
' ?; f/'/'

1/
... :'>'V'7,7

.
, .: W

i;.' i

mmmmwm ;.',<'

'I <)'
I I

,
• • . Ti

.'l^'
;'. M <

'

<. ^ I
'

f". ' ' l" i

'/ 'j. ^f( u

'' <1



:iv r.y-

i'* r^r. ^'^ --"r^ r ^.P^»

-^::::^^^5^;. w-
.r^r^^r^'

^:^ H \%



•^V>n;

\^^^C^V^

^^^^^

f^.m

rrr>':r>:

^/^^

./^^''-.A^^'
^^r^v»5

»^'^^..

r ,y^r'^;^^r







i.L s



TRANSACTIONS

OF THE

CAMBRIDGE

PHILOSOPHICAL SOCIETY.

ESTABLISHED NOVEMBER 15, 1819.

VOLUME THE EIGHTH.

CAMBRIDGE:
I'RIXTKD AT TUB UXIVBRHITV PRESS:

AND FOLD HT

JOHN WILLIAM PARKER, WEST STRAND, LONDON;
J. DETGHTON; AND MACMILLAN & CO.. CAMBRIPGE.

M.DCCC.XLIX.





CONTENTS OF THE EIGHTH VOLUME.

PART I.

PAGE

'• On the Foundations of the Theory of Probabilities : by R. L. Ellis, Esq.

M.A., Fellow of Trinity College 1

II. On the Reflexion and Refraction of Light at the Surface of an Uncrystallized

Body: by the Rev. M. O'Brien, late Fellow of Cains College 7

III. On the Possibility of accounting for the Absorption of Light, by supposing it

due to the Motion of the Particles of Matter: by the Rev. M. O'Brien,

late Fellow of Caius College 27

IV. On a new Fundamental Equation in Hydrodynamics: by the Rev. James

Challis, M.A., Plumian Professor of Astronomy and Experimental Philo-

sophy in the University of Cambridge 31

V. Observations on the Nature of the Biliary Secretion ;—the object being to shew,

that the Bile is essentially composed of an Electro-negative body in chemical

cojnbination with one or more inorganic bases: by George Kemp, M.B.,

St Peter's College 44

VI. On the Motion of Glaciers: by William Hopkins, M.A., and F.R.S.,

Fellow of the Cambridge Philosophical Society, of the Geological Society,

and of the Royal Astronomical Society 50

VII. On the Theory of Determinants : by A. Caylev, Esq., Fellow of Trinity

College 75

VIII. On Small Finite Oscillations: by the Rev. H. HoLDiTCH, Fellow of Caius

College, and of the Cambridge Philosophical Society 89

IX. On some Cases of Fluid Motion: by G. G. Stokes, B.A., Fellow of Pembroke

College 1 .5

'

X. Notice on the Occurrence of Land and Freshwater Shells with Bones of some

extinct Animals in the Gravel near Cambridge : by P. B. Brodie, F.G.S.,

of Emmanuel College 138

62



CONTENTS.

PART II.

PAOE

N°. XI. On the Foundation of Algebra, No. III. : Aj^ Augustus De Morgan, Esq.,

V.P.R.A.S., F.C.P.S., of Trinili) College; Professor of Mathematics in

Universilij College, London 1 39

XII. On the Measure of the Force of Testimony in Cases of Legal Evidence: by

John Tozer, Esq., M.A., Barristcr-at-Law ; Fellow of Gonrille and Cuius

College US

XIII. On the Motion of Glaciers, [^Second Memoir'^: by William Hopkins, Esq.,

M.A., and F.R.S., Fellon- of the Cambridge Philosophiral Society, of the

Geological Society, and of the Royal Astronomical Society 1 59

XIV. On the Fundamental Antithesis of Philosophy : by W. Whewell, D.D.,

Master of Trinity College, and Professor of Moral Philosophy 170

XV. On Divergent Series, and various Points of Analysis connected with them:

by Augustus De Morgan, Esq., V.P.R.A.S., F.C.P.S., of Trinity College;

Professor of Mathematics in University College, London 1 82

XVI. On the Method of Least Squares: by R. L. Ellis, Esq., M.A., Fellow of

Trinity College 204

XVII. On the Transport of Erratic Blocks: by William Hopkins, Esq., M.A.,

and F.R.S., Fellow of the Cambridge Philosophical Society, of the Geological

Society, and of the Royal Astronomical Society 220



CONTENTS.

PART III.

N°. XVIII.

XIX.

XX.

XXI.

XXII.

XXIII.

XXIV.

XXV.

XXVI.

XXVII.

XXVIII.

XXIX.

XXX.

PAGE

On the Foundation of Algebra, No. IV., oii Trifle Algebra : by Augustus

De Morgan, Esq., V.P.R.A.S., F.C.P.S., of Trinity College; Professor

of Mathematics in University College, London 241

On the Values of the Sine and Cosine of an Infinite Angle: by S. Eahnshaw,

M.A., of St John's College, Cambridge 255

On the Connexion between the Sciences of Mtchanics and Geometry : by

the Rev. H. Goodwin, Fellow of Caius College, and of the Cambridge

Philosophical Society 269

On the Pure Science of Magnitude and Direction: by the Rev. H. Goodwin,

Fellow of Caius College, and of the Cambridge Philosophical Society 278

On the Theories of the Internal Friction of Fluids in Motion, and of the

Equilibrium and Motion of Elastic Solids : by G. G. Stokes, M.A.,

Fellow of Pembroke College, Cambridge 287

Calculations of the Heights of the Aurora; Boreales, of the 17th September

and 12th October, 1833; with Observations upon the Locality of the

Meteor: by Richard Potter, M.A., late Felloiv of Queens' College,

Cambridge, and Professor of Natural Philosophy and Astronomy, Uni-

versity College, London 320

The Mathematical Theory of the two great Solitary Waves of the First

Order : by S. Earnshaw, M.A., of St John's College, Cambridge 326

On the Geometrical Representation of the Roots of Algebraic Equatiotis:

by the Rev. H. Goodwin, late Fellow of Caius College, and Fellow

of the Cambridge Philosophical Society 342

Oh a Change in the State of an Eye affected nith a Malformation : by

G. B. Airy, Esq., Astronomer Royal 361

A Theory of Luminous Rays on the Hypothesis of Undulations : by the

Rev. J. Challis, M.A., Plumian Professor of Astronomy and Experi-

mental Philosophy in the University of Cambridge 363

A Theory of the Polarization of Light on the Hypothesis of Undulations:

by the Rev. J. Challis, M.A., Plumian Professor of Astronomy and

Experimental Philosophy in the University of Cambridge 371

Oyi the Structure of the Syllogism, and on the Application of the Theory

of Probabilities to Questions of Argument and Authority: by Augustus

De Morgan, Sec. R.A.S., of Trinity College ; Professor of Mathematics

in University College, London 379

Supplement to a Memoir On some Cases of Fluid Motion : by George G.

Stokes, M.A., Fellow of Pembroke College, Cambridge 409



CONTENTS.

PART IV.

PAGE

N". XXXI. On a Netv Notation for expressing various Conditions and Equations in

Geometry, Mechanics, and Astronomy : by the Rev. M. O'Bbien, late

Fellotv of Cuius College, Professor of Natural Philosophy and Astronomy

in King's College, London 415

XXXII. On the Principle of Continuity, in reference to certain Results of Analysis

:

by J. R. Young, Professor of Mathematics in Belfast College 429

XXXIII. On the Theory of Oscillatory Waves ; by G. G. Stokes, M.A., Fellow of Pem-

broke College 44

1

XXXIV. On the Internal Pressure to which Rock Masses may be subjected, and its

possible Influence in the Production of the Laminated Structure: by

W. Hopkins, Esq., M.A., F.R.S., &c 456

XXXV. On the Partition of Numbers, and on Combinations and Permutations : by

Henry Wabbubton, M.A., M.P., F.R.S., F.G.S., formerly of Trinity

College 471

XXXVI. On a Peculiar Defect of Vision : by Henry Goode, M.B., of Pembroke

College 493

XXXVII. Contributions towards a System of Symbolical Geometry and Mechanics : by the

Rev. M. O'Brien, Professor of Natural Philosophy and Astronomy in

King's College, London, and late Fellow of Caius College, Cambridge 497

XXXVIII. On the Symbolical Equation of Vibratory Motion of an Elastic Medium,

whether Crystallized or Uncrystallized : by ike Rev. M. O'Brien, late

Fellow of Caius College, Professor of Natural Philosophy and Astronomy

in King's College, London 508

XXXIX. A Theory of the Transmission of Light through Transparent Media, and

of Double Refraction, on the Hypothesis of Undulations : by the Rev.

J. CbalI/IS, M. a., Plumian Professor of Astronomy and Experimental

Philosophy in the University of Cambridge 524



CONTENTS. vn

PART V.

N". XL.

XLI.

XLI.*

XLir.

XLIII.

XLIV.

XLV.

XLVI.

XLVII.

XLVIII.

XLIX.

L.

LI.

LI I.

On the Critical Values of the Sums of Periodic Series : by G. G. Stokes,

M.A., Fellow of Pembroke College, Cambridge 533

A Mathematical Theory of Luminous Vibrations: by the Rev. J. Challis,

M.A., F.R.A.S., Plumian Professor of Astronomy and Experimental Phi-

losophy in the University of Cambridge 5S-i

Supplement to a Paper "On the Intensity of Light in the neighbourhood of a

Caustic:" by George Biddei,!, Airy, Esq., Astronomer Royal 595

Some Remarks on the Theory of Matter: by Robert L. Ellis, M.A.,

Fellow of Trinity College, Cambridge 600

Methods of Integrating Partial Differential Equations: by Augustus De
Morgan, of Trinity College, Cambridge, Secretary of the Royal Astrono-

mical Society, and Professor of Mathematics in University College, London. 606

Second Memoir on the Fundamental Antithesis of Philosophy : by VV.

Whbwell, D.D., Master of Trinity College, and Professor of Moral

Philosophy 6I4,

Observations of the Aurora Borealis of November 17, 1848, made at the

Cambridge Observatory : by the Rev. J. Challis, M.A., F.R.S., F.R.A.S.,

Plumian Professor of Astronomy and Experimental Philosophy in the

University of Cambridge 621

On Clock Escapements: by Edmund Beckett Denison, Esq., M.A., of
Trinity College, Cambridge 633

(Supplement.) On Turret-Clock Remontoirs: by E. B. Denison, M.A.,

of Trinity College 630

On the Formation of the Central Spot of Neniton's Rings beyond the Critical

Angle: by G. G. Stokes, M.A., Fellow of Pembroke College 642

Of the Intrinsic Equation of a Curve, and its Application: by W. Whewell,
D.D., Master of Trinity College 650

On the Variation of Gravity at the Surface of the Earth : by G. G. Stokes,

M.A., Fellow of Pembroke College 672

On Hegel's Criticism of Newton's Principia : by W. Whewell, D.D.,

Master of Trinity College 606

Discussion of a Differential Equation relali?ig to the breaking of Railway
Bridges: by G. G. Stokes, M.A., Fellow of Pembroke College 707



ADVERTISEMENT.

The Society us a body is not to be considered respotisib/e for any

facts and opinions advanced in the several Papers, ichich inust rest

entirely on the credit of their respective Authors.



TRANSACTIONS

O F T H E
1

CAMBRIDGE

PHILOSOPHICAL SOCIETY.

Volume VIII. Part I.

CAMBRIDGE:
PRINTED AT THE UNIVERSITY PRESS;

AND SOLD BT

JOHN WILLIAM PARKER, WEST STRAND, LONDON;
J. & J. J. DEIGHTON; AND T. STEVENSON, CAMniUDGE.

M.DCCO.XLIV.





Oh the Foundations of the Theory of ProhahUities. By R. L. Ellis, Esq.

M.A., Fellow of Trinity College.

[Read Feb. 14, 1842.]

The Theory of Probabilities is at once a metaphysical and a mathematical science. The
mathematical part of it has been fully developed, while, generally speaking, its metaphysical

tendencies have not received much attention.

This is the more remarkable, as they are in direct opposition to the views of the nature

of knowledge, generally adopted at present.

(2.) The theory received its present form during the ascendancy of the school of Con-

dillac. It rejects all reference to a priori truths as such, and attempts to establish them as

mathematical deductions from the simple notion of probability. Are we prepared to admit,

that our confidence in the regularity of nature is merely a corollary from Bernouilli's theorem ?

That until this theorem was published, mankind could give no account of convictions they had

always held, and on which they had always acted .'' If we are not, what refutation have we to

give .'' For these views are entitled to refutation, from the general reception they have met

with, from the authority of the great writers by whom they were propounded, and even from

the imposing form of the mathematical demonstration in which they are invested.

I shall be satisfied if the present essay does no more than call attention to the inconsist-

ency of the theory of probabilities with any otlier than a sensatio7ial philosophy.

(3.) As the first principles of the mathematical theory are familiar to every one, I shall

merely recapitulate them.

If on a given trial, there is no reason to expect one event rather than another, they are said

to be equally possible.

The probability of an event is the number of equally possible ways in which it may take

place, divided by the total number of such ways which may occur on the given trial.

If a,, 6,, TWi, denote equally possible cases which may occur on one trial, a.;,b2,...k2 those

which may occur on a second trial, 0363. ...pa those belonging to a third. Sec: then a,,

62O3.... aia^bfi...hc. &c. are all equally possible complex results.

Hence it follows that on the repetition of the same trial k times, the probability that an event

whose simple probability is m will occur p times is

'-^^^^, rm' (1 - w)*-^ :

l.Z...pl.Z...{k-p)

this follows merely by the doctrine of combinations. These are all the propositions to which

I shall have occasion to refer.

(1.) If the probability of a given event be correctly determined, the event will on a long

run of trials, tend to recur with frequency proportional to this probability.

This is generally proved mathematically. It seems to me to be true a priori.

When on a single trial we expect one event rather than another, we necessarily believe that

on a series of similar trials the former event will occur more frequently than the latter. The
connection between these two things seems to me to be an ultimate fact, or rather, for I would

not be understood to deny the possibility of farther analysis—to be a fact, the evidence of

which must rest upon an appeal to consciousness. Let any one endeavour to frame a case in

which he may expect one event on a single trial, and yet believe that on a series of trials

Vol. VIII. Paet I. A



2 Mr. ELLIS, ON THE FOUNDATIONS OF THE THEORY OF PROBABILITIES.

another will occur more frequently; or a case in which he may be able to divest himself of

the belief that the expected event will occur more frequently than any other.

For myself, after o-iving a painful degree of attention to the point, I have been unable

to sever the judgment that one event is more likely to happen than another, or that it is to be

expected in preference to it, from the behef that on the long run it will occur more frequently.

(5.) It follows as a limiting case, that when we expect two events equally, we believe they

will recur equally on the long run. In this belief we may of course be mistaken : if we are,

we are wron^ in expecting the two events equally, and in thinking them equally possible.

Conversely, if the events are truly equally possible, they really will tend to recur equally on

a series of trials. But this proves the proposition placed at the head of the section : for if any

event can occur in a out of h equally possible ways, its probability is — : and if all these 6 cases

tend to recur equally on the long run, the event must tend to occur a times out of 6 ; or in the

ratio of its prpbability. Which was to be proved.

(C.) Let us now examine the mathematical demonstration of this proposition. In entering

upon it, we are supposed to have no reason whatever to believe that equally possible events

tend to occur with equal frequency.

It is well known that what is called Bernouilli's theorem, relates to the comparative mag-

nitudes of the several terms of the binomial expansion.

\k\
The general terra of !>» + (1 - "»)}', is ^ ^ ,

.

r ™'' (l - »n)'"^, which is the probability
' [p][&-p]

that an event whose simple probability is m will recur p times on k trials ; and hence the

connexion between the binomial ex2iansion and the theory of probabilities.

(7.) A particular example will suffice to illustrate what seems to me to be the essential

defect of the mathematical proof of the proposition in question.

A coin is to be thrown 100 times : there are s'"" definite sequences of heads and reverses,

all equally possible if the coin is fair. One only of these gives an unbroken series of 100 heads.

A very large number give 50 heads and 50 reverses ; and Bernouilli's theorem shows that an

absolute majority of the 2'°° possible sequences give the difitrence between the number of

lieads and reverses less than 5.

If we took 1000 throws, the absolute majority of the s"""* possible sequences give the

difference less than 7, which is proportionally smaller than 5. And so on.

Now all this is not only true, but important.

But it is not what we want. We want a reason for believing that on a series of trials,

an event tends to occur with frequency proportional to its probability ; or in other words, that

generally speaking, a group of 100 or 1000 will afford an approximate estimate of this probability.

But, althougli a series of 100 heads can occur in one way only, and one of 50 heads and
50 reverses in a great many, there is not the shadow of a reason for saying that therefore,

the former series is a rare and remarkable event, and the latter, comparatively at least, an

ordinary one.

No7i constat, but the single case producing 100 heads may occur so much oftener than any
case which produces 50 only, that a series of 100 heads may Ije a very common occurrence, and
one of 50 heads and 50 reverses may be a curious anomaly.

Increase the number of trials to 1000, or to 10,000. Precisely the same objection applies:

namely, that in Bernouilli's theorem, it is merely proved that one event is more probable than
another, i. e. by the definition can occur in more equally possible ways, and that there is no
ground whatever for saying, it will therefore occur oftener, or that it is a more natural
occurrence. On the contrary, the event shown to be improbable may occur 10,000 times for

once that the probable one is met with.

To deny this, is to admit that if an event can take place in more equally possible ways,
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it will take place more frequently. But if this is admitted, Bernouilli's theorem is unnecessary.

It leaves the matter just where it was before, and introduces no new element into the question.

(8.) Thus, both by an appeal to consciousness, and by the impossiljility of dispensing

with such an admission, we are led to recognize the principle, that when an event is

expected rather than another, we believe it will occur more frequently on the long run. And
thus we perceive that we are in the habit of forming judgments as to the comparative fre-

quency of recurrence of different possible results of similar trials. These judgments are founded,

not on the fortuitous and varying circumstances of each trial, but on those which are per-

manent—on what is called the nature of the case. They involve the fundamental axiom, that

on the long run, the action of fortuitous causes disappears. Associated with this axiom is the

idea of an average among discordant results, &c.

I conceive this axiom to be an a j)riori truth, supplied by the mind itself, which is ever

endeavouring to introduce order and regularity among the objects of its perceptions.

(9.) With a view to conciseness, I omit several interesting points which here present them-

selves—namely, the connection between the axiom just stated, and the inductive principle;

the real utility of Bernouilli's theorem ; and what seems to me to be the true definition of

probability, founded on a reference to the ratios developed on the long run.

I proceed to illustrate what has been said by a few passages from Laplace's " JEssai

Philosophique sur les Probabilitis.''''

(10.) It seems obvious that no mathematical deduction from premises which do not relate to

laws of nature, can establish such laws. Yet it is beyond doubt that Laplace thought Bernouilli's

theorem afforded a demonstration of a general law of nature, extending even to the moral world.

At p. xtii. of the Essay, prefixed as an Introduction to the tliird edition of the Theorie des

Probabilites, after giving some account of the theorem of James Bernouilli, Laplace proceeds

:

" On pent tirer du theorcme precedent cette consequence qui doit etre regardee comnie une loi

generale, savoir que les rapports des effets de la nature, sont a fort peu pres constants, quand

ces effets sont consideres en grand nombre Je n'excepte pas de la loi precedente, les effets

dus aux causes morales."

It appears not to have occurred to Laplace, that this theorem is founded on the mental phe-

nomenon of expectation. But it is clear that expectation never could exist, if we did not believe

in the general similarity of the past to the future, i. e. in the regularity of nature, which is here

deduced from it.

A little further on,.,." II suit encore de ce theoreme que dans une serie d'evenemens inde-

finiment prolongee. Taction des causes regulieres et constantes doit Temporter a la longue, sur

celle, des causes irregulieres Ainsi des chances favorables et nombreuses etant constamment

attachees a Tobservation des principes eternels de raison de justice et d'humanite, qui fondent

et qui maintiennent les societes ; il y a un grand avantage a se conformer a ces principes, et

de graves inconveniens a s'en ecarter. Que Ton consulte les histoires, et sa propre experience on

y verra tons les faits venir a Tappui de ce resultat du calcul." Without disputing the truth of

the conclusion, we may doubt whether it is to be considered as a " resultat du calcdl."

The same expression occurs immediately afterwards in another passage, in which the writer

seems to allude to the history of his own times, and to the ambition of the great chieftain whom he

at one time served.

Indeed it would seem as if to Laplace all the lessons of history were merely confirmations

of the "resultats du calcul." We are tempted to say with Cicero—"hie ab artificio suo non

recessit."

(11.) The results of the theory of probabilities express the number of ways in which a

given event can occur, or the proportional number of times it will occur on the long run : they

are not to be taken as the measure of any mental state ; nor are we entitled to assume that the

theory is applicable wherever a presumption exists in favour of a proposition whose truth is un-

certain.

a2
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Nevertlieless it has been applied to a great variety of inductive results; with what success

and in what manner, I shall now attempt to enquire.

(12.) Our confidence in any inductive result varies with a variety of circumstances; one of

these is the number of particular cases from which it is deduced. Now the measure of this confi-

dence which the theory professes to give, depends on this number exclusively. Yet no one can

deny, that the force of the induction may vary, while this number remains unchanged. This

consideration appears almost to amount to a reductio ad absurdum.

(13.) If, on m occasions, a certain event has "been observed, there is a presumption that

it will recur on the next occasion. This presumption the theory of probabilities estimates at

. But here two questions arise; What shall constitute a "next occasion .''" What degree
»j + 2

of similarity in the new event to those which have preceded it, entitles it to be considered a

recurrence of the same event .''

Let me take an example given by a late writer :

—

«Ten vessels sail up a river. All have flags. The presumption that the next vessel will

have a flag is — . Let us suppose the ten vessels to be Indiamcn. Is the passing up of

any vessel whatever, from a wherry to a man of war, to be considered as constituting a " next

occasion .'" or will an Indiaman only satisfy the conditions of the question .''

It is clear that in the latter case, the presumption that the next Indiaman would have

a flag is much stronger, than that, as in the former case, the next vessel of any kind would

have one. Yet the theory gives — as the presumption in both cases. If right in one, it

cannot be right in the other. Again, let all the flags be red. Is it — that the next

vessel will have a red flag, or a flag at all .'' If the same value be given to the pre-

sumption in both cases, a flag of any other colour must be an impossibility.

It is to be noticed, that I only refer to the visible differences among different kinds

of vessels, and not to any knowledge we may have about them from previous acquaintance.

(14.) I turn to a more celebrated application of the theory.

All the movements of the planetary system, known as yet, are from west to east. This
undoubtedly affords a strong presumption in favour of some common cause producing mo-
tion in that direction. But this presumption depends not merely upon the number of observed
movements, but also on the natural affinity which in a greater or less degree appears to

exist among them.

This is so natural a reflection, that Lacroix, in calculating the mathematical value of
the presumption, omits the rotatory movements, and, I believe, those of the secondary planets,

in order, as he expressly says, to include none but similar movements. But in the admis-
sion thus by implication made, that regard must be had to the similarity of the move-
ments, too much is conceded for the interests of the theory. For are the retained move-
ments absolutely similar ? The planets move in orbits of unequal eccentricity and in different

planes
: they are themselves bodies of very various sizes ; some have many satellites and

others none. If these points of difference were diminished or removed, the presumption in

favour of a common cause determining the direction of their movements would be strength-
ened ; its calculated value would not increase, and rice versa.

Again, up to the close of 1811, it appears (Laplace) that 100 comets had been observed,
.53 having a direct and 47 a retrograde movement. If these comets were gradually to lose

the peculiarities which distinguish them from planets—we should have 64 planets with direct
movement, 47 with retrograde. The presumption we are considering would, in such a case,
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be very much weakened. At present, we unhesitatingly exclude the comets on account of

their striking peculiarities : in the case supposed we should with equal confidence include them

in the induction. But at what precise point of their transition-state are we abruptly, from

giving them no weight at all in the induction, to give them as much as the old planets ?

(15.) It is difficult to acquiesce in a theory which leads to so many conclusions seem-

ingly in opposition to the common sense of mankind.

One of the most singular of them may, perhaps, serve as a key to explain their nature.

When any event, whose cause is unknown, occurs, the probability that its a priori pro-

bability was greater than ^ is £. Such at least is the received result. But in reality,

the a priori probability of a given event has no absolute determinate value independent of

the point of view in which it is considered. Every judgment of probability involves an

analysis of the event contemplated. We toss a die, and an ace is thrown. Here is a com-

plex event. We resolve it into, (l) the tossing of the die ; (2) the coming up of the ace.

The first constitutes the ' trial,' on which different possible results might have occurred ; the

second is the particular result which actually did occur. They are in fact related as genus
and differentia. Beside both, there are many circumstances of the event ; as how the die

was tossed, by whom, at what time, rejected as irrelevant.

This applies in every case of probability. Take the case of a vessel sailing up a river.

The vessel has a flag. What was the a priori probability of this .'' Before any answer

can by possibility be given to the enquiry, we must know (l) what circumstances the person

who makes it rejects as irrelevant. Such as, e. g. the colour of which the vessel is painted,

whether it is sailing on a wind, &c. &c. ; (2) what circumstances constitute in his mind the
' trial ;' the experiment which is to lead to the result of flag or no flag ; must the vessel

have three masts ? must it be square rigged ? (3) What idea he forms to himself of a flag.

Is a pendant a flag ? Must the flag have a particular form and colour ? Is it matter of

indifference whether it is at the peak or the main ? Unless all such points were clearly under-

stood, the most perfect acquaintance with the nature of the case would not enable us to say

what was the a priori probability of the event : for this depends, not only on the event,

but also on the mind which contemplates it.

The assertion therefore that | is the probability that any observed event had on an a priori

probability greater than i, or that three out of four observed events had such an a priori pro-

bability, seems totally to want precision. A priori probability to what mind ? In relation to

what way of looking at them .''

(16.) Let us see if this will throw any light on the question. Let A be a large number.
And suppose we took h trials and that the probability of a certain event from each (considered

in a determinate manner) was —
; let us take a second set of h trials for which the same quantity

.2 m- 1 ,

IS — : and so on to and 1.m m
When the trials have taken place, we shall have approximately,

/I 2 m-1 \
h {- + - + + + 1

\m m ml
of the sought events. Of these

Me%i)^(i^3* -)•
had a priori a probability greater than ^. Summing these series and dividing the second by

, „ 3m + 2
the first, we get , for the ratio which the latter class of events bears to the total number.

