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ABSTRACT

The evolution of the growing surface waves having a nonuniform transversal structure is discussed using the
semiempirical equation for wind velocity profile in two dimensions and the expression suggested by Plant and
Wright for the initial growth rate of waves. Positive feedback has been found in the coupled wind-wave system,
leading to an algebraic growth of a weak transversal modulation of the wave field.

1. Introduction

A number of field observations carried out recently
confirm the essential impact of the sea state on the
characteristics of the atmospheric boundary layer and
therefore on the momentum flux from wind to waves.
As shown by Janssen (1991), the quasi-linear theory
based on the Miles theory of wind-wave generation
being implemented in the wave prediction model
WAM (WAMDI Group 1988) describes satisfactorily
this interaction and is in reasonable agreement with
observations.

In the present paper we would like to point out an
interesting peculiarity that arises due to such coupling
at the initial stage of wave growth. It follows from the
quasi-linear theory that the effective roughness param-
eter together with a drag coefficient is a function of the
ratio of wave-induced stress to the total stress near the
water surface. For a young wind sea this ratio is of the
order of unity giving rise to a considerable deformation
of the wind profile. Under some circumstances positive
feedback can arise in this coupled wind-wave system
that leads to the amplification of the growth rate with
wave amplitude. If the wave field has initially an in-
homogeneous structure, the magnitude of the inho-
mogeneity will grow in time.

As a matter of fact, however, the applicability of the
quasi-linear approach is still doubtful at an early stage
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of wave evolution. On the other hand, there are some
other empirical as well as analytical models that give
a satisfactory description of initial wave growth. Among
them we can refer to the paper by Plant and Wright
(1977) where a simple empirical formula for growth
rate was suggested on the basis of observations. Con-
cerning the feedback effect of waves on wind, the quasi-
linear theory (Fabrikant 1976; Janssen 1982, 1989,
1991) is directly applicable only to a long wave impact
of waves on wind. The effect of short waves was mod-
eled in that theory by a simple Charnock relation for
the roughness parameter that is valid when short waves
are already in a quasi-stationary state under rather
strong wind. This approach, evidently, fails at the stage
of initial growth of short waves. Instead we assume
that the roughness parameter depends explicitly on the
amplitude of short waves.!

In the present paper we are going to discuss the wind-
wave interaction at the initial stage of wave growth for
the case of spatially (in fact, transversally to wind di-
rection) inhomogeneous wave field. We will find the
impact of the nonuniform wave field (treated as non-
uniform roughness parameter) on the wind velocity
profile and also consider the evolution of the trans-
versally nonuniform wave field making use of the
semiempirical relation between local friction velocity
and the growth rate of waves (Plant and Wright 1977).
We will find a positive feedback in the system in the
certain range of scales of transversal modulation.
Therefore, the spatial nonuniformity of the wave field,
if it is present at the beginning, would grow in time.

! Phillips (1977) employed this approach in order to confirm the
Charnock relation.
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In section 2 we consider the deformation of wind
profile structure above the surface with transversally
nonuniform roughness. In section 3 the conditions for
a positive feedback and the onset of transversal insta-
bility are obtained and some quantitative estimates are
made and discussed. Section 4 gives a summary of
conclusions.

2. Wind profile structure above a surface with a
transversally nonuniform roughness

Before treating the coupled wind-wave problem, let
us consider the structure of the wind profile blowing
in the direction x over the surface with the transversally
modulated roughness parameter z,(y). Within a tra-
ditional semiempirical approach (see, e.g., Monin and
Yaglom 1971) neglecting the pressure gradient and
molecular viscosity, and assuming that the wind flow
is homogeneous along the x direction, the equation for
the mean flow velocity U(z, y) in a turbulent boundary
layer over a rough surface takes the form
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where 7' = (—u'w’) and 7§ = (—u'v") are the
vertical and horizontal turbulent stresses and u’, v’, w'
are x, y, and z components of fluctuation velocity,
respectively. For turbulent stresses we will employ the

mixing length hypothesis; namely,
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where K = [?|8U/dz| is the turbulent viscosity coef-
ficient and the mixing length / is given by / = «xz (x
~ 0.41 is the von Karman constant). Here, we im-
plicitly supposed that the vertical gradient of the wind
velocity exceeds greatly the horizontal one and there-
fore provides the main contribution to the turbulent
mixing that is valid for a large enough horizontal scale
of transversal nonuniformity.
In the stationary state Eq. (1) takes the form
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and we impose the boundary condition, U(z,) = 0.
Assume first that the roughness parameter has a weak
sinusoidal modulation:

)=0, (4)

(5)

Since weak modulation of z, leads to a weakly mod-
ulated wind profile,

U(z, y) = U,(z) + us(z) cosk,y,

zo(¥) = z, + zy cosk,y, 2, € Z,.

