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We abgolutely must Leave room for doubt or there is no progregss and no Cearning.
There ig no Learning without poging a guegtion. And a guegtion reguires dosbt..Now
the freedom of doubt, which is absolutely essential for the development of science,

wag 6orn from a struggle with congtituted asuthovities... FEYNMANN, 1964



LECTURES XI-XiI-

MAL@@I&, DIFFERENCES AND
RELATIONS BET"MEEN CiENUIENE .
TURBULENCE MJ_D [TS ANAL@&S”

Our sundergtanding of the general character of the small-gcale features of
tsarbolent motion ig very far from complete...Very few theoretical or
experimental results have Geen establighied gso that for the most part we

must proceed analogy and plaugible inference. BATCHELOR 1956, p 183



Analogies in turbulence research have a special status mainly due to
unsatisfactory state of theory. Most analogies are aimed to look at
similarity between genuine turbulence and some "analogous" system such
as evolution of some passive object (e.. scalar, vector, etc.) polymers,
and some other (see below) in some prescribed random (usually
Gaussian) velocity field. This led in many cases to exaggerated and

consequently misleading claims on analogous behavior between the two
and consequently to misconceptions. Hence the purpose of this lecture is
twofold. Along with critical overview of similarities the main emphasis is
given to differences rather than similarities. The primary reason for this is §
that (at least some) understanding of differences is expected to aid better
understanding of both systems and avoid misconceptions associated with

extending the analogies too far. "




SOME EARLY ANALOGIES. .

# Reynolds analogy on transport of momentum and heat, REYNOLDS, 0. 1874 (n
the extent and action of the heating surface of steam boilers, Proc. Lit. Phil Soc. Manchester, 14, T1-12.
# Study of fluid motion by means of “colour hands, REYNOLDS. 0. 1894 Study of
flwid motion by means of coloured bands, Aature 50, 161--164.

# Irozennes of vorticity in the flow field in invisdid flows (and other solenoidal
fields with vanishing diffusivity, e.g. magnetic field in perfectly conducting fluids),
HELMHOLZ, H. 1858 (nintegrals of the hydrodynamical equations which epress vortex motion.
Translated from German by P.G.Tait, 1867 with a letter by Lord Kelvin (W.Thomson) in London
Edinburgh Dublin 2k Mag. J. Sci, Fourth sertes, 33, 485-512; KELVIN, LORD (THOMSON,
W.) 1880 Vibration of columnar vortex, Zondon Ldinbureh Dublin Phil Mag. J. Sci, Filth series,
33, 485-512;; (1910) ﬂaﬁmﬁa/andn&ynalmx vol. 4, Cambr. Univ Press.

# Finite diffusivity: analogy between amplification of vorticity and magnetic field
by turbulent flow BATCHELOR, 6.K. (1950) Onthe spontancous magnetic field in a conducting

liquid in tarbuleat motion, Proc. Roy. Soc. London, A201,




CVORTICITY VERSUS
@NF[NHE&MM) MATERIAL
LA S TINES . bl

Arxre they stretched in the same
way and for the same reason? -
And what is thhe meanmg of the |
“same way”




# Vorticity amplification ig a regslt of the Ginematicg of
tsrBslence, TENNEKES, H. AND LUMLEY, J. L. (1972) First course in
turbulence, MIT Press. In the context of concern here a similar view originates
with TAYLOR 1937,1938 (e beln)

# The physics of vortex stretehling is well undergtood... gee for
ingtance, G.K. Batchiebor, An introduction to Fluid Dynamics
(Cambridge U.P., New Yor§, 1967); and R. #. Kraichnan, J.

Féuid Mech., 6%, 3% (197%) A foolnote in £. D. siGGIA, (1977)
*Origin of intermittency in fully developed turbulence', Plys. Rer, 15(4), 1730.
# ...amplitication of the vorticity By vortex gtretching, a wele-
sindergtood mechanigm in 3D @uber flow." POMEAU,Y. AND

SCIAMARELL#, D. (2005) An unfinished tale of nonlinear PDEs: Do solutions of
3D incompressible Euler equations blow-up in finite time? Physics, D205, 215




- &'BIT OF HISTORY - I

A SMALL. DIGRESSION REMINDING A BIG MISTAKE-
VON KARMAN (1937) assumed ¢Rat ¢Re
expreggion 2.;2, L)Ly OU/OU, ig zero in

the mean and that he (VK ) cannot gee any
physical reagon for such a corvelation.

TAYLOR (1937) conjectured that there ig a
gtrong correlation between L);* and
OU,/OX- 80 that (the mean of) L),2 OU,/OX, is
not egual to zero (X is directed along vorticity)
and showed experimentally that this is really the case,

TAYLOR (1938)




It is a rather common view (and misconception) that the prevalence of vortex stretching is due to the
predominance of stretching of material lines. This view originates with TAYLOR 1938:

# TsarBslent motion ig fosnd to Ge diffusive, o that particleg whick
were originally neighbors move apart ag motion proceeds. In a
dittusive motion the average value of d*/d > continsually increages.
Jt witl Be geen therefore .., that the average value of »'/wo’
continsally increages.

