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ABSTRACT

The effects of stratification, planetary rotation and a sloping bottom combine to produce an asymmetric
response in which the characteristics of an oceanic bottom boundary layer depend on the direction, in addition
to the magnitude, of the along-isobath velocity in the inviscid interior. The asymmetric response is examined
theoretically under idealized conditions in which the motion begins from rest, the flow is uniform in the along-
isobath and cross-isobath directions, and the water column is initially uniformly stratified. The analysis is based
on an integrated model, in which the bottom stress is determined from a quadratic drag law, and the height of
the boundary layer is determined from a Pollard-Rhines—-Thompson mixing criterion. The model indicates
rapid mixing at the onset of forcing to a height limited by planetary rotation and interior stratification, followed
by evolution in which the height of the boundary layer may either increase or remain fixed near its initial value,
depending on the behavior of the buoyancy within the boundary layer and the shear across the top of the layer.
The model indicates reduction of the velocity within the boundary layer with increasing time, as a result of
increasingly important buoyancy forces acting in opposition to the forcing by the dynamic pressure gradient.
Model results compare favorably with previous turbulence closure computations, and the model reproduces

1171

the qualitative asymmetric behavior apparent in observations of boundary layer height.

1. Introduction

Lentz and Trowbridge (1991) recently reported es-
timates of the height and structure of the bottom mixed
layer over the continental shelf off northern California,
based on measurements obtained during the Coastal
Ocean Dynamics Experiment (CODE). The bottom
mixed layer varied in height between a few meters and
a few tens of meters, and was typically overlain by a
stably stratified interior. The height of the mixed layer
varied with the interior stratification and with the
magnitude of the predominantly along-isobath interior
velocity. A much clearer and more unexpected feature,
however, was an asymmetric response in which the
height of the mixed layer depended on the direction
of the interior velocity, in addition to its magnitude.
For flows of comparable strength, bottom mixed layers
were thicker during downwelling-favorable flows, and
thinner during upwelling-favorable flows (see Fig. 1).
The purpose of this paper is to examine analytically,
in as simple a manner as possible, the observed asym-
metric response of the bottom mixed layer to forcing
by the interior flow.

Similar dependence of mixed layer height on flow
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direction has been observed previously (Weatherly and
Niiler 1974; Eittreim et al. 1975), and a possible ex-
planation is cross-isobath Ekman transport of buoy-
ancy over a sloping bottom (Weatherly and Niiler 1974;
Weatherly 1975; Weatherly and Martin 1978). During
upwelling, the Ekman transport within the bottom
boundary layer advects dense water upslope, increasing
the density difference between the boundary layer and
the interior, so that vertical turbulent transport near
the top of the layer is suppressed and the growth of the
layer is inhibited. During downwelling, the Ekman
transport within the boundary layer advects light water
downslope, reducing the density difference between the
boundary layer and the interior, so that vertical tur-
bulent transport and the growth of the layer are en-
hanced.

We present in this paper an analysis that addresses
the influence of bottom slope on the height and struc-
ture of a stably stratified, rotating bottom boundary
layer. The analysis treats an idealized problem in which
a boundary layer mixes vertically into an initially uni-
formly stratified water column over a gently sioping,
perfectly insulating sea floor. The interior velocity is
spatially uniform and parallel to the isobaths, and the
Ekman transport within the boundary layer advects
dense water upslope or light water downslope, de-
pending on the direction of the interior flow.

The problem addressed in this paper was studied
earlier by Weatherly (1975), Weatherly and Martin
(1978), and Bird et al. (1982), based on gradient
transport models in which the effective diffusivities
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FiG. 1. Measurements from the CODE C3 site, at a depth of 90
m. The light line is the along-isobath velocity 37 m above bottom in
c¢m s~', and the heavy line is the Lentz and Trowbridge estimate of
the height of the bottom mixed layer in m, based on temperature
measurements ! m, 7 m, 20 m, 37 m and 55 m above bottom. Es-
timates of mixed layer height (with coarse vertical resolution) were
obtained from hourly temperature measurements. Both velocity and
mixed layer height are filtered (half-amplitude period of 33 hours).
Positive velocity is poleward (downwelling favorable) and negative
velocity is equatorward (upwelling favorable). To see the dependence
of mixed layer height on flow direction, compare the upwelling-fa-
vorable flows centered approximately on 17 April, 29 April, 9 May,
19 May, 5 June and 10 July with the downwelling-favorable flows
centered approximately on 23 April, 6 May, 27 May, 20 June and
18 July.

were calculated from detailed turbulence closures. The
early studies demonstrated the effect of the bottom
slope on the structure of the boundary layer, and il-
lustrated some of the characteristics of the boundary
layer at small times, but were limited in scope and
interpretation because of the complexity of the ap-
proach. A more recent series of related studies ( Thorpe
1987; Garrett 1990; MacCready and Rhines 1991) has
provided insight into the transient evolution, the role
of buoyancy forces, and the effects of the boundary
layer on spinup and mixing in the interior. The recent
studies do not, however, address the effect of the flow
itself on the processes that control the mixing, which
is, in our view, an important part of the problem at
geophysical scales.

The analysis presented in this paper is much simpler
than the early treatments based on turbulence closures,
yet includes in a plausible way the effect of the flow
itself on the rate of vertical mixing. The analysis is
based on an integrated model similar to those used
previously by Pollard et al. (1973) and Thompson
(1973). In this model, the bottom stress is determined
from a quadratic drag law, and the height of the
boundary layer is determined from a mixing criterion
that limits the bulk Richardson number to values
greater than or equal to unity. The integrated model
produces results that are consistent with the more de-
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tailed computations obtained from turbulence closures,
and provides, in addition, qualitative information
about the physics, including estimates of time scales
and determination of the parameter dependence of the
boundary layer behavior.

The remainder of this paper is organized as follows.
We formulate the model in section 2 and we present
model results in section 3, including a comparison with
Weatherly’s and Martin’s (1978) turbulence closure
computations, and an analysis of the response to im-
pulsively imposed forcing. Section 4 is a discussion,
and conclusions are summarized in section 5.

2. Model formulation
a. Geometry and governing equations

The problem addressed in this paper is shown sche-
matically in Fig. 2. A semi-infinite fluid domain is
bounded below by a gently sloping bottom. Initially,
the fluid is at rest, with horizontal isopycnal surfaces
and spatially uniform buoyancy frequency. At some
initial time, a spatially uniform dynamic pressure gra-
dient is applied to this system, so that the fluid begins
to move parallel to the bottom and a turbulent bound-
ary layer forms adjacent to the bottom. In the interior,
above the boundary layer, the velocity is spatially uni-
form, the density gradients are constant and the same
as in the initial state, and the turbulent fluxes are zero.
In the boundary layer, the ensemble-averaged turbulent
fluxes, ensemble-averaged velocity, and ensemble-av-
eraged density anomaly (departure from the interior
density) depend only on time and on distance away
from the bottom. The interior velocity and density are
given, and the problem is to determine the ensemble-
averaged velocity and density fields within the bound-
ary layer.

