
Atlantic meridional heat transports computed
from balancing Earth’s energy locally
Kevin E. Trenberth1 and John T. Fasullo1

1National Center for Atmospheric Research, Boulder, Colorado, USA

Abstract The Atlantic Meridional Overturning Circulation plays a major role in moving heat and carbon
around in the ocean. A new estimate of ocean heat transports for 2000 through 2013 throughout the
Atlantic is derived. Top-of-atmosphere radiation is combined with atmospheric reanalyses to estimate
surface heat fluxes and combined with vertically integrated ocean heat content to estimate ocean heat
transport divergence as a residual. Atlantic peak northward ocean heat transports average 1.18 ± 0.13 PW
(1 sigma) at 15°N but vary considerably in latitude and time. Results agree well with observational estimates
at 26.5°N from the RAPID array, but for 2004–2013 the meridional heat transport is 1.00 ± 0.11 PW versus
1.23 ± 0.11 PW for RAPID. In addition, these results have no hint of a trend, unlike the RAPID results. Strong
westerlies north of a meridian drive ocean currents and an ocean heat loss into the atmosphere that is
exacerbated by a decrease in ocean heat transport northward.

1. Introduction

The Earth’s climate varies on multiple time scales in addition to long-term changes from human activities.
Decadal variations are often conflated with the so-called “forced” climate change in the observational record.
The primary source of decadal variability comes from the oceans, which can take up heat, move it around,
and sequester it for long periods of time [Trenberth and Stepaniak, 2004]. However, when and where the heat
is restored to the atmosphere it has profound influences on the surface climate. Accordingly, it is vital to
better understand the climate and ocean variability and also how it may change as the climate changes.
Moreover, this leads to prospects for improved decadal climate prediction.

Of particular interest are changes in the North Atlantic Ocean, both because of their role in the climate system
and their proximity to and impacts on the major populations in the Northern Hemisphere. Even though the
Atlantic is a much smaller basin than the Pacific, the deeper ocean heat content (OHC) changes and the con-
nections to the Arctic provide it with an important and unique role in climate variability, especially through
changes in the Atlantic Meridional Overturning Circulation (AMOC) [Buckley and Marshall, 2016]. The AMOC is
responsible for most of the meridional transport of heat and carbon by the midlatitude northern hemisphere
ocean and is associated with the production of about half of the global ocean’s deep waters in the northern
North Atlantic [Rhein et al., 2013]. The AMOC changes have been linked to abrupt climate change in the
paleo-climate record, and freshwater flushing is especially suspected in contributing to rapid changes
[Masson-Delmotte et al., 2013]. The AMOC is also a primary source of decadal climate predictability
[Kirtman et al., 2013]. Moreover, future projections with global warming suggest a weakening of the AMOC
circulation with consequential profound local climate effects [Collins et al., 2013]. However, there are substan-
tial disagreements among models both in terms of how well they simulate the AMOC and the magnitude of
future changes [Branstator and Teng, 2012; Kirtman et al., 2013; Danabasoglu et al., 2014]. Accordingly, there is
considerable interest in how the AMOC is varying and whether the projected trends are evident or not.

Since April 2004, variabilities in the full AMOC and meridional heat flux have been estimated on the basis of
direct ocean observations at 26.5°N by the RAPID Climate Change Programme along with the Meridional
Overturning Circulation and Heat Flux Array (henceforth the RAPID array) [Baringer and Larsen, 2001;
Cunningham et al., 2007; Kanzow et al., 2007; Johns et al., 2011; McCarthy et al., 2012; Srokosz and Bryden,
2015]. The evolution of the array and methods of computation and assumptions are explored in McCarthy
et al. [2015]. The variability in the Atlantic Oceanmeridional heat transports (MHTs) arisesmainly from changes
in the AMOC volume transports (R2 = 0.94, annual cycle included) [Johns et al., 2011]. However, themagnitude
of the variability has surprised many [Srokosz and Bryden, 2015] and undermined detection of trends. The
observed record exhibits a slightweakeningbetween the first and secondhalves (see Figure 5presented later).
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Here we explore the variability and possible trends in MHT in AMOC by using an entirely different but com-
plementary approach based upon computing the MHT in the ocean as a residual of the total energy budget.
This has an advantage of providing values not just at 26.5°N but throughout the Atlantic so that we can see
directly how the AMOC peak transports fluctuate in latitude as well as time. We can also extend the record
back in time. The approach has been used in the past [Trenberth and Caron, 2001; Trenberth and Fasullo,
2008], but results based upon new data and more recent higher-resolution atmospheric reanalyses are
now considered much more reliable. While they have some uncertainties, the nature of the approximations
and errors is quite different from ocean measurement techniques and the approach is complementary.

