity
behaves the same way as material lines, but behaves the same way as material lines, but the other way around: those material the other way around: those material 
lines which coincide with lines which coincide with vorticityvorticity behave like behave like vorticityvorticity, because they are not , because they are not 
passive anymore as are all the other material linespassive anymore as are all the other material lines..
# # While a material element tends to be aligned with the largest (pWhile a material element tends to be aligned with the largest (positive) ositive) 
eigenvector of the rate of strain tensor, eigenvector of the rate of strain tensor, vorticityvorticity tends to be aligned with tends to be aligned with 
the intermediate (mostly positive) eigenvector of the rate of stthe intermediate (mostly positive) eigenvector of the rate of strain rain 
tensor:  its tensor:  its eigenframeeigenframe rotates with an angular velocity of the order of rotates with an angular velocity of the order of 
vorticityvorticity



..## For a Gaussian isotropic velocity field the mean For a Gaussian isotropic velocity field the mean enstrophyenstrophy generation generation 
vanishes identically, whereas the mean rate of stretching of matvanishes identically, whereas the mean rate of stretching of material lines erial lines 
is essentially positive. The same is true of the mean rate of vois essentially positive. The same is true of the mean rate of vortex rtex 
stretching and for purely twostretching and for purely two--dimensional flows. This means that in dimensional flows. This means that in 
turbulent flows the mean growth rate of material lines is largerturbulent flows the mean growth rate of material lines is larger than  that than  that 
of of vorticityvorticity. The nature of vortex stretching process is dynamical and not a. The nature of vortex stretching process is dynamical and not a
kinematickinematic one as the stretching of material lines is.one as the stretching of material lines is.
## Comparing Comparing vorticityvorticity with any passive vector with any passive vector (also with the same diffusivity as 
viscosity), the analogy is partial not just/only because the equation for the analogy is partial not just/only because the equation for 
vorticityvorticity is nonlinear, but also because in the case of is nonlinear, but also because in the case of vorticityvorticity the process the process 
is due to self is due to self --amplification of the field of velocity derivatives, whereas in amplification of the field of velocity derivatives, whereas in 
case of a passive vector it is not.case of a passive vector it is not.



GENIUNEGENIUNE TURBULENCE  VERSUS TURBULENCE  VERSUS 
PASSIVE PASSIVE ““TURBULENCETURBULENCE””

How analogous are the genuine and passive turbulence (if at all)How analogous are the genuine and passive turbulence (if at all)? ? 
What are the main differences? Evolution of disturbances. What What are the main differences? Evolution of disturbances. What 
can be learned about genuine turbulence from its signature on can be learned about genuine turbulence from its signature on 
the evolution of passive objects? What is the importance (if anythe evolution of passive objects? What is the importance (if any) ) 
of statistical conservation laws in genuine turbulence (if such of statistical conservation laws in genuine turbulence (if such 
exist)?exist)?



## Yet statistical properties of this soYet statistical properties of this so--called `passive scalar' called `passive scalar' 
turbulence are decoupled from those of the underlying velocity turbulence are decoupled from those of the underlying velocity 
field field ((are they?)...are they?)... The nonThe non--trivial statistical properties of scalar turn trivial statistical properties of scalar turn 
out to originate in the mixing process itself, rather than beingout to originate in the mixing process itself, rather than being
inherited from the complexity of the turbulent velocity field inherited from the complexity of the turbulent velocity field ((but this is but this is 
just one part of the story).just one part of the story). Study of passive scalar turbulence is therefore Study of passive scalar turbulence is therefore 
decoupled from the still intractable problem of calculating the decoupled from the still intractable problem of calculating the 
velocity statistics, and so has yielded to mathematical analysisvelocity statistics, and so has yielded to mathematical analysis. . 
……the well established phenomenological parallels between the the well established phenomenological parallels between the 
statistical description of mixing and fluid turbulence itself statistical description of mixing and fluid turbulence itself 
suggest that progress on the latter front may follow from a suggest that progress on the latter front may follow from a 
better understanding of turbulent mixingbetter understanding of turbulent mixing (really ?)(really ?).. SHRAIMANSHRAIMAN AND AND 

SIGGIASIGGIA, 2000., 2000.