#... the interegting physical argument that (,0S;) is positive
becaunge two particbes on average move apart from each other and
therefore vortex Cineg are on average stretchied rathier than
compregged , HUNT 1973.

# The velative diffugion of a pair of probe particles in grid tsrbulence at Kigh
Reynoldg nsumbers ig treated ag the mogt clear-cut manifegtaion of vortex

gtretching. MORI & TAKAYOSHI, 1983.

# The latest example is found in DA VIDSON (2004, 1.259. ): ##fowever, gince
material-Line gtretchiing seems to be a morem for the broader clags
of Rinematically admigsible fiebds, it shosld also be the norm for
the narrower clagsg of dynamically admisgible velocity fiebds, and
80 one ghonld not be surpriged that vortex-ine stretching, Cike
material Gine gtretehling, is seen in practice.




CHORIN (1994 ) points to the problematic aspect of such a view: Voetex
lineg are gpecial Lineg, and congtitute a negligible
fraction of all Lineg (there ig one vortex direction at
each point, Gut an infinite nsmber of otherg). Aéé
arguments that involve averages with regpect to a
probabibity meagsre may fail to hold in a negligible

fraction of cages, and thug one cannot conclude from
(5.1) (i.e d/di<|ox (1)|*>0) tAat vortex Lineg streteh, evem in
isotropic f€ow, but ends with a the statement that Thig concélsgion
is, however, esminently plangible.

Indeed, it is plausible, since it is observed in the laboratory and in numerical
simulations. But the underlying reasons/processes are still not understood unlike in
case of passive material lines.




COCKE (1969) proved the following important results. The first result is that
the length of an infinitesimal material line element, 1 = |1, increases on average in
any isotropic random velocity field™. Similarly, Cocke showed that an infinitesimal |
material surface element, N, identified by its vector normal, N, increases on average

in an any isotropic random velocity field as well. ™ Two important points have to
be stressed. First the results of Cocke are based on statistics of ‘all’ material lines
having the property that infinitely many lines pass through each point (whereas

typically only one vorticity line is passing through a point — recall the statement by
Chorin: A€ argsuments that involve averages with regpect to a
probabitity meagsre (1.0. 0l material lings) smay faié to hold in a
negligible fraction of cageg (2. V0rticity lines only).

* For references on more details and a review of other related issues see TSINOBER 2001, .48 AND ON.
**More precisely Cocke showed that In[¢1(t))/1(0)] = 0, and In[¢(N(t))/N(0)]= 0 for all t>0 with equality holding
only if there is no fluid motion at all. Arguments similar to those by Cocke (1969) show that (1(t)) = I? (0) and
(NP(¥)) = NP(0) for any p > 0 (MONIN AND YAGLOM, 1975, pp. 579 - 580).




Second, the results by Cocke are purely kinematic: the flow does not know’
about material lines and does not have to be a real one, i.e. to satisfy the
Navier-Stokes equations and/or to be observable in laboratory or elsewhere -
the only requirement is that the flow should be random and isotropic. For
example, this result is true for a Gaussian velocity field as well, which is
important for the purpose of comparison of material line elements, which are

passive, and vorticity, which is not. Namely, the enstrophy production in a
Gaussian isotropic field vanishes identically in the mean (., s, ) = 0, but
(s >0!

On the qualitative level the results by Cocke were confirmed in a number of
DNS experiments both for real and artificial flow fields (prummon, 1993;
GIRIMAJI AND POPE, 1990; HUANG, 1996; YEUNG, 1994 ) and laboratory
experiments (LUTHI ET AL., 2005),




In an inviscid flow

D®/Dt = (®-V)u; DIVDt =(1-V)u

D(»-1)/Dt = {(w-1)- V}u

Soc> =1 atalltimes ifinitially 3 — 1 =0;

However, in a flow with v () whatever small
(0,00,8;) = W0, V),

1.e. the vortex lines are not frozen into the fluid at whatever high Reynolds
number — otherwise how the enstrophy production can be approximately balanced
by viscous terms again at any — whatever large — Reynolds number. In othetr
words in slightly viscous flows frozennes is meaningless. Just like the claim that
turbulence is shightly viscous at whatever large Re. In this context the question:
what happens with enstrophy/strain production as v—>0 is of special interest.




The above is not entirely new (at least in part)
.. & material Cine which ig initialbly coingiding with
a vortex ine continueg to do go. It ig thug
possible and convenient to regard a vortex-ine ag
Raving a continuing identity and ag moving with

the fluid (In a vigeoms [Luid it ig, of cosrge,

poggible to draw the pattern of vortex Cineg
at any ingtant, Gut there ig no way in whick
particsllar vortex-Line can be identified at
different ingtantg). BATCHELOR, 1967, p. 274



 WHAT ARE THE MAIN
'PROBLEMS WITH THE ABOVE
MISCONCEPTION? -& SUMMARY.