FIG. 2. (a) Geometry in the initial rest state. The solid lines are
isopycnal surfaces. Symbols are defined in text. (b) Geometry after
onset of motion and formation of a bottom boundary layer. The
solid lines are isopycnal surfaces and the dashed line is the top of the
boundary layer.
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The present analysis is limited to the case of a per-
fectly insulating sea floor, so that the density flux across
the bottom is zero. We assume that molecular fluxes
of mass and momentum have a negligible effect on the
ensemble-averaged flow field over the time scales of
interest in this paper, except possibly in a thin unre-
solved viscous sublayer adjacent to the bottom. The
analysis is limited to cases in which the interior velocity
is purely along-isobath, and we consider only the mo-
tions with time scales sufficiently long in comparison
to the inertial time scale so that temporal accelerations
may be neglected relative to Coriolis accelerations.

The flow shown in Fig. 2 is described by the Bous-
sinesq-approximated equations for a Newtonian fluid
(e.g., Phillips 1977). Under the stated conditions, the
ensemble-averaged cross-isobath and along-isobath
momentum equations and the ensemble-averaged
equation describing the density reduce to

9
—fv+£<u’w’>=—fvl_ap_f(l’_l’l)’ (1)
d Hot\ —
fu+£<vw> 0, (2)
) d
PGt —ua%l—& W, ()

(e.g., Weatherly and Martin 1978). Here the coordinate
system is defined so that the x—y plane coincides with
the bottom, with x across-isobath, y along-isobath and
z perpendicular to the bottom. The time is denoted by
t. The quantities (u, v, 0) and (1, v', w') are respectively
the ensemble-averaged and fluctuating components of
the velocity vector in the (x, y, z) coordinate system,
the quantities p and p’ are, respectively, the ensemble-
averaged and fluctuating components of the density,
p, 1s the constant reference density, g is the magnitude
of the gravitational acceleration, f'is the Coriolis pa-
rameter (taken here to be positive), angular brackets
denote ensemble averages, subscript I denotes the in-
terior, and « is the bottom slope, which is assumed to
be sufficiently small so that sin(«) ~ o and cos(«)
~ 1. The interior density gradients dp;/dx and dp;/ 0z
are constant. The interior density p;(x, z, ¢) is under-
stood to be defined for all z, although it does not de-
scribe the actual density field within the boundary layer.
As stated previously, the velocities # and v, the density
anomaly p — py, and the turbulent fluxes (#/'w"), (v'w")
and {p'w") depend only on z and ¢.

Equations (1), (2)and (3) are obtained by subtract-
ing the equations describing the interior from the
equations describing the boundary layer. The terms on
the left sides of the x and y momentum equations (1)
and (2) are the Coriolis accelerations and the z-deriv-
atives of the Reynolds shear stresses. The terms on the
right side of (1) represent a combination of forcing
effects produced by the dynamic pressure gradient and
by the departure of the density field from the initial
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density field. Equations (1) and (2) describe the re-
sponse of the ensemble-averaged velocity and Reynolds
stresses to the instantaneous forcing, and equation (3)
describes the evolution of the density anomaly due to
cross-isobath advection [the first term on the right side
of (3)] and turbulent mixing [the last term in (3)].
The mathematical problem is one-dimensional even
though cross-isobath advection is present, because ad-
vection enters through the effect of the sloping bottom.

b. Integrated governing equations and closure

A set of integrated governing equations is obtained
by integrating (1), (2) and (3) with respect to z from
the bottom to a point just above the boundary layer,
and applying appropriate boundary conditions. In the
present case, the bottom boundary condition is the re-
quirement that the density flux (p'w’) vanish at the
sea floor, and the boundary conditions just above the
boundary layer are the requirements that the turbulent
fluxes, density anomaly p — p;, and velocity anomalies
u and v — v; vanish in the interior. Additional equations
are necessary in order to determine the bottom shear
stress and the height of the boundary layer. As stated
previously, a quadratic drag law is used to relate the
vertically averaged velocity to the bottom shear stress,
and a mixing criterion based on the bulk Richardson
number is used to determine the height of the boundary
layer.

Integration of (1), (2) and (3) with respect to z,
application of the appropriate boundary conditions,
and introduction of a quadratic drag law yields the
following set of integrated equations:

fh(®—v) = CNa?+ 5% + aB, (4)
fuil = —CVi? + v°p, (5)
% = aN?hi. (6)

Here h(1) is the height of the boundary layer, defined
simply to be the distance from the bottom at which
the velocity anomaly, density anomaly and turbulent
fluxes associated with the boundary layer become neg-
ligible. A more precise definition of /(¢) is not necessary
for our purposes. The quantity Cj, is the bottom drag
coefficient, assumed for simplicity to be constant, and
u and v are, respectively, the x and y components of
the velocity averaged over the thickness of the boundary
layer:

1 h
[ﬁ(t),f’(l)]=zfo [u(z, 1), v(z, )]dz.  (7)

The quantity B(¢) is the integrated buoyancy deficit
within the boundary layer, defined by

h
B(z)=§f0 (0 — pr)dz. (8)

Po
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In (6) we have expressed the interior density gradient
dp;/dx in terms of the spatially uniform buoyancy fre-
quency in the interior, denoted by N.

Following Pollard et al. (1973) and Thompson
(1973), we introduce a simple mixing criterion to de-
termine the height 4(¢). The mixing criterion is based
on the bulk Richardson number R, defined by

_Ap _gh

Po |All | 2
Here Ap is the difference between the density averaged
over the thickness of the boundary layer and the density
just above the boundary layer, and Au is the difference
between the velocity vector averaged over the thickness
of the boundary layer and the velocity vector above
the boundary layer. In the present notation,

B+ I N*h?

Rb = T‘E——‘__‘——Z .
uc+(v—vy)

(9)

(10)

If R, is greater than unity, we assume that no mixing
occurs, so that 4 remains unchanged. If R, is less than
unity, we assume that / increases instantaneously (in
comparison with the time scales of interest in this pa-
per) to a value at which R, is equal to unity, at which
point mixing ceases. This mixing criterion effectively
limits R, to values greater than or equal to unity, so
that we have the following constraint:

Ry > 1. (11)

This constraint reflects the idea that the growth of the
boundary layer is limited by a balance between the
stabilizing effect of stratification [represented in (9) by
Ap] and the destabilizing effect of shear [represented
in (9) by Au]. We are unaware of convincing theoret-
ical support for this constraint. However, (11) has been
shown to be approximately consistent with laboratory
studies of mixing in stratified fluids (Price 1979) and
to produce realistic results when applied to the oceanic
surface mixed layer (e.g., Price et al. 1986).

The integrated equations describing the behavior of
the boundary layer are (4), (5), (6) and (11). The
required forcing function is v;(¢), and the initial con-
dition for motion beginning from rest is B = 0 at the
initial time ¢ = 0. The integrated momentum equations
(4) and (5) describe the quasi-steady response of &z and
¥ to the instantaneous interior velocity v;(¢), height
h(t) and buoyancy deficit B(¢). The buoyancy equation
(6) describes the evolution of B(#) due to cross-isobath
advection, and the constraint (11) determines whether
and how A(¢) increases. In this model, the height of
the boundary layer cannot decrease.