# # Passive contaminants are transported by turbulent motions in Passive contaminants are transported by turbulent motions in 
much the same way as momentum.... Momentum is not a passive much the same way as momentum.... Momentum is not a passive 
contaminant; "mixing" of mean momentum relates to the contaminant; "mixing" of mean momentum relates to the 
dynamics of turbulence, not merely its kinematics. dynamics of turbulence, not merely its kinematics. TENNEKES AND TENNEKES AND 
LUMLEY, 1972LUMLEY, 1972



## The advectionThe advection--diffusion equation, in conjunction with a diffusion equation, in conjunction with a 
velocity field model with turbulent characteristics velocity field model with turbulent characteristics (prescribed (prescribed 
a priori)a priori),, serves as a serves as a simplified prototype problem for simplified prototype problem for 
developing theories for turbulence itselfdeveloping theories for turbulence itself.  .  MAJDAMAJDA AND AND 

KRAMER, 1999KRAMER, 1999

## An important progress has been achieved in the last An important progress has been achieved in the last 
decade in understanding some decade in understanding some simpler systems simpler systems 
exhibiting behaviors similar to developed turbulenceexhibiting behaviors similar to developed turbulence. . 
These include the soThese include the so--called weak or wave turbulence , called weak or wave turbulence , 
the advection of passive scalar and vector fields by the advection of passive scalar and vector fields by 
random velocities random velocities that mimicthat mimic (do they? in what sense?)(do they? in what sense?) the turbulent the turbulent 
onesones, and, to certain extent, the so, and, to certain extent, the so--called called burgulenceburgulence , , 
the phenomena described by the Burgers equation. the phenomena described by the Burgers equation. 
GAWEDZKIGAWEDZKI 20022002



Examples of passively Examples of passively advectedadvected quantities are the temperature quantities are the temperature 
or the impurity concentration in a fluid. Ideally one would be or the impurity concentration in a fluid. Ideally one would be 
interested in the statistical properties of the interested in the statistical properties of the advectedadvected field in field in 
the case where the underlying flow is turbulent. Significant the case where the underlying flow is turbulent. Significant 
progress has been achieved when the velocity field is taken progress has been achieved when the velocity field is taken 
random, with random, with Gaussian Gaussian statistics but statistics but decorrelateddecorrelated (white) in (white) in 
time. time. One mimics the important feature of turbulent flows by One mimics the important feature of turbulent flows by 
taking the velocities roughtaking the velocities rough, i.e. only , i.e. only HHöölderlder continuous, in continuous, in 
space. For such an ensemble of velocities (called the space. For such an ensemble of velocities (called the KraichnanKraichnan
model), it was possible to study the ensuing steady state of themodel), it was possible to study the ensuing steady state of the
advectedadvected fields both analytically and numerically. It appears fields both analytically and numerically. It appears 
to be a to be a nonequilibriumnonequilibrium state with nonzero flux of a conserved state with nonzero flux of a conserved 
quantity, again quantity, again in analogy to in analogy to hydrodynamicalhydrodynamical turbulenceturbulence. . 
Moreover it exhibits intermittency in the form of anomalous Moreover it exhibits intermittency in the form of anomalous 
scaling of moments of scalar differences in nearby points, the scaling of moments of scalar differences in nearby points, the 
first (and so far only) nontrivial model where the anomalous first (and so far only) nontrivial model where the anomalous 
scaling has been established analyticallyscaling has been established analytically. GAWEDZKY 2002



MAJOR MAJOR DIFFRENECSDIFFRENECS

The differences are more than essential: the evolution of passivThe differences are more than essential: the evolution of passive objects e objects 
is not related to the dynamics of turbulence in the sense that tis not related to the dynamics of turbulence in the sense that the he 
dynamics of fluid motion does not enter in the problems in questdynamics of fluid motion does not enter in the problems in question ion -- the the 
velocity field is prescribed velocity field is prescribed a priorya priory in all problems on evolution of in all problems on evolution of 
passive objects. Consequently the problems associated with the ppassive objects. Consequently the problems associated with the passive assive 
objects are linear; whereas genuine turbulence is a strongly nonobjects are linear; whereas genuine turbulence is a strongly nonlinear linear 
problem problem -- nonlinearity is in the heart of turbulent flows and is underlyinonlinearity is in the heart of turbulent flows and is underlying ng 
the main manifestations of the differences between genuine and pthe main manifestations of the differences between genuine and passive assive 
turbulenceturbulence..