First, the vortex lines are not frozen into the fluid at whatever high Reynolds
number - otherwise how the enstrophy production can be approximately balanced
by viscous terms. __
Second, even if frozen vorticity is not a marker, it reacts back strangly: everybody |
knows what is Bio-Savart law, or more generally V2u = - curl 0.

Third, even if frozen those material lines coinciding with vorticity are special and
not the other way around. Namely, the material line elements which initially and

thereby consequently coincide with vorticity are special in the sense that they are
not dynamically passive quantities anymore and react back on the flow precisely
as dloes vorticity. In other words, the fact that vorticity is frozen in the inviscid ~ §
flow field does not mean that vorticity behaves the same way as material lines, but |
the other way around: those material lines which coincide with vorticity behave
like vorticity, because they are not passive anymore as are all the other material
lines: the rules of democarcy do not apply to science.




MORE DIFFERENCES BETWEEN
VORTICITY AND MATERIAL LINES |




VORTICITY VERSUS MATERIAL LINES

ALIGNMENT BETWEEN THE EIGENFRAME A OF THE RATE OF
STRAIN TENSOR S;; AND
(from 3D-PTV; ReA=60, LUTHLET AL 2005)
VORTICITY W - MATERIALLINES |







VORTICITY (» VERSUS MATERIAL LINES ]
Dw/Dt = (0-V)u +v Ao
DI/Dt = (1-V)u
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VORTEX STRETCHING VERSUS
STRETCHING OF MATERIAL LINES

A summary from Tsinober, 2001, p. 88




# The equation for a material line element | is a linear one and the vector is
passive, i.e. the fluid flow does not “know' anything whatsoever about the vector |
(as any passive vector) does not exert any influence on the fluid flow. The material |
element is stretched (compressed) locally at an exponential rate proportional to the

rate of strain along the direction of | since the strain is independent of L

# On the contrary, the equation for vorticity is a nonlinear partial differential
equation and the vorticity vector is an active one - it “reacts back' on the fluid flow.

The strain does depend in a nonlocal manner on vorticity and vice versa, i.e. the rate
of vortex stretching is a nonlocal quantity, whereas the rate of stretching of material
lines is a local one. Therefore the rate of vortex stretching (compressing) is different |
from the exponential one and is unknown. There are ‘fewer’ vorticity lines than the
material ones - at each point there is typically only one vortex line, but infinitely
many material lines. This leads to essential differences in the statistical properties
of the two fields.




# In the absence of viscosity vortex lines are material lines, but they are special in
the sense that they are not passive as all the other passive material lines. But the
fact that vorticity is frozen in the inviscid flow field does not mean that vorticity
behaves the same way as material lines, but the other way around: those material
lines which coincide with vorticity behave like vorticity, because they are not

passive anymore as are all the other material lines.

# While a material element tends to be aligned with the largest (positive)
eigenvector of the rate of strain tensor, vorticity tends to be aligned with
the intermediate (mostly positive) eigenvector of the rate of strain
tensor: its eigenframe rotates with an angular velocity of the order of
vorticity




# For a Gaussian isotropic velocity field the mean enstrophy generation
vanishes identically, whereas the mean rate of stretching of material lines
is essentially positive. The same is true of the mean rate of vortex |
stretching and for purely two-dimensional flows. This means that in
turbulent flows the mean growth rate of material lines is larger than that
of vorticity. The nature of vortex stretching process is dynamical and not a |

kinematic one as the stretching of material lines is.

# Comparing vorticity with any passive vector (also with the same diffusivity a5
viscosity), the analogy is partial not just/only because the equation for |
vorticity is nonlinear, but also because in the case of vorticity the process
is due to self -amplification of the field of velocity derivatives, whereas in
case of a passive vector it is not.




GENIUNE TURBULENCE VERSUS
PASSIVE “TURBULENCE”

How analogous are the genuine and passive turbulence Gf at all)?
What are the main differences? Evolution of disturbances. What
can be learned about genuine turbulence from its signature on
the evolution of passive objects? What is the importance (if any)

of statistical conservation laws in genuine turbulence Gf such
exist)?



# Vet gtatigtical propertieg of thig gso-cabled pagsgive gecalar'
terbolence are decoupled from thoge of the underying velocity
ficld (i they)).. The non-trivial gtatigtical propertieg of gscabar tsrm
out to oviginate in the mixing procegs itgelf, rather than being
inflevited from the complexity of the tswbslent velocity fiebd (il ti i
just one part of the story). Stsedy of passive gealar tswrbubence ig therefore
decoupled from the gtill intractable problem of calenbating the
velocity gtatigtics, and g0 Rag yiebded to mathematical analygis.
... the well egtablighied plhienomenological paralblels between the
statigtical degeription of mixing and [uid turbulence itgelf
suggest that progregg on the Latter front may follow from a
Getter sundergtanding of tswbslent mixing (ll))). suraMAN AND
SIGGLA, 2000.