Numerical solution of (4), (5), (6) and (11) is
straightforward. In a time-stepping procedure, the so-
lution at each new time step, given the solution at the
previous time step, may be obtained as follows. First
B is incremented according to (6), and then (4) and
(5) are solved simultaneously for # and v, with / held
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fixed at the value obtained during the previous time
step. If R, is, at this point, greater than or equal to
unity, the solution advances to the next time step. If
R, is less than unity, (4), (5) and (11) are solved si-
multaneously for i, © and 4, with (11) as an equality,
before advancing to the next time step. All of the nu-
merical results presented in this paper are based on this
time-stepping procedure.

The integrated model, as formulated above, reflects
two basic assumptions. The first is that the boundary
layer is well mixed, so that the density and velocity
averaged over the thickness of the boundary layer are
representative of the density and velocity everywhere
within the boundary layer. The second is that the
growth of the boundary layer is limited by a balance
between the competing effects of stratification and
shear, so that (11) is a realistic constraint on the height
of the boundary layer.

3. Model results

a. Comparison with Weatherly’s and Martin’s (1978)
computations

A comparison of numerical simulations reported by
Weatherly and Martin (1978) with computations based
on(4),(5), (6)and (11)is useful to help establish the
validity of the integrated model. Weatherly’s and Mar-
tin’s simulations were based on the Mellor-Yamada
(1974) level-two turbulence closure, in which turbulent
transport of density and momentum are represented
by gradient transport relationships, and the effective
viscosity and diffusivity are products of a turbulent ve-
locity scale, determined from an approximate turbulent
energy balance, and an imposed turbulent length scale.

Weatherly and Martin (1978) presented three cases
suitable for comparison with the integrated model. In
the first case, the bottom was horizontal (i.e., « = 0),
and the second and third cases treated, respectively,
upwelling-favorable (v; negative ) and downwelling-fa-
vorable (v, positive) flows over sloping bottoms. In all
cases, the interior along-isobath flow speed increased
linearly from zero to 15 cm s~ during the first 48 hours,
and was then constant until the end of the computa-
tional period, which was 120 hours. The density was
a function only of temperature. The interior buoyancy
frequency N was 1.28 X 1072 s™!, the Coriolis param-
eter f'was 0.63 X 107 s™!, and the bottom slopes «
were 2.4 X 1073 and 2.6 X 10~ in the upwelling and
downwelling cases, respectively.

Our computations are based on the numerical time-
stepping procedure described in the previous section.
Since we are using an integrated model, the velocity
and temperature fields are treated as if they were in-
dependent of z within the boundary layer, although
this simplification is not necessarily implied by the
model. In all cases a drag coefficient of 2.5 X 1073 is
used. According to Weatherly and Martin (1978), the
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effective bottom roughness parameter z, in their cal-
culations was approximately 0.06 cm. A drag coefficient
of 2.5 X 1073 is appropriate for this roughness if one
assumes an approximately logarithmic velocity profile
within the boundary layer and a boundary layer height
on the order of 5 to 10 m (e.g., Shlichting 1979). The
computations of Weatherly and Martin (1978) indicate
approximately logarithmic velocity profiles, and the
boundary layer heights are on the order of 5 to 10 m
(see Figs. 3 through 6, discussed below).

Figure 3 shows results for the case of a horizontal
bottom. In this case, B remains fixed at its initial value
of zero, and the integrated governing equations, which
reduce to (4), (5) and (11), contain no temporal de-

rivatives, so that they describe a boundary layer that .

adjusts immediately to the instantaneous interior ve-
locity. Weatherly’s and Martin’s (1978 ) computations
indicate fairly uniform velocity and temperature pro-
files within the boundary layer, although there is strong
shear in the velocity profile near the bottom.

Figures 4, 5 and 6 show results for the upwelling
and downwelling cases. Figure 4, which shows bottom
temperature as a function of time, illustrates the cooling
trend that results from upslope Ekman transport of
cold water during upwelling, as well as the opposite
warming trend that occurs during downwelling. Figure
5a, which shows temperature profiles at different stages
during upwelling, shows that the boundary layer thick-
ens initially and then reaches a fixed height of approx-
imately 5 m, which is substantially smaller than the
height reached in the case of a horizontal bottom (Fig.
3). In contrast, Fig. Sb shows temperature profiles dur-
ing downwelling, which indicate more rapid growth of
the boundary layer than during upwelling, and no ten-
dency to reach a fixed height. Figures 5a and 5b also
show that temperature gradients near the top of the
boundary layer are much larger during upwelling than
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FIG. 3. Velocity and temperature for the case treated by Weatherly
and Martin (1978) for stably stratified flow above a horizontal bottom
(a = 0). The solid lines are our computations and the dashed lines
are the Weatherly and Martin computations.
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FIG. 4. Bottom temperature as a function of time for the upwelling
(a = 2.4 X 107%) and downwelling (« = 0.26 X 1073} cases treated
by Weatherly and Martin (1978). The solid lines are our computations
and the dashed lines are the Weatherly and Martin computations.

they are during downwelling. Figure 6 shows temper-
ature and velocity profiles for the upwelling case at ¢
equal to 4 days. Weatherly’s and Martin’s (1978 ) com-
putations in Fig. 6 indicate more vertical structure in
flow direction than is apparent in the case of a hori-
zontal bottom (Fig. 3).
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FIG. 5. Temperature profiles at different times for the upwelling
problem (a) and for the downwelling problem (b) treated by Weath-
erly and Martin (1978). The solid lines are our computations and
the dashed lines are the Weatherly and Martin computations.
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FiG. 6. Temperature, speed and direction profiles for the upwelling case treated by Weatherly and Martin
(1978) at ¢ equal to 4 days. The solid lines are our computations and the dashed lines the Weatherly and
Martin computations. [ Note: we are puzzled by differences between their temperature computations in Figs.
5a and 6 (Figs. 9c and 10 in their paper), which should be the same at 96 hours. In particular, there seems
to be a difference in the height of the boundary layer. It is possible that some of these results were misplotted
in the Weatherly and Martin paper. This possibility does not affect our qualitative conclusions.]

Although Weatherly’s and Martin’s (1978) com-
putations show vertical structure that cannot be cap-
tured by an integrated model, Figs. 3 through 6 indicate
overall good agreement, in terms of the bulk properties
of the boundary layer, between the predictions of the
integrated model and the more detailed turbulence
closure computations. The favorable agreement is en-
couraging because we have made no attempt to tune
the integrated model by varying the drag coefficient or
the critical value of the bulk Richardson number.

b. Response to impulsively applied forcing

To determine the physics and parameter dependence
described by the integrated model under conditions
beyond those treated by Weatherly and Martin (1978),
it is convenient to consider forcing in which v;(¢) is
zero for ¢ less than zero, and equal to a nonzero constant
for ¢ greater than or equal to zero. Under this impul-
sively applied forcing, the solution indicates instanta-
neous mixing to a finite height at ¢ = 0, followed by
evolution toward a steady state as ¢ approaches infinity.
The results of the analysis may conveniently be ex-
pressed in terms of the dimensionless parameters 8 and
v, defined by

2 C,N
ﬁ=§%—, (12)
7=V§%’. (13)

For fixed N/f, 8 may be regarded as a measure of the
strength of bottom friction, and y may be regarded as
a measure of the influence of bottom slope. The quan-
tities 8 and vy appear as the only parameters if one
expresses the problem in dimensionless form by nor-
malizing 1 by f~!, #and ¥ by |v;|, A by |v;| N7}, and

Bby |v;|%. We first present the initial and steady-state
solutions, and then discuss the characteristics of the
transient evolution. As before, we refer to the case of
negative v; (positive #) as upwelling, and to the case
of positive v; (negative &) as downwelling.