SelfSelf--amplification of velocity derivatives.amplification of velocity derivatives.
Nonlinearity of genuine turbulence is the reason for the selfNonlinearity of genuine turbulence is the reason for the self--amplification of the field amplification of the field 
of velocity derivatives, both of velocity derivatives, both vorticityvorticity and strain. In contrast there is no phenomenon and strain. In contrast there is no phenomenon 
of selfof self--amplification in the evolution of passive objects amplification in the evolution of passive objects (such as material lines, gradients of passive (such as material lines, gradients of passive 
scalar and scalar and solenoidalsolenoidal passive vectors with finite diffusivitypassive vectors with finite diffusivity)).  We stress that the process of .  We stress that the process of selfself--
amplification of strain is a specific feature of the dynamics ofamplification of strain is a specific feature of the dynamics of genuine turbulence genuine turbulence 
having no counterpart in the behavior of passive objectshaving no counterpart in the behavior of passive objects. In contrast, the process of . In contrast, the process of 
selfself--amplification of amplification of vorticityvorticity, along with essential differences , along with essential differences (We would like to stress again (We would like to stress again 
that that vorticityvorticity is an active vector, since it `reacts back' on the velocity (anis an active vector, since it `reacts back' on the velocity (and thereby on strain) field. This is not the case d thereby on strain) field. This is not the case 
with passive objects with passive objects -- the process here is `one way': the velocity field does not `knothe process here is `one way': the velocity field does not `know' anything about the passive w' anything about the passive 
object)object),, has common features with analogous processes in passive vectorshas common features with analogous processes in passive vectors; in both the ; in both the 
main factor is their interaction with strain, whereas the producmain factor is their interaction with strain, whereas the production of strain is much tion of strain is much 
more more ‘‘selfself‘‘. . 
A related important differenceA related important difference isis absence of pressure in case of absence of pressure in case of 
passive objectspassive objects..



Differences in Differences in structure(sstructure(s)) Along with some common features the Along with some common features the 
mechanisms of formation of mechanisms of formation of structure(sstructure(s) are essentially different for the passive objects and the ) are essentially different for the passive objects and the 
dynamical variables. Among the reasons is the presence of dynamical variables. Among the reasons is the presence of LagrangianLagrangian chaos, which is manifested as chaos, which is manifested as 
rather complicated structure of passive objects even in very simrather complicated structure of passive objects even in very simple regular velocity fields ple regular velocity fields (On the other 
hand, e.g. the ramp-cliff structures of a passive scalar are observed in pure Gaussian `structureless' random velocity field, just like those in a 
variety of real turbulent flows practically independently of the value of the Reynolds number). In other words  the structure of In other words  the structure of 
passive objects in turbulent flows arises from two (essentially passive objects in turbulent flows arises from two (essentially inseparable) contributions: one due to inseparable) contributions: one due to 
the the LagrangianLagrangian chaos and the other due to the random nature of the velocity fichaos and the other due to the random nature of the velocity field itself  eld itself  (Therefore one 
cannot claim that statistical properties of this so-called `passive scalar' turbulence are decoupled from those of the underlying velocity field 
Shraiman Siggia2000) , since the non-trivial statistical properties of scalar turn out to originate not only  in the mixing process itself but are  
inherited from the complexity of the turbulent velocity field as well. Study of passive scalar turbulence is therefore not decoupled from the still 
intractable problem of calculating the velocity statistics). Among other reasons are differences in sensitivity to initial Among other reasons are differences in sensitivity to initial 
(upstream) conditions (i.e. (upstream) conditions (i.e. LagrangianLagrangian `memory'), `memory'), ‘‘symmetries', e.g. the velocity field may be symmetries', e.g. the velocity field may be 
locally isotropic, whereas the passive scalar may not be and somlocally isotropic, whereas the passive scalar may not be and some other (see references in  e other (see references in  
TSINOBERTSINOBER 20012001). A recent result, ). A recent result, BAIGBAIG &&CHERNYSHENKOCHERNYSHENKO 20052005 for turbulent flow in a for turbulent flow in a 
plane channel is an interesting addition to the list of these diplane channel is an interesting addition to the list of these differences: although the fferences: although the vorticalvortical
structure of the flow is the same, the scalar streak spacing varstructure of the flow is the same, the scalar streak spacing varies by an order of magnitude ies by an order of magnitude 
depending on the mean profile of the scalar concentration. Moreodepending on the mean profile of the scalar concentration. Moreover, passive scalar streaks were ver, passive scalar streaks were 
observed even in an artificial "observed even in an artificial "structurelessstructureless" flow field." flow field.



SHE ET AL. 1991

Differences in structure(s)

Dissipation of energyPassive scalar dissipation
Courtesy P.K. Yeung



SHE ET AL. 1991

CHEN & CAO 1997

Isosurfaces of enstrophy

Differences in structure(s)

Vorticity Gradient of passive scalar

Also ramp-cliff



CimbalaCimbala, J.M., , J.M., NagibNagib, H. M and , H. M and RoshkoRoshko, A. (1988) Large structures in the far , A. (1988) Large structures in the far 
wakes of twowakes of two--dimensional bluff bodies, J. Fluid Mech., dimensional bluff bodies, J. Fluid Mech., 190190, 265, 265----298.298.

All frames (i.e. four different Lagrangian fields) 
correspond to the same (Eulerian)flow. 