# Paggive contaminants are trangported By turbslent motiong in
much the same way ag momentsun... Momentsm is not a passive
contaminant; "mixing" of mean momentsun rebateg to the

dynamicg of turbulence, not merely itg Qinematicg. TENNEKES AND
LUMLEY, 1972



# The advection-diffsgion eguation, in conjunction with a
velocity field wmodel with tsuwbulent characterigticg (sl

1prinr), gerveg ag a gimplified prototype probless for
deveboping theovieg for tewbubence itgelf. mripx AND

KRAMER, 1999

# An important progregs Rag Geen aclieved in the Lagt
decade in undergtanding some gimpler gystems

exhibiting Gefiaviorg gimilor to developed turbelence.
Thege include the so-called weak or wave turbulence ,
the advection of pagsive scalar and vector fields by
random velocitieg that smissyie (00 they! inwhat seise!) ¢Re sarboslent
oneg, and, to certain extent, the so-cabled Gurgsbence ,
the plienomena degeribed by the Burgers eguation.

GAWEDZKI 2002




| Examples of pagsively advected guantitieg are the temperature
or the imparity concentration in a fuid. Jdeally one would be
interegted in the statigtical propertieg of the advected field in
the cage where the sunderlying flow ig tsurbulent. Significant
progress Aag Been achieved when the velocity field ig taken

| random, with Gangsian statigtics but decorrelated (white) in
time. One mimicg the important feature of turbulent fCows by
taking the velocitieg rough, i.e. only Hobder continuousg, in __
gpace. For guch an engembele of velocitieg (called the Kraichnan

| model), it wag poggible to study the enguning steady state of the
advected fieldg 6oth analytically and nsumerically. It appears
to 6e a noneguilibrisun state with nonzero fLsux of a congerved
guantity, again in analogy to Aydrodynamical terbulence.

i Moreover it exhibitg intermittency in the form of anomalous
scaling of moments of scalar differences in nearby pointg, the
firgt (and g0 far only) nontrivial model where the anomalous
gscaling Ras Been established anabytically. G xWEDZKY 2002




- MAJOR DIFFRENECS

The differences are more than essential: the evolution of passive objects
is not related to the dynamics of turbulence in the sense that the

dynamics of fluid motion does not enter in the problems in question - the
velocity field is prescribed 2 praory in all problems on evolution of "
passive objects. Consequently the problems associated with the passive
objects are linear; whereas genuine turbulence is a strongly nonlinear
problem - nonlinearity is in the heart of turbulent flows and is underlying §
the main manifestations of the differences between genuine and passive

ulence.




self-amplification of velocity derivatives.
Nonlinearity of genuine turbulence is the reason for the self-amplification of the field
of velocity derivatives, both vorticity and strain. In contrast there is no phenomenon
of self-~amplification in the evolution of passive objects (such s material lines, grodients of passive
scalar and selenoidel passive vectors with finite diffusivity). Wee stress that the process of self-
amplification of strain is a specific feature of the dynamics of genuine turbulence
having no counterpart in the behavior of passive objects. In contrast, the process of
self-amplification of vorticity, along with essential differences (We woald ke to stress again
that vorticity is on active vector, since it “reacts back" on the velocity (and thereby on strain) field. Thi is not the case
with passive objects - the process here is “one way ' the velocity field does mot know' anything about the passive
object), has common features with analogous processes in passive vectors; in both the
main factor is their interaction with strain, whereas the production of strain is much
more ‘self’,

A related important difference is absence of pressure in case of

passive objects.




Differences in structure(s) Alog ith some common features the

mechanisms of formation of structure(s) are essentially different for the passive objects and the
dynamical variables. Among the reasons is the presence of Lagrangian chaos, which is manifested as

rather complicated structure of passive objects even in very simple regular velocity fields (On the other
hand, e.g. the ramp-cliff structures of a passive scalar are observed in pure Gaussian “structureless' random velocity field, just like those in a

Variety of real turbulent flows practically independently of the value of the Reynolds number). In other words the structure of
passive objects in turbulent flows arises from two (essentially inseparable) contributions: one due to
the Lagrangian chaos and the other due to the random nature of the velocity field itself (Therefore one

cannot claim that staistical properties of this so-called “passive Scalar’ turbulence are decoupled from those of the underlying velocity field
Shraiman Siggia2000) , since the non-trivial statistical properties of scalar turn out to originate not only in the mixing process itself but are
inherited from the complexity of the turbulent velocity field as well. Study of passive scalar turbulence is therefore not decoupled from the still

intractable problem of calculating the velocity statisis). Among other reasons are differences in sensitivity to initial
(upstream) conditions (i.e. Lagrangian “memory'), ‘symmetries’, e.g. the velocity field may be
locally isotropic, whereas the passive scalar may not be and some other (see references in
TSINOBER 2001). A recent result, BA16 & CHERNYSHENKO 2005 for turbulent flow in a
plane channel is an interesting addition to the list of these differences: although the vortical
structure of the flow is the same, the scalar streak spacing varies by an order of magnitude

depending on the mean profile of the scalar concentration. Moreover, passive scalar streaks were
observed even in an artificial "structureless" flow field.
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8l Differences In structure(s) §

Vorticity

~SHEET AL. 1991

Isosurfaces of enstrophy

Gradient of passive scalar

CHEN & CAO 1997 Also ramp-cliff

FIG. 5. Isosurface of the scalar dissipation at the value N =
10(N). The resolution of the plot is 64° and the data shown
represent the neighborhood of the overall maximum of scalar
dissipation.