The limit of this, when m is infinite, or when we take an infinite number of sets of trials is |,
which is the received result.
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(17.) Thus, it appears this result is based upon some thing equivalent to the following as-

sumption : There are an infinity of events whose simple probability a priori is x, and another

infinite number for which it is of. These two infinities bear to one another the definite ratio of

equality, (.c and w may represent any quantity from to 1.) Now in reality, as we have seen,

these numbers are not only infinite, but in rerum natura indeterminate, and therefore the assump-

tion that they bear to one another a definite ratio is illusory.

And this assumption runs through all the applications of the theory to events whose causes

are unknown.

This position could be directly proved only by an analysis of the various ways in which this

part of the subject has been considered, which would require a good deal of detail. Those who

take an interest in the question, may without much difficulty satisfy themselves, whether the

view I have taken (which at least avoids the manifest contradictions of the received results) is

correct.

(18.) I will add only one remark. If in (16) instead of taking one event from each of the

trials there specified, we had taken p in succession, and kept account only of those sequences

of p events each, which contained none but events of the kind sought ; we should have had

of such sequences

1 2"

'^^-V^^m'-' ')

of which

'•{(^.^r^ !

ii

these two expressions is ultimately

would have belonged to trials wliere the simple a -priori probability was > - : the ratio of

y;Wr
-G)'

This is the expression applied to determine the probability of a common cause among similar

phenomena, as in the case already mentioned of the planets.

But this application is founded on a petitio principii : we assume that all the phenomena
are allied : that they are the results of repetitions of the same trial, that they have the same
simple probability ; all that, setting other objections aside, we really determine, is the probability,

1
that this simple probability common to all these allied phenomena is >

But how docs this determine the force of the presumption that the phenomena are allied,

or to use Condorcet's illustration, that they all come out of the same infinite lottery ?

(19.) The object of this little essay being to call attention to the subject rather than

fully to discuss it, I have omitted several questions which entered into my original design.

The principle on which the whole depends, is the necessity of recognizing the tendency
of a series of trials towards regularity, as the basis of the theory of probabilities.

I have also attempted to show that the estimates furnished by what is called the theory

a posteriori of the force of inductive results are illusory.

If these two positions were satisfactorily established, the theory would cease to be, what
I cannot avoid thinking it now is, in opposition to a philosophy of science which recognizes

ideal elements of knowledge, and which makes the process of induction depend on them.



II. On the Reflexion and Eefraction of Light at the Surface of an Uncrystallixed

Body. By the Rev. M. O'Brien, late Fellow of Caius College.

tRead Nov. 28, 1842.]

The object of the present paper is to determine completely the Laws of Reflexion and Re-

fraction of Light, without introducing any empirical considerations, or omitting to take into account

the normal vibrations which are generated in cases of oblique incidence. Though several eminent

niathematicans have written upon this subject, I believe that most of what is here contained is new.

I must state, however, that I have not been able to procure a Memoir by M. Cauchy, which

he constantly refers to in his Exercices d^Analyse et de Physique Mathimatique (for 1840),

and in which he has given a general method of arriving at the equations of condition relative

to the limits of bodies. I can therefore only guess at the physical principles upon which he

obtains his equations of condition, which equations, in the form he has given them in the

Exercices for 1840, are particular cases of those obtained in the present paper. As M. Cauchy

states that he has made use of some new principles in obtaining his equations of condition

(see the Nouveaux Ewercices, Prague 1835, p. 203), I am justified in assuming that the

method employed in the present paper is different from his ; for I have deduced my equations

of connection, not from any new physical principal, but from an old and obvious one, which

has been either directly used, or tacitly assumed by all the writers upon the refle.xion and refraction

of Sound and Light, that I am acquainted with. This principle is very clearly stated by

Poisson, in the Memoires de Vltistitut, Tom. x. p. 320.

The following is a brief outline of the course pursued in the present paper.

In Section I. I have proved some very simple theorems by means of which I have after-

wards deduced the laws of reflexion and refraction, without assuming the integrals of the

equations of motion, or supposing the waves to be plane.

In Section II. I have deduced the equations of connection of the vibratory motion of two

media, separated by a plane, from the principle above alluded to. These equations of con-

nection are apparently the same as those given by Mr Green in the Cambridge Transactions,

Vol. VII. p. 11.; but they differ from them very materially with respect to the constants in-

volved in them, and on that account they, and the results deduced from them, are perfectly

free from difficulties* which seem to me to be fatal to the correctness of Mr Green's equations,

and which he appears to have felt himself. I shall not however enter into this subject now,

as I shall be obliged to do so on a future occasion.

I have shewn that these equations of connection are considerably simplified when we

suppose the ether to have the same constitution as ordinary gases, and neglect the variation of

temperature.

In Section III. I have applied these equations of connection to determine completely the

laws of reflexion and refraction of polarized light, both as regards direction, colour, and in-

tensity, taking fully into account the production of normal as well as transversal waves in the

" One difficulty I have mentioned a little farther on. Another difficulty is this, that there are just the same constants (A) and

(/?) in Mr fjreen's Equations of Connection, as those in his Equations of Motion : which arises, first, from an error in the form

of the function V»2 {Cuinbriilye Trdusactions, Vol. vii. p. 7), and secondly, because <p2 is not symmetrical round the axes of y and

« at the plane of separation, as Mr Green assumes it to be.
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case of oblique incidence, where the vibrations take place parallel to the plane of incidence.

The laws, which the directions of the normal rays obey, are curious, and have not been noticed

before so far as I am aware ; nor indeed can I perceive that these rays have been taken into

account in a satisfactory manner by writers upon this subject.

In this section I have shewn that if we take the equations of connection in their simplest

form, Fresnal's formulse wiU result from them on two suppositions ; first, that normal waves

are propagated very slowly compared with transversal waves ; and secondly, that normal waves

are propagated with the same, or nearly the same, velocity in vacuum and in transparent media.

The former hypothesis seems to me to be very improbable, for it is very difficult to conceive

a stable medium in which normal waves are propagated more slowly than transversal. I may

observe here, that M. Cauchy's equations and results are obtained by assuming the truth of

this hypothesis, (see his Exercices for 1840, p. 135), and appear, on tiiis account, liable to

objection.

In Section IV. I have shewn that Fresnal's formulae may be applied, without making any

vafue use of the symbol v — 1, to the case of Total Internal Reflexion, and that he was

fully justified in the very remarkable interpretation be put upon his formulae in this case.

In Section V. I have shewn that normal waves will never produce any sensible effect on

the eye by producing transversal vibrations, provided the velocity of propagation of normal

waves be either very great, or very small, compared with that of transversal waves.

In Section VI. I have attempted to prove, from well established experimental laws, that

polarized light consists of vibrations at right angles to the plane of polarization.

In Section VII. I have briefly shewn how we must proceed when the equations of con-

nection are not taken in their simplest form, in which they are used in Section iii.

Lastly, in Section VIII. I have obtained expressions which apply to substances of high

refractive power, such as the diamond, and from which I have deduced results in exact

accordance with the experiments of Mr Airy. These expressions are different from those of

Mr Green, which certainly cannot be correct, since they give (see Cambridge Transactions,

/3' 1 fi^ 1 . .

Vol. VII. p. 23,) ^ = more than — , for plate-glass ; and — = more than - , for diamond : which

results are utterly at variance with experiment. The fact is, Mr Green's original mistake

respecting the constants {A) and (J5), mentioned above, obliges him to suppose that the index

of refraction is the same for normal and for transversal waves, and this makes his results true

only for substances of very low refractive power ; for instance, they are quite at fault in the

case of common plate-glass, both as regards the intensity and the rotation of the plane of a

polarized ray. If v is put = ;a in ray result, it agrees with Mr Green's, which confirms the

correctness of what I have just stated,

SECTION I.

Preliminary Observations.

Before we proceed to the direct investigation of the laws of Reflexion and Refraction, we
shall make a few observations, which will be found useful hereafter.

(1.) Let a, /3, 7 be the small displacements at any point {xyz) of a wave propagated

with a normal velocity («) \ p, q, s the direction of the cosines of v, and V the actual velocity

of the vibrating particle, i.e. the resultant of the velocities -^, ~- , -~
at at at
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(A).

q da

V dt

'

da

dz

s da

V dt

Then we have the following relations, viz.

'' da p da da
da; V dt dy

and similar equations connecting the partial differential coefficients of /3, 7, and V,

_ or any function of these quantities.

It is easy to prove these equations, without assuming the integrals of the equations of

motion, in the following manner

:

Let P be the point (xyz), AP the wave-surface which contains P at any time t. A'P' the

position of this wave-surface at the time t + dt, PP' the normal

to the wave at P, PQ' a line parallel to the axis of x
meeting the wave A'P' in Q'. Then assuming dx to represent

PQ', we have

PP' = PQ' cos P'PQ' = pdx.

Also, since the space PP" is described in the time dt

with the velocity v, PP" = vdt; hence we have

vdf =pdx (1).

Now at the time(< + dt), any point of the wave A'P is in

the same phase of vibration as any point of the wave AP at

the time (t) ; therefore a, /3, 7, V, or any function of these

quantities will not be altered by putting x + dx, and t + dt,

for X and t. We have therefore

-— dx A dt = 0, which by (l) becomes
dx dt

da

dx
p da

V dt

-r- = 7T , and
s da

vli

In the same way we may shew that

da g dc

dy V dt' dz

and thus the truth of the equations (A) is proved.

(2.) Suppose the wave-surface to be a cylindrical surface perpendicular to the plane of xz,

the vibrations to take place parallel to that plane, and therefore /3 = 0, 9 = 0, and a and 7
independent of y : then we have the following relations between V, v, and the partial differential

coefficients of a and 7, viz.

da „ dy~ = Vp, -^ = Vs
dt ^ dt

(B).

(O.

•• •••
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To prove these formulas, let PP be the normal, and V ^

e the angle which the direction of V makes with PP',

then V is equivalent to Fcosfl along PP, and V sin G

perpendicular to PP ; therefore, since s and p are the

sine and cosine of the angle which PP makes with the

axis of !c, we have

— = VcosO.p - VsinO.s..
dt

^= FCOS0.S+ Vsme.p.
dt

• 0).

..(2).

(1) - + (2) -, and (l) 1 - (2) ? , give (since p^ + q" = 1),

p da s dy V s da p dy V . ^^ — + - -f = - cos 0, - :77
- - -77 = - - sm 0,

V dt V dt V V dt V dt u

which, by the equations (A) last article, reduce to

da dy V „ da dy V
-— + —i- = cos 0, -i = - sin .

dxi dai « dx dx v

In these two equations, and in (l) and (2), put = 0, and we immediately obtain the formulae

TT
(B); again, put = —, and we obtain the formula (C)*-

(3.) If M,, M2, Ms, &c....w„ be any functions of x and t, such that the equations

Ui + U^ + U^ + w„ = (1)

dui du^

dte dt

du^ du2 du„ du„

d.t? dtdx "' dt

are true for all values of x and t; aj, a„, Oj, ... &c. being any -(-constants; then must

o, = a^ = O3 = (^11 •

^ rf(l) d(l) . , . .

For -^-a„-^ gives by (2)
ax at

(«i - »«) -TT + («2 - a») -7- + (o„-i - ««)
or dt

du„_

~df
= (3).

. . d(5) d(3)
. , d(2)

d-Mi
(a, - o„) (a, - o„.,) I^' + (as - o,,) (a^ - «„_,) ^1^ + (a„.2 - a,) (a,,.. - a,_,)

"IF

d'u„

dt'
0.

• The fonnuls (B) and (C) are particular cases of the following, viz.

da da da V ^j- + T- + T- =-— cose
dx dy dv V

(dfi day (dy d^y (da dy^ V^ . . .

which may be easily proved.

t The result of this Article is also true when a,, a,, a^ ... &c. are variables, provided they vary very slowly compared with h,,

ti„ »,„ &c.; in which case^ ^ &c. will be extremely small compared with ^ ^, &c.
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And by repeating this process, we find finally that

(«! - a,) («! - a„_i) (a, - a„_2) ( ) (a, - a^) = 0,

which shews that some one of the constants a^, a^, &c. must be equal to a^. Suppose that

Oi = flj, and put m, + Mj = m' ; then we have m' instead of the first two terms of (1), and

du^ du
= Oi instead of the first two equations of (2), and therefore, just as before, we may

da? dt

shew that

(a, - a„) (ai - a„_^) ( ) (a^ - a,) = 0.

Therefore Oj must be equal to some one of the quantities 03, Oj, 05, &c. ; let it be «3, then

proceeding as before, we may shew that 01 = 04, and again, that 0^ = 0^, and so on. We
have therefore

tti ~ 02 = ds = ^n-

(4.) The equations (A), (5), (C) in the preceding articles, may be very readily obtained

from the integrals of the equations of motion in the case of plane-waves of polarized light.

For when the wave-surface is a plane and the light polarized, we have

a = aw, j3 = bii, y = cm,

where u =f(vt — px — qy — sx), and a, b, c, any constants.

By differentiating these expressions with respect to .v, y, z, and t, observing that p, q, s

are now constants, we have immediately the equations {A).

To obtain the equations (B) and (C), we must put q = 0, 6 = 0, and then we have

--(sy-ri)"=<»->(S)"
Now a^ + c' = (ap + csy + (as — cp)',

du du da du dy du da du dy
also op—- =«a -— = «-—, cs--—=v-—, as—- = v-—, <•? -r: = '" ^-

^

dt dx dx dt dz dt dx dt dx

V" Ida dyy (da dyV'
hence — =— + --^+— --Jl.

v^ \dx dzj \dz dx I

da d^
Now for transverse vibrations, we have ap + cs = 0, or 1 = 0, and for normal,

dx dx
da d'y

as — cp = 0, or -i = : hence the truth of the equations (B) and (C) is manifest.
dx dx

(5.) If any of the quantities p, q or s, be imaginary, (a case we shall have to consider

hereafter) the first method of proving the formulae {A), {B), (C), fails, but the second method

does not. In such a case we call the vibrations transversal when the condition ap + cs =
holds; and normal when the condition as—cp = holds; and it follows easily from the

equations of motion, (see Cambridge Transactions, Vol. vii. p. 4l6) that transversal and normal

waves, thus defined, are in general propagated with different velocities ; i. e. the constant v is

different for these two species of vibration.

(().) It is important to observe that, in articles (1), (2), the wave is supposed to be pro-

pagated in the direction PP', i. e. from P towards P". If therefore p, q, s be positive

quantities, the motion of the disturbance along PP' tends to increase x, y, and «r ; if p be

negative it tends to diminish x, if q negative y, and if s negative z.

B 2
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SECTION II.

The general Equations of Con7iection of the Vibratory Motion of two Elastic

3Iedia, separated hy a Plane Surface.

(7 ) The two media are supposed to consist of discrete particles symmetrically arranged,

and acting upon each other with forces varying according to any law which ensures stable

equilibrium By the Surface of Separation, we simply mean an imaginary plane described

between the two media, the particles of one medium lying on one side of it, and those of

the other on the other side. In the immediate vicinity of this plane, the media are supposed

to exercise a mutual repulsion, so that no mixture takes place. We shall take the plane of

separation to be the plane oi xy.
. „ , ., • ,. .

(8.) We shall obtain the general Equations of Connection of the vibratory motion of the

two media, by means of the following self-evident Principle.

When a very small vibratory motion is communicated to a stable system of particles, such

as the two media just described, we may assume that the vibratory motion will always remain

very small, and, at most, of the same order of magnitude as the original motion.

This principle is either tacitly assumed, or employed as self evident, by all the writers who

have treated of the problem of the transmission of waves from one medium into another. Poisson

states it very clearly in the Mimoires de I'Institut, Tom. x. p. 320, and makes use of it precisely

as we shall do in the present paper. It is evidently assumed in the Article Sound, Ency. Metrop.

p. 776; for by saying that the two media must have a common elasticity at their junction, and

that that elasticity is expressed by £ (l + /3«), and E\l + ft's'), the writer supposes that there

is the same slow variation of elasticity at the surface of junction as elsewhere, and therefore the

same slow variation of pressure, and consequently the same small vibratory motion.

(9.) To apply this principle to the case we are at present concerned with, let wyz (» = 0)

be the co-ordinates of the equilibrium position of any particle (P) of the lower medium in the

immediate vicinity of the plane of separation, a, /3, 7 its displacements at the time t, and let

.r; +&X, y + Sy, z + Sx, a + ^a, /3 + 5/3, 7 + S7 be the co-ordinates and displacements of any

other neighbouring particle (Q) of the lower medium ; also let w + Ax, y + Ay, x: + A«, a + Aa,

/3 + A/3, 7 + A7 be those of any particle (F) of the upper medium.

Put r^=lv'+Sy'+Sz', and r'"^ Ax^+ Af+ Ax\

and let w/(r), m'(p{r') be, respectively, the forces exercised by Q and P on P. Then, if ^ be

the whole force, parallel to the axis of x, brought into action upon P by the vibration, we have

(see Cambridge Transactions, Vol. vii. p. 403)

X = -2m {fir) Sa + ^-f (r) Sw {SxSa + SyS(i + SzSy)
}

+ 2'»»' {0(r') Aa+ -,(})' (r) Aw (AxAa+ AyA(3 + A«A7)|,

2 referring to the lower medium and 2' to the upper.

In this expression we shall substitute for 5a the series

da :,
da

t,
rfa »— Sx + --hy + -r-ox + &c

dx dy dx

Also, let a, /3', 7' be the values which the displacements a -I- Aa, /3 + A/3, 7 + A7, assume

when X, y, « (=0) are substituted in them ior x + Ax, y + Ay, z + An, then we have

a + Aa
da . da . da .

a + -r- Ax +-— Ay + -r-Az + &c.
n .1! //« n.«

Now the differences of the corresponding displacements of two contiguous particles at a distance

from the plane of separation must be indefinitely small, (supposing of course, as is always done,



AT THE SURFACE OF AN UNCRYSTALLIZED BODY. 13

that the interval between two contiguous particles is extremely small, compared with the length

of a wave) ; therefore, by the principle stated in Article 8, the same must be true of the displace-

ments in the immediate vicinity of the plane of separation, which cannot be the case unless we

have a = a- Hence
da . da da .Aa = -r—Ac» + —— Ay + -r-A« + &c
dai dy dz

Substituting these expressions for la, and Aa, and similar expressions for ^/3, ^7, A/3, A7,

and observing that all sums involving odd powers of Ix, Sy, Am or Ay, must vanish, in

consequence of the symmetrical arrangement of the system about the axis of z, but that sums

involving odd powers of Sz or Aaf do not vanish, since the particles are not arranged symme-

trically with respect to the plane of xz, we have

X = - (C + D) — - D— + (C' + D') — + B' -^ + higher differential coefficients,
dz dx dz dx

where - C = 2m/(r) Iz, - 2> = 2»i -/W ^Jo'lz,
T

C = 2W d)(r') Aar, D' = 2'w' i d>'{r') Aa?' A«.
r

(We assume the two first constants in a negative form, because Iz is negative, whereas A« is

positive).

It is evident that — C + C = 0, is one of the conditions of previous equilibrium, therefore

we have C' = C in the expression for X.
Now since the length of the wave is extremely large compared with the sphere of action

of the molecular forces, the part of JC involving first differential coefficients, has its several

terms extremely large compared with those of the part involving second and higher differential

coefficients (see Cambridge Transactions, Vol. vii. p. 408) : therefore, unless the former terms

mutually destroy each other, JC will be extremely large compared with the corresponding force

which acts upon a particle at a distance from the plane of separation (for this force involves

only second and higher differential coefficients, see Cambridge Transactions, Vol. vii. p. 408)

;

and if this be the case, the vibratory motion of the particles at the plane of separation will

be extremely large compared with that at a distance from it, contrary to the ' principle stated

in Article (8). Hence the terms of X involving first differential coefficients must destroy each

other, and we therefore have

(C+Z))^ + Z>^=(C+Z>')^-fi)'^' (1).
dz dx dz dx

In exactly the same way we may shew that /3' = /3, and

(C + D)^ + i>^ = (C + i>')^' + i>'^ (2).
dz dy dz dy

Lastly, the force parallel to the axis of z is

-^.m {f{r)ly + - f{r)lz{lxla + lyl^ + lzly)\

+ 2W|^(r') A7 + -,<p'ir') A«(Aa7 Aa+ AyA/?+ A« A7)},

which, treated as above, gives y = y, and

(c,£)l^^z>(^ + ^)=(c + £:')^\z)'(^.f) (3).
dz \dx dyl dz \dx dy I
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Observing that -Em- f'(r) 5y' ^x = - D, 2W - <p'(r') A j/= A jsr = i>',

and putting -E and E' to represent ^m-f'(r)S^ and ^'m -^ ^'(r) As^ respectively.

(10.) Hence it appears that, if a, /3, 7 be the displacements at any point (xyx) of the

lower medium, and a', /3', 7' those at any point (x'y'z) of the upper, and if we put a?'= .r,

y'=y, ;^'=sf=0, then the equations (1), (2), (3), and the equations, a = a', ^ = /3', 7 = 7',

will hold for all values of .1; and y. Now this being the case, we may differentiate these

equations with respect to .1; or 2^ ; therefore "^ = "^ ' ""^ therefore (1) may be put in the

form

^^ fda dy\ ,^ ^,. Ida dy'\

and a similar alteration may be made in (2) and (3).

Hence, if we put C + D = M, C + D' = M', C + E = N, C + E' = N', we have the follow-

ing equations

:

a = a', 13-=/^', 7 = 7' (-0)'

W,

«e^s)=-(f^f)l
A^%^.M(^^.».i^^tt^.«•(l^: + 'f) (F,.

dss \dw dyl dss \dx dy J

These are the general equations of connection of the vibratory motion of the two media ;

they hold at all points of the plane of separation, i. e. they are true for all values of x and y,

z being put equal to zero.

(11.) We shall now compare with the last of these equations the equation of connection

furnished by the common law of elasticity, in the case of two ordinary elastic fluids separated

t)y plane surface.

Let p be the pressure at any point of the lower medium when at rest, considered as a

common elastic fluid; then the pressure when it is in a state of vibration, will (by the law of

elasticity) be (See Airy's Tracts, note, p. 278, 2nd Ed.)

/
Sa>SySz 1" f (<tL.^+^]\

^\(S.v + Sa)(Sy+S(i){Sz + Sy)\' "'''i ""[dx^dy dzlj'

n being a constant nearly equal to unity, depending upon the alteration of temperature during

the vibration.

Similarly, the pressure in the upper medium will be

\ \dw dy dz )

)

Now these two pressures ought to be equal at the plane of separation ; also, by the con-

ditions of previous equilibrium, p = p'.

Hence, when x = 0, we have

fda d(i dy\ _ , Ida d^' dy'\

Kdcc dy da I \d(v dy dz j
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Comparing this with the equation {F), we see that

N=M, N'=M', and—, = -.M n

(12.) In our ignorance of the constitution of the liminiferous ether, it is natural to

assume that it is of the same nature as ordinary elastic fluids, and that it accordingly obeys

the common law of elasticity ; we shall, in the first instance, make this assumption, and there-

fore put Jlf = iV, M'=N', and M'=eM, where c=— , a quantity not differing much from
n

unity ; and then the equations (E) and (F) become

da dy /da dy'\\

dz dx \dz dx ) I

i^ + tL = J^+tL\\
dss dy \dz dy J j

Ida d/3 dy\ (da rf/3' dy'\

\dx dy dzj \dx dy dz /

Further, if we neglect the variation of temperature, and therefore put e= I, these equations,

in virtue of the equations (D) differentiated with respect to x and y, assume the simple forms

da _ da' d/3 _ d/3' dy _ dy'

dz dz ' dz dz ' dz dz
'

(13.) The equations of connection just obtained, along with the equations of motion given

in the Cambridge Transactions, Vol. vii. p. 409, are sufficient to solve all problems respecting

the propagation of waves from one medium into the other. We shall assume that these equations

of motion hold up to the very plane of separation : which of course is not accurately true,

since there will most probably be a variation of density in the media in the immediate vicinity

of that plane. If we describe two planes parallel to the plane of separation, one above it and

the other below it, including between them the slice of the two media in which this variation

of density is sensible, it is easy to see that, in consequence of the smallness of the sphere of

action of the molecular forces compared with the length of a wave, the thickness of this slice

will be extremely small compared with the length of a wave. Indeed, if one medium exercised

a sensible action only upon those particles of the other which are immediately contiguous to

the plane of separation, the thickness of this slice would be actually zero. We shall therefore

consider this slice to be of insensible thickness, and regard it as a physical plane. This being

assumed, we may, without sensible error, suppose that the equations of motion hold up to the

very plane of separation. All therefore that is proved of the propagation of waves in a sym-

metrical medium in the Cambridge Transactions, Vol. vii. p. 41 6, &c., we shall assume to be

true up to the very plane of separation.

We shall in the following Section, use the equations of connection in their simplest form,

viz. (Z)) and (7) ; and afterwards, in Section vii., shew how we must proceed when they are

taken in their most general form, viz. (Z>), (E), {F).
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SECTION III.

Application of the Equations of Connection just obtained to the case of ordinary

Reflexion and Refraction.

(14.) We shall first consider the case of cylindrical or plane-waves perpendicular to the plane

of xx (which will therefore be the plane of incidence), the vibrations taking place at right angles

to that plane.

In this case a = 0, 7 = 0, a'= 0, y'= 0, and /3 is independent of y : therefore the six equations

of connection, (Z)) and (/), Section 11, reduce to two, viz.

We shall suppose that the whole motion consists of three sets of waves (for we shall shew

presently that it cannot in general consist of only two), one set in the upper medium, and two

in the lower. Let /3 + /3, be the whole displacement at any point of the lower medium, the part /3

arising from one of the sets of waves, and the part /3, from the other ; then we must write /3 + /3,

instead of /3 in the two equations of connection, which therefore become

/3 + A=/3' (1). ii^-^l^)-'^ (^)-

Now, using the notation in Article (2), we have

^=F ^=r ^=F'
dt ' de '' dt

Hence, and by the equations {A), Article (1), -j^ and (2) immediately give us

Again, since by the equations {J), Article (I), we have

dV^__pdV ^Si__Pj^ dF' p dV
da> V dt ' dw v^ dt

'

dx v dt

and by (3), V+ V- r=0;

and smce -, — , — , are either constants (in the case of plane-waves), or vary very slowly

compared with V, F , F', on account of the extreme smallness of the length of a wave of light

;

we have by Article (3), (see Note),

^ = ^ = ?.'