SAME FLOW SAME FLOW -- NOT THE SAME PATTERNNOT THE SAME PATTERN





RDT-like processes/terms 
dominate the flow near the wall



KolmogorovKolmogorov 4/5 law4/5 law
versus versus YaglomYaglom 4/3 law4/3 law



The The KolmogorovKolmogorov and the and the YaglomYaglom laws are laws are 
respectively                                                    respectively                                                    

SS33(r) (r) ≡≡ 〈〈((ΔΔuu||||))³³〉〉 = = --(4/5) (4/5) εεrr
〈〈ΔΔuu||||((ΔθΔθ))²²〉〉 = = -- (4/3) (4/3) εεθθrr

where where ΔΔuu|| || ≡≡ [[uu((xx++rr))--uu((xx)])]··rr/r/r, , ΔθΔθ = = θθ((xx++rr) ) -- θθ((xx),), εε -- is is 
the mean rate of dissipation of kinetic energy and the mean rate of dissipation of kinetic energy and εεθθ = = 
〈〈D D ∂θ∂θ//∂∂xxi i ∂θ∂θ//∂∂xxii〉〉 -- is the mean rate of dissipation of is the mean rate of dissipation of 
fluctuations of a passive scalar. The analogy between fluctuations of a passive scalar. The analogy between 
these two lawsthese two laws* * though useful in some respects, e.g. though useful in some respects, e.g. 
ANTONIA ET AL 1997ANTONIA ET AL 1997, is violated for a Gaussian velocity , is violated for a Gaussian velocity 
field.                                                          field.                                                          
**The 4/5 The 4/5 KolmogorovKolmogorov law follows by isotropy from the law follows by isotropy from the thethe 4/3 law for the 4/3 law for the 
velocity field in the form velocity field in the form 〈〈ΔΔu||(u||(ΔΔu)u)²²〉〉 = = --(4/3) (4/3) εεrr))



Namely, the Namely, the 4/3 law remains valid for such (as 4/3 law remains valid for such (as 
any other random isotropic) velocity fieldany other random isotropic) velocity field, , 
whereas whereas the 4/5 law is not, because Sthe 4/5 law is not, because S33(r) (r) ≡≡ 0 0 
for a Gaussian velocity field.for a Gaussian velocity field. This difference is This difference is 
one of the manifestations of the dynamical one of the manifestations of the dynamical 
nature of the nature of the KolmogorovKolmogorov law as contrasted to law as contrasted to 
the kinematical nature of the the kinematical nature of the YaglomYaglom law. It law. It 
reflects the difference between reflects the difference between genuine genuine 
turbulence as a dynamical phenomenonturbulence as a dynamical phenomenon and and 
‘‘passive' turbulence as a kinematical processpassive' turbulence as a kinematical process..



Vorticity versus passive vectors. 
Solenoidal vector fields with 

nonvanishing diffusivity



The usual comparison is based on looking at the equations for 
vorticityω and the (solenoidal) passive vector, B, e.g. 
magnetic field in electrically conducting fluids, 
BATCHELOR1950

∂∂ωω//∂∂tt ==∇∇××((uu××ωω) + ) + νν∇∇²²ωω
∂∂BB//∂∂t =t =∇∇××((uu××BB) + ) + ηη∇∇22BB

Though a number of differences are known  these differences 
are hidden when one looks at the equations for ω and B, 
which look quite `similar‘ when ν = ηη.



What is hardest to accept in Batchelor's 
discussion is the  assumed simlarity between B
and ω. LUNDQUIST, 1952

However, a more ‘fair' comparison should be made between the 
velocity field, u, and the vector potential A, with B =∇×A, 
TSINOBER & GALANTI 2003. Such a comparison allows to 
see immediately one of the basic differences between the fields u
and A (apart of the first obeying nonlinear and the second linear 
equation) which is not seen from the above equations. Namely, 
the Euler equations conserve energy, since the scalar product of
u·(ω×u) ≡ 0.



In contrast, (unless initially and thereby subsequently u ≡ A) the scalar product 
A·(u×B) ≠ 0*.                                       

It is this term A·(u×B) ≡ -AiAksik+ ∂/∂xk{…}
which acts as a production term in the energy equation for A.  In 
other words the field A (and B), is sustained by the strain, sik of 
the velocity field - in contrast to the field u. This leads, in 
particular, to substantial differences in amplification of vorticity,
ω and magnetic field B, e.g. in statistically stationary velocity 
field (both NSE and Gaussian) the enstrophyω² saturates to 
some constant value, whereas the energy of magnetic field B²
grows exponentially without limit (but there is much more, see below).
*the corresponding equation for the vector potential A has the form ∂A/∂t+B×u = ∇pA+η∇2A



As in case of passive scalar an analogue of Kolmogorov
4/5 law* is valid for the vector A (see e.g. GOMEZ ET AL., 