The initial solution at ¢ = 0, just after v; jumps from
zero to a finite value, corresponds to B = 0, because B
becomes nonzero due to cross-isobath advection only
after a finite time. The mixing criterion (11) is assumed
to be marginally satisfied during the initial mixing pro-
cess, so that (11) must be an equality in the initial
solution. The solution to (4) and (5) with B equal to
zero and (11) an equality is identical to the solution
for a horizontal bottom, and was found in that context
by Thompson (1973) to be

_ Vv,
i==-17g (14)
- Uy

oua s _ 28 \' vl

h=2Y Vf—N_(1+B) N (16)

Here u« is the shear velocity, defined by us
= V7,/p,, where 7, is the magnitude of the bottom
shear stress. The initial solution for 4 is consistent with
the scaling introduced by Zilitinkevich (1972) and with
the large-stratification limit of the empirical expression
(based on numerical simulations ) proposed by Weath-
erly and Martin (1978), in which the height of the
stably stratified mixed layer over a horizontal bottom
is proportional to u,/VfN.

The steady-state solution may be found by setting
dB/dt equal to zero in the buoyancy equation (6). It
follows from (6) and the along-isobath momentum
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equation (5) that, in a steady-state solution with non-
zero h,

u=v=0 (17)

so that the velocity averaged over the thickness of the
boundary layer is zero. The cross-isobath momentum
equation (4) reduces to

—fhv,=aB. (18)

Substitution of (17) and (18) into (11) yields a qua-
dratic equation for 4. The solution satisfying the con-
straint that 2 must be non-negative is

hzg(VHwil)ﬂ’Aj—'

where the plus sign corresponds to downwelling (v;
> 0) and the minus sign corresponds to upwelling (v,
< 0). Inequality ( 19) shows that the minimum steady-
state height for downwelling is always greater than the
minimum steady-state height for upwelling. Although
the steady-state solution is an exact solution to the in-
tegrated model equations and is important in under-
standing the transient behavior of the boundary layer,
we believe that it does not represent a state that a real
boundary layer could achieve, for reasons discussed in
section 4b.

Computations indicate that the boundary layer
evolves from the initial solution given by ( 14) through
(16) toward the steady-state solution given by (17)
through (19) as ¢ increases from zero toward positive
infinity. Analysis of the transient evolution between
the initial and steady states is complicated algebraically,
and the details of the analysis are given in the Appendix.
Here we simply present the results, focusing on the
initial transient evolution, because the solution is be-
lieved to become unrealistic as it approaches a steady
state. In the upwelling case (v; negative), the height A
either remains fixed at its initial value for all ¢ or re-
mains fixed for a while before beginning to increase
toward its minimum steady-state value, depending on
whether v is smaller or larger than a critical value .,

defined by
Ye=2VB(1 +B). (20)

In the downwelling case (v; positive), the height 4 al-
ways increases from its initial value toward its mini-
mum steady-state value, and either begins to increase
immediately at ¢ = 0 or remains fixed for a while before
beginning to increase, depending on whether v is

smaller or larger than a critical value 7., defined by
172
ye=(1+ 26)(1—+—B) .

B

In cases for which dh/dt is initially zero, the velocity
within the boundary layer begins immediately to decay
toward its steady-state value of zero, and a time scale
for the initial evolution may be obtained from the fol-

(19)

(21)
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lowing expression for the initial rate of change of the
along-isobath velocity:

1dv_ Vey2f

D dt 2(1 + B8)(1+28)
In cases for which dh/dt is initially nonzero, the ve-
locity within the boundary layer may either increase
or decrease initially, and a time scale for the initial

evolution may be obtained from the following expres-
sion for the initial rate of change of A:

ldh_y 1428 [ v ( B )”2f
hdt 4(1+p8)>33 1+28\1+8

when

when r=0. (22)

t=0. (23)

It is a general feature of these results that the boundary
layer is thicker during downwelling-favorable flows
than it is during equally strong upwelling-favorable
flows.

To illustrate the above results, conditions treated in
Weatherly’s and Martin’s (1978) calculations for up-
welling are first considered, in which f= 0.63 X 10~*
s, a=24X103, N=128X10"2s"" and |v,|
= 15cms~'. As before, C; = 2.5 X 1073 is used. The
corresponding values of the frictional parameter 8 and
the slope parameter vy are approximately 0.36 and 0.69,
respectively. Under these conditions, the initial solution
is identical to the solution illustrated in Fig. 3. In the
initial solution, the boundary layer thickness is ap-
proximately 8 m, the flow speed in the boundary layer
is approximately 85% of the interior flow speed, and
the Ekman veering within the boundary layer is ap-
proximately 30°. The minimum steady-state height for
upwelling is approximately 5 m, which is smaller than
the initial height, and the minimum steady-state height
for downwelling is approximately 50 m, which is almost
an order of magnitude larger than the initial height.

With 8 equal to 0.36 and v equal to 0.69, v is smaller
than the critical values v, defined by both (20) and
(21), so that we expect h to remain fixed at its initial
value for all times during upwelling and to begin in-
creasing immediately toward its minimum steady-state
value during downwelling. In the upwelling case, the
time scale for the initial evolution of ¥, obtained from
(22) is approximately 16 f~!, or approximately 70
hours if f=0.63 X 10™*s™!. The time scale for initial
evolution of # during downwelling, determined from
(23), is approximately 7f !, or approximately 30
hours if f= 0.63 X 107 s~!, Figures 7 and 8 show
dimensionless height and velocity as functions of di-
mensionless time for the upwelling and downwelling
cases, respectively. As expected, # remains constant for
all times in the upwelling case, and / begins to increase
immediately toward the minimum steady-state value
in the downwelling case. The evolution is consistent
with the estimates of the initial time scales. The evo-
lution of the velocity within the boundary layer toward
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FIG. 7. Numerical computations based on the integrated model,
for upwelling-favorable steady forcing applied impulsively at ¢ = 0,
with 8 = 0.36 and v = 0.69. In this case ¥ and v, are negative and
i is positive.

zero is slower in the downwelling case than it is in the
upwelling case.

To illustrate the other type of qualitative behavior
possible during upwelling, we consider 8 = 0.36 and
v = 1.73, which corresponds to a bottom slope 2.5
times greater than in the first exampile, for fixed C;, N
and f. In this case v is larger than the critical value 7,
defined by (20), so that # is expected to remain con-
stant for a while and then begin increasing during up-
welling. Figure 9 confirms this expectation. It is inter-
esting to note that the initial evolution of # and v,
during the period in which 4 is constant, is much more
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FiG. 9. Numerical computations based on the integrated model,
for upwelling-favorable steady forcing applied impulsively at ¢ = 0,
with 8 = 0.36 and v = 1.73. In this case ¥ and v; are negative and
# is positive.

rapid than the later evolution, during the period in
which A evolves.