« v^ v'

'

Now v = V, therefore
'

P,= P (5), P = np' (6) jwhere M=^['

Hence, observing that q, q^, q, are each zero, we have
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(i) s s'

If we take s = s, —- gives - = — , which is in ffeneral inconsistent with (6) ; we must there-
' ' {3)

^
V V ^

fore take s^= — s. We may suppose s' to have either sign. Hence by (3) and (4), we have

V+ V=V', s(V- V) = lixs' r, which give

s — /xs' , . .„ 2s
(7), r=. (8).

S + /xS ' ' S + /xS

(15.) We shall now interpret these results.

Supposing p and s positive, the normal propagation of the wave V tends to increase x and x

(see Article 6) ; and since p, = p, «, = — s, that of the wave F tends to increase a> and diminish z

;

/ ?
and since p = ixp, s' = ± \/ l , that of the wave V tends to increase x, and to increase or

M
diminish z. Hence we have two cases according as we take the upper or lower sign of s'.

Fig. (l) represents the first case; X'AX and Z'AZ z
are the co-ordinate axes; NA, N^A, N'A are the normals /-j\

to the waves V, V^, V' respectively, the arrows representing

the direction of normal propagation, N and N' tending to

increase x and z, and N^ to increase x and diminish «.

Since p,= p, and p' = ixp, we have Z NAZ'= L NAZ', ,

and wa N'AZ = fx sin JV^Z'. This is the ordinary case

of reflexion and refraction. If a, a^, a be the maximum
values of F, F^, and F' respectively, the intensities of the

three rays N N^ and N' will be proportional to a-, af, a'.

Now by (7) and (8), we have

s — ixs 2s

s + fxs s + fxs

These are Fresnel's formulae for the intensities of the reflected and refracted rays of a ray

polarized in the plane of incidence.

Fig. (2) represents the second case, in which s' is negative

;

and therefore N' tends to diminish z. This case may occur in

the following manner. An incident ray along NA will produce

a reflected ray along AN^, and a refracted ray along AN",
/. N"AZ being equal to zN'AZ; and another incident ray

along N'A will produce a reflected ray along AN", and a re-

fracted ray along AN^. Now let the intensities of the two rays

along AN" be equal, and let one of these rays be half a wave

behind the other ; then they will interfere and destroy each

other, and we shall have remaining only a ray along NA, one

along N'A, and one along AN^ (namely, the sum of the two

along AN^. This is exactly the second case.

(16.) It is evident, that, in the ordinary case where the rays N^ and N' are the effects

produced by the ray N, the normal propagation of N' will be from and not towards the plane

of separation : therefore s' must have its positive value, and consequently the second of the above

cases cannot occur.

(17.) If we suppose either F^ or V equal to zero, the equations (7) and (8) give us

either a — /xs' = 0, or s = 0, neither of which equations can be generally true. Hence the

incident ray must, in general, be accompanied by a refracted and a reflected ray, or the equations

of connection cannot be satisfied.

Vol. VIII. Pabt I. C

(2)
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(18.) It appears from (7) and (8) that K and V have the same periodic time as V; it

follows, therefore, that the colour of the reflected and refracted ray is the same as that of the

incident.

(19.) We shall now in the second place consider the case of cylindrical or plane-waves

perpendicular to the plane of xz, the vibrations taking place parallel to that plane.

In this case 3 = 0, and a and y are independent of y : therefore the six equations of con-

nection, (Z») and (E) Section 11, reduce to four, viz.

n = a, y = y,

da da dy dy
d% dss dss dz

If we attempt to satisfy these equations by three sets of waves, as in the preceding case,

we shall immediately arrive at the conclusion, ja^= 1; which shews that these equations cannot

be satisfied in this manner. The reason of this is obvious ; for, in the case of vibrations per-

pendicular to the plane of incidence, it is clear that no normal waves will be produced by the

refraction and reflexion : but in the present case, supposing, as of course we do, that the in-

cident vibrations are transversal, we have every reason to suppose that normal vibrations will

be generated by the reflexion and refraction. Therefore, since normal waves are in general

propao-ated with a different velocity from that of transversal, we shall have to take into account

a set of normal waves in the lower medium, and one in the upper also, not coinciding with

the transversal waves.

Let a + Qi+oo, and 7 + 71 + 72; be the whole displacements at any point of the lower

medium, and a + a", 7'+ 7"; at any point of the upper; the parts oj, 72, a", y", arising

from the normal waves brought into existence by the reflexion and refraction. Then, the four

equations of connection become,

a + Oi + 02 = a' + a" (l), 7 + 71 + 72 = 7'+ 7" (2),

£(a+a, + a2) = ^(a'+a") (3), _ (^ + ^, + ^,) = _ (^ + y') (4).

From (1), or (2), by the equations (A), and by Article (3), we have, as in the preceding

case, (Article 14),

P _P> _P2 _P' _ P" f,.

Also (3) - --— , and (4) + -— , give us, by the equations (B) and (C), Article (2),

V f^i v ,^, v., V"- + - = — (6), — =— (7).

rf(l) d(2)
Also —r— and —7—) give us, by the equations (S) and (C),

U £ dltr

Vs + V^s^- V,p, = V's' - V"p" (8),

Vp + r,p, + v,s, = v'p'+ v"s" (9).

These equations, namely (5), (6), (7), (8), (9), completely solve the problem as in the pre-

ceding case.

From (5) we get p^ = p, and therefore «, = ± «. As in the previous case we must take

the lower sign; for otherwise V and F, would enter into each of the equations, (6), (7), (8),

(9), in the form V + Vi, and therefore we might eliminate altogether the quantities V, F,, V,
Kj, F", from these equations, and so obtain an equation which would not be generally true,
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since it would contain no disposable quantity, p^, p', p", s.^, «', s", being all given in terms
of p by (5). We have therefore Sj = - s.

For the reasons given in Article (l6), we must take the positive values of / and s", and
the negative value s^ ; i. e. we must put

s'=+\/l-^-^, a"= + V 1 _ (^^ja'j (10), s,= -\/l-{^pY (11).

Hence, if we take the arrows A'', Ni, N^, N', N",
to mark the directions of the rays, as before. Fig. (3)

will represent the circumstances of the case, and we

have

t N^AZ'= /. NAZ, sin N'AZ = m sin NAZ',

sin NiAZ' = — sin NAZ', sin N"AZ = — sin NAZ'.
V V

Thus, both the reflected and the refracted normal
//

. . "a , " .

ray obey the law of refraction, putting — and — in-
V V

stead of /u. The transversal rays are circumstanced

just as in the preceding case.

(20.) We now proceed to compare the intensities of the rays N, JV,, and N', and we
shall do this, first, on the hypothesis that normal waves are propagated very slowly compared
with transversal.

On this hypothesis we may suppose that — and — are zero, and then, by (5), we have,

P2 = 0, p"=0. Hence, writing a, a,, a', for F, K,, V, as before, we have by (6) and (8),

a + ai = ixa, s {a — a,) = s'a,

J ., „ fiS - s' , 2s
and therefore aj = j a, a = a.

fJiS + s

These are identical with Fresnel's formula for light polarized at right angles to the plane
of incidence.

To determine a.^ and a", we have, by (7) and (9), (observing that 8.^=- 1, s" = l by (lo)

and (11)
)

/'

a^ a

p{a + a,) -a^ = p'a' + a", or a^ + a"= (jip - p) a by (6) ;

V,
fj."
- I 2ps „ v"

therefore a. =
•0,

a = — a,
«2/* flS + s

(21.) We shall now make a different hypothesis, and suppose that v^ is equal or very nearly
equal to v".

On this hypothesis, we have by (5) p^^p", and by (lO) and (11) s^ = - s" ; therefore by
(6) and (8) we obtain

a + a^ = jia , s (o — aj = s a,

which give us Fresnel's formulas just as before.

Also by (7) and (9) we have

"a = a") P (« + fli) - s"c2 = pa' + s"a"

;

„ fj.'
- 1 2ps

therefore a.^ = «" =
ixs fia + s

-, .a.

02
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(22.) Lasth', we shall try whether any other hypothesis leads to Fresnel's formulae in this case.

If Fresnel's formulas hold, it is easy to see that

s(a_a) = «'a', and therefore s {V - V) = s' V

;

therefore by (8) we have V^p^ = V"p", and therefore by (7) and (5)

v./ = v"^,

from which it is evident that no other hypothesis except those in Articles (20) and (21) will lead

to Fresnel's formulse in this case.

The second hypothesis here employed seems to me to be the only one we can adopt; for

it is extremely difficult to conceive how normal vibrations could be propagated more slowly than

transversal in a stable medium.

If we do not suppose that V2 is very nearly equal to v", we may proceed to find F and V in

terms of V in the following manner.

Substitute for V and V^ their values got from (6) and (7) in the equations (8) and (9) ; then,

putting -r, = v, we have

(^s-s')V- (m« + s') F = F" (.p, - p"), iiip - p') ( F + F ) = F" («" - ,s,).

vp. — p"
, ,. ,

Hence, if for brevity we put — (yup - p) = t], we have
•^

S — l/Sj

(,.«-«')f-(ms + o»'/ = v(j'+ y),

and tijerefore V = ; F,
fis + S +r)

V +V
and from this expression we may easily find V, since F = '-.

Since p = up, and P2 = vp", we have
/ /'

,; = iv' - 1) ((.^ - 1) .4^

SECTION IV.

Explanation of the case of Total Internal Reflexioit.

(23.) Since p = \i.p ,
p' will be > 1 when p is > /x (which it may be when yu is < 1),

and then s will be impossible ; and Fresnel's formulae become imaginary ; which indicates that

the equations of connection cannot be satisfied by the three rays in Article (15), or the five rays

in Article (l9). We shall now consider how the equations of connection may be satisfied under

such circumstances, and first in the case of vibrations perpendicular to the plane of incidence.

Let us suppose that the general value of F is

a ,_

2 ^ '

It is allowable to give V this value, though it is imaginary, since it is an integral of the equa-

tions of motion, and is capable of satisfying, analytically, the equations of connection, and the

equations (A), (B), (C), Section i, (see Article 5). Moreover, by superposing two such imaginary

values of V, viz. ae*'"' "?''""''*'-' and oe"'*"'-''-")'^'-', we obtain a real value, viz. a cos Ic {vt-p,v-sx),

which will of course satisfy the same linear equations as the two expressions of which it is the sum,

i. e. the equations of motion and of connection.
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Assuming then this value of F, we have at the surface of separation,

j^ = f e''('"-'">^-',
2

2s a
and therefore r=? !ii ^es("'-MV-i, r' = -, e« "'-'''> ^^.

' S + ^S 2 « + /US

Hence if la^e'<''-^'+"'^/-', and ^ a'et'i"''-?'-''*!^^, be the general values of F and F', we have

s — fis , 2s
a, a = o,

S + ;US S + ftS

V p-p = -
V II.

11 , v p J , / P^
and of course k ii = kv, p = — p = — , and s = ± \/ 1 -.

Now let us assume

P /
—

J f* '"''' /
—

/
—

I— ^ = (7.\/-l (supposing p > ix), and — = ± — v-l =±\/— i tan w,

then a=eT2«v:^a, o'= 2 cos to 6^="^-' a,

and the general values of V^ and V become

F = -iae!*fr''-i'->^+»-)T2<»)V~ (2), 7*= acostye'*'<'"-.P'-^'T'"'V^**'''* (3).

Now let us superpose the system (l) (2) (3), taking the lower of the double signs, with

another system formed from (l) (2) (3), by putting - A; for k and therefore - k' for k' and

taking the upper of the double signs. The result of this superposition will be the following

real system, viz.

V = acosk (yt — pco — sx),

F,= ocos \k{vt- px + sz) +2a)}, F'= 2acosa)e~*'''* cos {A:'(u'^ - p' '^) + ">}•

These values of V, V^, and V', since they are real, and satisfy the equations of motion

and of connection, represent a possible case of motion. The expression for V^ shews that there

is a reflected ray, of the same intensity as the incident ray, but having its phase altered by the

quantity 2w. The expression for V' gives 4a^ cos^oje'^*''' for the intensity of the refracted ray,

. , 27r
which quantity rapidly diminishes as z increases, since k = —7- , and \' is extremely small. This

A
indicates a complete extinction of the refracted ray. If we had taken the upper signs instead of the

lower, and the lower instead of the upper, in the above process of superposition (as we might have

done), we should have obtained e^''"', instead of e~^'"", in the expression for the intensity of

V'. Now this represents an intensity which increases rapidly with z, and therefore a vibratory

motion which becomes extremely large compared with that which gave rise to it, contrary to the

principle stated in Article (8). We must therefore take the signs as we have done above.

The alteration of the phase of the reflected ray is given by the equation

MO- \/p^- fJ.'

tan ft) = — = — .

This is exactly the first case of total internal reflexion considered in Airy's Tracts, p. 36l.

(second edition)*.

(24.) We shall, in the second place, apply the same method to the case of vibrations parallel

to the plane of incidence. To do this we have only to put tan w = — = ; , and

The /i in Airy's Tracta is the same as the - here.
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arrive at exactly the same expressions as before, for V^ and V, with this difference, that

_ . „ . 2 a cos o) . 1 i- „
coefficient of V is instead of 2acosai.

This is exactly the second case considered in Airy's Tracts, p. 361.

SECTION V.

JVhu Normal Waves never produce any sensible Effect on the Eye directly or

indirectly.

(25.) We must suppose of course that normal waves cannot produce vision directly, (?". e.)

that when such waves are incident on the retina they do not affect the optic nerve in such a manner

as to give rise to the sensation of light. But we have proved that when a transversal ray

undergoes oblique refraction it brings into existence normal rays, and it would be easy to shew

that, in the same manner, the oblique refraction of a normal ray will produce transversal rays.

Therefore, though normal waves cannot affect the retina directly, they may do so indirectly,

by giving rise to transversal waves. Now it is a matter of fact that they do not produce this

indirect effect, and it therefore becomes necessary to explain theoretically why they do not.

(2(5.) If we take the hypothesis in Article (20), it is easy to do this. For suppose the

normal ray, generated by the oblique refraction of a transversal ray at the first surface of a prism

or lens, to fall on the second surface at an angle of incidence sin"'p, and let the transversal

ray produced by this oblique refraction emerge at an angle sin~'p', then, as in Article (l9), we

may shew that ^ = — , and therefore p' = -y, p. Now by our hypothesis ~j-, is very large,

therefore, unless p is very small (in which case the transversal ray will not be produced at

all), p will be >1, and «' impossible; i.e. the transversal ray will be extinguished. (See

Article 23).

Thus the normal waves generated by the first refraction, will not produce transversal waves

at the second refraction.

Again, if we take the hypothesis in Article (21), and assume moreover that v" and v,^

are large compared with v and v, it is easy to see, by similar reasoning, that the normal rays

will be extinguished immediately after their production by the first refraction.

It is evident, therefore, that on either hypothesis (adding to the latter, that v^ and v" are

large compared with v and t''), normal waves will produce no sensible effect on the eye, even

indirectly.

SECTION VI.

Whether Polarized Light con.nsts of Vibrations at Right Angles to, or Parallel

to the Plane of Polarization.

(27) Theee can be no doubt of the truth of Sir D. Brewster's law of tangents, and
the laws of the rotation of the plane of polarization given by M. Arago, and Sir D. Brewster.
From these laws we shall attempt to prove, that polarized light consists of vibrations perpen-
dicular to the plane of polarization, in the following manner.
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If possible, let polarized light consist of vibrations parallel to the plane of polarization

;

then taking the equations of connection in their most general form, viz. (D), (E), (F),

Section ii., and proceeding as in Articles (14) and (15), we find, for light polarized perpen-

dicularly to the plane of incidence, the following formulae :

- ' -— s + e/xs

C + D'

s — e/xs
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SECTION VII.

Hoiv ice must proceed when the Equations of Connection are taken in their most

general Form.

(28.) The equations (5), (8), and (9), Article (19), are still true, being deduced from

the equations (D), Section 11., without making any hypothesis respecting the constants. But

instead of (6) and (7), we shall arrive at two equations, somewhat more complicated in form,

as follows.

The equations (E) and {F), Section 11., may, in virtue of the equations —— = —— ,
_Z = _Z_

dx ax dx dx
be put in the forms

yda: dx! \dz dx I dx

\dz dx) \dis dx j dx

Now, in these equations, as in Article (19), we shall put a + Oj + Ou, 7 + 71 + 7^, a + a",

7' +7", for a, 7, a, y, respectively, and then, as in Article (19), and by the equations

(A), (B), (C), Section i., we obtain immediately the following equations,

V + V V r V V"\
(C + D) —!—' = (C + i)') - - 2 {D' - D) (s'p - + s" -

]

V V" I V' V"\
(C + £) ^ = (C + E')~ +(D'-E'-D + E)( s'p' ~ - p'"— )

.

From these equations, and the equations (8) and (9) Article (19), we may find F,, V",

V2, and V" in terms of V. We shall not calculate these values, as they are rather complicated,

and not necessary to the object of the present paper. The last of the equations just obtained

considerably simplifies when we suppose the ether to obey the common law of elasticity, in which

case we have D' - E' - D + E = 0. (See Article 12.)

It is easy to see that Fresnel's formulas cannot be deduced from these equations, unless D = D',

and E^E, and therefore it will be useless to employ the equations of connection in their

most general form, as it is highly probable that Fresnel's formulae are experimentally true for

a great number of substances.

SECTION VIII.

Intensity and Phase of the Reflected Ray, in the case of highly Refractive Substances.

(29.) There are some substances, such as the diamond and other bodies of high refractive

power, for which Fresnel's formula do not appear to be accurately true. It is easy to account
for this in the following manner.

When we do not assume that v^ = v", we have, by Article (22),

V = ^iiZil^V V, where , = (.= - 1) (,^ _ ,) -
P'P"

flS + S + ,,
' ^ ' S - 1/S2
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Now, by Article (26), we must suppose that «a and v" are very large compared with

V and «', and consequently that s.^ and «", and therefore ij, are impossible quantities. Let us

accordingly put

= tan\/,\/ - 1 (I), , = tan o) \/ - 1 (2),
HS - s flS +

and we then have

„ IJ.S — s' cos w ,, ^ ^—F = ;
g-(*+")V^ Y

' fiS + s' cos \|/

Now this value of F^ indicates, as in Section iv, that the intensity of the reflected ray is

lus-s' costtiT (iis-s'y-ti-

[us + S' COS\//j (/!« + s)^ - »)^

And that its phase differs from the phase of the incident ray by the quantity (-^ + to).

/ I
pv"\'^ v' J ij"

To calculate >;, we observe that s" = \/ 1 — I = p — v— 1 very nearly, since — is very

large: and similarly, «2 = — p— \/— 1. We here give s" and s.^ opposite signs, because the ex-
v

pressions for F, and V" will contain the factors e^^'-'^'^ and e''s':'^^*. Now one of these

(namely, F") ought to diminish rapidly as z increases, and the other (Fj) ought to do so as x

decreases ; but this cannot be if s" and Sj have the same sign, therefore we must take these

quantities with different signs.

p pv"

Hence ,, = (,;= - 1) (,x= - 1) •

V

and therefore, since y = _^ we have
V

,
f/ - 1 ;U= - 1 P

If we suppose the light to be incident at the polarizing angle, the expression for the intensity

of the reflected ray becomes (since at that angle us = s' = p)

W + 1 2,1 j

' ip' - t]' I v' - 1 ,i' - iV'

For common plate-glass we may put
f*
= - , and therefore I ) = - nearly ; and for

2 V 2^ / 6

12 /^^ - IN''
diamond we may put ju = — , and therefore -j =i very nearly. Hence, supposing that

V is the same for both, the intensity of the reflected ray at the polarizing angle is about six

times greater for diamond than for plate-glass. Hut we have every reason to suppose that v

(the index of refraction for normal waves) ami /i (that for transversal) will increase together.

See the procesH of superposition in Section IV.

Vol.. VII. Part I. D
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11 4

Let us suppose, at a venture, that the value of m is — for glass, and - for diamond : then the

value of (

"' ~ ^"

l
is about — for glass, and — for diamond ; therefore we have

\ir + \) 100 15

o^ = for glass,
' 600

^

a' = — for diamond.
15

These expressions, if correct, would indicate that the reflected ray was scarcely visible for glass

;

and faint, though decidedly visible, for diamond : which, I believe, is the case. From this example

it is clear that if we suppose the normal index of refraction to be less than about — when the

transversal index is less than -, the reflected ray at the polarizing angle will be scarcely visible

for plate-glass and substances of lower refractive power : and if we suppose the normal index not

less than about - when the transversal is greater than 2, the reflected ray will be decidedly visible.

3

Supposing this to be true, - >j' will be very small for substances of moderate refractive power,

and therefore Fresnel's formulae will hold for such substances, at least the deviation from Fresnel's

formulae will be insensible.

Hence, for substances of moderate refractive power m will be always small ; but \{/, and there-

fore the phase (to + \//) will increase rapidly by very nearly 180" while the angle of incidence is

passing through the polarizing angle; this is evident from (l).

For substances of high refractive power, - tj' will not be very small ; therefore there will be

a sensible deviation from Fresnel's formulae. Moreover w will not be very small, and
\f,,

and

therefore the phase ((« + >//) will increase by a quantity somewhat less than 180", while the angle

of incidence is passing through the polarizing angle.

These results are in strict accordance with the experiments of Mr Airy ; see the Cambridge

Transactions, Vol. iv, p. 422.



III. On the Possibility of accounting for the Absorption of Light, by supposing it due

to the Motion of the Particles of Matter. By the Rev. M. O'Brien, late Fellow

of Cuius College.

[Read Feb. 14, 1843.]

When we take into account the motion of the particles of matter (see Cambridge Transactions,
Vol. VII. p. 421*), we arrive at the following equation for determining the velocity of propagation

(«^), viz.

_ TO C m C
~

v' - mB "'"

v" - mB'
the disturbance being proportional to cos k (vt — u).

If we put kv = n, this equation becomes

w'(w^-raB) (yi^-m^B) = C {m, («= - mB) + m{v'-mB)\v'' (1).

which is a quadratic equation for determining v^ when n is given, i. e. when the colour is given,

Stt . , . „ .,

since — IS the time of vibration.
n

This equation affords a complete explanation of the dispersion of light, and it may also be
applied to account, apparently in a satisfactory manner, for the absorption, as follows.

Suppose that the roots of the equation are impossible, then we shall obtain four values of v,

which we may put in the form, -= ±6±J7\/— 1.
V

Now a = ae"\ "i/ "' is an integral of the equations of motion; hence we have four integrals

included in the formula

Q _ gg»«-(±«±>)\/~i)«)\/^, or a e*"'''' . e""*'"'^"".

From these imaginary integrals we obtain the real integrals

a = ae*""" . cos w (< ± eu).

Now we must not suppose a continually increasing intensity of vibration ; and therefore the

upper sign of the exponential coefficient must be rejected, as is usually done in similar cases : we
have therefore

a = ffle"'""" COS w (< ± 6m).

This expression indicates a continually decreasing intensity of vibration different for different

colours (since >j is evidently a function of n), and thus the supposition that the roots of (l) are

impossible, leads to an explanation of the absorption of light.

It is easy to follow out this explanation into detail, and to shew that it agrees with experiment

.so far as it goes ; but the object of the present paper is to prove, very briefly, that there is a serious

objection against the supposition that the equation (l) has impossible roots, and therefore against

the explanation of absorption depending on the motion of the particles of matter. To do this, we

• Since the paper here referred to was printed, I have been

informed that ProfesBor Lloyd had previously read a paper on

the same subject, in which he gave an explanation of tlie Dis-

persion and Absorption of Light; but 1 am not aware that

liis paper has been printed, for I have not been able to pro-

cure it.

o2
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must investigate the equations of connection of the vibratory motion of two media separated by a

plane (as in a previous paper in the present part of the Cambridge Transactions), supposing that

one of the media is composed of material as well as ethereal particles.

We shall make the same suppositions, and use tlie same notation, as in the paper just referred

to; assuming the upper medium to contain material particles, and a, /3,, 7, to belong to any one of

them, a, (i, 7, and a, (i\ 7' belonging (as before) to the etiierial particles.

Then tlie force parallel to the axis of x on any particle of ether at the plane of separation

will be

da „ rf'y ,„, ^'^ da ^, dy . .

(C + D) — + D —- - (C + D ) D — + terms of superior order.
dx dx dx dw

The terms of superior order here alluded to consist, in the first place, of higher differential

coefBcients of «, (i, 7, a, /3', 7', and secondly of terms arising from the action of the material parti-

cles, the largest of which we have assumed, in obtaining the equation (l), to beef the same order

of magnitude as the second differential coefficients of a, /3, 7. Hence we have at the plane of

separation

(C+i))^ + Z>^=(C'+iJ')^ + Z>'^' (2).
dx dw dx dw

In the same way we obtain

iC^D)f^D'^ = (C'^D')'-f^D'^ (3).
dx dy dx dx

^C^E)'-l^D(p^f)=iC'^E')'-L^n'(^^f) (4).
dx \dx dzj dx \dw dy /

We also find, just as before,

a' = a, /3'=/3, 7=7 (5)-

In addition to these six equations of connection, we obtain three others in the following

manner.

At the plane of separation the force acting on any particle of matter is

2m {^(r) Sa, + - ^{,'(r,) Sx, (Sx^ Sa, + Sy, ^[i^ + Sxjy)
}

+ a part arising from the action of the ethereal particles.

This may be reduced, as the force on an ethereal particle, to the form

da dy
(C, + D') -~ + D, -^ + terms of superior order ;

dx ' dx

observing that we include the part arising from the action of the ethereal particles among
the terms of superior order for the same reason as before. We have, therefore, at the surface

of separation,

dx dx

and similarly (C + J> ) —' + D -^ =
' ' dx ' dy

' dx ' \dx dy J

.(6).

dy .

These nine equations, namely, (2), (3), (4), (5), and (6), are the complete equations of



ACCOUNTING FOR THE ABSORPTION OF LIGHT. 29

connection which apply to the case of reflexion and refraction, the motion of the material parti-

cles being taken into account. It is evidently not allowable to simplify these equations by
putting E = E' and D = D', as we did in the previous paper. Moreover, instead of having
C = C, we have C = C + C

.