1999 and references therein)
〈Δu||(ΔA)²〉 = - 4/3rεA

where Δu||≡ Δu·r/r≡ {u(x+r)-u(x)}·r/r, 
ΔA=A(x+r)-A(x), and εA is the mean dissipation 
rate of the energy of A. Again the latter relation holds 
for any random isotropic velocity field including the 
Gaussian one.
*It is more convenient to use the 4/3 law for the velocity field in the form 〈Δu||(Δu)²〉 =-(4/3) εr , which 
turns into the 4/5 law by isotropy



Vorticity versus passive vectors 
with nonvanishing diffusivity

Evolution of disturbances



Important aspects of the essential difference between the evolution of 
fields ω and B arising from the nonlinearity of the equation of ω and 
linearity of the equation for B are revealed when one looks at how these 
fields amplify disturbances. The reason is that the equation for the 
disturbance of vorticity differ strongly from that for vorticity itself due to 
the nonlinearity of the equation for the undisturbed vorticityω, whereas 
the equation for the evolution of the disturbance of B is the same as that 
for B itself due to the linearity of the equation for B.  Consequently, the 
evolution of disturbances of the fields ω and B is drastically different. 
For example, in a statistically stationary velocity field the energy of the 
disturbance of B grows exponentially without limit (just like the energy of 
B itself), whereas the energy of vorticity disturbance grows much faster 
than that of B for some initial period until it saturates at a value which is 
of order of the enstrophy of the undisturbed flow. 



It is noteworthy that much faster growth of the energy of 
disturbances of vorticityis observed  during the very initial (linear in 
the disturbance) regime which is due to additional terms in the 
equation for the disturbance of vorticity, ω which have no 
analogues in the case of passive vector B.  It is important to stress 
that these additional ‘linear' terms arise due to the nonlinearity of 
the equations for the undisturbed vorticity.  In this sense the 
essential differences between the evolution of the disturbances of 
vorticityω and the evolution of the disturbance of passive vector B
with the same diffusivity can be seen as originating due to the 
nonlinear effects in genuine NSE turbulence even during the linear 
regime. 



Looking at the evolution of the disturbance Δu of some flow 
realization u in a statistically steady state and similarly for 
other quantities.                                
Active:Active: vorticity - ΔΔωω, strain - ΔΔss;
Passive:Passive: magnetic field - ΔΔBB, its vector potential - ΔΔAA,
passive scalar - ΔΔθθ and its gradient - ΔΔGG..

For more details see TSINOBER AND GALANTI 2003, Phys. Fluids, 
15, 3514-3531..





Note the additional linear in disturbance terms which arise due to the nonlinearity of the equations for the 
undisturbed vorticity and which have no analogues in the case of passive vector B. These additional terms are 
responsible  for much faster growth of the energy of disturbances of vorticity during the very initial (linear in the 
disturbance) regime. In this sense the essential differences between the evolution of the disturbances of vorticity and 
the evolution of the disturbance of passive vector B with the same diffusivity can be seen as originating due to the 
nonlinear effects in genuine NSE turbulence even during the linear regime. 



GROWTH OF ENERGY OF DISTURBANCES IN GENUINE             GROWTH OF ENERGY OF DISTURBANCES IN GENUINE             
{{EEΔΔuu, , EEΔωΔω, , EEΔΔss}} AND  PASSIVEAND  PASSIVE {{EEΔΔAA, , EEΔΔBB, , EEΔθΔθ, E, EΔΔGG}}

TURBULENCETURBULENCE

EEΔθΔθ

EEΔΔGG

EEΔωΔω EEΔΔuu

EEΔΔBB

EEΔΔAA

EEΔΔss

Note the much faster 
growth of the energy of 
disturbances of active 
variables such as  
vorticity during the very 
initial (linear in the 
disturbance) regime and 
decay of disturbances 
associated with passive 
scalar
TSINOBER & GALANTI, 
2003



ADDITIONAL ISSUESADDITIONAL ISSUES



Scaling exponents and 
statsitically conserved 

quantities

There is a number of publications insisting in some sense on a 
kind of essential linearization of genuine turbulence problem 
when this concerns scaling exponents (mainly of structure 
functions) and the role of statistically conserved quantities.