To illustrate the other type of qualitative behavior
possible during downwelling, we consider 8 = 0.36 and
~ = 13.8, which corresponds to a bottom slope 20 times
greater than in the first example, for fixed C,;, N and
/. In this case « is larger than the critical value v, defined
by (21), so that / is expected to remain constant for
a while and then begin increasing. Figure 10 shows
that this expectation is correct. The period of initial
evolution, in which 4 is fixed, is very short, and the
initial evolution of # and ? is very rapid.
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FIG. 8. Numerical computations based on the integrated model,
for downwelling-favorable steady forcing applied impulsively at ¢ = 0,
with 8 = 0.36 and ¥ = 0.69. In this case ¥ and v; are positive and &
is negative.

ft — dimensionless time

F1G. 10. Numerical computations based on the integrated model,
for downwelling-favorable steady forcing applied impulsively at £ = 0,
with 8 = 0.36 and v = 13.8. In this case D and v are positive and @
is negative.
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Lentz and Trowbridge (1991 ) give a comparison of
model results and CODE observations, and they ad-
dress the question of the applicability of a one-dimen-
sional model to the CODE region. Here, a few com-
putations are presented to illustrate the relevance of
the model to the observations shown in Fig. 1. Con-
ditions typical of the CODE region are f= 107%s™!,
a=5X10"3and N = 1072 s~!, A reasonable value
of C, for conditions without significant surface waves
is 2.5 X 1073, based on an approximately logarithmic
velocity profile in a boundary layer of thickness 10 m
above a bottom with a roughness parameter z, of 0.1
cm, corresponding to relief with a scale of 3 cm (see
Grant et al. 1984). Under these conditions, 8 is ap-
proximately 0.18 and + is approximately 0.71. This
value of v is smaller than the critical values +. defined
by (20) and (21), so that, under impulsively applied
forcing, the boundary layer maintains its initial height
for all times during upwelling, and begins immediately
to grow toward its minimum steady-state height during
downwelling. These results are qualitatively consistent
with observations, in which mixed layer heights for
comparable flow speeds are greater during downwelling
than they are during upwelling. For an interior velocity
of 20 cm s~ the initial height of the boundary layer is
approximately 11 m, comparable to observed mixed
layer heights during upwelling. The time scale for initial
evolution of v during upwelling, calculated from (22),
is approximately 42 hours. The time scale for initial
evolution of 4 during downwelling, calculated from
(23) is approximately 18 hours. These time scales are
comparable to or shorter than the time scale of the
forcing, so that one expects to observe significant de-
partures from the initial solution.

4. Discussion
a. Physics of the model behavior

The key results based on the integrated model, for
the transient problem in which motion begins from
rest, are: 1) favorable comparison with Weatherly’s and
Martin’s (1978) turbulence closure computations; 2)
rapid mixing near the onset of forcing to a height pro-
portional to u,/ V?]V; 3) evolution in which # either
remains fixed at its initial value or increases, depending
on the direction of the forcing and on the values of the
frictional parameter 8 and the slope parameter v; 4)
asymptotic approach to a steady state in which the ver-
tically averaged velocity within the boundary layer is
zero; and 5) thicker mixed layers during downwelling-
favorable flows than during comparably strong up-
welling-favorable flows.

The favorable comparison between the integrated
model results and the turbulence closure computations
provides support for the applicability of the integrated
model, at least under the conditions treated by Weath-
erly and Martin (1978). In addition, the favorable
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comparison indicates that the bulk characteristics of
Weatherly’s and Martin’s simulations may be under-
stood simply as consequences of integral momentum
and buoyancy conservation, coupled with mixing pro-
cesses that maintain the bulk Richardson number at
values grater than approximately unity. In this sense,
Weatherly’s and Martin’s simulations are consistent
with results of stress-driven laboratory entrainment
experiments (Price 1979) and with the behavior of the
oceanic surface mixed layer (Price et al. 1986).

In the solution ~ oc u,/VfN for the initial height
of the boundary layer, both interior stratification and
planetary rotation limit the height to which the layer
can extend. This expression contrasts with the classical
result for the unstratified case, in which the height of
the boundary layer is limited only by planetary rotation,
and h oc u,/f(e.g., Blackadar and Tennekes 1968).
One constraint on the validity of the present analysis
is that the ratio of the initial height u*/Vf_N to the
unstratified scale height u, /f be less than order unity,
in order to justify the basic assumption that stratifi-
cation plays a key role in limiting the height of vertical
mixing,.

The small-time evolution of the height 4, as de-
scribed by the integrated model, is the product of two
competing effects. The first is cross-isobath advection
of buoyancy, which increases the bulk Richardson
number in the upwelling case, therefore retarding ver-
tical mixing, while reducing the bulk Richardson
number in the downwelling case, therefore enhancing
vertical mixing. The second effect is the evolution of
the velocity within the boundary layer, which may ei-
ther promote or retard vertical mixing by increasing
or reducing the velocity jump across the top of the
boundary layer, depending on the precise circum-
stances. If the slope parameter v is sufficiently small
[i.e., if v is smaller than the critical values defined by
(20) and (21)], then cross-isobath advection of buoy-
ancy is the dominant effect, so that the boundary layer
height stays fixed as a result of a stabilizing buoyancy
flux during upwelling (Fig. 7), and begins to grow im-
mediately as a result of a destabilizing buoyancy flux
during downwelling (Fig. 8). If v is larger [i.e., if v is
larger than the critical values defined by (20) and (21)],
then the evolution of the shear across the top of the
boundary layer becomes the dominant effect, so that
different types of behavior occur (Figs. 9 and 10).

The asymptotic approach to a steady state may be
understood by examining the qualitative structure of
the density field (Fig. 11). We consider first the up-
welling case, which corresponds to forcing by a dy-
namic pressure gradient that tends, in the absence of
rotation, to push water upslope. Just after the ini-
tial mixing process, the integrated density anomaly
fo (p — pr)dz is zero (Fig. 11a). After a finite time
interval, the boundary layer is denser than it was ini-
tially, as a result of cross-isobath advection (Fig. 11b).
The integrated buoyancy force on the boundary layer
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FIG. 11. (a) Density profile at ¢ = 0 just after impulsive application
of steady forcing, showing existence of a boundary layer. The dashed
line is the initial density profile. (b) Density field for ¢ > 0 during
upwelling, showing existence of a large density excess in the boundary
fayer. (¢) Density field for # > 0 during downwelling, showing existence
of a density deficit in the boundary layer. In (a) the arrows indicate
the sense of the z-dependent buoyancy force associated with the den-
sity anomaly in the boundary layer. In (b) and (c) the arrows indicate
the sense of the integrated buoyancy force acting on the boundary
layer.

due to the density anomaly is downslope, in opposition
to the forcing by the dynamic pressure gradient. Thus
the magnitude of the net force on the boundary layer
is smaller than it was initially, and consequently the
velocity within the boundary layer must also be smaller
than it was initially. As time passes and the upwelling
process continues, the buoyancy force more nearly
balances the constant forcing by the dynamic pressure
gradient, so that the velocity within the boundary layer
continues to evolve toward zero. During downwelling
the process is the same except that in this case the dy-
namic pressure gradient is downslope and the gravi-
tational force is upslope (Fig. 11c¢).