2. Earth’s Energy Budget

It is now possible to estimate most components of the Earth’s energy budget, including its major reservoirs
and fluxes. All components, however, contain uncertainties, and these cannot be adequately assessed unless
examined in a comprehensive framework. Since about 2000, many new and improved observations exist:
top-of-atmosphere (TOA) radiation from Clouds and the Earth’s Radiant Energy System, temperatures from
the increasing Argo array in the ocean, and the synthesis of all observations in reanalysis products from
four-dimensional data assimilation in both the atmosphere and ocean (see methods in the supporting infor-
mation). The absolute value of net downward radiation at TOA, RT, is established from an inventory of the
energy imbalance [Trenberth et al., 2016].

Given RT [Loeb et al., 2009, 2012; Allan et al., 2014] and the atmospheric energy transport and its divergence,
we can estimate the net flux of energy into the surface [Trenberth et al., 2001; Trenberth and Stepaniak, 2003a,
2003b; Trenberth and Caron, 2001; Trenberth and Fasullo, 2008; Fasullo and Trenberth, 2008; Trenberth, 2009;
Liu et al., 2015]. The vertically integrated atmospheric energy transports and their divergence have been com-
puted from several atmospheric reanalyses [Berrisford et al., 2011; Dee et al., 2011; Simmons et al., 2010, 2014],
but we use only ERA-Interim here as they are superior in several assessments andmuch improved over earlier
reanalyses [e.g., Trenberth et al., 2011; Trenberth and Fasullo, 2013]. Moreover, the surface heat flux estimates
are superior to estimates from current atmospheric reanalyses because the latter are model-derived and have
incomplete forcings (especially aerosol effects) and substantial TOA and surface imbalances [Mayer and
Haimberger, 2012; Trenberth and Fasullo, 2013; Liu et al., 2015].

In turn, the ocean surface heat flux is balanced by changes in OHC and transports of energy within the ocean
and their divergence locally. OHC is computed from the vertically integrated ocean reanalysis temperatures
[von Schuckmann et al., 2014, 2016; Roemmich et al., 2015; Balmaseda et al., 2013a, 2013b; Tietsche et al., 2015;
Zuo et al., 2015], and ORAP5 was assessed to be the best available [Trenberth et al., 2016]. However, we have
become aware of a problem in ORAP5 OHC below 1000m in the North Atlantic in a region off the
Mediterranean Sea (30 to 45°N, 10 to 30°W) where spurious warming occurs at 1700m depth and spurious
cooling occurs near 1250m depth (see the supporting information). We have therefore also computed results
by using ORAP5 down to only 1000m depth, and we use these for the more detailed analysis, while the full-
depth result is preferred elsewhere.

The atmospheric energy budget is used to compute the divergence of the total transport of atmospheric
energy FA, which is balanced by the vertically integrated diabatic heating Q1, and the atmospheric moisture
budget is used to compute the column latent heating Q2 [Trenberth et al., 2001; Trenberth and Stepaniak,
2003a, 2003b] (see the supporting information). Subtracting these two removes the dominating effects of
precipitation and replaces it with the surface moistening (evaporation). Ignoring tendencies for the moment,

∇•FA ¼ Q1 � Q2 ¼ RT þ Fs (1)

where Fs is the upwards net surface energy flux. Within the ocean, the net surface heat flux Fs is balanced by
either changes in OHC or a divergence of ocean heat content;

Fs ¼ –dOHC=dt–∇•FO (2)

where FO is the transport of oceanic energy. Integrating the zonal integral [ ] of ocean variables from the
North Pole southward gives the zonal mean MHT at any latitude ϕ

MHT ϕð Þ ¼ ∫
90

ϕ Fs þ dOHT=dt½ �adϕ (3)
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where a is the Earth’s radius. We use the monthly means of analyses from 2000 through 2013 or 2014, as the
data permit. The data sets contain pronounced annual cycles, and some aspects, such as sea ice formation
and melt in the Arctic and streamflow discharge from continents, influence our results, yet contain substan-
tial uncertainties that are most likely systematic. Accordingly, the results are shown for 12month running
means (see the supporting information).

We have attempted to estimate error bars for all results. As well as temporal sampling issues, we assess
potential biases and structural uncertainties and possible errors in trends (e.g., associated from the changing
observing system and methods of analysis) (see the supporting information). The uncertainty analysis shows
that while there is room for improvement in the atmospheric analyses and hence the inferred net surface
fluxes, improving OHC analyses is most important in refining the results.