AME FLOW - NOT THE SAME PATTERN

All frames (i.e. four different Lagrangian fields)
correspond to the same (Eulerian)flow.

72

Ficure 1. Circular-cylinder wake at Ke = 90; smoke wire at (a) /d = 4, (b) 50, (¢} 100 and
d) 150.

Cimbala, J.M., Nagib, H. M and Roshko, A. (1988) Large structures in the far
wakes of two-dimensional bluff bodies, J. Fluid Mech., 190, 265--298.




J. M. Cimbala, H. M. Nagib and A. Roshko

Locally introduced streaklines no longer
mark Kdrmdn vortex street

Spectral peak at Kdarman-vortex-street

frequency no longer present
o

0.025 Jecade
diameter

L
~
o
=
w

e
3
3=
£
<
w—
w
| %
ot
3]
5,
jw
wn
#
-
~
S

100 200 300 400 500
Downstream distance, x/d

Ficure 7. Exponential decay of Kdrmdn vortex street; circular-cylinder wake at Re = 140 (Q)
and 150 {A).




Ficiure 7. Instantanecus visualizations and relations between the streak spacing I, wall
distance ¥*, autocorrelation R, and mean scalar @ for profiles A-G.

The same motion generates very
different streaks
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J. Fledd Mech, (2005), pol 544, pp. 99-131. (2 2005 Cambridge University Press
doi 10,100 7/S00221 12005006506 Printed in the United Kingdom

The mechanism of streak formation in
near-wall turbulence

By 5. . CHEENYSHENKOaAanD M. F. BAIG

RDT-like processes/terms
dominate the flow near the wall




Koogoov 4 9 law '
_versus Yaglom 4/3 law



The Kolmogorov and the Yaglom laws are
respectively
S5(r) = ((Aw)*) = -(4/5) er
(Au,(AB)*) = - (4/3) &t
where Au = [u(x+r)-u(x)]-r/r, AG = 6(x+r) - 6(x), € - 15
the mean rate of dissipation of kinetic energy and g, =

(D 00/0x, 00/0x%;) - is the mean rate of dissipation of
fluctuations of a passive scalar. The analogy between
these two laws™ though useful in some respects, e.g.

ANTONIA ET AL 1997, 1S violated for a Gaussian velocity
field.

*The 4/5 Kolmogorov law follows by isotropy from the the 4/3 law for the
velocity field in the form (Au||(Au)?) = -(4/3) €r)




Namely, the 4/3 law remains valid for such (as
any other random isotropic) velocity field,
whereas the 4/5 law is not, because S,;(r) =0
for a Gaussian velocity field. This difference is
one of the manifestations of the dynamical

nature of the Kolmogorov law as contrasted to
the kinematical nature of the Yaglom law. It
reflects the difference between genuine
turbulence as a dynamical phenomenon and
‘passive’ turbulence as a kinematical process.




Vorticity versus passive vectors.
Solenoidal vector fields with

nonvanishing diffusivity



The usual comparison is based on looking at the equations for
vorticity ¢ and the (solenoidal) passive vector, B, e.g.

magnetic field in electrically conducting fluids,
BATCHELOR 1950

0o/ ot =V*(uxm) + vVi0)
oB/at=V*(uxB) +n V2B
Though a number of differences are known these differences
are hidden when one looks at the equations for  and B,
which look quite *similar’ when v = y




Whiat is hardest to accept in Batchelor's
digscugsion ig the assumed simlarity Getween B
and . LUNDQUIST, 1952

However, a more ‘fair' comparison should be made between the

velocity field, u, and the vector potential A, with B =V XA,
TSINOBER & GALANTI 2003. Such a comparison allows to

see immediately one of the basic differences between the fields u
and A (apart of the first obeying nonlinear and the second linear
equation) which is not seen from the above equations. Namely,
the Euler equations conserve energy, since the scalar product of
u-(oxu)=0.




In contrast, (unlessinitially and thereby subsequently u = A) the scalar product
A-(uxB) # 0*.
It is this term A - (uxB) = -A A, s, + 0/0x, {...}
which acts as a production term in the energy equation for A. In

other words the field A (and B), is sustained by the strain, ;. of
the velocity field - in contrast to the field u. This leads, in

particular, to substantial differences in amplification of vorticity,
 and magnetic field B, e.g. in statistically stationary velocity
field (both NSE and Gaussian) the enstrophy * saturates to
some constant value, whereas the energy of magnetic field B2
grows exponentially without Limit (but there is much more, see below).