In the model, thicker boundary layers occur during
downwelling-favorable flows than during comparably
strong upwelling-favorable flows because of cross-iso-
bath advection of buoyancy, which tends to reduce the
bulk Richardson number during downwelling and in-
crease it during upwelling. This model resuit is quali-
tatively consistent with estimates of bottom mixed-
layer height obtained from CODE observations, as is
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discussed in more detail by Lentz and Trowbridge
(1991).

b. Breakdown of the integrated model at large times

Although the steady-state solution given by (17)
through (19) is an exact solution to the integrated
model equations and is important in understanding
the transient behavior of the boundary layer, it does
not, in our opinion, represent a configuration that a
real boundary layer could reach. The reason is that the
integrated model is a plausible approximation only if
the velocity within the boundary layer is fairly uniform,
as stated in section 2. In contrast, if a real boundary
layer were to reach a state in which the integral cross-
isobath momentum balance is (18), it would have a
nonuniform velocity profile, probably including a re-
versal in flow direction, as a result of a nonuniform
buoyancy force acting on the boundary layer.

To demonstrate a nonuniform buoyancy force under
conditions in which the vertically integrated cross-iso-
bath momentum balance is (18), we write the cross-
isobath momentum equation (1) as follows, assuming
that the density p is nearly independent of z within the
well-mixed boundary layer:

—fo +§Z<u'w'> ~ —(fv,+ %)

- aNz(z - % h) . (24)

The first term on the right side of (24) is the vertically
uniform component of the force acting on the bound-
ary layer. The last term in (24) is a nonuniform force
resulting from the nonuniform distribution of pyin (1).
The uniform component of the forcing is represented
in the integrated model. The nonuniform component
of the forcing is not represented explicitly in the inte-
grated model, and must be balanced in a real flow. If
(18) were satisfied, then the uniform component of
the forcing would be zero, and (24) would reduce to

—fv +56-Z-<u'w'> ~ —aNZ(Z —-;—h) . (25

The vertically nonuniform force on the right side of
(25) is upslope (positive) in the lower half of the
boundary layer and downslope (negative ) in the upper
half of the boundary layer.

If a boundary layer were to reach a state with a ver-
tically integrated cross-isobath momentum balance
given by (18), then the velocity within the boundary
layer would be determined by the approximate cross-
isobath momentum equation (25) and by the along-
isobath momentum equation (2). The precise structure
of the velocity field described by these equations cannot
be determined in the absence of constitutive equations.
The qualitative features of two limiting cases are
straightforward, however. In the limit in which the Co-
riolis term on the left side of (25) is vanishingly small
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in comparison to the stress term, (25) suggests a cross-
isobath flow that is upslope in the lower half of the
boundary layer and downslope in the upper half of the
boundary layer. In the opposite limit, in which the stress
term on the left side of (25) is vanishingly small in
comparison to the Coriolis term, (25) describes a uni-
formly sheared along-isobath flow, which is positive in
the upper half of the boundary layer and negative in
the lower half of the boundary layer. In intermediate
cases in which the Coriolis and stress terms in (25) are
comparable to each other, the flow described by (25)
and (2) is more complex than in either limiting case,
but probably contains a reversal in direction, as a result
of the reversal in the direction of the forcing.

The vertically nonuniform, reversing flow structure
suggested by (25) is inconsistent with the assumption
of a fairly uniform velocity profile that is basic to the
integrated model, especially if the vertically averaged
velocity is zero, as indicated by the steady-state expres-
sions (17). In particular, use of a quadratic drag law
relating bottom stress to vertically averaged velocity is
not reasonable, because the vertically averaged velocity
is not representative of the velocity near the bottom,
where the bottom stress is transmitted to the water col-
umn. Similarly, use of a mixing criterion relating
growth of the boundary layer to vertically averaged
velocity is not reasonable, because the vertically av-
eraged velocity is not representative of the velocity near
the top of the boundary layer, where the vertical mixing
occurs that causes the growth of the layer. We therefore
conclude that the integrated model breaks down before
it reaches a steady state, and that the steady-state con-
figuration described by the integrated model is unlikely
to be realistic.

An appreciation for the breakdown of the integrated
model at large times may be obtained by examining
the behavior of the quantity u, defined by

LaN?h
|for + aB/h| "

This quantity is a measure of the strength of the non-
uniform component of the forcing relative to the uni-
form component of the forcing in (24). This quantity
is probably not the only parameter controlling the
breakdown of the integrated model. However, if u is
substantially larger than unity, the above discussion
suggests that the flow within the boundary layer is non-
uniform and that the integrated model is not realistic.

Figure 12 shows u as a function of dimensionless
time f¢ under impulsively applied forcing for three
cases. The first is the upwelling case treated by Weath-
erly and Martin (1978) and shown in Fig. 7, in which
a = 2.4 X 1073, The second is the downwelling case,
shown in Fig. 8, in which @ = 2.4 X 1073, The third
is the downwelling case treated by Weatherly and Mar-
tin, in which a = 2.6 X 107, In all three cases, /= 0.63
X 10™4s™ !, N=128 X 1072s7!,C;=25X1073,
and |v;] = 15 cm s~'. In the upwelling and down-

u= (26)
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FiG. 12. The quantity u [defined in (26}] as a function of dimen-
sionless time f7, from computations based on the integrated model
under impulsively applied forcing. In all three cases, /= 0.63 X 10™*
s, N=128%X102s"!,C;=25%1073,and |v;] = 15cms™'.
Cases 1 and 2 are upwelling and downwelling cases, respectively,
with a = 2.4 X 1073, Case 3 is a downwelling case with & = 2.6
X 1074,

welling cases with relatively steep slopes (a = 2.4
X 107%), u exceeds order unity after ft exceeds ap-
proximately 30, suggesting that the integrated model
breaks down at f7 substantially larger than 30. In the
downwelling case with a relatively mild slope (a = 2.6
X 107*), u remains very small throughout the whole
of the computational period, because of the small value
of 4 and the correspondingly long evolution time [see
(23)]. The dimensionless time in the Weatherly and
Martin computations was limited to values smaller
than approximately 30, and at these relatively small
times u is of order unity or smaller in both of the slop-
ing-bottom cases that they examined (cases 1 and 3 in
Fig. 12). Figure 12 suggests that if Weatherly and Mar-
tin had carried out computations for substantially larger
times in their upwelling case, they would have en-
countered behavior that would not have been repro-
duced well by the integrated model.

¢. Behavior of the boundary layer at large times

The discussion in the previous subsection indicates
that the integrated model breaks down at sufficiently
large times, as a result of increasingly important non-
uniform buoyancy forces acting on the boundary layer.
We present here some simple ideas about the structure
and evolution of the boundary layer at large times,
after the integrated model has become unrealistic. We
concentrate on the downwelling case, for which some
qualitative observational evidence is available.