3. Annual Means

We first present new results for annual mean meridional ocean heat transports; earlier estimates are given
in Trenberth and Caron [2001]. The total vertically integrated diabatic heating in the atmosphere, Q1, and
the vertically integrated latent heating, Q2 = L (P-E) (Figure S1 the supporting information), show the dom-
inance of the precipitation latent heating in the tropics [Trenberth and Stepaniak, 2003b]. The latent heat-
ing also reveals the strong negative values in the subtropics associated with the evaporation of moisture
over the oceans into the atmosphere (moistening of the atmosphere but cooling the ocean). The extratro-
pical storm track precipitation is also evident in the Q2 field but is more than compensated for by radiative
effects in Q1.

At TOA, RT (Figure 1) is much more zonally symmetric and reveals the excess of solar radiation in the tropics,
while the outgoing longwave radiation dominates at higher latitudes. The total atmospheric energy gain,
Q1-Q2 (Figure 1), removes the dominant effects of precipitation latent heating and replaces them with the
evaporative moistening, so that the heating is more uniform with latitude over a broad swath of the tropics
and subtropics than RT.

The net upward surface flux Fs (Figure 2), given by the difference in the two panels of Figure 1, shows the
downward heat fluxes throughout much of the tropics, strong upward fluxes especially off the east coasts
of Asia and North America, and weaker upward fluxes in the southern oceans, North Atlantic and Arctic.
There is a huge seasonality to these fluxes (Figure S2), with strong uptake by the ocean in summer, and
release of energy in winter [Trenberth and Stepaniak, 2003b, 2004; Trenberth and Fasullo, 2008], so that the
annual mean is a relatively small residual (Figure S2). What is new in these latest estimates is the appearance
of small-scale structures, such as the character of upward fluxes south and southeast of Africa that switch in
sign quite abruptly only a few hundred kilometers farther south. These structures appear to be real and are
replicated in the National Center for Atmospheric Research (NCAR) Community Earth System Model [Kay
et al., 2015; Trenberth et al., 2015b] (Figure S2), for instance. Indeed, many small-scale features are replicated
between these observed fields and the model fields in spite of known shortcomings in the model.

Accordingly, there has to be an ocean heat transport from the source (blue) regions of Figure 2 to the sink
(red) regions. This is readily computed for the zonal mean as a residual of RT and atmospheric transports
(Figure 3) or by integrating Figure 2 from the north southward while accounting for the changes in OHC
(see equation (3)). It can be also allocated into the individual basin components (Figure 3).

The net northward heat flux by the ocean through the Bering Strait varies substantially from year to year
reaching a maximum in 2007 of 15 to 20 TW [Woodgate et al., 2006, 2012], but even then the values are a
factor of 20 smaller than the mean transports (Figure 3) near 60°N. Accordingly, the ocean heat transports
are northward throughout the Atlantic into the Arctic Ocean. Consistent with previous findings [Trenberth
and Caron, 2001], the maximum net poleward transports of 5.7 ± 0.1 PW (2 sigma) occur between 35 and
40° latitude in both hemispheres, with by far the dominant contribution coming from the atmosphere. The
ocean meridional heat transports are comparable in magnitude to those in the atmosphere in the tropics
and slightly stronger in the Northern Hemisphere. The maximum northward transport in the Atlantic is
1.18 ± 0.26 PW (2 sigma) at 15°N in these results (Figure S5), and southward heat transport from the South
Pacific Ocean helps to feed the northward transport in the Atlantic (Figure 3). Uncertainties for the Atlantic
are addressed mainly in the supporting information.
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4. Atlantic Ocean Meridional Heat Transports

The time series of the Atlantic zonal mean MHTs with OHC integrated to 1000m depth, as 12month running
means (Figure 4), reveal considerable variability in several ways. The full-depth result is given in Figure S3. In
these computations, the transport through the Bering Strait is ignored. Not only is there variability from 1 year
to the next but also the latitude where the maximum northward heat transport occurs has ranged from 12 to
25°N. Values of 1.3 PW are not uncommon, but with notable weakening in 2005 and 2010, with the latter
dropping to a peak running mean MHT of 0.9 PW in northern spring of 2010. In 2005 the minimum peak
transport is in late winter. Another brief minimum, again less then 1 PW, is in autumn of 2012.