Our present purpose requires us to apply these equations only to the case of rays incident

directly on a refracting surface ; we shall therefore suppose that the quantities a, y, a^, y , a, y',

are each zero, and that /3, /3,, /3', are functions of x only : then the nine equations of connec-
tion reduce to three, viz.

where h

dz dz dz

C'+ D'

C + D'
We shall assume v to be the velocity of propagation in the lower medium, and v, v" the two

velocities in the upper, namely, the two roots of the equation (l). We shall suppose that the waves
in the upper medium are an incident and a reflected, and in the lower, two refracted waves, one
propagated with the velocity v', and the other with the velocity v'', for it will be impossible to

satisfy the three equations (7), (8), (9), with only one refracted wave. Hence, using the same
notation as in the previous paper, we have from (7), (8), and (9),

V+ V = V'+ F" (10),

1 F' V"
{V-V,)- = !-y + ~ (11).

V V V

V V"
-r + -77=o (12).
V V

When V V" belong to the two refracted waves, and F' T/' to the corresponding waves of the
particles of matter, observing that the two latter waves are propagated respectively with the same
velocities as the two former (See Vol. vii. p. 421).

Hence, if we assume in general that

V=ae''('-i>^ F, = a^e"H)^~', F' = a'e"('-^V^ &c., &c.

We have from (10) (U) and (12), putting z=0,

a + a^ = a + a" (13).

a-a = - o' + _^ a (14)
V V

a, =
V7<. (15).

Also by the two equations in the middle of page 423, Vol. vii.* we have (a and a ' or a" and a"
here, correspond to a and a^ there)

,_ m v" -mB , „ m v"" - mB „

> /

Hence by (15) we have
/ /

v''-mB v'" - m,B, v"a'=--^ 5 •
-,r„ ^ — a (16).

In the second of theae o - o, is written by niistaltc instead of o,- a.
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Also (13) + (14) gives

2a=(i+^) «'+(l + 7<)
»" 07).

And from (l6) and (17) we have

I V I o\v" v'^ -mB »'" - m,B\

Now if we suppose the roots of (l) to be impossible, we have

- = « + >)%/- 1» — = f-»)V -1.

Making these substitutions in (18), we evidently find an expression for a of the form

a =/(cos w + \/^l sin to) a, or, fe"^' a;

where / and o) are real quantities, the former of which does not change sign when - >; is put for n,

but the latter does. Now a' becomes a" when v" is put in place of v', and v' in place of v" ; i.e.

when - >; is put for r/. Hence we have

a" =/e-"V-i . „.

Hence the general expression for 1^+ V is

fa {^^-\ e"('-^)v'-'+ e-'-'^KA'-^)^-'] ;

or, fa {e-'^e I
»('--•' + " 1 V-i +e-«''--. el ""-"'-"

I V:^} (19).

(19) therefore is the symbolical disturbance in the upper medium arising from the symbolical

disturbance a e"('~u)^/^ in the lower. By changing the signs of n and t], and therefore of u), we

find that the symbolical disturbance a e~"('"j)^' in the lower medium gives rise, in the upper, to

fa {e'^'.e- i
"<'-"'+"

1 V^ + e'"'''. e~ ! "«-"'-"
1
V-i|

.

Hence, superposing these two sets of disturbances, we find that the real disturbance

H)
in the lower medium gives rise to the real disturbance

fa [f-. cos {w(< - e ;:;) + (o} + 6""'^ cos {n(t - e as) - co]]

in the upper.

Now this latter expression indicates a continually increasing intensity, and therefore if the roots of

(1) were impossible, light after refraction would continually increase in intensity in passing through

the refracting substance ; a result which is quite at variance with experiment. Hence we may
conclude that the roots of (1) cannot be impossible, and that the explanation of absorption given

above is not true. In fact, that explanation falls to the ground if we be not at liberty to reject the

integral . a e"''' cos n(t -ex) and retain a e""""^ cos n(t - e x), which we cannot do without violating

the equations of connection, as is evident from the process just gone through.

It appears, therefore, that though the action of the material upon the ethereal particles afibrds a

complete and satisfactory explanation of dispersion, we must look to some other source for an

explanation of absorption.



IV. On a new Fundamental Equation in Hydrodynamics. By the Rev. James
Challis, ma., Plumian Professor of Astronomy and Experimental Philosophy in

the University of Cambridge.

[Read March 6, 1843.]

The object of this communication is to shew, that in addition to the two fundamental

equations of Hydrodynamics already recognised, a third is necessary to complete the analytical

principles of the science.

For the purpose of reference I shall call the two known equations, the dynamical equation, and,

the equation of continuity of the Jtuid. The same notation will be made use of as in my last

paper : p is the pressure and p the density of a particle whose co-ordinates at the time t are x, y, x,

and the components of whose velocity V are u, v, w, in the directions of the axes of co-ordinates.

JC, Y, Z are the impressed forces in the same directions. A differetilial coefficient is put in

brackets to indicate that the differentiation refers both to the co-ordinates and the time : a

differential in brackets means that the co-ordinates alone are differentiated. All differential co-

efficients not in brackets are partial.

1. It will be assumed that in any case of fluid motion an unlimited number of surfaces may
be drawn at each instant, cutting at right angles the directions of motion. In other words, it

is assumed that the directions of motion at every instant fulfil the condition of geometrical

continuity. In my last paper it was shewn that if

u V wd^ = — dx + —dy + — dz, (1).

the factor — being such that the right-hand side of the above equality is an exact differential,

the general differential equation of all these surfaces at all times is d\|^ = 0. It is not necessary

that the surfaces should be continuous : that is, it is not necessary that the equation of a given

surface should be the same function of the co-ordinates through its whole extent. But that the

condition of the geometrical continuity of the directions of the motion may be maintained, each

surface must be made up of parts, either finite or indefinitely small, which are surfaces of continuous

curvature. Hence the quantity N has a real value for every part of the fluid in motion; at least,

motions for which this is not the case, if there are such, do not come under our consideration.

2. Let the integral of the equation d\p = be \l/(x, y, z, t) = 0, the arbitrary function

of the time being included in the function ^. The surfaces of which this is the general equation

I shall continue to call surfaces of displacement. Since the equation •v|/^(a!, y, x, t) = embraces

all the surfaces of displacement at all times, it will include the surfaces of displacement of a

given element of the fluid at two successive instants of its motion, if the pat/t of the element

in the interval he continuous. It is not necessary that the path of an element through its whole

extent should be determined by the same equations, but it is necessary for the continuity of

the motion that it should be made up of parts, either finite or indefinitely small, which are

geometrically continuous, and that the directions of motion at two successive instants should not

make a finite angle with each other. The condition of the continuity of the motion of each element

is therefore expressed analytically by the equation ^\^(ir, y, x, t) = 0, the symbol S having reference.
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as in the Calculus of Variations, to the function xjy, while the co-ordinates and the time vary with

the varying position of a given element. Hence,

dt dx dy dz

But Sx = uSt, Sy=vSt, and Sx = wSt. Consequently,

-y^+ -j-it+-r-v + --iw = o (2).
dt d.v dy dss

The main object of the arguments in this paper will be, to shew that the equation just

obtained is a necessary and fundamental equation of Hydrodynamics. I propose to call it, with

reference to the principle on which it was investigated, the equation of continuity of the motion,

to distinguish it from the equation of continuity of the fluid.

It may here be remarked, that in the place of the actual surface of displacement we might

have reasoned in the same manner on a surface having with it a contact of the second order

at tlie point xyx; for instance, the surface whose equation is,

{x - ay (y - (if {z - yf—T^ + r + ^^

—

^ -1=0,
m w p

the six parameters a, (i, y, m, n, p, being functions in general, both of the co-ordinates and

the time. Writing F = for this equation, it is clear, that when the co-ordinates and parameters

vary with the change of position of an element, we shall have SF = 0, provided there be no abrupt

change of the parameters, and consequently no abrupt change of the curvature of the surface

of displacement and of the directions of the lines of motion. This equation, therefore, to which

the equation S-^ («, y, «, t) = is equivalent, expresses the condition of continuity of the motion.

3. Before entering on the consideration of equation (2), it will be shewn by an example

that the two recognised fundamental equations are insufficient for the general determination

of fluid motion. One instance of contradictory results legitimately deduced from those equations

will suffice for this purpose. The example I have chosen is as simple as possible.

Let the fluid be incompressible, and the motion be parallel to the plane of xy. The equation

ft ti fj 1 f

of the continuity of the fluid for this case is 1- -— = 0. If u = mx and v = — my, that equation
dx dy

is satisfied. These values make uda; + vdy an exact differential. Hence the dynamical equation

gives, p - C (»' + y'), the arbitrary quantity being either constant or a function of the time.

2C
Bv putting p = 0, we obtain x^ + y- = — for the equation of the free surface of the fluid, which

m
is therefore at all times cylindrical, and hence the velocity is every instant the same at all points

dv V V
of the surface. But the differential equation of a line of motion is —• = - =

. The lines^ dx u X

of motion are therefore rectangular hyperbolas having the axes of co-ordinates for asymptotes,

and the directions of motion are consequently different at different points of the cylindrical

boundary. Hence it is impossible that the boundary can be constantly cylindrical. This

contradiction proves that the equations on which the reasoning was founded are either erroneous or

insufficient. We have no reason to suspect any error in the principles from which they were derived,

and must therefore conclude that they are insufficient. It will appear afterwards that this instance

does not satisfy the conditions of continuity.
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4. Since u = N— , v = N -^
, and w = N —^ , we readily obtain from equation (2),

dx ay ax

^^Ar(^%^\^)=0 (3).
dt ydx' dy" dx'l ^

'

which equation determines N.

A remark is important here. It appears from the equality (l), that udx + vdy + wdz
= Nd\l/, and it might hence be supposed that when the left-hand side of this equality is integrable,

we are at liberty to assume JV = 1, and to consider \j/ identical with the quantity which is usually

called d) in Hydrodynamics. But it is clear from the reasoning by which equation (2) was

obtained, that iV is a quantity of the same kind as the velocity, and that \// is supposed to be

freed from any factors which do not verify the equation \^ = 0, whilst d(p is merely a substitu-

tion for udx + vdy + wdz, and its integral is subject to no such operation. It is not,

therefore, allowable in any case to suppose the two quantities to be the same, on which account

I have here employed the letter >// in the place of the (h of my former paper. When udx + vdy

+ tvdz is integrable, in general N =f (t) . F
((f>).

5. For the purposes of the reasoning on which we shall presently enter, it is required

to shew, first, that when udoc + vdy + wdz is an exact differential (dcp), the integral of the

dynamical equation may be taken from any one point of the fluid to any other, and that the

arbitrary quantity to be added is either a constant or a function of the time only. This will

appear as follows.

The general dynamical equation is equivalent to the three equations,

dP „ /du\
, ^ dP ^^ fdv\ ^ . dP „ {dw\

d?-^n^)=''^*^- rf^-^nTj=°'<^)- di-^nd7)=°'f^>

in which P is substituted for — , or for k^ Nap. log p, according as the fluid is incompressible

or compressible. Assuming JTdx + Vdy + Zdz to be an exact differential, putting (dX) for

I X\dx + I
— V) dy + l- Z\ dm, and adding the above equations after multiplying

them respectively by dx, dy, dss, it is known that we obtain for the case in question,

<->^(-^t)^i(-|S'^f^^4)=°- «
,.,.<. xro , , . , , d0' rf0' d0' .

which, 11 V- be substituted for —-=— + -^ + —— , is equivalent to
dx' dy' dx'

(d\ d'd, „dr\ (d\ d^(i> ,,dV\ id\ d'<p „dV\ , ^

\dx dxdt dx I \dy dydt dy j \dx dzdt dx I

But the quantities in brackets must be respectively identical with the quantities on the left-hand

sides of the equations (4), (5), (6). Hence by reason of those equations,

d\ ^d) dV d\ d^d) , dF d\ d'rf) dV— + —^-- + V— = 0, — -(-—2_ + F— = 0, — + —J- +V— = 0.
dx dxdt dx dy dydt dy dz dzdt dz

Hence, dividing the foregoing equation by dx, it will be seen that — and — may be of any

arbitrary values. The integral of that equation may consequently be taken from any one point

to any other of the fluid, and the arbitrary quantity to be added is independent of co-ordinates.

Vol. VII. Part I. E
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7).

6. It is next required to introduce into the equation of continuity of the fluid, by means

of equation (3), the condition of continuity of the motion. For this purpose the process must

be gone through which is given in my former paper (Camb. Phil. Trans. Vol. VII. Part III.

pp. 385, 386). The result there arrived at is,

du dv dw _u dV 'j^ ^ w dV^ n
Tw'^'d'y^l^^V''d^^V'dy'"V'dz'' \r

'^
r .

where r, r are the principal radii of curvature of the surface of displacement at the point xyz.

u dx V dy w ds

V^Ts' V^Ts' V^Ts'
dV be the increment of velocity along the line of motion corresponding to the increment ds, the

required equation becomes for incompressible fluids,

— + F - + - =0 (8).
ds \r r

)

When the fluid is compressible we have the equation,

If ds be the increment of the line of motion, we have = -—. Hence if

dp d.pu d.pv d.ptv

dt dx dy dz

dp dp dp dp
or, -^ + ^u + -fv + -£-w +

dw dy d«

Now u = V
,dx

dl'
u= F

dt

dy

fdu dv dw\

"\dx dy d%

I

Az
ds

w = V^^ ; and, as before,
ds

du dv dw dV ^IX l\

dw dy dm ds \r r ]

By substituting these values in the equation above, it will readily be found that

dp d.Vp

dt ds "^e-?)
0, .(9).

in which d. Vp is the increment of Fp along the line of motion corresponding to the increment

ds of the line of motion. I have obtained equation (9) in my former paper (pp. .387 and 388)

by elementary considerations, and equation (8) might clearly be obtained in a similar manner.

That method, being independent, may be adduced in confirmation of the reasoning here employed,

and of the general equation (2), by means of which the reasoning has been conducted. It also

has the advantage of shewing distinctly that the increment d . Vp in (9) must be limited to

the direction of the line of motion, unless Vp has the same value at all points of a given

surface of displacement; and that rfF in (8) must be similarly limited, unless the velocity be

the same at all points of a given surface of displacement.

The equations (8) and (9) may be called equations of absolute continuity. When they

are satisfied consistently with the respective dynamical equations, there can be no breach of

continuity and the motion is possible. Examples will hereafter be adduced to illustrate the

use of these equations.

7. I propose now to determine by means of equations (s) and (9) in what cases of possible

motion udx + vdy + wdz is an exact differential. This important question has not yet received

a satisfactory answer.*

" Lagrange in the Mecanique Analyliqne argues that udj;-\-

vdy+ wdz is an exact differential when the motion is so small

that powers of the velocity above the first may be neglected

;

and again, when the motion begins from rest. These theo-

rems occur in the Edition of Poisson's Traiic de Mecanique

of 1811, but are omitted in that of 1833. Lagrange's reasoning
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First, let the fluid be incompressible. It has been shewn in Art. 5 that when udai + vdy + wdz
is an exact differential, the dynamical equation may be integrated from any one to any other

point of the fluid. But the result obtained by integrating that equation in this manner,

does not give a possible motion unless the equation (8) be similarly integrable. Let this be

the case. Then the first condition that must be satisfied is, that each surface of displacement

dV
be a surface of equal velocity. For on no other supposition can the differential coefficient —
remain the same, in passing from a given point to another indefinitely near in an unlimited

number of directions. In the annexed figure P and Q are any

two points of the fluid ; QR is an orthogonal trajectory to the

surfaces of displacement situated at a given instant between

P and Q ; PR is a line drawn on the surface of displacement

which passes through P, and intersecting QR in R. Now by

hypothesis the integral of equation (8) may be taken between

arbitrary limits. Therefore the integral from P to Q along PQ
is the same as the integral along PR and RQ. But the integral

along PR is nothing, because PR is on a surface of equal velocity.

Therefore the integral from P to Q is the same as the integral

from R to Q. Supposing therefore the surface of displacement through P and the velocity in

this surface to be given at a given instant, the velocity at any point Q is a function of the line

QR. Let QR = s. Then Yds is a differential of a function of s and the time. Since, there-

fore, d(p = Yds, (j) is also a function of s and the time. But the equation ^ = is the equation

of a surface of displacement. Hence for a given surface of displacement s is constant. This

proves that the surfaces of displacement are parallel to each other, the orthogonal trajectories

are straight lines, and the motion is rectilinear.

Again, let da be the increment of any line drawn arbitrarily on any surface of displacement.

Then since the direction of the variation of co-ordinates in the equation (7) may be any whatever,

we shall have,

dX rl'^rd'(h
1

'—
d(j dadt aa

d\
But since — is the effective accelerative force perpendicular to the direction of motion, and

da

,
d\ A,

<^^ «
smce, as we have seen, the motion is rectilinear, it follows that -j- = 0- Also

Consequently
d?(f)

da
du

= 0. This proves that the equations udie + vdy + wdz = 0, and — dx
dadt

+ — dy + dz = are true at the same time. The latter equation is the former differentiated

dt dt

with respect to t, on the supposition that d.r, dy, dx do not vary with the time. It follows

with respect to the first is liable to this objection :—he concludes

that
fhi dw

, from approximate equa-
_ dv du _ dvj dv

Jy~ dx' dz~ dx ' dz ~ dy
tions, whence it follows that those equalities are approximate;

whilst the inference that udx + vdij 4- wdz is a complete differ-

ential, requires that they should be exact. No reason is assigned

by Lagrange for the other Theorem. The following argument

shews it to be without foundation. Jf'each of the quantities w,

t), w vanishes for a certain value ti of t^ they must each con-

tain t-h as a factor. We may therefore assume that udx+vdij

+ wdz = {t - h)'^{Udx + VdyJr Wdz), one at least of the

quantities f. (', [r not vanishing when l-h. Since ( — A is

unaffected by the sign of differentiation, if the left-hand side of

the equality be an exact differential, Udx -( Vdy + Wdz must

be an exact differential also. But the latter quantity is not

necessarily an exact differential when t = h; therefore neither

is tlie other.

E2
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that the direction of motion through a given point remains the same in successive instants.

This is rectilinear motion, and it thus appears that the rectilinearity of the motion is in accordance

with the dynamical equation.*

When the motion is perpendicular to a plane, r and r' are each infinite, and equation (8) becomes

_ This is true whether the motion be in parallel straight lines or in concentric circles about
d s

a fixed axis. But equation (8) does not enable us to determine whether in the latter of these two

kinds of motion, udx + vdy + wdx can be an exact differential. This question will be con-

sidered further on.

Reserving then the case just mentioned, the following will be the conclusion to which the

foregoing reasoning conducts :

—

The only motions of an incompressible Jluid which are possible

when udx + vdy + wdz is an exact differential of a function of three independent variables,

are rectilinear motions.

8. Now let the fluid be compressible. For the same reason as that adduced in the case

of incompressible fluids, equation (9) cannot be integrated between limits entirely arbitrary

unless Vp is constant along a given surface of displacement. And again, as before, if s be drawn

at a given instant the orthogonal trajectory to surfaces of displacement from any point to

a given surface of displacement, then Vp at that point is a function of «. Hence, since

o {udw + vdy + wdz) = Vpds, it follows that the left-hand side of this equality is integrable.

But by hypothesis udm + vdy + wdx is an exact differential dcf). Hence, since pd<p = Vpds,

p is a function of (j), and p and (p are each functions of s. But Vp is a function of s.

Therefore V is also a function of s. It is thus shewn that the surfaces of displacement are

surfaces both of equal yelocity and equal density. By reasoning precisely as in the case of

incompressible fluids a like conclusion is arrived at ; viz. that the only motions of a com-

pressible fluid which are possible when udx + vdy + wdz is an exact differential of a function

of three independent variables, are rectilinear motions.

The above result and the analogous one respecting incompressible fluids, are evidently

dependent on the fact that when udw + vdy + wdx is an exact differential d<f), both ^ and V
are functions of the variable s, which is a line drawn at a given instant in the direction of

the motion of the particles through which it passes, commencing at an arbitrary origin and

terminating at the point xyss. And again, this fact is a direct consequence from the general

equation (3), as may be thus concisely shewn. That equation, on multiplying by N, becomes

JV -^ + F^ = : or, since V = N.— , it becomes —^ + iV—-^ = 0. Now when A'' is a function
dt ds dt ds

of t only, and consequently udx + vdy + wdz is integrable of itself, the last equation by

integration gives \\, a function of s and t. Therefore also N -j- , or F, is a function of s and t.

And since d^ = Vds, <p is also a function of s and t.

9. It remains to consider what are the forms of the surfaces of displacement which satisfy

the condition of rectilinear motion.

• If all the parts of the fluid have a common motion in

a common direction, the surfaces of displacement will partake

of this motion, and the motion of the particles in space will

not be rectilinear. Such common motions are not the proper

subject of consideration in Hydrodynamics. When they exist,

it must be under given circumstances, and their amount may
be calculated in the same manner as for a solid body. These

motions may therefore always be considered to he eliminated

by impressing equal motions on all the parts of the fluid in a

contrary direction.
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Since V and —— are the same at all points of a given surface of displacement when the
as

motion is rectilinear, it follows from equation (8) that in incompressible fluids - + — is the
r r

same at all points of the same surface of displacement. This is true also when the fluid is

compressible. For since p is given for a given surface of displacement, and since the equation

du , dv dw ,.1.. 11 (./.i-i 11— a* H dy + -— dx = 0, obtamed m Art. 7, proves that the surface ot displacement through
dt dt dt

a given point does not vary its position, it follows that -j- is the same at all points of the

same surface of displacement. It has been already shewn that this is the case with
'

and
ds

Vp. Hence equation (9) shews that - + — is the same at all points of a given surface of
r r

1

displacement. Again, if Sr be an indefinitely small constant quantity, ^ + -; 5-
"^

r + hr r + 67

stant for the next contiguous surface of displacement. Hence if - + — = c and s—1-
, ^

r r r + cr r + dr11 ^
= c + Sc, we have — + --= — -^ = a constant. It follows that r and r must each be constant

r r dr

for a given surface, and consequently that not only is the curvature the same, but the principal

radii of curvature the same at all points of the surface. The only surfaces that possess this

property are the surface of a sphere and that of the common cylinder. Hence the only motions,

whether of incompressible or compressible fluids, that are possible when udx + vdy + wdz is

an exact differential, are in straight lines drawn from a fixed centre or perpendicular to a

fiaied axis.

10. By reviewing the reasoning which has conducted to the above conclusion it will be

seen that after proving the dynamical equation to be integrable from any one point of the

fluid to any other whenever udx + vdy + wdis is an exact differential, the equations (8) and (9)

were assumed to be integrable in like manner. It is necessary therefore to inquire under what

circumstances the result obtained in the preceding Article is consistent with that assumption.

Let udx + vdy + wdz be an exact differentia], be a function of r, and r' = x^ + y' + z".

Then the equation of continuity of a compressible fluid becomes,

d(})\ dr(j> drcj) d^ d=(j) d^ /2A= Xx Yy Z%\ _
dr^j dr' dt' dr'drdt dr \ r r r r )

which does not agree in giving tp a function of r unless the impressed force either be nothing

or a function of r. No such limitation is necessary with reference to incompressible fluids,

because the equation of continuity applicable to them becomes,

d'(h d(b

-Ti + 2 X^ = 0,
dr^ dr

which gives (p a function of r, whatever be the impressed force. It is, however, necessary

that JTdx + Vdy + Zdz be integrable.

11. The investigation I have now gone through, shews that there are several defects in

the reasoning of my last pajjcr, which I will endeavour to point out as distinctly as possible.

The first occurs in Art. (i (p. 377), wlicre it is asserted that " f^dr is not an exact differential,

unless the variation of V from one point of space to anotiier at a given instant, depends only
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on the change of position in the direction normal to the surface of displacement." This is

not true as a general proposition, hut it is true with reference to fluid motion, solely in

consequence of the condition expressed by the general equation (a), as appears by the reasoning

in Arts. 7 and S of this paper. Hence the Proposition proved in the ' Note' added to the

former Paper fails in giving support to the above cited assertion, because it takes no account

of that equation. In fact, the proof neglects the curvature of the lines of motion, and therefore

only amounts to shewing that in rectilinear motion a surface of displacement is a surface of

equal velocity when udw -¥ vdy + wdz is an exact differential, or the converse In the same
^^ ft It fJ 13 (i ?A}

Article (p. 378) it is said incorrectly, that
'JT'^''^

'^ J^'^V '^ '^ '^^ " °' liecause for a surface

of displacement udx + vdy + tvdz = 0^ This is true only when the position of the surface

of displacement through a given point is invariable, which should first have been shewn to be

the case. The correct reasoning is given in Art. 7 of the present paper.—At the beginning

of Art. 7 of the former paper (p. 379), it is supposed that in rectilinear motion the lines of

motion may pass tlirough "fixed focal lines." The more complete investigation of the present

Essay shews that they must be limited to passing through a fixed centre, or a fixed axis.

—

" dd)
The assertion (in p. 382) that —^ and V are constant for a given surface of displacement

at a given time, when udx + vdy + wds is an exact differential," is true, but, on account of

the defects already mentioned, does not follow from any previous reasoning It is not generally

true as asserted in p. 389, that " the variation of F at a given point is the same as if r

and r were constant," and consequently the equation derived from that supposition is of no

value. I am not aware of any other points that require adverting to.

I proceed now to make some uses of equation (2) which will shew the importance and

necessity of it.

12. First, let it be required to determine on what hypotheses the general dynamical equation

is intefrable. To do this it is necessary to introduce into the dynamical equation the condition

expressed by the equation (2), or by its equivalent equation (3). I have already gone through

the process for this purpose in Arts. 10 and 12 of my former paper. The result there obtained,

expressed in the notation of this paper, is

It is supposed in this equation that Xdw + Fdy + Zdss is an exact differential. This condition

being fulfilled by the impressed forces, the equation is integrable either if the second term vanishes,

or if JVd\// be integrable. Since ——^= f—-ds, in the first case, -rr = and the motion

is steady; in the other, ud^v + vdy + wdz is an exact differential. These are the only cases

in which the general dynamical equation is integrable.

13. Next let it be required to find the factor — in proposed instances of motion, and

to determine whether the motions are possible.