" the corresponding equation for the vector potential A has the form SA/Ot+Bxu = Vp ATVZA




As in case of passive scalar an analogue of Kolmogorov
4/5 law™ is valid for the vector A (seee comez ET AL.,

1999 and references therein)
(Au”(AA)2> = -4/3rg,
where Au = Au-r/r= {u(xtr)-u(x)} -r/r,

AA=A(x+r)-A(x), and €, is the mean dissipation |
rate of the energy of A. Again the latter relation holds
for any random 1sotropic velocity field including the

(Gaussian one.

*[t is more convenient to use the 4/3 law for the velocity field in the form ¢ Au||(Au)*) =-(4/3) €1 , which
turns into the 4/5 law by isotropy




Vorticity versus passive vectors

with nonvanishing diffusivity
Evolution of disturbances




Important aspects of the essential difference between the evolution of
lelds  and B arising from the nonlinearity of the equation of ¢ and
mearity of the equation for B are revealed when one looks at how these
telds amplify disturbances. The reason is that the equation for the
disturbance of vorticity differ strongly from that for vorticity itself due to
he nonlinearity of the equation for the undisturbed vorticity e, whereas
he equation for the evolution of the disturbance of B is the same as that

or B itself due to the Linearity of the equation for B. Consequently, the
evolution of disturbances of the fields & and B is drastically different.
For example, in a statistically stationary velocity field the energy of the
disturbance of B grows exponentially without limit (just like the energy of
B itself), whereas the energy of vorticity disturbance grows much faster
than that of B for some initial period until it saturates at a value which is
of order of the enstrophy of the undisturbed flow.




It is noteworthy that much faster growth of the energy of
disturbances of vorticityis observed during the very initial (linear in
the disturbance) regime which is due to additional terms in the
equation for the disturbance of vorticity, co which have no
analogues in the case of passive vector B. It is important to stress
that these additional linear' terms arise due to the nonlinearity of

the equations for the undisturbed vorticity. In this sense the
essential differences between the evolution of the disturbances of
vorticity & and the evolution of the disturbance of passive vector B
with the same diffusivity can be seen as originating due to the
nonlinear effects in genuine NSE turbulence even during the linear
regime.




Looking at the evolution of the disturbance A® of some flow
realization u n a statistically steady state and similarly for
other quantities.

Active: vorticity - A®, strain - AS;
Passive: magnetic field - AB, its vector potential - A2,

passive scalar - A® and its gradient - AG.

For more details see TSINOBER AND @ALANTI 2008, Phys. Fluids

15, 3514-3531.




* The behavior
of A" 15 governed by the equation,” which 1s a direct conse-
quence of NSE for u and u+ A"
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The equations for the disturbance of
. N . = i
vorticity, A}". have the following form:”
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Note the additional linear in disturbance terms which arise due to the nonlinearity of the equations for the
undisturbed vorticity and which have no analogues in the case of passive vector B. These additional terms are
responsible for much faster growth of the energy of disturbances of vorticity during the very initial (linear in the
disturbance) regime. In this sense the essential differences between the evolution of the disturbances of vorticity and
the evolution of the disturbance of passive vector B with the same diffusivity can be seen as originating due to the
nonlinear effects in genuine NSE turbulence even during the linear regime




GROWTH OF ENERGY OF DISTURBANCES IN GENUINE
{EAM —J_\fu? EAS} MD PASS[VE {EAA9 EAB’ EAB’ EAG}

Note the much faster
srowth of the energy of
disturbances of active
variables such as
vorticity during the very
mitial (linear in the
disturbance) regime and
decay of disturbances
associated with passive

scalar

TSINOBER & GALANTI,
2003







Scaling exponents and
statsitically conserved
quantities

There is a number of publications insisting in some sense on a
kind of essential linearization of genuine turbulence problem
when this concerns scaling exponents (mainly of structure
functions) and the role of statistically conserved quantities.




The claims are summarized by arguing t4at t4e mechanism eeading to

anomalous scaling in Navier-Stokes equations and othier nonlinear models

is identical to the one recently discovered for passively advected fields.
ANGHELUTA ET AL 2006

If this is really true it means that this is just one more aspect — as in RDT - which
can be treated via a linear model which in same cases enables to handle same

aspects of turbulent flows, but not their genuine nonlinear aspects: one can thus
speculate that the anomalous scaling for the genuine turbulence can also
appear as a linear plienomenon in the following sense. Let us split the total
velocity field into the two parts, the 6achground field and the perturbation ...
linecarize the original stochastic equation with regpect to the Catter, choose an
appropriate statigtics for the former ... Then the small-scale perturbation
field will show anomalous scaling Gehavior with nontrivial exponents, which
can Ge caleulated systematically within a Rind of c-expangion. model. In
such a case the passive vector field can give the anomalous exponents for the
NS velocity field exactly. ANTONOV ET AL 2003

Similar statements are made in respect with so called statistically conserved
quantities which have been discovered for passive objects, but not really for genuine

NSE, see references in FALKOVICH AND SREENIVASAN 2006.