The claims are summarized by arguing that the mechanism leading to 
anomalous scaling in Navier-Stokes equations and other nonlinear models 
is identical to the one recently discovered for passively advected fields.
ANGHELUTA ET AL 2006 

If this is really true it means that this is just one more aspect – as in RDT - which 
can be treated via a linear model which in some cases enables to handle some
aspects of turbulent flows, but not their genuine nonlinear aspects: One can thus 
speculate that the anomalous scaling for the genuine turbulence can also 
appear as a linear phenomenon in the following sense. Let us split the total 
velocity field into the two parts, the background field and the perturbation …
linearize the original stochastic equation with respect to the latter, choose an 
appropriate statistics for the former … Then the small-scale perturbation 
field will show anomalous scaling behavior with nontrivial exponents, which 
can be calculated systematically within a kind of ε-expansion. model. In 
such a case the passive vector field can give the anomalous exponents for the 
NS velocity field exactly. ANTONOV ET AL 2003

Similar statements are made in respect with so called statistically conserved 
quantities which have been discovered for passive objects, but not really for genuine 
NSE, see references in FALKOVICH AND SREENIVASAN 2006. 



Analogy between genuine 
turbulence Lagrangian chaos



This analogy is closely related to those associated with the analogies between the 
genuine and passive turbulence in several respects. The main is that the former is a 
dynamical phenomenon (E-turbulent) whereas the latter is a kinematic one (L-
turbulent, i.e. purely Lagrangian).  The flow can be purely L-turbulent (i.e. E-laminar) 
at Re  ~1 and  Re  << 1 (see exmples in TSINOBER 2001). This includes examples such as a 
number of mixing issues in flows in porous media,  microdevices,  and kinematic
simulations of Lagrangian chaotic evolution (KS, turbulent-like motions).  However if 
the flow is E-turbulent (i.e. Re >> 1) it is L-turbulent as well.  An important 
consequence is that the structure and evolution of passive objects in genuine turbulent 
flows arises from two (essentially inseparable) contributions: one due to the 
Lagrangian chaos and the other due to the random nature of the (Eulerian) velocity 
field itself.  Hence, one can expect adequate kinematic simulation of those properties 
which are insensitive (or weakly sensitive)  to the differences between the genuine and 
synthetic velocity fields.  An important counterexample is the difference between 
backwards and forwards relative dispersion (with the mean square separation 
following particle pairs backwards in time being twice as large as forwards) in genuine 
turbulence.



Since the equations describing the evolution of passive objects Since the equations describing the evolution of passive objects are linear, it may seem that there is are linear, it may seem that there is 
no place for chaotic no place for chaotic behaviourbehaviour of passive objects if the velocity field is not random and is rof passive objects if the velocity field is not random and is regular egular 
and fully laminar, because the chaotic and fully laminar, because the chaotic behaviourbehaviour appears/shows up in nonlinear systems. There appears/shows up in nonlinear systems. There 
is, however, no real contradiction or paradox. This apparent conis, however, no real contradiction or paradox. This apparent contradiction is resolved via looking tradiction is resolved via looking 
at the at the thethe fluid flow in the fluid flow in the LagrangianLagrangian setting in which the observation is made following the fluid setting in which the observation is made following the fluid 
particles wherever they move. Here the dependent variable is theparticles wherever they move. Here the dependent variable is the position of a fluid particle, position of a fluid particle, 
XX((aa,t,t), as a function of the particle label, ), as a function of the particle label, aa, (usually it's initial position, i.e., (usually it's initial position, i.e. aa ≡≡ XX(0)) and time, t. (0)) and time, t. 
The relation between the two ways of description is given by theThe relation between the two ways of description is given by the following equationfollowing equation
∂∂XX((aa,t))/,t))/∂∂tt = = uu[[XX((aa,t,t)]          )]          (E(E--L)L)
i.e. the i.e. the LagrangianLagrangian velocity field, velocity field, vv((aa,t,t) = ) = ∂∂XX((aa,t))/,t))/∂∂tt, is related to the , is related to the EulerianEulerian velocity field, velocity field, 

u(x,tu(x,t), as ), as V(a,tV(a,t) ) ≡≡ u[X(a,t);tu[X(a,t);t]. ]. Though the Though the EulerianEulerian velocity field, velocity field, uu((xx;t;t) is not chaotic and is ) is not chaotic and is 
regular and laminar, the regular and laminar, the LagrangianLagrangian velocity field velocity field vv((aa,t,t) ) ≡≡ uu[[XX((aa,t);t,t);t] is chaotic because ] is chaotic because XX((aa,t,t) is ) is 
chaotic: the equation (Echaotic: the equation (E--L) is not L) is not integrableintegrable even for simplest laminar Euler fields with the even for simplest laminar Euler fields with the 
exception of very simple flows such as unidirectional ones.exception of very simple flows such as unidirectional ones.