U < Uos (6)
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one can linearize Eq. (4) with respect to U,(z), which,
being the solution of (4), is given by the standard
expression,

(7)

u z
Uy(z) =—21In—,
K Z,
where u,, is the friction velocity of undisturbed wind
flow. The substitution of (7) and linearization yield
the following simple equation for velocity u,(z):

d dul 2 _
2a’z(z dz) kyzu; = 0. (8)
The solution of (8) decreasing as z tends to infinity is

a modified Bessel function of zeroth order;

k
U = UIKO(%Z) s (9)

where the amplitude of velocity variations U, can be
easily found from the linearized boundary condition
u; + U(z,)z, = 0. As seen from (9), there are two
different logarithmic “subprofiles™ in the total profile
of wind velocity. At a large height (k,z > 1) the air
flow does not “feel” the weak nonuniformity of the
surface. At a small height (k,z < 1) the modified Bessel
function K,(x) has a logarithmic asymptotic behavior
that allows one to write down the full velocity U(z, y)
in a logarithmic form:
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where
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Thus, at small z we have a logarithmic wind profile

with a transversally nonuniform roughness parameter

z,(y) and the corresponding friction velocity u,(y).

Note that using the formulas (10), (11) one can easily

treat the case of arbitrary but weak transversal distri-

bution of the roughness by means of its Fourier de-
composition.

3. Positive feedback and transversal instability

Plant and Wright (1977 ) suggested an empirical for-
mula for the initial growth rate of the amplitude of
surface gravity—capillary waves,

2
vy = kz(% - 2vw) R
w

where w and k are the frequency and the wavenumber
of a surface wave related by the dispersion relation,

w = Vgk + Tk>, (13)

(12)
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g is the gravity acceleration, T is the surface tension
coeflicient, v, is the kinematic viscosity of water, and
6 = 0.1/2x. It is seen from (12) that the growth rate
is a sensitive function of the friction velocity u,, and
even its small deviations due to inhomogeneity of un-
derlying water surface affect the growth rate of waves.
Note that at a large enough scale of transversal inho-
mogeneity its effect on wave growth can simply be
taken into account parametrically; therefore, we can
employ a one-dimensional formula (12) with variable
Uy (y) in our two-dimensional problem.

Here the question arises concerning the relation be-
tween the roughness parameter z, and the amplitude
H of surface waves. A natural guess is that if the wave
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It is evident from (15) that dy/dz, > O for z, > 0.1v,/
U4, and the positive feedback is larger, the greater k,;
that is, the less the transversal scale of nonuniformity.

To describe quantitatively the development of
transversal modulation of roughness due to the effect
under consideration, one can linearize ( 14 ) with respect
to z,. Then the two following equations are found:

5 Yot (16)
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Solving Egs. (16) and (17) we obtain
Zo = Zo exp(vol) (18)

C 24/%0

zy= 2, eXP("/ot)[C — ’Yol] , (19)

where 4 = dk§ui,/wo, C = —ln(kyZo/Z‘/i), and Z,,;
are initial values of Z, and z,. Let us introduce the
contrast K = z,/z, characterizing the magnitude of
transversal modulation. When the effect of waves on
the wind profile is neglected the contrast K remains
constant as waves grow. However, formulas (18) and
(19) show that the deformation of the wind profile
leads to an algebraic (explosive) growth of the contrast:

C ]ZA/VO
s

(20)

K=K,
[C—-%l

where K, = Z, /Z, is the initial value of contrast. The

contrast K goes to infinity in the characteristic time

T = —In(k, Zo/2V2)/Yo. (21)
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height is less than the roughness parameter for a wind
profile over slick surface z,, =~ 0.1v,/u, (v, is the ki-
nematic viscosity of air), then z, = z,,. On the other
hand, if H > z,,, for the initial stage of wave growth
one can adopt, following Phillips (1977), z, « H.
Taking these arguments into account, one can write
down the equation for the temporal evolution of the
modulated roughness parameter