To make the equation (2), viz.

dxb d'dr dsjy d4/

dt dx dy dz

convenient for this purpose, it will be transformed into another equivalent equation in the

manner following. The equation \|, = 0, being by hypothesis the equation of a curve surface,

may be supposed to contain besides the variables x, y, z explicitly, certain parameters a, b, c, &c.

which are functions of the co-ordinates and the time, and vary with the varying position of a
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given element of the fluid, but which are constant in passing from point to point of a surface

of displacement through either a finite or an indefinitely small space. Let, therefore, the

equation \^ = be equivalent to f{,v,y, z, a, b,c,kc.) = 0. Then

d\l/ df da df db df dc—I-=-A. — + ^. — +-^. + &C.
dt da dt db dt dc dt

dyb df df da dx df db d.v df dc dwM-^ = M— +— . — . — +— . — . — +— . — .— + &C.
d.v dx da dx dt db dx dt dc dx dt

J I -It

and so for w — and u—^. Hence, substituting in equation (2), we have
dy dz

df lda\ df ldb\ df ldc\ df df df
da \dtj db' \dtl dc ' \d(J

'

da; dy dx

Now differentiating the equation f{x, y, z, a, b, c, &c.) = 0, we obtain, since a, b, c, &c. are

constant for a given surface of displacement,

df , df , df , u , V , w ,— dx+ — dy + -fdz=-0=~dx + ---dy + —-dz.
dx dy dz N N N

Hence, u=N-f-, v = N~, w = N~: and consequently,
dx dy dz

df /da\ df (db\ df /dc\ „ ,, / dp df- df'\£ [diJ-'i-U^ic- U) +^'^- + ^(£^ + 57-^^0 ^'^ ^'"^-

We shall presently illustrate the use of this equation in finding A''.

It is plain that the equation f(x, y, z, a, b, c, &c.) = 0, may be that of a surface having a

contact of the second order with the surface of displacement at any point xyz, the parameters

in the equation of such a surface being a, b, c, &c. For instance, let the equation of the surface of

contact be

(^-»Y ^ (y - ^y ^ (^ - 7)°
, „

w? n' p'

then we have for determining A'^ the general equation,

g-a lda\ y-(^ /dfi\ z-y /dy\ (x - af ldm\ (y - fif tdn\ {z - 7)^ ld±\ _
ni' '\dtl^ rv" '\dtl p' '[dt] m? '\dtl'^ v? '\dt)'^ f ' \dt]

~

V m' ^ n\ ^ p' J

I proceed now to adduce some examples of finding i\r, and of applications of the equations

(8), (9), and (:0), to determine whether proposed instances of motion are possible.

Ex. 1. Let the case of motion be that considered in Art. 3. This instance gives u = mx,
, ,. ^ , . dti dvv=-my, and satisfies the equation — + _ = 0. Also udx + vdy = m{xdx - ydy), and

u dy y ,

- = 7- = • Hence the general equation of the surfaces of displacement may be assumed to

be x' - y" - a' = 0, and the general equation of the lines of motion, xy = c".
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/da\

Hence - a {^) . .NW + f) = 0, and N = ^^^.
But by the equation a? - if - a' = 0, (since x, y, and a vary simultaneously with the position

of the element,) we have ^
(J) " ^ (J)

" « (S) = °' ""'^
(S) = '' = '"^'

(S) = " = " '^^^^

Hence a (•— ) = m{ii^ + i^), and consequently A?" = — . This value makes —dx + — dy an

exact differential, and the equation (3) is therefore verified. We have now to see in what

dV ds
manner equation (8) is verified. This equation for the instance before us becomes ^~ + — = 0,

V r

r being the radius of curvature of the curve of displacement at the point a)y, and ds the increment

{ay + «")t i3^-\-'if\\dx
of the line of motion at the same point. Hence r = — —;—^-7- , and ds = . There-

in'' — y' x

fore . — = 0. This equation cannot be integrated unless y is eliminated by means
V a^ + y"- X

of the equation xy = c' ; that is, it can be integrated only along a line of motion. The dynamical

equation must therefore be integrated in the same manner, and the arbitrary quantity to be

added is a function of co-ordinates as well as the time. The fluid must be conceived to be

included between two hyperbolic surfaces indefinitely near each other. This explains the contra-

diction met with in Art. 3.

y
Ex. 2. Let the equation of the surfaces of displacement be — tan"' - = 0. Putting therefore

a

/for - tan"'— , we have

de'Kdtj \dtj' dx ai' + y'' ^" dy or' + y''

Now since y = x tan 9, the motion is evidently parallel to the plane of xy in concentric circles about

a fixed axis. Hence at any distance r from the axis F = r I— I . Consequently N = (.r^ + y^)

f(.t)
~ — Vr. Therefore if F =

, we have N a function of t, and vdx + vdy an exact differential,
T

although the motion is curvilinear. This is the case of motion alluded to at the end of Art. 7.

Ex. 3. Let it be required to determine whether in an incompressible fluid the surfaces of

displacement can be concentric spherical surfaces, the centre of which is always on the axis of

X, and at the same time the motion be such that a given particle in successive instants is at

the same distance from the common centre.

Here if a = the co-ordinate of the centre, and a = the radius of any surface of displacement,

we have /= (a? - aY + y" + «- - a^

^^ df /da\ /da\

df (da\ (da\

Ta' Idjj
=''' ''''=^"'" ^^ hypothesis

(-J
=0.
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df df df/ = 2 Cr - a), / = 2t/, -f = 2;jr.

da- ' dy dz

F(a;-a)
<: r^^^it — a^ + tjv

J
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dR *» 1 6cos0 (1 + cos^e) 1 3COS0
It ^iU be found that ds = ^-^^ (l + 3 cos= Of, - =

-^(i + 3eos^0)5 '
'""'^ 7

=

0.Hence, _ + d.
(^- + ^j

= -p- + ^;^ •

i+3,,,-..g^

This equation cannot be integrated independently of the equation R - e %\x^ 9 = 0; that is, it

can be integrated only along a line of motion. Hence the conditions of continuity are not

satisfied.

Ex. 5.
" Let it be supposed that the motion is in straight lines drawn from the vertex of

a cone and let the fluid move in parallel slices so that the motion parallel to the axis of the

cone is the same at all points of any section perpendicular to this axis: it is required to

determine whether this motion is possible.

The equation of the surfaces of displacement is a;^ + y^ + x^ - R'^ = 0, and the equation of

the lines of motion iZ- a? sec = 0. Hence ds = dR = dxsecG, and R = r = r. Equation (8)

dV 2div ^, . ^ r.
., , , „, , df tdR\

consequently becomes — + = 0. Now puttmg / for w--\-y+e-R-, we have -^(—

1

= - 2i2 F, — = 2.r, — = 2u, — = 2». Hence - ZBV + iN^x"- + y"- + :>?) -0, and N= .

dx dy dz ZR

Therefore u = N— = = (bM by hypothesis. Consequently v = ~ , w =
""^

, and
da: R X 00

V = ?^^ = d) (,r) sec 0. The above values of m, w, w, do not make itdx + vdy + ivdz an
.17

exact differential. Hence the dynamical equation must be integrated along a line of motion,

dV
and the equation (8) with the same limitation. Consequently — = <p'(j;)sec6, and the above

equation becomes i-i^ + - = 0, which by integration gives d)(.r) = —— . Hence V = •—-sect^,^
(p (x) X a) X'

and the motion is completely determined. This solution agrees with the one I deduced from

particular considerations in the Cambridge Philosophical Transactions (Vol. V. Part ii. p. 186).

The preceding example is instructive as shewing that the motion may be rectilinear when

uda; + vdy + wdz is not an exact differential. Another inference may also be drawn from it.

Let the motion be steady, and let W be the velocity at a point of the axis distant by h from

--^ ; whence f{t) = h' W, and F = -^
posed to act parallel to the axis of x, the dynamical equation gives for the pressure (jo),

j) = C - gx - -^^ sec' 0,

W'h*
and if p = where x — H, C = gH ^ =^5- sec- Q. If now H be assumed to be so large that

the second term of the expression for C may be neglected, we shall have, C = gH, and

p = giH - X) - -^^ sec' 9.

It might hence be argued that udx + vdy + wdz is an exact differential for this case, since C
is independent of sec 9. But the objection to this inference is, that if it were true, the above

value -of p might be differentiated supposing sec 9 variable, which would manifestly be in-

correct, for the result would be at variance with the differential from which this value was

derived. The fact is, the neglected quantity has no effect on the numerical computation of

p, but as it contains sec 9, we cannot regard C as independent of co-ordinates.

the vertex. Then W=^-jf; vihence f{t) = h^ W, and V=—j-sec9. If gravity (g) he sup-
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Ex. 6. Let it be required to determine whether in a compressible fluid the surfaces

of displacement can be spherical surfaces, the centres of which are always on the axis of .r,

and at the same time the motion be such that the radius of the surface of displacement of

a given particle remains the same in successive instants.

Let {.V - af + ?/- + ^^ - R- = 0. Then by reasoning as in Ex. 3, F= f

--J
cos = K cos d.

By hypothesis (— ) is the same for all points of the same surface of displacement. Hence V^

is the velocity at any point of the axis of tv. The equation (9) may be put under the form,

dp dV V dp 2V
pat as p as H

subject to the limitation of integrating along the line of motion s. The dynamical equation,

subject to the same limitation, is

rdV V"
k' Nap. log |o' + y— ds + — =/(0-

Hence, carrying the approximation only to the first power of the velocity, we have

^._ir, .nd'^=-f%ds^f(t). Therefore
pds dt pdt J at

and differentiating with respect to s,

(P^ ,P d-r ,0 f dF V dB\
^2 — 2 A; I I

=
dt- ' ds^ \Rds R"' dsl

The motion is symmetrical about the axis of x, which is plainly a line of motion. Hence the

above equation is true when F is put for Fand x for s. It thus becomes,

d'V, „ d"-V
„ f dV, V dR\

dt^ ' daf \Rdx R' ' dx)

Now in this equation R = x - a, and = 1 - — , for a is a function both of x and t. The
dx dx

differential coefficient — will in all cases be very small, if the velocity of the particles be small

compared to the velocity of propagation of the motion. Hence -~— = ^, I
' ~ w~ )

~ ^* nearly,

regarding — a quantity of the same order as F^. Also as F may be considered a function of

„ ,
dF dV, dR dV,

, . . d?V (PVdR tPF
, „ u .% .• •

R and t,
'- = —— . = —- nearly. And '- = '-. = —^ nearly. By substitution in

dx dR dx dR ^
dx' dR' dx dR' ^ ^

the foregoing equation, we have

-—
• - A' .

-

—

'- - afcM—' =0.
dt- dR' \RdR RV

This equation gives F by integration, whence F is known from the equation F= F,cos0. Thus

the motion is completely determined consistently with equation (9), and this is the proof of

the possibility of the assumed kind of motion, so far, at least, as regards small motions. The
above solution is that whicli I have employed for finding the resistance of the air to the vibrations

of a ball-pendulum.

CAMBBinOB ObSERVA'TORV.

Mardi 2, ]84.'3.



V. Observations on the Nature of the Biliarij Secretion

;

—the object being to shew,

that the Sile is essentially composed of an Electro-negative body in chemical combi-

nation with one or more inorganic bases. Hy George Kemp, M.B. St. Peters

College.

[Read March 6, 1843.]

The following observations on the nature of the Bile, form a portion of some researches

into the elementary composition of that secretion, commenced in the laboratory at Giessen.

Professor Liebig suggested the following mode of conducting the inquiry.

A portion of ox-bile as received from the gall-bladder was to be evaporated to dryness,

and then submitted to ultimate analysis, without any farther manipulation.

This plan was abandoned for the following reasons.

The gall-bladder of every animal yet examined contains, in addition to the bile, another

body, always varying in quantity, and possessing physical properties differing so essentially

from the biliary secretion, that I determined in the first place to separate and examine this

body, to which the name of Mucus of the gall-bladder has been given. The analysis proved

that this body contains 15'4 per cent of nitrogen, while the bile itself contains only 3'5 per

cent of that element, so that the results obtained in the manner originally proposed would

have been constantly varying, and always erroneous. The fats and fatty acids also, contained

in the bile, would have led us still farther astray ; eventually, therefore, I determined on re-

moving the mucus and fatty acids before attempting the analysis of the fluid. Previously,

however, to entering on the manipulation employed, it will be proper to give a sketch of the

principal opinions which have been hitherto entertained on the nature of the bile.

The first proximate analysis of this fluid, of any importance, seems to have been made by
Thenard in the year 1806, with the results contained in the note*. According to his opinion

the bile is principally composed of biliary resin and picromel ; the biliary resin he supposed

to be held in solution by the picromel. Berzelius in 1807 instituted an analysis of which the

table f below gives a summary view. He considered the biliary resin and picromel as one body,

altered by the manipulation of Thenard, who made use of nitric acid in his analysis. To
this body, composed of biliary resin and picromel, Berzelius applies the name biliary matter.

An analysis instituted by Dr. Prout about the same time confirms the analysis of Berzelius in

every essential point. At a subsequent period Gmelin undertook the investigation of this

secretion ; his results induced him to imagine that the opinion of Thenard with reference to

the existence of biliary resin and picromel, was correct, although the substance described as

picromel by Gmelin differs very essentially from that body as described by The'nard. He,

' Water 876-6

Biliary resin 30-0

Picromel 75.4

Vellow colouring matter s-O
Soda 5.0

Phosphate of Soda 2'5

Chloride of Sodium 4.0

Sulphate of Soda I'O

Sulphate of Lime 1.5

A trace of Oxide of Iron.

1000-0

t Water 90-44

Biliary matter with fat 8-00

Mucus of the gall-bladder 0-30

Osmazome, Chloride of Sodium, and Lactate of Soda 0-74

Soda 0-41

Phosphate of Soda, Phosphate of Lime, and traces 1

of a substance insoluble in alcohol >

100-00
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moreover, found other substances denominated cholic acid and taurin, which have since been

proved to be products of manipulation. In the year 1826, Demar<|:ay employed himself in the

laboratory of Liebig in preparing, and submitting to analysis, a substance obtained from the

bile when treated with diluted sulphuric acid, and to which he subsequently gave the name
choleic acid. This body was in all probability the picromel of Thenard, and the matter

which remained after removing the choleic acid, denominated choloidic acid by Demarij'ay, bears

a striking resemblance to the biliary resin of Thenard ; as, however, no elementary analysis

was made by that chemist, the matter must remain in doubt. The choleic acid of Demar(,ay

is an important body, as Professor Liebig has acceded to the opinion that it is the essential

organic ingredient of the bile; a conclusion, however, which subsequent researches tend to

overthrow ; indeed, the opinion of Demarcjay was grounded on the following circumstance.

After he had prepared his choleic acid, and combined it with soda, the compound possessed a

considerable number of the physical characters of the Bile, and in estimating the quantity of

soda which combined with a given quantity of his choleic acid, he found the quantity of the

base almost precisely the same as that contained in the same quantity of the dried bile. One
unfortunate oversight, however, occasioned this erroneous inference of the identity of the two

bodies. The choleate was converted into the sulphate of soda, in order to estimate the

quantity of the base. On applying the same method to the bile, the chloride of sodium

contained in that fluid became converted into sulphate of soda, and thus the quantity of soda

combined with the organic body was supposed to be considerably greater than it really was;

for on looking over the analysis of Thenard it will be seen that the quantity of chloride of

sodium stands in the proportion of 4 : 5 to the soda ; a quantity much too large to be over-

looked, as it would occasion an error in the second whole number of the atomic weight. Indeed,

the circumstance of the similarity found in the dried bile and in the choleate of soda in this

one experiment, was evidently purely accidental, as the chloride of sodium is always present in

bile, and that in constantly varying proportions. In fact, the choleic acid of Demar^ay seems

to be a product of decomposition of the bile effected by means of sulphuric acid ; and the

errors in the late work of Professor Liebig on the subject have arisen from not taking into

account the other product of manipulation, the body which Demar^ay has denominated

choloidic acid. The labours of Demarc^ay were however exceedingly valuable, as they directed

the attention from proximate to ultimate analysis, and were the means of inducing the illustrious

Berzelius to make one more effort towards effecting the solution of this difficult problem*.

A paper, which has recently appeared I believe in an English form, was in the year 1841

laid before the Royal Academy of Stockholm, purporting to be an analysis of the bile of the

ox, and the characteristic properties of its component parts. This elaborate research was

conducted in the same manner as his former analysis, the object being to eliminate what he

considered the proximate principles of the bile ; and the results confirmed all his former in-

vestigations on this subject. He concludes by stating the theory, that the bile in its healthy

and perfectly fresh state is essentially composed of bilin, a body agreeing in every physical

character with the biliary matter of his former analysis, and that this body is continually

undergoing a change into two acids, fellic acid and cholic acid ; that at the same time these

two acids form Unary compounds with bilin, to which compounds he has given the names

Bilifellic Acid and Bilicholic Acid. To this theory we shall have occasion again to advert.

These last researches of Berxelius seemed to discourage any farther attempt to elicit facts

by means of proximate analysis; and at the request of Professor Liebig, I commenced a series

of ultimate analyses, with the limitations alluded to above. It appeared desirable also to extend

• Uebcr die Analyse dcr OctiKcngallc, und die characterisi- I den Kongl. Vel. Acad. Ilandl. IIJ4I. S. 1—(i4, iibersetzt von

renden Eigenfthaftcn ihrcr Bestandtheilc ; von J, Derzcliuii. (Aus I
Dr. VViggcrs.
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the inquiry, which had hitherto heeii confined ahuost exclusively to the bile of the ox; I

therefore proposed to examine the bile of that animal as the type of the graminivorous, the human

bile as the type of the omnivorous, and the bile of some decidedly carnivorous animal, the lion

or tio-cr for instance, as the type of that class of animals. It was further proposed to institute

an inquiry into the differences which exist in the bile of different species of fish. Thus I hoped

that some general character at least would be found to illustrate the nature of the secretion in its

relation to the researches of physiology and pathology. The results of the first investigation

which were made at Giessen have since been published in the Journal of Erdman and Marchand at

Liepsic, and in the London Medical Gazette; it will, therefore, merely be necessary to give a

o-eneral outline of the manner in which the investigation was pursued ; the subsequent portions

of the research have, by the kind permission of Professor Gumming, been carried on in the

laboratory of this University. At the onset of the inquiry it seemed most important to take a large

average, and the bile obtained from twelve oxen killed at the same time at Frankfort was evaporated

in a water-bath to dryness ; the mass was reduced to powder and treated with alcohol sp. gr. -840,

in order to remove the mucus ; the clear fluid obtained by filtration was again evaporated

to dryness, powdered, and treated with ether, in order to remove the fats and fatty acids in

combination with soda, and this treatment continued until the ether on evaporation gave no residue.

The substance was now dried at a temperature of HO" of the centigrade thermometer, reduced

to a powder and submitted to analysis. The solution of this substance was perfectly neutral

;

on burning it however in a platinum crucible, an alkaline ash was left, which consisted of

carbonate of soda, and chloride of sodium. The carbonic acid which was found combined with

soda was of course the result of the combination of the carbon of the organic portion of the

bile during combustion with the oxygen of the atmospheric air. In the bile therefore soda itself

was present in combination with organic matter, and as in the bile the alkaline property of the

soda is suspended, we have positive proof that the soda in the ox-bile is combined with an

electro-negative body ; for in no other way can we account for the perfectly neutral character of

the bile. Those who are acquainted with the description of the bile in physiological works, will

remember that it has been described as an alkaline fluid ; and Schulz has made the statement that

one ounce requires half a dram of acetic acid for its saturation. His account is, however, much

too vague to place any dependence upon, for what is usually called acetic acid is merely a

solution of acetic acid, and the strength of the solution has not been recorded by this author.

It is certain that a portion of a strong acid may be added to the bile without any acid reagency

taking place before the quantity of soda combined with the electro-negative body (naturally

contained in the secretion) has become saturated. And we must not be surprised that the electro-

negative body set at liberty produces no change on litmus paper, as bodies of very high atomic

weight seldom produce any visible reaction on test-paper. We may instance the new alkaloid

Berberin, which has an atomic weight of more than 4000 (O = 100) ;—the combining weight

of the body which we are about to examine is between 5000 and 6000. But to come to actual

experiment on the subject.

I have tested the fresh bile of more than forty oxen, the human bile, the bile from the tiger,

* the fox, the cat, * several kinds of monkey, the dog, * the wolf, * an Indian bull ", and the secretion

as found in the codfish ; in all these cases, with two exceptions, the bile was perfectly neutral.

One of these exceptions was the bile from a child which had been burnt to death, and which

was not examined until three days after its removal from the body, in which state, it is needless

to remark, that decomposition had already commenced, and even in this case the alkaline reaction

was barely perceptible. The other was that of the bile obtained from an Indian bull, in which the

secretion was not only decomposed, but absolutely putrid. To return however to the ox-bile.

« The bile of the animals marked (•) was obtained through the kindness of Dr. Clark, Professor of Anatomy in this University.

1
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Having now decided that the bile of the twelve oxen under e.tamination contained an alkaline

base, the physical properties of which had been suspended by combination with a body in an

opposite electrical condition, the next point was to determine the quantity of soda contained in a

given quantity, and thus estimate the combining weight of the organic body with which the

base was combined. On this being ascertained, an analysis was made to determine the quantity

of organic elements. For the sake of brevity the analyses will be given together, after the

description of the manipulations. A further portion of bile obtained from twelve more oxen was

now submitted to examination, and the results, both with respect to combining weight and proportion

of organic elements, were as nearly identical with the former portion as our present modes
of analysis, and the nature of the research, warrant us to expect. It may here be remarked,

that animal bodies in general present great obstacles to minute analysis, from the difficulty with

which they are burnt, and from the readiness with which they attract moisture. The body
contained in the bile is so hygroscopic, that even in the act of mixing and introducing it into

the tube a sufficient quantity of moisture is absorbed to render the estimation of hydrogen always

too high. Having now determined analytically that the bile of the ox contained an organic electro-

negative body in combination with soda, it seemed desirable to attempt a synthetical proof. Here
serious objections presented themselves. The bile is more or less influenced by every chemical

reagent yet tried, or, to use the words of Berzelius, "it has so great a tendency to undergo changes

in its composition, that the action of different reagents upon it converts it into different compounds,
which vary according to the processes employed to extract them ; exactly as oils and fats are

converted into sugar and fatty acids by the action of the oxides of lead and zinc." It appeared

probable, however, on consideration, that by extreme dilution of reagents, and carefully avoiding

a greater excess than necessary, we might succeed, if not in isolating the body for analysis, yet

in separating it from the soda with which it was originally combined ; uniting it again with a

fresh portion of soda, and thus in forming the bile artificially. If the composition of the body
thus formed should by subsequent research furnish us with results identical with those obtained

from the bile in a natural state, I conceived that no candid person would reject the evidence either

as unsatisfactory or unsound. A portion of the dried extract of the bile freed from mucus and
fatty acids was dissolved in alcohol of as great a strength as could easily be obtained, and then

treated drop by drop with diluted sulphuric acid. The sulphate of soda thus formed being

insoluble in alcohol, could of course be separated by filtration, the organic elements previously

combined with the soda remaining in solution. The sulphuric acid was added in the slightest

possible excess, in order to ensure the complete separation of the soda, and the clear solution obtained

by filtration was now treated with an excess of carbonate of soda deprived of its water of crystal-

lization. The excess of sulphuric acid was precipitated in the form of sulphate of soda, while

a portion of the carbonate readily combined with the electro-negative body remaining in solution.

The solution obtained by filtration was now evaporated to dryness, and submitted to analysis.

As no change in the physical characters of the body had been made by this process, I was not

surprised to find that the combining weight and ratio of organic elements were found by analysis

to be identical with the bile in its natural state. But the question may be asked. Why not (having

separated the soda by means of sulphuric acid) have evaporated the solution, and then analyzed

the body thus isolated ? My reason for not doing so was, that it was necessary to add sulphuric

acid in slight excess, and this in proportion as the solution became concentrated by evaporation

would have rendered the result unsatisfactory, as we know that sulphuric acid of moderate

strength decomposes the bile, and converts it into the choleic and choloidic acids of Demarci'ay.

Thus it would have been as much a matter of probable evidence whether the isolated body
was the matter contained in the bile, as whether the body separated as above and reconibined with

a base, was the electro-negative substance, the composition of which we wished to determine.

It now only remains to give a summary of the general results obtained from the analysis of the

ox-bile, before passing on to the consideration of the bile of other animals.
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1. A portion of the substance was burnt in a platinum crucible, and an ash remained con-

sisting of
Carbonate of Soda = 11'16 per cent.

Chloride of Sodium = 0-64 per cent.

2. Another portion treated in the same manner gave

Carbonate of Soda = 11'13 per cent.

Chloride of Sodium = 0'37 per cent.