Analogy between genuine
turbulence Lagrangian chaos



This analogy is closely related to those associated with the analogies between the
genuine and passive turbulence in several respects. The main is that the former is a
dynamical phenomenon (E-turbulent) whereas the latter is a kinematic one (L-
turbulent, 1.e. purely Lagrangian). The flow can be purely L-turbulent (i.e. E-laminar)
atRe ~1 and Re <<1 (weemlesin TsivosER 2001). This includes examples such as a
number of mixing issues in flows in porous media, microdevices, and kinematic
simulations of Lagrangian chaotic evolution (KS, turbulent-like motions). However if
the flow is E-turbulent (i.e. Re >> 1) it is L-turbulent as well. An important
consequence is that the structure and evolution of passive objects in genuine turbulent
flows arises from two (essentially inseparable) contributions: one due to the
Lagrangian chaos and the other due to the random nature of the (Eulerian) velocity
field itself. Hence, one can expect adequate kinematic simulation of those properties
which are insensitive (or weakly sensitive) to the differences between the genuine and
synthetic velocity fields. An important counterexample is the difference between
backwards and forwards relative dispersion (with the mean square separation
following particle pairs backwards in time being twice as large as forwards) in genuine
turbulence.




E-LAMINAR BUT L-TURBULENT

Since the equations describing the evolution of passive objects are linear, it may seem that there is
no place for chaotic behaviour of passive objects if the velocity field is not random and is regular |
and fully laminar, because the chaotic behaviour appears/shows up in nonlinear systems. There
is, however, no real contradiction or paradox. This apparent contradiction is resolved via looking
at the the fluid flow in the Lagrangian setting in which the observation is made following the fluid
particles wherever they move. Here the dependent variable is the position of a fluid particle, _
X(a,t), as a function of the particle label, a, (usually it's initial position, i.e. a = X(0)) and time, t.
The relation between the two ways of description is given by the following equation
X@b)at=uX@t] (L)

1.e. the Lagrangian velocity field, v(a,t) = 0X(a,t))/t, is related to the Eulerian velocity field,
u(x,b), as V(a,t) = u[X(a,t);t]. Though the Eulerian velocity field, u(x:t) is not chaotic and is
regular and laminar, the Lagrangian velocity field v(a,t) = u[X(a,t):t] is chaotic because X(a,t) is
chaotic: the equation (E-L) is not integrable even for simplest laminar Euler fields with the
exception of very simple flows such as unidirectional ones.




| ON THE RELATION BETWEEN
EULERMN AND LAGRANGIAN FIELDS

H# Given the marker digpergion the proGlem ig to determine the source(s) of
agitation. In general, owing to chaotic advection, this invergse pro6lem is
impossible to solve AREF 1984

#...the possession of such relationship would imply that one had

(in some sense) solved the general turbulence pro6lem. Thus it scems
argualble that such an aim, although natural, may Ge somewhat iClusory
H# What one sees ig real. The pro6lem is interpretation

The relation between Eulerian and Lagrangian fields is a long-standing and most
difficult problem. The general reason is because the Lagrangian field is an extremely
complicated non-linear functional of the Eulerian field. This issue just as the whole
theme of Lagrangian description of turbulent flows (not just kinematical chaos) will
be addressed in several lectures later. Only few general notes are given here.




8 The complexity and problematic aspects
| of the relation between the Lagrangian

and Eulerian fields is seen in the example

of Lagrangian (kinematic) chaos or

¢ Lagrangian turbulence (chaotic
=1 21§ advection) with a priori prescribed and
- 18 not random Eulerian velocity field (E-

laminar). This is why Lagrangian

¥ description - being physiclly more

" b ‘1R transparent - is much more difficult than

MIXING IN PMM, Re ~ 1 (!) kush & orTivo (1992)
RELEVANT TO MICROFLUIDICS with Re ~ 0 (1);
Linked twist maps (LTMs), Bernoulli mixing...

the Eulerian description. In such E-
laminar but L-turbulent flows the

§ Lagrangian statistics has no Eulerian

counterpart, as in the flow shown at the
left.




Indeed, though the Eulerian velocity field, u(x;t) is not chaotic and
is regular and laminar, the Lagrangian velocity field v(a t) = |
u[X(a,t);t] is chaotic because X(a,t) is chaotic. This shows that, in

general, there does not exist a unique relation between Lagrangian
and Eulerian statistical properties in genuine turbulent flows as was |

foreseen by CORRSIN 1959 : in generaé, there ig no
reagon to expect that L, (the Lagrangian two point
velocity correlation tensor) and &,, (the Eulerian two point
velocity correlation tensor) wi€@ Be snigeely related.
In other words it may be meaningless to look for such a relation.