We can readily break down the contributions to the MHT from its components. The net surface energy flux Fs
and the changes in OHC (Figure S4) drive the ocean heat transports. The other components, TOA radiation,
and divergence of atmospheric energy transport, influence the Fs computation (Figure S5). The average

Figure 1. Atmospheric energy budget: (top) The average annual mean TOA net radiation downwards and (bottom) the ver-
tically integrated total heating (Q1-Q2) for 2000–2014 in Wm�2.
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profiles of the transports and its components, plus their standard deviation as a function of latitude (Figure
S6), show that the biggest source of variance is the changes in OHC, while TOA radiation contributes little.
The variance of the Fs and ∇•FA are similar. However, the changes in OHC and MHT are highly correlated.
Hence, while a strong surface heat flux out of the northern ocean may deplete OHC over that region, the
decrease in MHT augments OHC changes. Of course a strong surface heat flux also implies changes in

Figure 3. Northward energy transports: The annual and zonal means of the northward energy transports for 2000–2014
in PW for (left) the total Earth system (black), the atmosphere (red) and the ocean (blue). (right) The ocean component
broken down into the contributions from the Atlantic (violet), Pacific (red), and Indian (green) Oceans which combine
south of 35°S to give the southern ocean value, as given in the small map below. For dOHC/dt, data only through 2013 are
considered. The error bars are ±1 standard deviation.

Figure 2. Surface heat flux: The net upward (from ocean to atmosphere) surface heat flux (Fs) for 2000–2014 in Wm�2.

Geophysical Research Letters 10.1002/2016GL072475
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surface winds and wind stress curl that drive ocean currents, both in the gyre and overturning components.
Numerical studies suggest that the variability in the AMOC is primarily associated with basin-wide changes in
wind stress [e.g., Buckley and Marshall, 2016; Yang, 2015]. Accordingly, a decrease in MHT, as occurred in
2009–2010, results in a decrease in OHC, perhaps somewhat independently of the surface heat flux into
the atmosphere to the north.

Although these components add up, causality cannot be readily determined, because of the complex pro-
cesses within the ocean and how they respond to changes in surface winds [Cunningham et al., 2013]. For
instance, it is likely that RT is more a response to variations than a cause. One primary source of variability
arises from largely internal atmospheric variability and especially changes in the North Atlantic Oscillation
(NAO) [Eden and Jung, 2001; Danabasoglu et al., 2012; Delworth et al., 2016]. A case of a strong positive NAO
(+2.0 standard deviation anomaly) in January 1989 [Trenberth et al., 2002], which led to cold outbreaks over
the northeast of Canada and Greenland and resulted in vertically integrated atmospheric energy divergence
of>250Wm�2 arising fromheat fluxes out of the ocean in the vicinity of the Labrador Sea, was comparedwith
energy convergence in the same region in January 1998, when theNAO indexwas close to zero. The anomalies
in both years exceeded ±105Wm�2 and were>1 standard deviation departures from the mean.

In northern winter 2010 the NAO was exceptionally low (for December-January-February-March the NAO
index was 2.5 standard deviations below normal) affecting the AMOC and its MHT and sea ice cover
[Delworth et al., 2016]. ApositiveNAOfavors strongwesterlywindsacross theAtlanticmidlatitudes,whichbring
cooler dryer air from North America leading to much greater surface heat and moisture fluxes into the atmo-
sphere in winter. This cools the ocean, increases deepwater formation in the Labrador Sea area, and leads to
a stronger AMOCseveral years later [Stepanov andHaines, 2014;Delworth et al., 2016]. In turn, the latter increase
MHT and warm the northern regions. The extreme cold in Europe in 2015 has been linked back to the ocean
changes [Duchezetal., 2016], and it isprimarilyduetoextremeoceanheat lossdrivenbyatmosphericcirculation
changes in the preceding two winters combined with the re-emergence of cold ocean water masses.

5. Meridional Heat Transports at the RAPID Array

The variability in the Atlantic Ocean MHTs arises mainly from changes in the AMOC volume transports [Johns
et al., 2011], which are best known from direct ocean measurements near 26.5°N in the RAPID array. Although
nominally at 26.5°N, the actual moorings across the Atlantic range from about 24°N to 28°N. Accordingly,
results have been computed at 25, 26, and 27°N and agree quite well with observational estimates from
the RAPID array (Figure S8), but with an offset and a somewhat different overall trend. To avoid the OHC