The organic portion gave on combustion with chromate of lead :

—

1 2

Carbon =64-60 04-85

Hydrogen = 9-62 9-40

Nitrogen = 3-40 3-40

Oxygen = 2238 22-36

100-00 10000

The human bile, from the smallness of its quantity, presents us with still greater difficulties than

the ox-bile, the portion obtained from an adult under the most favourable circumstances being

barely sufficient for the necessary number of analyses. The first portion of human bile which

I examined was removed about eight hours after death from a man who died suddenly under an

attack of delirium tremens. Having separated the mucus and fat as above described, it was

submitted to analysis with the following results. On burning a portion in a platinum crucible

it was found to contain 6-6 per cent of soda and 1-87 per cent of chloride of sodium. The organic

elements were in the following proportions :

Carbon = 68-80

Hydrogen = 10-40

Nitrogen = 3-44

Oxygen = 17-36

100-00

The general conclusion from the above analysis is, that human bile, as well as the ox-bile,

is an electro-negative body in combination witli soda. Two other cases of bile obtained from

children who died in consequence of severe burns confirmed this conclusion. The next examination

was into the nature of the bile of fishes. I have not yet been able to obtain a sufficient quantity

of this secretion for anything more than a cursory examination, the results however, so far as

they went, were exceedingly satisfactory. The bile of four large codfish gave 2-6l per cent of

chloride of sodium, 1-8 per cent of lime, 4-3 per cent of soda with a trace of magnesia. I had

merely substance enough to estimate the quantity of carbon and hydrogen, which were 68-60

and 10-8 per cent respectively. From this analysis we see that this species of bile is also an

electro-negative body, but combined with three bases, lime, soda, and magnesia. I have recently

obtained the bile from a tiger, which was treated in the usual manner to remove the mucus and

fat. A portion burnt in a platinum crucible gave an alkaline ash, the nature of which I have

yet to determine. The solution of the bile itself was perfectly neutral ; we therefore conclude

that its nature is similar to all the others which we have examined, and that in the carnivorous,

as well as the graminivorous and omnivorous animals, the bile is essentially composed of an electro-

negative body in combination with one or more inorganic bases. That the body is not the choleic

acid of Demar^ay, is evident from the difference of the elementary composition which exists

between them. The bile of the ox contains nearly 65 per cent of carbon, human bile upwards

of 68 per cent, while the acid of Demar9ay contains between 63 and 64 ; and the difference in

the quantity of hydrogen is so great that we cannot construct any formula under which bodies

diflPering so widely from each other can be included. The choleic acid also when combined
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with soda is precipitated by acetic acid ; the body contained in the bile is not precipitated

by that reagent. We know also that ox-bile, treated in the manner directed by Demar^ay for

the preparation of choleic acid, is resolved into two bodies, the choleic acid and the chloidic,

the latter forming a very large proportion of the results, probably as much as one half; and it is

remarkable, that adding the quantity of elements found in the two, and taking the mean, we have

almost exactly the quantity as given by the analysis of human bile. The highest authority

on all subjects connected with chemical research is undoubtedly Berzelius, and he has lately

given it as his opinion that the bile is essentially composed of bilin, bilifellic acid, and bilicholic

acid. Considering, however, that these bodies were eliminated by means of reagents which he

himself has acknowledged as more likely to yield products than educts, we are perhaps justified

in supposing that these bodies were the results of manipulation ; it is at any rate highly improbable

that in the very large number of elementary analyses made, we should in each case have accidentally

procured bile in which precisely the same point of transformation of bilin into the other products

should have been arrived at. One experiment was however made which proved that the body

described by Berzelius as bilin does not always exist at all in the bile. I obtained the biliary

secretion from an ox immediately as slaughtered, and while it was quite warm : the mucus and

fatty acids were removed with as great dispatch as practicable, the dried bile was then dissolved

in alcohol freed from water as thoroughly as possible, and through the solution a stream of

carbonic acid gas was transmitted for the space of three hours, without the slightest precipitate

or even opacity occurring. Now one of the principal characters of bilin, according to Berzelius,

is, that if combined with a base its tendency to combine is so slight that the combination is

destroyed by carbonic acid. In the above experiment, therefore, if bilin had been present, the

carbonic acid would have combined with the soda, forming the carbonate of soda, which is insoluble

in alcohol, while the bilin would have remained in solution.

Such are the principal facts which I beg to lay before you. It remains yet to be determined

whether the electro-negative body in the bile is the same in all animals. A certain analogy seems

to exist between the bile of the ox and that of man ; but it would be premature to place on record

any reasonings which, however probable at the present stage of the investigation, more accumulated

evidence may not confirm. The subject is in progress, and bids fair to give decided and satisfactory

results.

G. KEMP.

St. Peteb's College.

Vol. VIII. Part I.



VI. On the Motioji of Glaciers. By William Hopkins, M.A. and F.R.S.,

Fellotv of the Cambridge Philosophical Society, of the Geological Society, and
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[Read May 1, 1843.]

SECTION I.

On the Present State of Theories of Glacial Motion.

De Saussure appears to have been the first to examine with accuracy, and to describe in detail,

the various phenomena which the Alpine glaciers present to us. The phenomena connected with the

motion of glaciers, constituting the class with which alone we are concerned in the present communi-

cation, engaged their share of his attention, though his observations did not aim at that degree of

exactness with which observers of the present day are conducting their researches. Nor did he

fail to speculate on the causes of glacial movements. He considered glaciers to slide along the sur-

faces over which they move, the motion being due to the inclination of those surfaces to the horizon,

and the action of gravity on the moving mass ; and though he was not the first who adopted this

theory of glacial movement, it is now usually associated with his name, from his having been the

first to acquire any exact knowledge of such movements, or to form, perhaps, any very definite

conception of the mechanical causes to which they might be referrible. From his time to a recent

period the subject seems to have excited little comparative interest ; but within the last few years

glacial phenomena have been investigated with great care, and attention has been again directed

to them, not only as forming an interesting branch of physical enquiry, but also as pregnant with

geological inferences of the first importance. We are especially indebted to M. Agassiz for his

active researches among the Alpine glaciers. The influence of his name has awakened an interest

in them which might otherwise have long slumbered ; and whether some of the opinions he has

promulgated respecting the motion of glaciers be ultimately established or refuted, geology must

continue equally indebted to him for the manner in which he has directed our attention to the im-

portance of the subject in its geological bearings.

One of the consequences of these renewed researches has been to cast great doubt on the ade-

quacy of De Saussure's theory to account for the motion of glaciers. The inclination of the surface

over which some of the Alpine glaciers move is found to be so small as to render it apparently

inconceivable that such glaciers should not only descend, but overcome powerful obstacles to their

descent, if there be no other moving force than that of gravity. The mean inclination of the

surface of the Aar glacier is stated not to exceed 3° (and that of its bed must be still less), an incli-

nation much smaller than that at which a very smooth hard body will descend down an equally

smooth and hard plane*. Nor is the difficulty diminished by the consideration of the great

• The following results are given by Professor Whewell in liis

Mechanics of Engineering, on llie autliority of Morin. If S

be the angle of tlie plane down which sliding will just take place,

and ju the coeilicient of friction, we liave for

Hard Limestone on Hard Limestone.

Brass on Brass

Brass on Iron

Cast Iron on Cast Iron

Cast Iron on Cast Iron, greased

Brass on Iron, greased

Values of
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weight of the moving mass, or of the extent of its surface in contact with that over which it moves

;

for, according to the observed laws of sliding bodies, the motion is independent of both these

circumstances. This difficulty has been hitherto regarded, and with reason, as a most serious

if not an insuperable one to the .sliding theory. Another has also been frequently urged, for which,

however, there is no real foundation. It has been contended that if a glacier moved by sliding

over its bed from the mere action of gravity, it ought to move with an accelerated motion, whereas

the motion is observed to be unaccelerated. If the force retarding the motion were solely that

of ordinary friction of the surface over which it moves, the objection would be valid, because the

retarding force of friction is independent of the velocity acquired ; but in the case of a glacier

moving down an irregular valley and over an irregular surface, all the retarding forces do not act

on the mass in the same manner as friction in the oi-dinary cases of sliding bodies. Besides the

friction, there will be retarding forces acting at an indefinite number of projecting points along

the sides or bottom of the glacial valley. Such forces will depend on the velocity' of the glacier,

and therefore the whole accelerating force on the mass will be some function of the velocity, and
the motion will not necessaril}' be an accelerated motion*. The difficult}' now spoken of, there-

fore, seems to have arisen from an imperfect conception of the problem ; but the one first mentioned
is sufficient to shew that the solution afforded by De Saussure's theorj' is far from being satis-

factory.

The rejection of the sliding theory has led to the adoption, hy diffisrent persons, of two other

theories, which have been denominated respectively the dilatation and expansion theories. They
both rest on the same principle—the expansion of water in the act of freezing. The former has had
recently for its principal advocate M. Agassiz. It is found that a portion of the water arisin<r

from the dissolution of the superficial ice of the glacier by the direct rays of the sun and the

warmth of the summer atmosphere, infiltrates into the minute pores and cavities of the ice, where,

it is contended, it is frozen by the cold of the glacier, and, in freezing, expands and produces a

dilatation and consequent onward motion of the whole mass. According to the expansion theory,

the motion is due to the freezing and consequent expansion of water collected, not in minute
pores and crevices, but in cavities or fissures of considerable dimensions. A repetition of these

processes is supposed to keep up the continuous motion of the glacier.

These theories appear to me to involve insuperable difficulties, both physical and mechanical.

Supposing the capillary cavities in the one case, and the large ones in the other, to become
full of water, and that water to be frozen, the cavities will be completely filled with solid ice.

How is another set of cavities to be formed for a repetition of the process ? Such an effect cannot

be ascribed to an internal dissolution of the ice as a consequence of external temperature, for

though the intei-nal temperature of the glacier might be depressed far below the freezing point

in winter, it cannot possibly be raised above that point, or even up to it, except at the extreme
surface, during the summer. That water does percolate through the pores of glacial ice with

extraordinary freedom, M. Agassiz has proved by making the percolation evident to the eye, but he

has not proved that it freezes there. The temperature of the upper portion of a glacier, where
the percolation has been observed, is, in fact, very little below that of freezing, and does not ap-

pear to be sufficiently low to convert water into ice while moving with the freedom with which
it descends through the glacier. Wherever congelation does take place the capillary pores must
necessarily, I conceive, be filled up, and where it does not, the percolating water must proceed till

it meets with the larger fissures, through which it will descend freely to the bottom of the

glacier. The existence of the larger internal cavities of the expansion theory is purely hypothetical;

• The dewent of wntcr .ilong a river-counic, or of ice floating down its current, is not necessarily with an acrekraleil motion, ami

for a reason exactly similar to that assigned in the text.

G2
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and a repetition of the process to which the motion is referred is perhaps still more inexpli-

cable than in the dilatation theory.

If, however, we chose to allow the alternations of congelation and dissolution required by

these theories, it might still be shewn (as I have done elsewhere*) that the effectiveness of the

causes of glacial motion assigned by them must probably be very much less than that of gravity

whenever the inclination of the bed of the glacier is not much less than that of any known

glacier. I think it unnecessary, however, to repeat such investigations in this communication,

or to insist on other difficulties involved in these theories, because there is an obvious and con-

clusive test to which they will doubtless be soon subjected. It is manifest, that, according to

either theory, the velocity with which any proposed point of a glacier will move must be approxi-

mately proportional to its distance from the upper and fixed extremity. If, therefore, it should

be found, on the contrary, that the motion near the two extremities of a glacier is nearly the same,

the refutation of both these theories will be complete. M. Agassiz has been engaged in the most

careful determination of all the circumstances connected with the motion of the glacier of the Aar,

and Professor Forbes has in like manner been occupied with the Mer de Glace of Mont Blanc.

The results in the latter case are already partially known through Professor Forbes's letters to

Professor Jamesonj", and appear to be totally inconsistent with both the theories of which we

are now speaking. The full details of the surveys of these two glaciers will form most important

additions to our knowledge of glacial phenomena. In the mean time sufficient has been said to

indicate the great, and, as I believe, insuperable difficulties both of the expansion and dilatation

theories.

A conviction of the inadequacy of any of the three theories above mentioned to account for

the motion of glaciers, has led Professor Forbes to suggest another theory. In common with that

of De Saussure, it attributes the motion of a glacier to the action of gravity ; but whereas, according

to the sliding theory, gravity is enabled to act effectively in communicating motion to the glacial

mass in consequence of the facility with which the lower surface of the glacier moves over the

bed on which it rests, the theory now alluded to attributes the efficiency of gravity to the facility

with which contiguous particles of the ice itself may move with reference to each other. Such

at least is my conception of the theory, and it is only in this sense that I can understand it as a

mechanical theory : for if it be merely meant to assert that certain phenomena of glacial motion

are similar to those which would present themselves if the glacial mass were really a viscous fluid,

the assertion is only equivalent to a particidar geometrical representation of the phenomena in ques-

tion. In this sense the theory asserts nothing respecting mechanical causes, and therefore cannot

be classed with the theories already mentioned.

Regarding this view of glacial motion, however, (in the absence of its more complete development)

according to my conception of it as a mechanical theory, it may be asked, what reason have we

to suppose that the adhesion of contiguous particles of glacial ice is much less than that of a

particle of ice in the lower surface of the mass to the contiguous particle of the bed of the glacier ?

The general mass of glacial ice is extremely hard and compact, and has unquestionably a great

cohesive power, so that when we consider the probable effects of terrestrial heat and subglacial

currents in destroying the adhesion between the glacier and its bed, it would appear the more

probable that this adhesion should be much less instead of being much greater than that between

contiguous portions of the ice itself. I do not insist on the absolute conclusiveness of this reasoning,

but on its sufficiency to shew the necessity of proving, by independent experimental evidence, that

glacial ice does possess this property of semi-JluidHy or viscosity, if we would attribute to that

property the effectiveness of gravity in setting a glacier in motion.

* The investigations alluded to were printed and privately

circulated among most persons interested in glacial researches.

The object was to compare the degrees of efficiency of the causes

of glacial motion assigned respectively by the three theories men-

tioned in the text.

+ Edinburgh Quarterly Journal of Science.
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It may perhaps be answered, that the best way of making such experiments is by observing

the glaciers themselves, or in other words, that it is better to make our theory depend on obser-

vation than on direct experiment; and, undoubtedly, it is thus that we do arrive at the highest

order of evidence which the greatest problems of physical science admit of. We set out with

some determinate hypothesis, of which we calculate the consequences. These calculated results are

then compared with the results of observation, and the degree of accordance between them will

constitute the evidence in favour of our original hypothesis. The conclusiveness, however, of this

inductive process of reasoning must depend on the rigorousness with which we can calculate

our results, and the accuracy with which the phenomena to be accounted for can be observed. If

our methods possess, in both these particulars, the requisite degree of exactness, we shall be certain

of demonstrating the truth or detecting the fallacy of our original hypotheses, and of thus elimi-

nating, as it were, all but the true one. In the case before us, however, the required exactness

is not attainable, for it will appear, in the course of this paper that the particular phenomena to

which Professor Forbes would seem to appeal in evidence of the truth of his theory, are equally

consistent with that which I shall offer. Consequently, the necessity of direct experimental proof

of the viscosity of glacial ice assumed in this theory cannot be superseded, in the present state of

our knowledge of the motion of viscous fluids and of glacial movements, by an appeal to phenomena

which those movements themselves present to us.

This review of the existing state of glacial theories is sufficient to shew how imperfect a

solution of the problem of glacial motion has yet been offered. All the above theories repose

more or less on hypotheses unsupported by the direct evidence of experiment or observation. The
theory of De Saussure is apparently in opposition to the ascertained facts respecting the motion

of sliding bodies ; in the theories of dilatation and expansion, the alternations of thawing and freez-

ing is an unsupported assumption, and the mechanical adequacy of the causes assigned by these

theories (supposing them to be real causes) a pure hj'pothesis; and in the last-mentioned of the

above theories, the viscosity of the glacial mass necessary to give effectiveness to the moving force

of gravity, seems to be opposed to the evidence of our senses. It would be difficult perhaps to

conceive the solution of any mechanical problem in a much more unsatisfactory state than the

one before us; for, of the different solutions which have been proposed, each involves some difficulty,

which, if not removed, must ensure its ultimate rejection.

In considering these difficulties it occurred to me, that the motion down an inclined plane

of a mass of ice having its lower surface in a state of disintegration, might take place according

to laws different from those observed in the sliding motion of rigid bodies, and, without forming

any very definite conception of the manner in which the motion might be modified under this new
condition, I determined to try the experiment. The results were such as to remove entirely,

I conceive, what appeared to be an insuperable objection to the sliding theory, by shewing that

ice, under the condition above stated, is capable of descending with a slow unaccelerated motion,

by the action of gravity alone, down planes of much smaller inclination than those over which
known glaciers are observed to move. In the next section I shall describe the experiments whicli

leave no doubt, in my estimation, as to the real cause of glacial motion.

SECTION II.

On the Cause of Glacial Motion.

1. Experiments.—A slab of sandstone was so arranged that the inclination of its surface

to the horizon could be slowly and continuously varied by the elevation of one edge. The sur-

face was in the state in which it had been sent from the quarry, and in which such stones

are sometimes laid down as paving stones, retaining the marks of the pick with which the
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quarry-man has shaped them, without any subsequent process for rendering the surface smooth.

The slab thus presented a grooved surface (the grooves running in very nearly parallel directions),

having some resemblance to those over which existing glaciers move, but having little of the

smoothness of roches poHes. The best measure, however, of the degree of its roughness is this

when placed at an inclination of about 20", a piece of polished marble would just rest upon it.

The slab was so placed that: the direction of the grooves coincided with that of greatest

inclination. A frame of about 9 inches square and 6 inches in depth, without top or bottom,

was then placed on the slab and filled with lumps of ice from a neighbouring ice-house, in

such a manner that the ice, and not the frame (which merely served to keep the ice together

as one mass) was in contact with the slab. In the experiments in which the following results

were obtained, weights were placed on the ice such that the pressure on the slab was at the

rate of about 150lbs on the square foot.

Inclination

of the

Slab.
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2. In the experiment above detailed we have these results :

—

(1). For all angles less than that just mentioned the motion was not an accelerated motion.

This result was verified in every experiment I made.

(2). For inclinations not exceeding 9 or 10 degrees, the velocity, ccBteris paribus, was

approximately proportional to the inclination. This, I doubt not, would hold in all cases in

which the inclinations should be sufficiently small compared with the angle of accelerated motion.

It is manifestly equivalent to the assertion, that the velocity is proportional to the moving

force.

(3). The velocit}' of the mass was increased bj' an increase of weight.

3. It is not very difficult to give a general explanation of the mechanism of this motion. Con-

ceive a very thin slice of the sliding body in contact with the inclined plane on which the motion

takes place to become instantaneously fluid: an indefinite!}' small motion would necessarily take place,

by which the lower surface of the portion of the mass retaining its solidity would be brought in con-

tact with the plane. If the plane were horizontal, it is manifest that this indefinitely small motion

would be vertical ; but it appears sufficiently evident, that if the plane be inclined the motion will

be compounded of a vertical motion by the action of gravit}', with a motion parallel to the plane

arising from what may be termed a momentary gating of the solid body on the small portion

which has been supposed to become fluid or disintegrated, and depending partly on the inclina-

tion of the plane. The instant the solid portion of the body comes in contact with the plane,

the motion will be arrested. At that instant, suppose another thin slice of the body to become fluid ;

the same motion will be repeated, and so on. A discontinuous motion would be thus produced ;

but if the successive slices which become disintegrated be indefinitelj^ thin, i. e. if the liquefaction

or disintegration be continuous, the resulting motion will be continuous, and it will, moreover,

be uniform if the disintegration be so.

The fact that motion takes place down planes of such small inclination compared with that

necessary to make the ice slide independently of its disintegration at the lower surface, may simply

be stated as due to this circumstance—that, whereas the particles of ice in contact with the plane

are capable, so long as thej' remain a part of the solid mass, of exerting a considerable force to

prevent sliding, they are incapable of exerting anj' sensible force when thej' become detached

from the mass by the liquefaction or disintegration of its lower surface.

When the sliding mass is small (as in the experiments above described) the exact uniformity

of the motion will be destroyed by local irregularities in different parts of the inclined plane down
which it takes place, or temporary irregularities in the disintegration ; but where the whole in-

clined surface on which the motion takes place is always the same (as in the case of a glacier),

and the mass is sufficiently large, all local or temporary irregularities will, in a great measure,

counteract each other, and will therefore not materially disturb the uniformity of the motion,

which will be preserved so long as the intensity of tlie causes of disintegration remains unaltered.

4. Temperature of the Lower Surface of a Glacier The essential condition under which

gravity becomes effective in putting the loaded ice in motion in the experiments above described,

is that the lower surface of the ice shall be in a state of disintegration, or that its temperature

shall be tiiat of zero of the centigrade thermometer. In order, therefore, that our results may
be applicable to any proposed glacier, we must shew that the temperature of its lower surface

must be zero. For this purpose, let us conceive the earth to be covered with a superficial crust

of ice, and, for the greater simplicity of explanation, let us suppose the conducting power for heat

within the icy shell, and in passing into it from the earthy nucleus, to be the same as in the

interior of the nucleus. The temperature of the ice, to a certain depth beneath the external

surface, would be subject to sensible annual variations of temperature, which would become

insensible at a certain depth (<»,), where the temperature (/e,) would be constant. The mathe-

matical determination of a;^ and Mi will be given in the concluding section. The temperature m,

would necessarily be less than zero (centigrade) and at greater depths than >r?,, the increase of
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temperature would be proportional to the increase of depth, the rate of increase (with our present

supposition respecting the conductive power of the ice) being exactly the same as in the actual

case of the earth, provided the ice should always remain solid, i. e. if the temperature, thus increasing

with the depth, should not rise to zero at the lower surface of the icy crust. Now, though more

accurate observations on the internal temperature of glaciers are wanting, it is probable from those

of M. Agassiz, that the internal temperature of glaciers in those regions in which their motions

have been observed, and at depths below the influence of external variations, is not less than

— 1° (cent.). The least depth in the actual case of the earth at which the temperature is sensibly

constant may be stated generally at about 6o feet, below which the rate of increase of temperature

in descending may be taken at about 1° (cent.) for ever}' 100 feet. Hence, supposing the same

to hold for ice, the internal temperature of our icj' shell, where exposed to the same external tem-

perature as an actual glacier, would be below zero at every point, provided its depth were less

than itio feet. If the thickness of tlie shell were greater than that quantity, the temperature of

its lower part would be higher than zero if ics were capable of receiving such higher tempera-

ture ; but since that is impossible, the heat which would be employed in raising the temperature

of the lower portion of the shell above zero if it could retain its solidity, would be actually

employed in converting into water its lower surface, which would thus be retained at the constant

temperature of zero, and in a state of perpetual disintegration.

If instead of supposing the icy shell to cover the whole surface of the earth, we suppose

it to be of comparatively small extent, the same conclusions will hold, provided its linear super-

ficial dimensions be sufficiently great with reference to the depth, which in the above case has

been estimated at 160 feet. Such is the case in all considerable glaciers. Hence, assuming

the truth of our data, if a glacier in those regions in which it is accessible to observation,

exceed 150 or iGO feet in thickness, its lower surface must be in a constant state of disintegration,

as a consequence of the internal heat of the earth. This result is liable to error, depending on

our imperfect knowledge of the internal temperature of glaciers, and the conductivity of glacial

ice; but in those parts at least, where the thickness of a glacier is considerably greater than 150

feet*, it leaves no reasonable doubt, I conceive, of the truth of our conclusion respecting the

state of slow perpetual disintegration of the lower surface.

5. Agency of Siihglacial Currents The intei'nal heat of the earth, however, is not the only

cause producing this constant disintegration. Another and probably very effective agency exists

in the subglacial currents, which, during the summer, are principally produced by the rapid

melting of the ice at the upper surface of the glacier, whence they descend through open

fissures, and afterwards force their waj' between the glacier and the bed on which it rests. I

cannot appeal to any direct experiments to determine the effect of water at the temperature of

zero in dissolving ice at the same temperature, when running in contact with its surface, but

its efficiency in this respect is sufficiently proved b}' its action on the upper surface of a glacier

when the direct rays of the sun and the temperature of the atmosphere are sufficient to dissolve

the superficial ice, and thus to create innumerable rivulets running upon the surface till they

meet with a fissure into which the water is precipitated, and finds it way to the bed of the

glacier. These little superficial streams shew their effect in disintegrating the ice by the manner
in which they cut out for themselves their own channels, thus assisting greatly in the degra-

dation of the surface. Its effect on the lower surface of the glacier is probably greater than

on the upper, on account of the hydrostatic pressure under which it must there act. The
descending water must reach the bed of the glacier at almost every point of it, and cannot

• That such is the case throughout extensive portions of large

glaciers, there seems to be no doubt. M. Agassiz informed me
that he had discovered a nearly vertical hole in the ice, not fav

from his cabane on the glacier of the Aar, of which the depth

could not be much less than 780 feet.
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afterwards collect and proceed in uninterrupted channels, because if such channels were once

formed they must necessarily be immediately destroyed, or at least impeded at numerous points

by tlie motion of the glacier. The existence of such impediments to the motion of the water,

and the consequent formation of subglacial reservoirs, is proved by the continued flow of the

streams which issue from the lower extremities of glaciers during the night, though the supply

from the upper surface is entirely stopped immediately after sunset, when the melting ceases,

and does not recommence till a considerable time after sunrise the next morning. During the

intervening ten or twelve hours the whole of the water beneath the glacier at sunset would

necessarily discharge itself if its course were unimpeded, even from the longest and least inclined

of the Alpine glaciers, before sunrise the next morning ; whereas the volume of water issuing

from the glacier of the Aar is very little less in the morning than in the evening. This

equable supply can only arise from the discharge during the night from reservoirs formed

during the day. Hence it will follow that these subglacial currents, commencing from almost

every point of the glacier, will be forced under every part of it by hydrostatic pressure, by
which, as above asserted, its disintegrating action on the lower surface of the ice will doubtless

be increased.

SECTION III.

Phenomena depending upon the 3Iotio7i of Glaciers.

6. Relative Velocities of the Central and Lateral Portions of a Glacier.—The central

part of a glacier moves considerably faster than its sides, but, according to Professor Forbes*, the

change of velocity takes place not far from the lateral boundaries, the whole central portion

moving with nearly the same velocity. In the month of August last summer, the central part

of the Aar glacier, near the cabane of M. Agassiz, was moving at about the rate of a foot a day,

while near the sides it was less by one third or one half. On the Mer de Glace the motion
appears to be generally greater, in the ratio of about 3 : 2, but varying in different parts of the

glacierf. The difference between the central and lateral motions seems to be less than in the

former case.

On the Mer de Glace the velocity near the lower extremity appears to be somewhat greater

than near the upper one. On other glaciers no adequate observations on this point have yet been
made.

7. Crevasses or Fissures—The fissures which traverse a glacier are among its most distinct

and striking phenomena. When the glacial valley contracts in descending, the following facts

appear to be established.

The fissures are transverse and curved, having their convexity turned towards the upper
extremity of the glacier.

Systems of fissures, preserving a certain identity of character with respect to number and
form, remain fixed in position, not with reference to the moving mass, but with reference to the

fixed objects around. It is not however to be understood that each fissure of a system remains
absolutely stationary, but that each system remains so in the same sense in which what may be
termed a system of breakers on the sea-shore may be said to be stationary, although every suc-

cessive wave- is in constant motion. In like manner every fissure must move through a certain

space with the glacier, and then disappear by closing, or be so modified as to lose its identity J;

" I^ctlcrit to Processor Jameson— Ktlinburgh Journal of

Scienee.

t Ibid.

t I consider a fissure to remain identically the same so long

aa it continues to intervene between the same identical portions

of ice.

Vol.. vni. I'AitT I. H
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and when, during this motion, it has passed forward a certain distance, a succeeding one originates

at the same point, moves forward in the same manner, and ultimately disappears at the same

point as those which have preceded it.
. ,. , ^ , . ,

If the sides of the containing valley be divergent, the longitudinal fissures predominate, and

diverge from the axis of the glacier in a manner accordant with the divergency of the sides.