A list of a variety of other
attempts to analogies

Turbulence is rent Gy factionaligm. Traditional approaches in the field are
under attack, and one hears intemperate statements againgt Cong time
averaging, Reynolds decomposition, and so forth. Some of these are
reminiscent of the Eingtein—tHeisenberg controversy over guantum mechanics,
and smack of a mistrugt of any statistical approach. Colierent gtrsctsreg
people sound Like The Emperor's new Clothes when they say that all
turGulent flows congist primarily of coherent structures, in the face of visual
evidence to the contrary. Dynamical gystems theory people are sure that
turbulence is chaos. Simulators have convinced many that we will Ge able to
compute anything within a decade... The card-carrying physicigts dismiss
everything that has Geen done on turbulence from Os6orne Reynolds until the
last decade. Collubar Astomata were Railed on their appearance ag the

answer to a maidens prayer, 8o far as turbulence was concerned .
LUMLEY 1990.




BURGULENCE

Jn order to Geep the formalism as simple ag possible, we shall, work here
with the one-dimengsional scalar analog (!!!) to the Navier-Stokes eugation
proposed Gy Burgers?®’. In the method to Ge presented here, the true
poroblem is replaced 6y models that Lead, without approximaton, to
closed equations for correlation functions and averaged Green's functions
(p. 12%). The treatment of Navier-Stokes equation for an incompressiGle
fluid, which we shall discuss Griefly, does not differ in essentials (p.143)
KRAICHNAN, R.H. 1961, Dynamics of nonlinear stochastic systems, /[ Math Plys., 2(1), 124-148)

Mathematical analysis will deal with several Gasic models. The simplest
one ig the 1D Burgers equation with random forcing. It displays several
Gagic features of turGulence...3D Navier-Stokes systems probalbly need
completely new ideag. SINAIL Y.G. 1999 Mathematical Problems of Turbulence, Plysica, A

263,565-566




# Analogy between the Navier—Stokes equations and Maxwell’s equations: application to turbulence.
Screening.

# Beyond the Navier—Stokes equations, e,g. analogy between Boltzmann kinetic theory of fluids and
turbulence

# Modeling nearly incompressible turbulence with minimum Fisher information.

# Neural networks approach, the simulation and interpretation of free turbulence with a cognitive
neural system

# Variety of approaches from statistical physics/mechanics such as eritical phenomena, Levy walks,
Gibbsian hypothesis in turbulence, Tsalis nonextensive statistics, quantum kinetic models of
turbulence

# Polymer analogies

# Stock market dynamics and turbulence: parallel analysis of fluctuation phenomena.

# Dynamical systems, e.g. low dimensional description.

There are more but all with modest succes (if at all)

Perhiaps the Giggest fallacy about turbulence is that it can Ge reliably
described (gtatistically) 6y a system of equations which is far eagier to solve
than the full time-dependent three-dimensional Navier-Stokes equations
BRADSHAW, 1994.




CONCLUDING

The essential differences between the genuine turbulence and its
analogues (as those described above and many other not described) and
the intricacy of the relation between them (e.g. between genuine and
“passive turbulence”) require caution in promoting analogies to far
leading to grave misconceptions. On the other hand these very

differences can be effectively used to gain more insight into the dynamics
of real turbulence.




The above examples also serve as a warning that flow visualizations used for studying the structure of dynamical fields (velocity,
vorticity, etc.) of turbulent flows may be quite misleading, making the question "what do we see?" extremely nontrivial. The general
reason Is that the passive objects may not “want' to follow the dynamical fields (velocity, vorticity, etc.) due to the intricacy of the
relation between passive and active fields just like there is no one to one relation between the Lagrangian and Eulerian statistical
properties in turbulent flows. As mentioned one of the reasons is the presence of Lagrangian chaos, which is manifested as rather
complicated structure of passive objects even in very simple regular velocity fields. On the other hand the ramp-cliff structures of a
passive scalar are observed in pure Gaussian "structureless' random velocity field just like those in a variety of real turbulent flows
practically independently of the value of the Reynolds number tsinosEg 2001.

This does not mean that qualitative and even quantitative study of fluid motion by means of " color bands' (REYNOLDS1894) is
impossible or necessarily erroneous. However, watching the dynamics of material ‘colored bands' in a flow may not reveal the nature
of the underlying motion, and even in the case of right qualitative observations the right result may come not necessarily for the right
reasons. The famous verse by Richardson belongs to this kind of observation. On the other hand there are properties of passive
objects which do depend on the details of the velocity field (TsivoBER 2001, TsINOBER & GaLaNTI 2003). Just these very
properties can be effectively used to study the differences between the real turbulent flows and the artificial random fields, to gain
more insight into the dynamics of real turbulence.

At present, however, the knowledge necessary for such a use is very far from being sufficient. With few exceptions it is
even not clear what can be learnt about the dynamics of turbulence from studies of passive objects (scalars and
vectors) in real and “synthetic' turbulence. This requires systematic comparative studies of both. An an attempt of such
a comparative study was made by TsiNOBER & aaLANTI 2003. This is a relatively small part of a much broader
field of comparative study of ‘passive' turbulence reflecting the kinematical aspects and genuine turbulence
representing also the dynamical processes.
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BIT OF FUN

Is there an analogy or
should we believe our |

Al

match the turbulence in real cloud patterns
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