The present discussion is based on two assumptions.
The first is that the downwelling process, as a result of
the tendency to advect light water beneath dense water,
produces at large times a density structure that varies
continuously from a well-mixed profile within the
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boundary layer to a stably stratified profile in the in-
terior, without abrupt changes in density near the top
of the boundary layer. The buoyancy anomaly within
the boundary layer may then be written
g
=(p — p1) =~ N*(z — h). (27)
o
The second assumption is that the stress term in the
cross-isobath momentum equation (1) is small in

comparison to the Coriolis term, during late stages of
downwelling, so that (1) reduces approximately to

&,
~fo~ = for = =% (o = ). (28)
Substitution of (28) into (27) yields the following
expression for the along-isobath velocity within the
boundary layer:

2

zv,+%(z—h). (29)

Equation (29) describes a velocity profile that varies
linearly from the interior velocity v; at z = A to a bottom
velocity v, at z = 0, where v, is given by

aN?h
f

Equation (29) cannot be valid within the constant stress
layer near the bottom, where the velocity presumably
varies logarithmically. Equation (29) is a plausible ap-
proximation elsewhere in the boundary layer, however.

Integration of (2) over the thickness of the boundary
layer shows that the cross-isobath Ekman flux is pro-
portional to the y component of the bottom stress and
that a downwelling Ekman flux corresponds to a bot-
tom stress with a positive y component. A bottom stress
with a positive y component presumably corresponds
to positive v,. The present analysis of the late stages
of downwelling therefore requires positive vj.

Figure 13 shows the qualitative structure of the den-
sity and velocity profiles described by (27) and (29).
As t increases and the downwelling process continues,
the height of the boundary layer grows in response to
the continuous downslope advection of light water
within the boundary layer. As 4 increases, the bottom
velocity v, decreases, according to (30), and the y
component of the bottom stress and the cross-isobath
Ekman flux presumably also decrease. These ideas in-
dicate approach to a state in which the bottom velocity,
along-isobath bottom stress and Ekman flux are zero,
so that further evolution of the boundary layer ceases.
In this steady-state limit the height of the boundary
layer, determined by setting v, equal to zero in (30),

1S
V2
¥y N’

Uy =0 — (30)
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FiG. 13. Qualitative density and velocity fields in the bottom
boundary layer at large times under downwelling-favorable forcing.

This steady-state height is always smaller than the
steady-state height (19) given by the integrated model
for the downwelling case. It should be noted that in-
tegration of (2) and (3) over the thickness of the
boundary layer shows that in a steady state the along-
isobath bottom stress must be zero, independently of
the details of the velocity profile.

CODE observations provide qualitative observa-
tional support for the steady-state relationship (31) be-
tween 4 and v; (Lentz and Trowbridge 1991). In ad-
dition, observational support for the qualitative struc-
ture of the density field shown in Fig. 13 is given by
numerous conductivity—temperature—depth (CTD)
profiles obtained over the sloping shelves off of Oregon,
Peru and California, which indicate a well-mixed
boundary layer and a smooth transition to a stably
stratified interior, without large density jumps near the
top of the boundary layer, when the boundary layer is
thick, as during late stages of downwelling (e.g., Hol-
brook and Halpern 1972; Huyer et al. 1978). The den-
sity structure in Fig. 13 is a plausible consequence of
the tendency for advection of light water beneath dense
water during downwelling, when the growth of the
boundary layer is possibly controlled by incipient
gravitational instability near the top of the layer.

The velocity structure shown in Fig. 13 is a plausible
consequence of (1) when the density in the boundary
layer is well-mixed vertically and the bottom stress is
small, so that the stress term in (1) may be expected
to be small in comparison to the Coriolis term. The
above analysis of late stages of downwelling suggests a
vanishing bottom stress at large times, so that the as-
sumption of a small stress term in (1) is internally
consistent in the analysis. Support for the velocity
structure shown in Fig. 13 is also provided by obser-
vations. Differentiation of (28) or (29) gives

d  aN?

—_— i~ —

2" "f (32)
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This expression describes an along-isobath thermal
wind shear maintained by a cross-isobath density gra-
dient dp/dx within the boundary layer. Some obser-
vational support for (32) is provided by CODE mea-
surements showing positive along-isobath shears, with
magnitudes comparable to that given by (32), during
one event when the bottom mixed layer was thick
(Lentz and Trowbridge 1991). Additional support for
(32) is provided by recent measurements, with better
resolution of the bottom mixed layer than the CODE
observations, obtained over the continental shelf off
northern California (personal communication, B.
Butman, U.S. Geological Survey, Woods Hole, Mas-
sachusetts).

Although observations support the existence of the
along-isobath shear given by (32) when the boundary
layer is thick, it is not clear at present how this shear
is maintained in a well-mixed density field without
producing Reynolds stresses that contribute signifi-
cantly to the cross-isobath momentum balance, thus
invalidating (28). Our current hypothesis is that, during
late stages of downwelling, the turbulence does not in
fact mix the density completely uniformly in z
throughout the boundary layer, but instead leaves a
small, stable density gradient sufficiently strong to sup-
press vertical mixing without destroying it completely.
This idea is supported by a CTD profile obtained in
CODE during an event in which the bottom mixed
layer was thick and the along-isobath velocity within
the mixed layer had a shear consistent with (32) (Lentz
and Trowbridge 1991). The CTD profile indicates a
weak, stable density gradient sufficiently strong to
maintain a gradient Richardson number of approxi-
mately Y4 within the bottom mixed layer, suggesting a
state of marginal stability with weak turbulence.

In the presence of the shear given by (32), the density
gradient required to maintain the gradient Richardson
number at a value of ¥ is

__g_a_p%l(.a_f]\ﬁ)2=18_2}v2‘

As an example, with v equal to 0.69, as in Weatherly’s
and Martin’s (1978) upwelling case, the density gra-
dient given by (33) is approximately 17 times smaller
than the interior density gradient. This density field
would appear well mixed in the bottom boundary layer
in all except the most accurate and carefully examined
density measurements. If v is larger, the density gra-
dient given by (33) may be comparable to the interior
density gradient. In this case, the analysis must be
modified to account for the effect of vertically non-
uniform p in the thermal wind balance (32). Thus,
the arguments in this section are valid only for suffi-
ciently small .

(33)

5. Conclusions

We have presented an analysis of the stably stratified,
rotating boundary layer above a sloping bottom, under
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idealized conditions in which the boundary layer mixes
from rest into a uniformly stratified interior with hor-
izontal isopycnal surfaces and a spatially uniform,
along-isobath interior velocity. The purpose of the
analysis was to examine the observed asymmetric re-
sponse of the boundary layer, in which the character-
istics of the layer depends on the direction, in addition
to the magnitude, of the interior velocity. The analysis
is based on an integrated model, in which the bottom
stress is determined from a quadratic drag law, and the
height of the boundary layer is determined from a mix-
ing criterion involving the bulk Richardson number
(Pollard et al. 1973).

Results based on the integrated model compare fa-
vorably with the turbulence closure computations re-
ported by Weatherly and Martin (1978), suggesting
that the bulk features of the Weatherly and Martin
simulations may be understood as consequences of in-
tegral conservation of momentum and buoyancy, cou-
pled with mixing processes that maintain the bulk
Richardson number at values greater than approxi-
mately unity. Under rapidly applied forcing, the inte-
grated model indicates mixing at the onset of forcing
to a height limited by both planetary rotation and in-
terior stratification, followed by evolution in which the
height of the boundary layer may either increase or
remain fixed near its initial value, depending on the
behavior of the buoyancy within the boundary layer
and the shear across the top of the boundary layer. The
model predicts reduction of the velocity within the
boundary layer with increasing time, in response to
increasingly important buoyancy forces that oppose the
forcing by the dynamic pressure gradient. The solution
asymptotically approaches a steady state in which there
is no vertically integrated force acting on the boundary
layer, and the velocity averaged over the thickness of
the boundary layer is zero. The model indicates thinner
boundary layers during upwelling-favorable flows than
during comparably strong downwelling-favorable
flows, in qualitative agreement with observations. This
asymmetric behavior is a result of cross-isobath ad-
vection of buoyancy, which tends to retard vertical
mixing during upwelling and to enhance vertical mix-
ing during downwelling.