E-LAMINAR BUT L-TURBULENT



# Given the marker dispersion the problem is to determine the source(s) of 
agitation.  In general, owing to chaotic advection, this inverse problem is 
impossible to solve AREF 1984
#…the possession of such relationship would imply that one had 
(in some sense) solved the general turbulence problem. Thus it seems 
arguable that such an aim, although natural, may be somewhat illusory
MCCOMB 1990
# What one sees is real. The problem is interpretation

ON THE RELATION BETWEEN 
EULERIAN AND LAGRANGIAN FIELDS

The relation between Eulerian and Lagrangian fields is a long-standing and most 
difficult problem. The general reason is because the Lagrangian field is an extremely 
complicated non-linear functional of the Eulerian field.  This issue just as the whole 
theme of  Lagrangian description of turbulent flows (not just kinematical chaos) will 
be addressed in several lectures later.  Only few general notes are given here. 



MIXING IN PMM, Re ~ 1 (!)Re ~ 1 (!) KUSH & OTTINO (1992)

RELEVANT TO MICROFLUIDICS with Re RELEVANT TO MICROFLUIDICS with Re ~ ~ 0 0 (!(!);   );   

Linked twist maps (LTMs),   Bernoulli mixing…

The complexity and problematic aspects The complexity and problematic aspects 
of the relation between the of the relation between the LagrangianLagrangian
and and EulerianEulerian fields is seen in the example fields is seen in the example 
of of LagrangianLagrangian ((kinematickinematic) chaos or ) chaos or 
LagrangianLagrangian turbulence (chaotic turbulence (chaotic 
advection) with a priori prescribed and advection) with a priori prescribed and 
not random not random EulerianEulerian velocity field (Evelocity field (E--
laminar). This is why laminar). This is why LagrangianLagrangian
description description -- being being physicllyphysiclly more more 
transparent transparent -- is much more difficult than is much more difficult than 
the the EulerianEulerian description. In such Edescription. In such E--
laminar but Llaminar but L--turbulent flows the turbulent flows the 
LagrangianLagrangian statistics has no statistics has no EulerianEulerian
counterpart, as in the flow shown at the counterpart, as in the flow shown at the 
leftleft. . 



Indeed, though the Indeed, though the EulerianEulerian velocity field, velocity field, u(x;tu(x;t) is not chaotic and ) is not chaotic and 
is regular and laminar, the is regular and laminar, the LagrangianLagrangian velocity field velocity field v(a,tv(a,t) ) ≡≡
u[X(a,t);tu[X(a,t);t] is chaotic because ] is chaotic because X(a,tX(a,t) is chaotic. This shows that, in ) is chaotic. This shows that, in 
general, there does not exist a unique relation between general, there does not exist a unique relation between LagrangianLagrangian
and and EulerianEulerian statistical properties in genuine turbulent flows as was statistical properties in genuine turbulent flows as was 
foreseen by foreseen by CORRSIN 1959 : : in general, there is no in general, there is no 
reason to expect that reason to expect that LLikik (the (the LagrangianLagrangian two point two point 
velocity correlation tensor)velocity correlation tensor) and and EEikik (the (the EulerianEulerian two point two point 
velocity correlation tensor)velocity correlation tensor) will be uniquely relatedwill be uniquely related. . 
In other words it may be meaningless to look for such a relationIn other words it may be meaningless to look for such a relation..



A list of a variety of other 
attempts to analogies 

Turbulence is rent by factionalismfactionalism.. Traditional approaches in the field are 
under attack, and one hears intemperate statements against long time 
averaging, Reynolds decomposition, and so forth. Some of these are 
reminiscent of the Einstein–Heisenberg controversy over quantum mechanics, 
and smack of a mistrust of any statistical approach. Coherent structuresCoherent structures
people sound like The Emperor's new Clothes when they say that all 
turbulent flows consist primarily of coherent structures, in the face of visual 
evidence to the contrary. Dynamical systemsDynamical systems theory people are sure that 
turbulence is chaos. Simulators have convinced many that we will be able to 
compute anything within a decade... The cardThe card--carrying physicistscarrying physicists dismiss 
everything that has been done on turbulence from Osborne Reynolds until the 
last decade. Cellular AutomataCellular Automata were hailed on their appearance as the 
answer to a maidens prayer, so far as turbulence was concerned .
LUMLEY 1990.



In order to keep the formalism as simple as possible, we shall, work here 
with the one-dimensional scalar analog (!!!) to the Navier-Stokes euqation
proposed by Burgers³¹. In the method to be presented here, the true 
poroblem is replaced by models that lead, without approximaton, to 
closed equations for correlation functions and averaged Green's functions 
(p. 124). The treatment of Navier-Stokes equation for an incompressible 
fluid, which we shall discuss briefly, does not differ in essentials (p.143) 
KRAICHNAN, R.H. 1961, Dynamics of nonlinear stochastic systems, J. Math Phys., 2(1), 124-148)

Mathematical analysis will deal with several basic models. The simplest 
one is the 1D Burgers equation with random forcing. It displays several 
basic features of turbulence…3D Navier-Stokes systems probably need 
completely new ideas. SINAI, YA.G. 1999 Mathematical Problems of Turbulence, Physica, A 
263,565-566