5+ I B
3(2 zltcos .Vy) — ’Y(ZO + 4 COSkyy),

where the growth rate v is described by (12) for the
optimal wavenumber k, and frequency wp for which
v reaches its maximum value:

(14)

(15)

Of course, the validity of the expression (20), in fact,
fails before the contrast goes to infinity and even to
unity, but still (21) gives the estimation of the char-
acteristic time of the development of transversal struc-
ture due to the wind profile deformation by waves. At
the initial stage of evolution the contrast K grows lin-
early in time

K= K,(1+ Tt). (22)
The growth rate
2.2
- _ 25kou*o (23)
wo In(k,Z,/2V2)

increases logarithmically with the transversal wave-
number k,. It is interesting to note that the growth rate
of contrast I' also increases logarithmically with the
initial roughness parameter Z,. We have to choose Z,
= z,, because at lower values of Z,, the wind profile
does not “feel” nonuniformity of the wave field.

As we have just pointed out, the growth rate of the
transversal instability increases with the wavenumber
k,. However, physically it seems obvious that there
should be a mechanism suppressing the transversal in-
stability at short scales. What effect could be responsible
for this short-scale cutoff of the transversal instability?
We can propose one possible mechanism. In fact, a
periodic transversal modulation of the plane mono-
chromatic wave indicates the presence of two additional
components in the spatial Fourier spectrum of the wave
field. These components correspond to a pair of oblique
waves propagating at the angles ¢. = tarctan(k,/ko)
to the wind direction. It is well known that the growth
rate for waves propagating at some angle to a wind
direction is determined by the solution of the one-di-
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mensional problem with effective wind velocity profile
U(z) cos¢. (or, for logarithmic velocity profile, with
effective friction velocity u, cos¢.). Therefore, the
growth rate of z, depends on k, not only due to the
positive feedback in the coupled wind-wave system
discussed above [the first term in the right-hand side
of (17)] but also due to the decay of the wind input
for oblique propagating wave components. At k,/kq
< 1 it leads to the following expression for the growth
rate of the contrast

20k3u’ ( 1 kﬁ)
r=- -2-2). (24
© \In(kze/2V2 ~ K (24)

From (24) one can find the “most unstable” wave-
number for the transversal instability. With the loga-
rithmic accuracy it reads

k
k,=————. 25

Y In(kzoo/2V2) (22)
Let us present some estimates. Take u, =0.15ms™, g
=98lms 2, T=74cm’s2,p,=12X 10 m?s7!,
and »,, = 107 m? s~!. The wavenumber of maximally
growing gravity-capillary waves determined by (12), (13)
is ko = 346.5 rad m~! and the corresponding growth rate
v = 0.26 s~!. The undisturbed roughness parameter is
Zgo = 6.7 X 107® m. The optimal wavenumber of trans-
versal modulation is k, = 17.1 rad m™' [an approximate
formula (25) gives the value of 24.4 rad m™'], and the
growth rate ' = 0.1 s™'. Therefore, strips 30 cm wide
arise and the contrast is doubled each 10 s. Note, that,
in accordance with (25), the transversal scale depends
on the wavenumber of surface waves and, hence, it grows
with the wave age. Moreover, even the ratio of transversal
scale to the wavelength grows logarithmically with the
wave age.
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4. Conclusions

In this paper we have considered the possibility of
the surface wave field to form a transversally inho-
mogeneous structure at the initial stage of wave growth.
Taking the wave height as a roughness parameter one
can relate the wind profile to a structure of surface
wave field. Using a simple mixing-length hypothesis
and assuming the fixed value of the friction velocity at
a great height, we calculated the wind profile over the
transversally nonuniform water surface. The wind
profile deviates from the standard logarithmic profile
at small heights more, the less the scale of transversal
nonuniformity. Then we employed the empirical for-
mula of Plant and Wright (1977) relating the growth
rate of short gravity—capillary waves to a friction ve-
locity and obtained the equation for the evolution of
transversal modulation.
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