8. The continued convexity of a crevasse turned towards the upper extremity for a great

leno-th of time would manifestly be inconsistent with the fact already stated, that the central

pardon of a glacier moves considerably faster than its sides ; for such relative motion must have

the effect of continually lessening and ultimately destroying the convexity. Let us examine^how long

a time it might require to produce this efTect.

Let PA'' be a transverse fissure when first formed in a gla-

cier, of which NO is the axis. We may, for an approxima-

tion, suppose PN^ to be the arc of a circle whose center is

O . Since N will move faster than P, the position and form

of the fissure' wiU change, but, as the change will depend only

on the relative motions of different points of the PN^, we may

here suppose P to remain at rest, and the other points of the

fissure to move only with their relative motion. It will be suf-

ficiently near for our purpose if we suppose this motion such

that the fissure shall always retain the form of the arc of a

circle. Suppose it to come into the position PN after a time

t, and let O then be its center of curvature. We may first

examine what change of curvature will take place in the fissure in

the time t, the curvature being measured by the angle PON.

Let PON = e, PON^ = e, , and PO = r, PO^ = r, ;
and

let V be the relative velocity of JV. Then

NN = vt,

and r vers. 9 = r, vers. 9^ - vt (l)-

Also, if 6 = sin of the arc PN, ,

r sin = b,

Hence (l) becomes

lid r sin 9, = b.

vers. 9 vers. 9, v

sin 9 sin 9, b

9 0, V
tan - = tan — — - t,

2 2 6

which gives the curvature at the time t.

If e, and, therefore, 9 be not too large, we shall have approximately

iiv

Q = e-—t;

or if 9 and 0, be expressed in degrees,

^„ /180 2« Y
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To take a miraerical example, let us suppose PN to be 2000 feet, where the relative velocity

(w) is ,3 feet*, the unit of time being one day ; we shall then have

'-(k)'
0" = 0;

nearly. Consequently it would in this case require nearly two months to diminish the angle

9 by one degree. If 6^ = 8' or 10°, the change of curvature during a whole summer will

scarcely, be sensible to the eye.

AVhen the whole curvature is destroyed we must have 6—0, or

180 2 u
6 .—< = 0;1 _
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successive lines in the diagram represent successive positions

of any one of these surfaces, or simultaneous positions

of successive surfaces originating in the same system of

fissures. If we suppose RUR' to have been an open

fissure at AA' when SVS' was so at BB', there will be

a number of surfaces of discontinuity between RUR' and

SVS' corresponding to the number of open fissures be-

tween AA' and BB' ; and the same would hold between

each consecutive pair of lines which at a previous epoch

coincided simultaneously with A A' and BB'.

If another system of fissures be formed at aa, they

will give rise to a corresponding system of surfaces of dis-

continuity, of which the dotted line rr' may be taken as

the general type. These surfaces will intersect those of the

former system at angles more acute as they become more

remote from a a*.

Hence then it follows, as a simple geometrical conse-

quence of the existence of transverse fissures and of the

more rapid movement of the central portion of the glacier,

that the whole mass must be traversed by numerous surfaces

of discontinuity; all those originating near the higher e.K-

tremity of the glacier becoming very nearly longitudinal as

they descend, and others being less so, according as their

origin is more remote from that extremity. The whole

mass will thus be divided by these intersecting surfaces

into innumerable portions. Cohesion, as before intimated,

may be partially restored along the surfaces of discontinuity,

but the difference of velocity in the central and lateral por-

tions will have a constant tendency to give slightly different

motions to contiguous portions, and thus to prevent the

restoration of cohesion. The wiiole glacier will thus be-

come a dislocated mass ; and that it actually is so is indi-

cated by the facility with which it breaks up into vertical

masses whenever irregularity of motion is superinduced by

irregularities in the bottom or sides of the glacial valley.

I consider a glacier, therefore, as an aggregate of numerous

parts, cohering so imperfectly as to allow a much greater

facility of motion among themselves, than if the mass were

perfectly continuous. The glacier will thus derive a much
greater facility of adapting itself to the configuration of the

valley through which it descends, than if its power of adap-

tation depended merely on the plasticity and compressibility

of glacial ice—properties which it must doubtless possess,

though possibly in so small a degree that they may only

become sensible under the action of the enormous pressure to which

glacier must be subjected whenever its motion is considerably impeded.

I shall hereafter shew the

• This exposition respecting the surfaces of discontinuity is

similar to tliat given by Professor Forbes witli reference to tiie

alternate layers of ice of difierent structure, which constitute the

ribboned structure.
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SECTION IV.

Explanation of Phenomena depending on the Motion of Glaciers.

11. Relative Velocities of different parts of a Glacier.—According to our theory, the velocity

of any portion of a glacier will depend (1) on the inclination of its bed, (2) the disintegration

of its lower surface by the internal heat of the earth, (3) on subglacial currents, (4) the

depth of the mass, and (5) local and lateral obstacles. The first and second causes will generally

have nearly the same effect both in the central and lateral portions ; but the third cause will

manifestly pi-oduce in general the greatest acceleration in the central parts, and the fourth

cause will produce a similar effect, if the glacier be deeper in the center than at its sides

[Art. 2 (3)], while the greatest retardation will be produced on the lateral portions by the last

of the above-mentoned causes. These causes sufficiently account for the greater velocity of the

center of the glacier.

Again, the second of the above causes will probably act with approximate uniformity through-

out the whole length of the glacier, but the third cause will act with the greatest energy at

the lower extremity, because the subglacial currents will be increased by innumerable tributaries

as they descend. This cause, therefore, will tend to make the velocity greater, as we approach

the lower end of the glacier, while the greater depth of the mass at the upper extremity will

tend to give the greater velocity to that part of the glacier [Art. 2 (3)]. In winter the effect

of the currents must be very inconsiderable, and we should consequently expect that there would

be a tendency in the portions of the glacier in the higher regions to move faster than those in

the lower, in which case there must be a longitudinal compression, and consequent closing up

of transverse fissures in a greater or less degree. During the summer, on the contrary, the sub-

glacial currents will be most efficient, and we should expect that they would give the greater

velocity to the lower extremity of the glacier, in which case the mass would be brought into

a state of longitudinal tension, by which new transverse fissures would be formed, or old ones

reopened.

12. Internal Tensions and Compressions arising" from the unequable Motion of the Glacier

The mathematical determination of the internal state of tension or pressure of a solid, but

extensible and compressible body, acted on by external forces, presents difficulties which are

at present insuperable, except in the most simple cases ; nor can demonstrable conclusions of

a less determinate character be arrived at except by an exact knowledge and careful application

of mechanical principles. The cases I shall consider are the simplest of the kind, and admit

of simple and conclusive reasoning. Let us first suppose a glacier to be a continuous mass, and

to descend down a gradually contracting valley, so that the mass may be everywhere sub-

jected to lateral compression ; and let us also suppose that points near the upper extremity

of the glacier tend to move with a smaller velocity than those more remote from it, and the

central with a greater velocity than the lateral portions, from the causes above explained. Our first

object is to determine the direction of greatest tension at any proposed point.

Conceive the mass divided into two portions by an imaginary surface, which, for the greater

distinctness, may be supposed vertical or nearly so at every point. The mechanical action

between any two contiguous particles, situated on opposite sides of this geometrical surface, may
be resolved into two forces, the one normal and the other tangential to it. Tlie normal force

may be either a pressure or tension ; in the latter case there must be cohesion between the

particles. The tangential force may arise from cohesion, or may be of the nature of friction,

and indej)endeiit of the existence of cohesive power. Now let us conceive the normal cohesion

at every j)oint of our imaginary surface to be destroyed. Tiicn, since the part of the mass

near the lower extremity tends to move faster than the other part, these two portions will
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necessarily separate, if the surface intersect the lines of motion of the particles through which it

passes, and the internal state of pressure and tension will be altered. But, again, let us suppose

this surface to coincide with the line of motion of every particle situated in it, and while the

normal cohesion is destroyed, conceive the tangential force between contiguous particles to be

still maintained by friction. Since, by hypothesis, the mass is in a state of transverse com-

pression, it is manifest that the destruction of the cohesion along the internal surface in the

position now supposed will cause no separation of the two portions into which the mass is

thus divided, or any modification of the previous motion, or of the internal pressures and tensions

due to it. The same will be true if another such surface existed as near as we please to the

former. But in this case, it is manifest that the direction of greatest tension at any point be-

tween these two surfaces must be in the direction of these surfaces, i.e. in the direction of

motion ; for since by hypothesis no cohesion exists between the portion of the mass included

by those surfaces and the contiguous portions, it is impossible that any tensions should be

impressed upon it in directions transverse to its bounding surfaces of no cohesion. Consequently,

the same must hold when the cohesion of the mass is unbroken, since it has been shewn that

the destruction of the cohesion would not affect the state of internal pressure or tension.

13. From the former part of the preceding paragraph, it follows that if any surface be

described within the mass, perpendicular at every point to the direction of motion, there will

be a maximum tendency to destroy the cohesion along such surfaces, so far as that tendency

depends on the relative motions of the portions of the mass near the upper and lower extremities

respectively.

14. Again, if our imaginary surface be longitudinal, and coincide with the direction of

motion of the particles through which it passes, it is manifest that the greater motion of the

central parts will cause an action of the particles on one side of the surface, on those on the

opposite side of it, and in directions tangential to it. This force will depend on the tendency

of the one set of particles to move faster than the other, and will evidently be greatest in the

direction in which that tendency is greatest, i.e. in the direction of the motion. If it be

sufficiently great the cohesion will be destroyed. There will be no tendency to produce open

fissures in the case we are considering, on account of the lateral compression to which the mass

is assumed to be subjected, but there will be a tendency to produce longitudinal surfaces of

discontinuity. To investigate the effects of the internal forces thus called into action, let the

following diagram represent a portion of a glacier bounded by the transverse sections AA' and

BB\ originally plane, but brought into the positions there represented by the relative motions

of the center and sides of the mass. Let uh, cd, &c. be any longitudinal surfaces along which

the tangential forces are called into action, and thei'efore in the direction of motion ; and for the

greater simplicity suppose every thing approximately symmetrical with respect to the axis 00'.

Also let ?<;, w., w„ w, be the weights of these longitudinal portions into which the mass

is thus divided; V^ V^ V„ F, the velocities with which they would respectively move, in-

dependently of the action of adjoining portions on each other ; they may be supposed to diminish

from the center to the side ; i>, v.^ u„ «, their actual velocities; f^f.^ ./, ./, the tan-

gential longitudinal forces of contiguous portions on each other.

Now if W denote the weight of a mass of ice moving down an inclined plane, of which

the inclination = a, in the manner described in ray experiments, the moving force of gravity

along the plane will be W sin a. Let a retarding force (/) be applied to the mass, and let

the velocity of descent then = v. Then, if V be the velocity when / does not act, we shall

have, by the second observed law of motion in such cases (Art. 2),

V PFsin a — /
r" W sin a '
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and tlierefore,

/=(>-! JV sin a.

The central portion abb' a' in the preceding diagram will be retarded by the force 2/,
and therefore, since its weight = 2«o,, we shall have

/i = ( 1 - y-j Wi sin a,

a being the inclination of the bed of the glacier. The second portion, of which the weight = w^,

will l)e retarded by ./L — /i, and, therefore,

We shall therefore have the following series of equations :

/,-o=(,-|j w, sin a.
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/.4 1 -/, = (l - ;'—)»„ + ,
sin a,

/s -/«-i =
(

' ""

y) ««sSinn,

/.
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15. If we add together the two sides respectively of the first n of the above equations,

we have

/„ = (l - ^j Wi sin a + + y- y] '"" ^^""'

But u, = Dj = = i)„ nearly; and if we suppose T, V.^ V„ not to differ much from each

other (as will probably be the case in most glaciers), we may substitute for each a mean value

V. Then we have

(j> =f„ = [^ ~
y)

(""> + "^2 + M*") sin a.

where v is the common velocity of the central portion ; or, if

M'l + W2+ + W„ = IF,,,

(p= (l -^ W„ sin a.

If the whole mass be very wide, like that of a glacier, and a be equal to the ordinary incli-

nation of a glacier (from 3° to 10° or 12"), and if the retardation V- v be considerable, (p may

become a force of enormous magnitude. In order that the motion of the mass may be entirely

destroyed, cd must coincide with AB, and we shall have

(p = W sin a,

where W = weight of the whole mass.

This explains the prodigious power which large glaciers are capable of exerting to overcome

local obstacles to their motion, arising from irregularities along the sides or bottoms of the valley

down which they move.

16. If the tangential action along gh, instead of being equal to (p, be equal to (p' less

than (p, the portion eh will be accelerated by the difference of the lateral actions, (p and (p',

and similarly for any other portion ; but it will be observed that the portion cf, the nearest to the

center of those against which sliding takes place, will be neither accelerated nor retarded by

these lateral actions. Hence, if, in any proposed glacier, the velocity is nearly the same for the

central portion (dd'), but diminishes with considerable rapidity on approaching the sides, we

shall have two points (d, d') which may be determined approximately, in any transverse section,

at which the velocity will be the same as that of a glacier whose thickness should be the same

as the depth at these points, and in which the conditions at its lower surface should be the

same as for the longitudinal portions through d and d', but whose motion should be unimpeded

by any lateral obstacles. This conclusion is not unimportant as shewing that the slowness of

glacial motion does not result from lateral or local impediments, but is a necessary consequence

of the action of the bed of the glacier on the lower surface of the mass, as in the experiments

above detailed. It is this unimpeded or mean motion which ought in strictness to be compared

with the motion in these experiments.

17. In the preceding investigations the mass has been supposed to be continuous, but it

is easily seen that similar reasoning will apply if the mass be more or less dislocated. In

such case its cohesion will oppose comparatively little resistance to the formation of transverse

fissures ; and the greatest tangential force (<i) which can be exerted will be much less than

when the cohesion is continuous. The sliding of one longitudinal portion past another, and the

more rapid motion of the central portions, will thus, as already remarked, be much facilitated.

18. Formation of Crevasses.— It has been shewn (Art. 1."?), that if the mass of a glacier

were continuous, there would be the greatest tendency to form fissures in directions perpendicular

to those of motion, when the lower extremity of the glacier moves faster than the upper one.

Hence, if the tension becomes sufficient to overcome the cohesion, fissures would be formed in

Vol. VIII. Part I. I
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these directions, and would therefore be curved with their convexity towards the higher extre-

mity of the glacier, the glacial valley being convergent. The degree of curvature would de-

pend on the convergency of the lines of motion. If the mass be more or less dislocated, there

will still be a prevailing tendency to cause fissures to open in the same direction, though their

formation will necessarily be modified by the pre-existing dislocation. There will be the greatest

tendency to form these transverse fissures, or crevasses, where the change of velocity is most

rapid, or where lateral or other obstacles produce the greatest irregularity of motion. This

accounts for the permanent existence of systems of crevasses in particular localities, as already

noticed (Art. 7). Particular local causes may produce tensions which are not longitudinal, and,

therefore, crevasses which deviate from the general law of formation ; but the general transversal

directions of these fissures proves beyond doubt the predominance of a general longitudinal

tension during the period of their formation.

This period, according to our theory, would be the summer, as already shewn (Art. 11).

In the winter, it has been also shewn, the motion must probably tend to produce in general an

internal longitudinal pressure, and therefore to close previously existing fissures. And here it

should be remarked, that it is not essential in order to produce these latter effects, that the

motion of the glacier near its upper extremity should be absolutely greater than that near its

lower end, but that the former of these motions should bear a greater proportion to the latter

during winter, than during summer.

19. In our previous reasoning the glacial valley has been sup-

posed to be convergent in descending. Let us now suppose its width

to increase, and its sides to become divergent below CC It is a very

general law in such valleys, that where the valley expands its descent

becomes less rapid. Assuming such to be the case, the part of the

glacier below CC will tend to move more slowly than the part above

that line. Consequently, the former of these portions will be in a state

of longitudinal compression, which will prevent the general forma-

tion of transverse fissures. Also the pressure along CC', which will

be greatest in the centre, will push forward the mass below, so as

to make it tend to move along diverging lines of motion. Hence if the

mass remain continuous it will be in a state of transversal tension,

or if the continuity be broken, a system of longitudinal diverging cre-

vasses will be formed. Such systems have been recognized both by

M. Agassiz and Professor Forbes.

20. Passage of a Glacier through a narrow Strait Let us suppose the glacial valley to

contract suddenly at BB' in the following diagram, and consider the motion of the glacier after

it arrives at that section. Conceive the mass divided into different portions by longitudinal planes

of discontinuity, as in the figure. The central portion cdd'c represents, as before, that in which
no sliding of one part of it past another takes place, the planes where this relative motion begins

being cd and c'd'. The more the central motion is impeded the greater will be the force/,, (Art. 14),

and the narrower will be the breadth dd'. The motion of the lateral portions will be much impeded
in such a case as that represented, and near to B and B' may be entirely arrested, but there will be
no action which can destroy the motion of the part cdd'c. The central portion, bounded by the

planes of discontinuity through B and B', will in fact move very much in the same manner as if

those planes were the immoveable boundaries of the glacial valley.

Unless BB' be too narrow, therefore, the motion of the glacier will be only retarded and not

destroyed ; but even this retardation may be counteracted by other causes. The eflfectivencss of

the subglacial currents will be increased by the contraction of the valley, and very generally the

inclination of a valley increases as its width diminishes. These causes may compensate for the
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retarding effects of the lateral action on the flanks of the glacier. The same explanation will

apply whether we suppose the cohesion along the planes of separation to be entirely destroyed or not.

It is only necessary that the tangential action between the central and contiguous portions should

not be sufficient to prevent the former from sliding past the latter.

21. Position of the Surface of a Glacier

Let P, Q be two points on the surface of a

glacier situated on the same line of motion.

C a point fixed in space in the vertical line

through Q. Draw Pp parallel to the bed

{AB) of the glacier. If the thickness BP of

the glacier at P remained constant while P
moved to the vertical line QC, P would come

to p, and the thickness of the glacier along AC
would he increaswl l)y Qp. Draw PM hori-

zontal, and let MPQ, = u, the inclination of the

surface of the glacier, and MPp = fi = that of

the bed of the glacier. Then if PM = a,

Qp = MQ - Mp
= a (tan a - tan /3).

i2
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If we suppose an upward expansion of the mass to take place in consequence of the freezing and

consequent expansion of infiltrated water, according to the theory of dilatation, this expansion will

also increase the thickness of the glacier above A. Let e denote this increase for a unit of thick-

ness, while P moves through the horizontal space PM ; then will eA be the whole increase, h being

the thickness AQ of the glacier. On the contrary, the thickness will be diminished by the melting

of the superficial ice during summer, occasioned by external influences, and of the ice in contact

with the bed of the glacier, as the effect of internal heat and subglacial currents. Let A and ^

denote the depressions of the surface below the point C, due to these causes respectively, in the

time (/) of moving through PM. Then if D denote the whole depression of the surface in the

vertical through C in the same time, we shall have

D=i^ + l-eh-a (tan a - tan /3).

Of the quantities involved in this equation D, A, a and a may be easily observed. For this

purpose conceive two vertical poles fixed firmly in the ice at P and Q in the same ];ne of motion,

their upper extremities coinciding as nearly as possible with the mean level of the glacier at the

time. The inclination to tile horizon of the line joining them would give the value of a ; and the

height to which the poles should project above the surface of the glacier after the time {t)

would o'ive the value of A for that time. To determine the corresponding value of D, we

miffht observe the vertical distance of the surface of the glacier from the fixed point C when the

poles should be first fixed, and after the time t of moving through PM, repeat the observation. The

difference between the observed vertical distances below C would give the required value of D.

The only attempts at the independent determination of 6 have been made, I believe, by observ-

ing the distances at different times of fixed points on the surface of the ice. Such determinations

I consider entirely valueless, on account of the impossibility of separating the effects of dilatation

from those of pressures and tensions depending on other and independent causes. If, however,

instead of horizontal we should make vertical admeasurements, the value of e for a given depth

of ice might, I conceive, be determined with great accuracy. If two short horizontal poles were

firmly fixed in a vertical line in the vertical wall of a crevasse, and an inextensible line or chain

were fixed to the lower one, any variation of the known distance between the two poles might

be ascertained with great accuracy by observations made at the upper one, and thence the

value of € might be accurately determined*.

Supposing the quantities D, A, a, a and e to be determined, our equation will still contain

three unknown quantities, /3, ^, and h, which cannot be determined by direct observation. I think

it probable, however, that e might be found to be inappreciable, or, at least, extremely small, so that

the term eh might either be neglected or expressed approximately by means of an assumed value

of h. We might also eliminate ^ from the above equation by making one of the observations for the

determination of D as late as jwssible in the autumn, and the other as early as possible in the follow-

ing spring, since the corresponding value of ^ would doubtless be very small on account of the absence

of subglacial currents during the winter. The value of D in this case would probably indicate

an elevation of the surface. Let this value therefore be denoted by - D^. We should thus have

D^ = eh + a (tan a - tan /3) - A,

a

nearly, the value of eh for the winter being small enough to be neglected. If tan /3 were thus deter-

mined, the value of S corresponding to any observed values of D and A, would be given by our

previous equation.

Also if /3 were known we should have immediately the difference of thickness at P and Q :

for this difference = Qp = a (tan a — tan /3).

• It appears singular that those who itlsist so much on glacial dilatation should never have subjected their views to this simple test.



Mr. HOPKINS, ON THE MOTION OF GLACIERS. 69

The determination of /3 would afford an obvious means of approximating to the thickness of

the glacier at any proposed point. For suppose /3 determined for all those different portions of

the glacier where a difference of inclination of the upper surface might indicate a corresponding

difference in that of the lower one. Let the length of the successive portions, beginning at the

lower extremity, be o, a-i ffl„; and let ci a-i a„, /3i ^2 /3„ be the corresponding

values of a and /3. Then if A, be the vertical thickness at the lower extremity, and h the re-

quired thickness at a distance =a^ + a.i+ a„ from that extremity, we shall have

h = hi + ra, (tan a, - tan /3|) + + Cfi (tan n„ - tan/3„).

The chief practical difficulty in the application of this formula would be in the determina-

of jS, /Sai &c. with sufficient accuracy. It appears not improbable, however, that the limits of

error in determining /3 by the formula above given for tan /3, would be such as to render the deter-

mination a sure approximation to the real value; and, at all events, if it were found impracticable

to determine all the quantities /3i /Sj /3„, and therefore the complete thickness of the glacier,

such of them as should correspond to the more accessible and least irregular parts of the glacier,

might probably be determined with considerable accuracy, and thus the rate of increase of thick-

ness in these parts would be known.

SECTION V.

Internal Temperature of a Glacier.

22. In a previous section I have given the general reasoning by which we conclude that

the temperature at the lower surface of a glacier of considerable thickness cannot be higher than

zero of the centigrade thermometer. Since this conclusion, however, is of the first importance in

the theory which has now been offered of glacial motion, I shall give the mathematical investigation

of the problem. The case taken for direct investigation will be that of a large sphere, like the

earth, of which the temperature increases as we descend, coated with an external shell of ice, the

temperature of the shell being at every point below zero (cent.), that the ice may in every part

remain perfectly solid. We shall thus be able to deduce the limiting thickness of the icy crust

compatible with this condition of perfect solidity. If the thickness exceed this limit, then must

its lower surface be in a state of constant disintegration, as already explained (Art. i).

We have no exact knowledge of the conductive power of ice, but there is no reason to doubt

its being very small. I shall suppose it (for the greater simplicity of investigation) to be the same

as that of the earthy matter supposed to constitute the nucleus of the sphere; and for the

same reason I shall also suppose the conductive power from the nucleus to the icy envelope to

be the same as in the interior of the nucleus, or in that of the icy crust. I shall also assume the

external temperature to be represented by V + C co& {%-wt. + — \. So long as this is less than

zero, the problem will present no peculiarity arising from the circumstance of the exterior crust

being composed of ice ; but however much the external temperature may exceed zero, the superficial

temperature of the crust cannot, from the nature of ice, rise higher than zero. Hence while

the external temperature is below zero, we shall have the ordinary case of a solid body placed

in a medium of which the temperature varies according to a given law ; but when the external

temperature rises above zero, the condition at the surface will be that the superficial temperature

of the mass shall be constantly at zero. Instead of this last condition, however, we may suppose

that, during the time it would hold, the external temperature shall be zero; for it is manifest tliat

the two condtions will in the case we are contemplating be very approximately the same. Hence,

then, the case for investigation will be that of a sphere of large dimensions cooling in a medium
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of which the temperature is V + C cos UttI + '^\ when this quantity is negative, and zero for

those values of t which render the expression positive. If K = the first of these conditions will

1 3 1

be satisfied from ^ = to ^ = - , from t = I to t = - , &c. ; and the second from t = - to i* = 1

,

2 -^

from t = - to < = 2 &c. If y do not = 0, the former of these periods will be shortened and
o

the latter lengthened, or the converse, according as V is positive or negative ; if, however, V be

small compared with C, the periods will be approximately as above stated, and such, therefore,

we shall consider them. They will be semi-annual, if we take one year as the unit of time.

The theorems given by Poisson, in his Thiorie de la Chaleur, Articles 194, 195 ^and 19(), will

enable us to obtain the required solution.

23. If the external temperature be represented by the general formula

B + A coi (mt + e) + A^ cos (Wj^ + e^ + As (cos m^t + e^) + &e (l),

and u denote that part of the internal temperature which depends on the external, we shall have,

at the depth .r beneath the surface,

b . --\/^ ( a: fm A
B +rir Ae " -cos(m;f+e V 6^

\ a '2 ID

+ i.^,r^V^cosU. + e.-^\/^-^.)

+ &c (2).

Where D cos S = 6 + -V—, Dsmh = -
a 2 an

„, ,, b\/2m m
and therefore D' = b" + — + -;

a a'

k
with similar formulae connecting £>,mi^,, D^nii^^t &c. Also a' = - , where k represents the

c

conductivity and c the specific heat of the matter constituting the globe ; and 6 is a quantity

depending on the conductivity and radiating power of the surface.