BURGULENCE



# # Analogy between the Analogy between the NavierNavier––Stokes equations and MaxwellStokes equations and Maxwell’’s equations: application to turbulence.  s equations: application to turbulence.  
Screening.Screening.
## Beyond the Beyond the NavierNavier––Stokes equations, Stokes equations, e,ge,g. analogy between . analogy between BoltzmannBoltzmann kinetic theory of fluids and kinetic theory of fluids and 
turbulenceturbulence
## Modeling nearly incompressible turbulence with minimum Fisher iModeling nearly incompressible turbulence with minimum Fisher information.nformation.
# # Neural networks approach, the simulation and interpretation of fNeural networks approach, the simulation and interpretation of free turbulence with a cognitive ree turbulence with a cognitive 
neural systemneural system
## Variety of approaches from statistical physics/mechanics such aVariety of approaches from statistical physics/mechanics such as critical phenomena, Levy walks, s critical phenomena, Levy walks, 
GibbsianGibbsian hypothesis in turbulence, hypothesis in turbulence, TsalisTsalis nonextensivenonextensive statistics, quantum kinetic models of statistics, quantum kinetic models of 
turbulenceturbulence
## Polymer analogiesPolymer analogies
## Stock market dynamics and turbulence: parallel analysis of flucStock market dynamics and turbulence: parallel analysis of fluctuation phenomena.tuation phenomena.
# # Dynamical systems, e.g. low dimensional description.Dynamical systems, e.g. low dimensional description.
There are more but all with modest  succes (if at all)                                                    
Perhaps the biggest fallacy about turbulence is that it can be reliably 
described (statistically) by a system of equations which is far easier to solve 
than the full time-dependent three-dimensional Navier-Stokes equations
BRADSHAW, 1994.



CONCLUDINGCONCLUDING
The essential differences between the genuine turbulence and itsThe essential differences between the genuine turbulence and its
analogues (as those described above and many other not describedanalogues (as those described above and many other not described) and ) and 
the intricacy of the relation between them (e.g. between genuinethe intricacy of the relation between them (e.g. between genuine and and 
““passive turbulencepassive turbulence””)  require caution in promoting analogies to far )  require caution in promoting analogies to far 
leading to grave misconceptions. On the other hand these very leading to grave misconceptions. On the other hand these very 
differences can be effectively used to gain more insight into thdifferences can be effectively used to gain more insight into the dynamics e dynamics 
of real turbulence.of real turbulence.



The above examples also serve as a warning that flow visualizations used for studying the structure of dynamical fields (velocity, 
vorticity, etc.) of turbulent flows may be quite misleading, making the question "what do we see?" extremely nontrivial. The general 
reason is that the passive objects may not `want' to follow the dynamical fields (velocity, vorticity, etc.) due to the intricacy of the 
relation between passive and active fields just like there is no one to one relation between the Lagrangian and Eulerian statistical 
properties in turbulent flows. As mentioned one of the reasons is the presence of Lagrangian chaos, which is manifested as rather 
complicated structure of passive objects even in very simple regular velocity fields. On the other hand the ramp-cliff structures of a 
passive scalar are observed in pure Gaussian `structureless' random velocity field just like those in a variety of real turbulent flows 
practically independently of the value of the Reynolds number TSINOBER 2001. 

At present, however, the knowledge necessary for such a use is very far from being sufficient. With few exceptions it is 
even not clear what can be learnt about the dynamics of turbulence from studies of passive objects (scalars and 
vectors) in real and `synthetic' turbulence. This requires systematic comparative studies of both. An an attempt of such 
a comparative study was made by  TSINOBER & GALANTI 2003. This is a relatively small part of a much broader 
field of comparative study of  ‘passive' turbulence reflecting the kinematical aspects and genuine turbulence 
representing also the dynamical processes.    

This does not mean that qualitative and even quantitative study of fluid motion by means of `color bands' (REYNOLDS1894) is 
impossible or necessarily erroneous. However, watching the dynamics of material ‘colored bands' in a flow may not reveal the nature 
of the underlying motion, and even in the case of right qualitative observations the right result may come not necessarily for the right 
reasons. The famous verse by Richardson belongs to this kind of observation. On the other hand there are properties of passive 
objects which do depend on the details of the velocity field (TSINOBER 2001, TSINOBER & GALANTI 2003). Just these very 
properties can be effectively used to study the differences between the real turbulent flows and the artificial random fields, to gain 
more insight into the dynamics of real turbulence.   



A BIT OF FUNA BIT OF FUN

Is there an analogy or 
should we believe our 
eyes ?
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