The integrated model is believed to break down at
sufficiently large times under constant forcing, as a re-
sult of a vertically nonuniform buoyancy field that
dominates the forcing as the solution approaches a
steady state, suggesting a nonuniform velocity profile
inconsistent with model assumptions. Simplified ar-
guments for the downwelling case at large times suggest
a structure in which the density field varies continu-
ously from a well-mixed profile within the boundary
layer to a stably stratified profile in the interior, and
the along-isobath velocity is uniformly sheared as a
result of a thermal wind balance in the cross-isobath
momentum equation.
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Although limited in applicability because of its sim-
plicity, the model presented in this paper captures in
a plausible way the asymmetric behavior apparent in
the observations in which the response of the boundary
layer depends on the direction, as well as the magni-
tude, of the interior velocity. In the model, the asym-
metric response is due to the combined effects of strat-
ification, planetary rotation, and a sloping bottom. The
model shows how these effects influence the height and
evolution of the boundary layer. The insight provided
by the analysis may be useful in understanding more
complex oceanic boundary layer flows.
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APPENDIX

Initial Transient Response to Impulsively
Applied Forcing

Our computations indicate that, as ¢ increases, the
solution for impulsively applied forcing based on the
integrated model evolves from the initial state given
by (14) through (16) toward the steady state given by
(17) through (19). Some information about the evo-
lution between these two states may be inferred simply
by comparing the two expressions for the height 4. For
upwelling, it can be shown that the initial height given
by (16) is greater than the minimum steady-state height

given by (19) if
v <2VB(1 + B). (34)

If (34) is satisfied, it is reasonable to expect (and nu-
merical computations confirm) that during upwelling
h remains constant at its initial value as the boundary
layer evolves toward a steady state. If (34) is not sat-
isfied, it is reasonable to expect (and numerical com-
putations confirm) that during upwelling / increases
from its initial value toward its minimum steady-state
value as ¢ approaches infinity. Similarly, for down-
welling it can be shown that the minimum steady-state
height given by (19) is always greater than the initial
height given by (16). It is therefore reasonable to ex-
pect, and numerical computations confirm, that during
downwelling / always increases from its initial value
to its minimum steady-state value as ¢ increases.

To proceed further in an analysis of the temporal
evolution, it is convenient to rewrite the integrated
equations describing the boundary layer in a different
way. For fixed v;, the momentum equations (4) and
(5) give & and v as functions of B and #, with 7 as a
parameter. We therefore have

di 0u dB du dh

4 9B di | oh dt’ (35)
dv 0v dB avdh
4 oBa Tonar (36)

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 21

Similarly, the time derivative of R,(¢) may be written,
by differentiating (10),
1 dRy _

R, d l//B lPh

(37)
where

_ 11272 _ 2.“.
¢B—(B+2Nh) [1 2Ryl

5
— 2Ry(D ~ v)) 5}’;] (38)

- 1 a2 2 ou
Yi (B+2Nh) [Nh 2Rbu6h

5
— 2R, — 1)) ﬁ] . (39)

The partial derivatives on the right sides of these equa-
tions may be determined from the momentum equa-
tions (4) and (5), and are found, after straightforward
algebra, to be

Bou _ ., 1+2tan’(¢) aB
zo8 (O anie) e 40
bov _ .2 __Ml_ﬁli
538 VD5 ante) e D
hou _ ., 1+2tan2(¢)1)1—1")_,2
gon )T anie) 5 @)
(42)
hov _ ., tan?(¢) v;— )
son SO gy 5 T (4
(43)

where ¢ is the angle between the velocity vector and
the positive x axis, defined by

¢ = tan"(ﬁt) )
i

Equations (6), (35), (36) and (37) are a set of coupled,
nonlinear, first-order, ordinary differential equations,
which, together with the constraint (11) on the bulk
Richardson number, determine the evolution of #,
v, B, Ry and h.

The quantities dR,/ dt and dh/dt behave in a special
way. If at any instant R, is greater than unity, then
(11) is satisfied and no vertical mixing occurs, so that
dh/dt is zero. If R, is equal to unity and cross-isobath
advection of buoyancy would by itself increase R, [i.e.,
if the first term on the right side of (37) is positive]
then no vertical mixing is required to satisfy (11), and
dh/ dt is again zero. Finally, if R, is equal to unity and
cross-isobath advection of buoyancy would by itself
reduce R} [i.e., if the first term on the right side of (37)
is negative] then # must increase slightly to maintain
R, at the critical value of unity, and dh/dt takes on

(44)
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the value required to make the right side of (37) equal
to zero. With this behavior, R, can never become less
than unity.

Information about the initial behavior of the tran-
sient solution may be inferred from the initial behavior
of R,. In the initial solution [(14) through (16)] the
mixing criterion ( 11) is marginally satisfied, so that R,
is equal to unity. Substitution of (14) through (16)
into (37) through (43) yields, when ¢ is equal to zero,

12 2dR [ v (B Y7ol
N "[1 1+26( )

2 dt 1+ vy
dB 48 o7 dh
v a W)

The first term on the right side of (45) represents
changes in R;, due to cross-isobath advection of buoy-
ancy, and the second term represents changes in R,
due to changes in /. In the case of upwelling, it can
easily be shown that the first term on the right side of
(45) is always positive. During upwelling, then, cross-
isobath advection of buoyancy initially increases Rj,
so0 that vertical mixing does not occur and dh/dt is in
all cases initially zero. In the case of downwelling, on
the other hand, the first term on the right side of (45)
is negative if

1+8

1/2
vy <(1 +2ﬁ)(—) . (46)

B
If (46) is satisfied, cross-isobath advection of buoyancy
would, in the absence of other effects, decrease R, at
small times during downwelling. In this case # must
begin to increase immediately in order to satisfy (11),
and it does so in such a way that R, maintains a con-
stant value of unity. If (46) is not satisfied, /4 initially
remains constant during downwelling.

For cases in which dh/dt is nonzero initially, we can
determine the initial value of dh/dt by setting the left
side of (45) equal to zero and substituting (6), (14)
and (15). The result is

Ldh_y 1+28 [/ v (B )"
h dt 4(1+5)3/2[ 1+2;8(1+;8) ]f
when =0. (47)

Similarly, an expression for the initial value of
dv /dt can be obtained by substituting the initial so-
lution into (6), (36), (41) and (43). The result is

1 VBrS 26 _1dn
v odt 2(0+8)(1+28) 1+28h dt
when ¢=0. (48)

Equations (47) and (48) give information about the
initial behavior of the boundary layer, and may be used
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to obtain estimates of the inverses of the time scales
for initial evolution of # and ¥. Similar expressions
can, of course, be obtained for # and any other quantity
of interest.
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