Figure 4. Atlantic meridional heat transport: The 12month running mean meridional heat transport northward in the
Atlantic in PW computed by using OHC 0–1000m.
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problems below 1000m, we use the MHT at 26°N with OHC only down to 1000m (Figure 5). At 26°N, the
mean MHT is 1.02 ± 0.11 PW (1 sigma for 12month running means) for 2000–2014 or 1.00 ± 0.11 PW for
2004–2013 versus 1.23 ± 0.11 PW for RAPID (2), where the values quoted are for 0–1000m. The full-depth
results are 0.05 PW higher. Values change by less than 0.01 PW at 25 and 27°N. The standard deviation for
2001 through 2013 is 0.08 PW for Fs and 0.12 PW for dOHT/dt. However, dOHC/dt and MHT are highly
significantly correlated 0.73, and Fs is correlated with dOHC/dt �0.59 (just beyond the 5% significance
level). The variability in Fs in turn arises from standard deviations of 0.055 PW from atmospheric energy
divergence and 0.017 PW from TOA radiation.

A simple but not unique interpretation is that when there is a strong heat flux into the atmosphere north of a
meridian, it drives a strong ocean heat loss (dOHC/dt< 0) over the region that is exacerbated by a decrease in
the heat-flow north across the meridian (MHT reduced), so that the latter are strongly (significantly) corre-
lated. The MHT at 26.5°N is correlated >0.55 (statistically significant at the 5% level) with MHT from 5°N to
40°N, and the MHT variance peaks about 30°N but with a falloff in values mainly north of 40°N (Figure S6).
The time series (not shown) indicate that the above behavior applies most of the time 2003 to early 2008,
and 2010–2013, but from mid-2008 until mid-2009, anomalies in Fs, MHT, and dOHT/dt were all positive;
i.e., the anomalous upward surface heat flux was supported by MHT being above average, while OHC
increased, suggesting that the change in ocean circulation played a key role.

A statistical reconstruction of the AMOC (not the MHT) at 26°N using sea surface height (from altimetry) after
1993 builds in the RAPID values [Frajka-Williams, 2015]; it suggests no overall trend although with consider-
able variability and has some resemblance to our values from 2000 to 2004.

Ocean models have had difficulty in simulating the exact magnitude of the MHTs [Danabasoglu et al., 2014;
Msadek et al., 2013; Stepanov et al., 2016]. By forcing models with a version of observed surface fluxes and
performing exact computations of MHT versus the approximate methods used in RAPID, it can be shown that
the RAPID array does not properly resolve the transport processes near the western boundary and the
assumption of geostrophy falls short in the presence of ocean recirculation so that the true estimates are
about 0.2 PW lower than previously claimed [Stepanov et al., 2016]. Danabasoglu et al. [2012], Danabasoglu
et al. [2014],Msadek et al. [2013] and Buckley and Marshall [2016] show that all model estimates of meridional
heat transport in the North Atlantic considered (18 in the case of Danabasoglu et al. [2014]) are lower than the
RAPID value, although the models likely have biases. Moreover, there is no downward trend in the model

Figure 5. RAPID array heat transports: The 12month running mean northward heat transports across 26°N (black) from
Figure 4 compared with results from the RAPID array (red) in PW. The error bars are ±1 standard deviation, for RAPID in
pink, and for current results in gray, with a component (equivalent to a 0.42Wm�2 trend) added to represent trend
uncertainty (darker gray).
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results. However, a recent ocean reanalysis [Jackson et al., 2016] quite closely replicates the RAPID results,
although their trend is closer to ours. Possibly, the trend is influenced in RAPID by missing data in 2004
and 2006 [Cunningham et al., 2007; McCarthy et al., 2015]. These factors and mooring adjustments add inho-
mogeneities to the RAPID results that have yet to be fully assessed. Consequently, model results provide sup-
port for the observational estimates derived here in terms of the different trend and offset. Nevertheless,
there are reasons to also be somewhat suspicious of the trends in our results because of changes in the obser-
ving system and their influences on the atmospheric reanalyses notably in late 2009 [Trenberth et al., 2015a].
The estimated impact is at most 0.2Wm�2 which is 0.03 PW in the MHT at 26°N (Figure 5). In addition, the
ocean reanalyses have OHC uncertainties whose effects can be seen by comparing Figure 5 with Figure S8
at 26°N and which are reflected in the error bars.

The methods used here provide an independent framework for assessing ocean heat transports and particu-
larly those associated with the main branches of its overturning circulation. The AMOC heat transport esti-
mates allow for an extension of values back to 2000. Moreover, the method provides complementary
information about the oceans to that from in situ observations and models and can be implemented
throughout the global ocean to produce two-dimensional (vector) divergent ocean heat transports. Such
estimates are likely to be essential in distinguishing between forced and internal variations in the climate sys-
tem as the oceans adjust to our changing climate.
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