Now generally if (p (t) denote any function whatever, continuous or discontinuous, whose values

recur whenever t is increased by 6, so that (p (t + 0) = (p (t), we have the general formulae

<p(.t)^j:<i,{t')dt'

^ r^ ^ ,.i^ 27r<' . 27r< 2 /«,,,> . 2t<' , , . Zirt
+ el '^^'^'°'~0"'^'-'°'T~ +

0-/o
^(OBin-^d^.sin—

+ &c.

which will coincide with (l) when the following equations are satisfied,

27r 47r Btp
ra = — , m, =— , m^ = — , &c.

B=\^l<p(f)de
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2 re Zirt' 2 /•« ^ ,
2Trt'

A cos ( = ~ ipv) cos —-— at , J sin e = - d)(t )s\n ——- dt ,

6 Jo ^ 0Jor\' Q

2 re i-n-t'
, , ^ .

2 /-a , , . inf'
^,cose, = -j^ <p (t } cos -—dt, ^.sine, = -j^ (f ) sin -— rf^

&c. = &c. &c. = &c.

~ r« 1 /vv 2(w+I)7r/'' , ^ . 2 re
, ^ „ . a(n + l)7r#' , ,

j4„cose„=- / <p(t)cos dt , A„sin€,, = - <p(t)s\n —^— dt

,

kc. = &c. &c. = &c.

In the application of these formulse to the case before us we have

B= f^(l>{t')dt'+ f^y(t')dt'

= f]^+ Ccos Uirt' + '^]\df'

V c
i ~ TT

'

^cos e = 2 f'\^+ Ccos Uwt' + -jicos.27r/' dt'

= 2 r Iv cos ^Trt' +- cos I iTrt' + ~]>dt'

=

A sin e = 2
/""I

r+ Ccos l2Trt' + -j > sin27r#'d^'

= 2 ^' rFsiii27r#' +-
I
sin Utrt' + j]- sin -il rf?'

_ 2F C

Hence, e = -, ^ = .

2 TT 2

.Vlso tal<ing the general term,

^„C0S6„ = 2j'-\v + C COS faTTi'' +
^jl

cos 2(n + ])Trf'df'

I M I'cos 2 (n + 1) Trt' + — fcos 1 2 (n + 2) irt' + -) + cos Ismrt' -
^) [

d^'2

' when n is even ,•

C 1

when n is odd.
IT w (« + 2)

^„ sin €„ = 2 /" |r+ Ccos (2 7r<' + -) i sin 2 (w + ])7rt'dt'

= 2
^
JFsin 2(m + l)fl-/'+ - fsin (2 (n + 2) n f' + -j + sin |2// tt/' - ^)1 > rf<'
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when n is even ;

TT w + 1

= when n is odd.

Consequently when n is even

IT
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— = ,7 nearly

b

Dr'''
&c. = &c.

A year is taken as the unit of time.

26. In the preceding investigation the sphere has been supposed to have a complete sliell

of ice. The result will also be sensibly the same if, instead of the whole surface of the sphere

being covered with ice, a small portion only of it be so covered, provided the thickness of the

ice be small compared with its superficial dimensions. This is the actual case of a glacier, to

which therefore equation (.S) will be approximately applicable. Let us proceed then to the inter-

pretation of that equation.

We observe that when x — a few multiples of a, the value of the periodical terms becomes

insensible, on account of the exponential involved in them. Let x, be the least value of .t for which

we may neglect these terms. Then, if u^ be the temperature at that depth,

V C
+ V„ + yx,

o ir

= - + yj;^ (4.),

neglecting the small quantity i\. Consequently the temperature at a certain depth is independent

C V
of annual variations, and lower by than it would be if the exterior shell were composed of

• TT 2

rock instead of ice ; for, in that case the value of B (Art. 2.3) would be the mean external tem-

, , y C
perature V, nistead of .

' 2 TT

If J'a be the depth for which the temperature = 0, we shall have

V C
= + 7^2,

Z TT

-i(f-j). «
which, if we give to y the value above stated (Art. 25), will be the numerical value of x.^ in

metres.

If X.;, be less than the thickness of the glacier, the formula (3), and therefore (5), will be no

longer applicable; for (3) would give the temperature of the ice at depths greater than x,^, higher

than zero, which from the nature of ice is impossible. In such cases the lower surface of the

ice, at whatever depth it might be, would be necessarily at zero, because the heat which, if the

superficial crust were not ice, would elevate its temperature, will be employed in melting the ice

at its lower surface, which will thus be kept at the zero temperature.

With the value of -y above given, equation (.5) gives the value of x, supposing the ratio of

the conductive power of ice to its specific heat to be the same as for the rocky crust of the earth.

If this be not the case, the eciuation (5) will still give the depth at which the temperature = zero,

by assigning the proper value to y as depending on the ratio just mentioned for ice.

As a numerical example, suppose V = 0, and C = 15" (cent.) We shall have at the dejith x

w, = - 5" nearly ;

and X., = —— feet,
,028

= 178 feet nearly.

Vol.. VIII. Paht I. K
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27. The temperature - 5" (cent.) appears, however, to be much lower than that observed

at different depths by M. Agassiz, and which did not exceed half a degree. The difference may,

I conceive, be easily accounted for. In our investigation the surface of the glacier has been sup-

posed to be exposed to the winter temperature, whereas, as soon probably as the mean temperature

of the twenty-four hours descends to zero, the surface is protected from the external cold by a

coating of snow, which increases as the temperature diminishes, and thus it is probable that the

temperature of the surface of the ice* may descend but little below zero during the whole winter.

If we suppose its lowest temperature to be about - l^S (cent.) we shall have Mj = — O'.S, and w^ = 54

feet nearly. If the conductive power of ice be less than that of common rock, the value of x^

will be proportionally less.

Taking this last value of x^, it follows that if the thickness of a glacier should exceed 50

or 60 feet +, the temperature of its lower surface would necessarily be zero, as already explained.

Now the thickness of glaciers is doubtless much greater in general than 50 or 60 feet J, and

therefore we conclude, that generally the temperature of the lower surface of a glacier cannot

be less than zero, and must, consequently, he in a state of constant disintegration, unless the

conductive power of glacial ice he much greater than that of the ordinary matter forming the

crust of the glohe.

28. From the conclusion of the last article it appears, that if we would investigate accurately

the internal temperature of a glacier of considerable thickness, we must take, besides the condition

given by the superficial temperature, the additional one that the temperature at the lower surface

shall always = zero. In this case, however, the resulting expression for the temperature would

become so complicated, that it would be useless, I think, to give it, especially with the uncer-

tainty which exists respecting the superficial temperature of the ice during winter. The conclu-

sion above enunciated, which is not invalidated by this uncertainty, is all that is requisite for the

theory of glacial motion which has now been offered.

W. HOPKINS.

' It appears to be established, that the snow which falls on all

but the higher regions of a glacier is again dissolved in the spring

or early summer, and does not contribute to any permanent increase

of the glacier.

t As a deduction from the general reasoning ot Art. 4, this

thickness was estimated roughly at about 150 feet, that there might

be no doubt of its being an extreme value. The thickness of 50 or

CO feet as deduced above, is probably much nearer the truth.

+ See Note, Art. 4.

CASfBRIDGIS,

May 1, 1843.



VII. On the Theory of Determinants. By A. Cayley, Esq. Fellow of Trinity

College.

[Read Feb. 20, 1843.]

The following Memoir is composed of two separate investigations, each of them having

a general reference to the Theory of Determinants, but otherwise perfectly unconnected. The
name of " Determinants" or " Resultants" has been given, as is well known, to the functions

which equated to zero express the result of the elimination of any number of variables from

as many linear equations, without constant terms. But the same functions occur in the re-

solution of a system of linear equations, in the general problem of elimination between algebraic

equations, and particular cases of them in algebraic geometry, in the theory of numbers, and,

in short, in almost every part of mathematics. They have accordingly been a subject of very

considerable attention with analysts. Occurring, apparently for the first time, in Crenner's

Introduction a VAjialyse des Lignes ConcJies, 1750. They are afterwards met with in a Memoir
On Elimination, by Bezont, Mhnoires de VAcadcmie, 1764. In two Memoirs by Laplace and

Verndermonde in the same collection, 1772. In Bezont's Theory of Equations, and in Memoirs

by Binet, Journal PolytecJtnique, Vol. ix. ; by Cauchj', ditto. Vol. x. ; by Jacobi, Crelles Journal,

Vol. XXII.; Lebcsgue Liouville, Vol. vi. &c. The Memoirs of Cauchy and Jacobi contain the

greatest part of their known properties, and may be considered as constituting the general

theory of the subject. In the first part of the present paper, I consider the properties of

certain derivational functions of a quantity U, linear in two separate sets of variables (by the

term " Derivational Function," I would propose to denote those functions, the nature of which

depends upon the form of the quantity to which they refer, with respect to the variables entering

into it, e. g. the differential coefficient of any quantity, is a derivational function. The theory

of derivational functions is apparently' one that would admit of interesting developements.) The
particular functions of this class which are here considered, are closely connected with the

theory of the reciprocal polars of surfaces of the second order, which latter is indeed a par-

ticular case of the theory of these functions.

In the second part, I consider the notation and properties of certain functions resolvable

into a series of determinants, but the nature of which can hardly be explained independently

of the notation.

In the first section I liave denoted a determinant, by simply writing down in the form of

a square the different quantities of which it is made up. This is not concise, but it is clearer

than any abridged notation. The ordinary properties of determinants, I have throughout taken

for granted ; these may easily be learnt by referring to the Memoirs of Cauchj' and Jacobi,

quoted ai)ove. It may however be convenient to write down the following fundamental pro-

perty, demonstrated by these authors, and by Binet.

«',/3'
p't a

pa + (7/3 . . , pa' + a ji'. ,

pa + (t'/3 . . , pa + cr'fi'.

.(o).

K2
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An equation, particular cases of which are of very frequent occurrence, e.g. in the investi-

gations on the forms of numbers in Gauss' Disqidsitiones Arithmetica, in Lagrange's Determi-

nation of the Elements of a Comifs Orbit, S^c. I have applied it in the Cambridge Mathe-

matical Journal to Carnot's problem, of finding the relation between the distances of five points

in space and to another geometrical problem. With respect to the notation of the second

section, this is so fully explained there, as to render it unnecessary to say any thing further

about it at present.

{ I. On the properties of certain determinants, considered as Derivational Functions.

Consider the function

U^x{al +(in + .••)+ (•)•

X!'ial + ji'ri + ...) +

{n lines, and n terms in each line).

And suppose

KU = a, /3 .

a', d' .

.(2).

(The single letter k being employed instead of KU, in cases where the quantity (KU), rather

than the functional symbol K, is being considered).

a{c + a'x' + .., bx + b'.v' + . . , .. (3).

iif+sij+.., a , /3 ,..

FU=-

k'^+ s'>; +

'3U = - nx + R a- + .
.

,

a'^+ Ti'tl+ ..
,

sx + s a; +

/3'

(*)

The symbols K, F, 1 possess properties which it is the object of this section to investigate.

Let A, B, .. , A', B', .. , be given by the equations :

A =

A'=^

/3', y..
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Act + A'a'+ . . = K, (7).

A(i + A'(i'+.. = o,

Ba + B'a + . . = 0,

&c.

The second side of each equation being (o), except for the r"* equation of the »•"' set of

equations in the systems.

Let X, /u> • • • represent the r"", r + l"", ... of the series a, /3, . . . , L, M, . . . the corresponding

terms of the series A, B . . . , r being any number less than (w), and consider the determinant

A, ... L (8).

which may be expressed as a determinant of the »"' order, in the form

A . . . L, 0..

^<'-"...Z,<'-"o

10
1

Multiplying this by the two sides of the equation

(9).

(10),«, /3..

and reducing the result by the equation (O ), and the equations (6), the second side becomes

K ..

K

which is equivalent to

K .

m"* I''''

M*'""*,
>'''""*

.(").

Or we have the equation

J .... L

which in the particular case of r = w, becomes

A, B .

A', S

(12).

(13),

(11),
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which latter equation is given by M. Cauchy in the Memoirs already quoted ; the proof in the

" Exercises,'" heing nearly the same with the above one of the more general equation (13). The

equation (l3) itself has been demonstrated by Jacobi, somewhat less directly. Consider now the

function FU, given by the equation (3). This may be expanded in the form

J7f7= (r^ + s;,+ ..) [A.(Aa!+ Asc' + ..) + B (bx + v' iv' + . . ) + ..] + (15),

(r'^ + s',; + . . ) [J'- (A.r + A'a;' + ..) + B'{bx + B'm'+ ..) + ..] +

vhich may be written

FU = x.iA^ + B,, + ..) +

w'. (A'^ + B' ,, + ..) +

(16).

By putting

A = A . (eJ + vi'A'+ . . ) + B . (nS + B.'B'+ . . )

B = A.(s^ + s'A'+ ..) +B.(sS + s'B'+ ..)

(17).

A'= a'. (rJ + b'^'+ . .) + b'. (rS + k'B'+..)

B' = A. (sA + s'A' + ..) + b'.{sB + s'B' + ..)

Hence,
KFU = A, B..

A', B'

A, B . . E, S .

b', s'

Or observing the equation (14), and writing

A, B .

a', b'

R, S .

r', s'

= /

= r

This becomes

Whence likewise

Consider next the equation

IFU'- -

KFU=J.f.{KUy-^

Kiv = j.r.{Kuy-''

(18).

A, B.
A', ff

(20).

... (21).

(22).

(23).

b'™'
B.at + Kx + . , , sa; + s a? +

a^+b»;+..,A , B
a'^ + b',, + . . , A' , B'

I .

. R S a A, B
x A', B'

(19).

(24).

(25).
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=.-Jf
w A B
x' A' B'

. (26).

If the two sides of this equation are multiplied by the two sides of the equation (2),

written under the form

,a/3

a'y3'

(27).

The second side is reduced to

-jr . a^ + lir,.. , a'^+13',,..

X K

x' K

(28).

= -Jf.(K)''-\U. (29).

And hence

iFU = jr.{Kuy-\u (30).

And similarly

Fiu = jr.(Kuy~'.u. (31).

Also combining these with the equations (22), (23),

... (32).
YFU F^U U
KFU K-JU KU

It may be remarked here that if U, V are functions connected by the equation

FU=cFV, or 1U= civ. (33).

Then in general
1

f7=en-i. V. (34).

To prove this, observing that the first of the equations (33) may be written

FU= F.(c!^.r), (35),

we have

I.FU^I.F.ic^.V), (36),

or

Jf.(,KU)''-\U=jr[K(c^'.r)]'-Kc^i.V (37).

Or, if neither J, C nor {KU) vanish, this equation is of the form

U=kV, (38).

whence substituting in (33),

fe"-' = c, (39).

which demonstrates the equation (34) ; and this equation might be proved in like manner from

the second of the equations (3.3). If however, J=0, or / = 0, the above proof fails, and if

KU = 0, the proof also fails, unless at the same line w = 2. In all these cases probably, cer-

tainly in the case of KU = o, re 4=^ 2, the equation (34.) is not a necessary consequence of (33) ;

In fact, FU, or lU may be given, and yet U remain indeterminate.
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Let U, a, 3 , ... J , B, &c. . . be analogous to U, a, /3..., A., B, &c.
. . and consider

the equation

K. {KU,FU + g. KU. FU,) (40).

=
I

K,A+gKA^, K,B + gKB^. .

K^A'+gKA^' , K^B + gKB\

Multiply the two sides by the two sides of the equation (2), the second side becomes, after

reduction,

K,K+gK.{A^a + B^^ + ..), gK.(,A;a+B;f3 +..) (41).

gK.{Aa'+B^li'+..), K,K+gK.(A;a'+B;i3' + ..)

Multiplying by the two sides of the analogous equation

a , a . .

A> fir-

and reducing, the second side becomes

KK^ . {a, + go), KK, . (/3, + g(i) .

.

KK, . (a/ + ga), KK, . (^/ + gfi')

(42).

(43).

= ^\K;.K(U,+gU) (44).

whence

K. (KU,. FU + gKUFU) = {KU)"-'. iKUy-'.K{U, + gU).

and similarly

K. iKU,1U + gKU1U,) = (KUy-\(KUJ-\K.(,U, + gU).

In a similar manner is the following equation to be demonstrated,

1 . {KU,FU + gKUFU;) = F {KU;iU ^ gKU^U;) = .

.

(47).

(45).

(46).

-jf-iKuy-'iKUx-'x a,x + a'x . . , (ix + /3/ir'. .

aj + ^>).. a, + ga , /3^ + gfi

a'^ + fi'v «; +ga , /3; +g-/3'

Suppose

f7= 2 (p^ + art] + ...) (ax + a'x' + ...)

This expression being the abbreviation of

U = (p^ + cr>; + . .) (oa? + a'x' + . .) +

(/"/? + °,1 + •) («,* + a/'»'+ • ) +

+

(48).

• (49)-

[(w - 1) lines, or a smaller number].

KU = Sap, 'S.aa .

Sa p, 2a'cr . .

(50),

which follows from the equation ( O )

Conversely, whenever KU =0, U is of the above form.
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Also

FU = - A.SC + K w + . . , HX + 'B 31 + . (.-il),

k'^ + s'r;

which may be transformed into

FU = AX + A X . . . , BX + S X

p ) c

R^ + s>; . . . , n'^ + s'>; . . . ,

a ,
a

b , b'

(52),

(for shortness, I omit the demonstration of this equation).

And similarly,

1U = Tix + s. X , . . , s ,r + s a;

.

p 5 o"

P 5 O"

A^ + B>;. . , a'^ + s't?. .

a ,
a

b , b'

(53),

where it is obvious that if the sum 2 contain fewer than (m - 1) terms, FU = 0, Y(7 = 0.

The equations (52), (53) express the theorem, that whenever KU = 0, the functions FU, 'JU
are each of them the product of two determinants.

If next

u,= u +u.
Taking g = — \, in the formulae

K.(K(U+U)FU - KUF{U+U)) = K .{K (U+U) 1U - KU1 (U+U))

= {KUy-'.{K(U+U))"-'.KU.

Or observing the equation (50),

K.{K{U+U)FU -KU.F{U+U)) ^ K.{K {U+U) 1U - KU1 (U+U)) = 0.

Hence F .{K {U+U) 1U - KU1 (U+U)) = 1 . {K (U+U) FU - A'UF(U+U)) are each

of them the product of two determinants. But this result admits of a further reduction. We have

F . {K (U+U) 1U - KU1 {U+U)) = 1 . {K (U+U) FU - KU. F (U+U)) (58)

(56).

.... 57.

= - J/" (KU)'-' .{K(U+ U))"- a^x + a'x . . , /3,'F + (^l x' .

.

a^ + fit] . . a^ — a, /3^ — /3

Substituting a^ = a + '2pa, &c. .. also observing that if the second line be multiplied by x,

the third by x', . . and the sum subtracted from the first line, the value of the determinant is

not altered, and that the effect of this is simply to change a,, af . . into a, a'., in the first line,

and introduce into the corner place a quantity - U, which in the expansion of the determinant

is multiplied by zero. This may be written in the form

-jr{KUY-^{K{u+ u))"

Vol. VIII. Paiit I.

ax + ax + . . , /3a.' + (i'x .

"? + ftrj "S-pa , '2<7a

a'^ + (i' ri 'Zpa , "Zira

(59),
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which may be reduced to

jr.(,s-uy-'. {K{U+ U))"-' X (60),

aw + a 00 + . . ,
(iw + ^ CO + .

.

i^ + /3>;.., a'J + ^'v- •

If each of these determinants were multiplied by the quantity (JTf/)""', expressed under the

two forms

J, B ..

J', B'.

They would become respectively

KU
Ap + B<r , A'p + B'fj

A, A'..

B, B'

(fil).

KU.
Aa + A'a .

. , Ba + B'a! .

(62).

So that finally

F.{K{U+ U)'JU-KU.'J .iU+ U))=1.{K{U+ U) FU - KU . F {U + f7)) =

{K(U+U)\-'-x
-^^ [ KU I Ap+B(T . . , A'p + B'a .

.

,

Aa + A'a . . , Ba+ B'a . .

.

... (63).

The second side of which may be written under the forms

(K{U+U)Y-'-' AX+AW'.. ,
d.i+bV.. , ..

A . (Ap + B<x ..) + a'. (A'p + B'a . •)• , b. (Ap+ Ba ..) + n'.(A'p + B'a . .) ..

j
K(U+U)y

[ KU )

R^ + S,,.. , R'^ + Sn-.

R.(Aa + A'a'..) + S . (Ba + B'a . .) .. , R'.(Aa + A'a . .) + S'.(Ba + B'a . .)

...(64).

And

V KU
j
K(U+U)

Y
R.v+R'w'.. , S.F+S'w

R.(Ap + Ba . . )+R'.(A'p+R'a.. ).., S. (Ap + Ba . ) + S'. (A'p + B'a ..).,

Al + Br,.. , A'^ + B'n-.

A.(Aa + A'a'..) + B .(Ba + B'a ..).., A'.(Aa + A'a'..) + B'.(Ba + B'a'..)

And again, by the equations (52) (53), in the new forms

(t^)"'- '^- ^H(^P + Ba..)(A^+^„..) + (A'p + B'a..) (A'f + b',, + ..)..] X

[(Aa + A'a' . . ) (u.c + n'.v' .) + (Ba + B'a . . ) (sa- + sV . . ) . . "i}

(^YW^T' ^^ ^^^"^f + ^<^ ••)("?+ ^-7) + (^y +B'a..) (R'e + s'„ + ..)..] X

\_(Aa + A'a' . . ) (a.v + aV . . ) + (Ba + B'n . . )
(B.r + n't;' •

.
) . ]j.

(65).

(66),

(67).

Comparing these latter forms with the two equivalent quantities forming the first side of (53),

and observing (33), (34). It would appear at first sight that
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K{U+U).^U-KU.l (U+ U) =

IK{U+U)\^-

\ KU I

\'E[Ap-^ Ba..) (a^ + B,i) + {A',j + B'a-..) (a'^ + b'^ . . ) . . ] x

[(Aa + A'a . . ) {vix + rV . . ) + {Ba + B'a . . ) (s,r + sV ..)..]
j

K {U + U) FU - KU . F {U + U)

IK(U+U)

X \^{Aa + A'a . . ) {ax + ax . . ) + {Ba + B'a' . . ) {bw + bV . . ) . . ]| ,

which however are not true, except for n = 2, on account of the equation (57). In the case

of n = 2, these equations become

K{U + U).'IU- KU.T{U +U) =

[{Ap + Ba..){Al+Br,..) + (A'fj + B'a..){A'l+ b'v ..)+•] x

\{Aa + A'a ..) {nw + eV . . ) + {Ba + B'a . .) {s.v + sV . . ) + . .] (68),

K{U+U)FU -KU F{U+U) =

[{Afj + Ba..) (r^+ 8,,..)+ {A'p+ 5'cr..)(R'^+ s'v ..) + ..] x

[{Aa + A'a ..) {aw + aV..) + {Ba + B'a ..) (b.i; + bV + ..)+.] {6d),

and it is remarkable that these equations ((68), {69)) are true whatever be the value of (w),

provided 2 contains a single term only. The demonstration of this theorem is somewhat tedious,

but it may perhaps be as well to give it at full length. It is obvious that the equation {6g)

alone need be proved, (68) following immediately when this is done.

I premise by noticing the following general property of determinants. The function

a + 2joa, /3 + So-fi,

a + 2joa', /3' + 2cr'a,

(70),

(where 2joa = ^iffli + p^'^z ••• + Ps^s)i contains no term whose dimension in the quantities a, as'... ,

or in the other quantities p, cr... , is higher than s. (Of course if the order of the determi-

nant be less than s or equal to it, this number becomes the limit of the dimension of any term
in a, a'... or p, a..., and the theorem is useless). This is easily proved by means of a well

known theorem.

2pa, Sera

S/3 a, 2(7 a

(71),

whenever («) is less than the number expressing the order of the determinant. Hence in the

formula (70), if 2 contain a single term only, the first side of the equation is linear inn, cr...,

and also in a, a',.., i.e. it consists of a term independent of all these quantities, and a second

term linear in the products pa, pa'... era, ad.... This is therefore the form of K {U + U) ...

Consider the several equations

K = KU= Aa + Bji + (72).

= A'a + B'(i' + +

It is easy to deduce

K^ = K.{U+U) = KU+ Apa + Baa +
+ A'pa' + B'a a' +

. (73).

LS
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To find the values of A, B, &c... Corresponding to U+U, we must write

A = m'/3 + n'v' + — •• (7-t),

= M ^ + N 7 +

where

m"= ±

" S"7)0..
7 '

in '\tn7.0 .

.

y V

, n'=± (75),

Pi /// tl

^"" e"

The order of each of these determinants being n - 2, and the upper or lower signs being

used according as w — 1 is odd or even, i. e. as n is even or odd. Hence

A^==A-\^ m'.o-o' + n'. to' + (76).

m". era" + N".Ta"+ ..

And therefore

K^A - kAi = A'^fja + AB . era + AC .ra + (77).

AA'pa + {AB' - KM')crn'+ {AC - K^')Ta' + . .

AA"pa"+ {AB" - KM")aa" + {AC- /cn")x«" +

The additional quantities C, r having been introduced for greater clearness. Now the

equations

AB' - kM' = AB, AC - kN' = A'C,

AB"- kM" = A"B, AC- kN" = A"C,

(78),

written under the form

AB' -A B = kA/', AC -A'C = kN', (79),

AB"-A"B=kM", AC"-A"C=kN"

are particular cases of the equation (13), and are therefore identically true. Hence, substituting

in (77),

HiA - kA, = A'pa + ABaa + ACra ... + (80),

AA'pa + A'Baa + A'Ctu' ... +

A"Apa" + A"Baa" + A"Cra" ... +

= {pA + aB + ... ) {Aa + A'a + ... ).

Forming in a similar manner, the combinations k^B - kB^ ... k^A' - kA^', k^B - k B,', ... , mul-

tiplying by the products of the different quantities Ax + A'a; ... , Biv + B'x ... , ... 7?^ + St] + ...

,

fi'5 + -S"^, ... and adding so as to form the function K {U + 17) . FU - KV . F {U +U), we

obtain the required formula, viz. that the value of this quantity is

[{pA + aB + ..){r^ + s,i + ..) + {A'p + B'a..) (u'^+ s' ,,..) + ..] X (81),

[{Aa + A'a' . . ) {a.v + aV . . ) + {Ba + B'd . . ) (nj' + uV +.) + -]
with this theorem, I conclude the present section,—noticing only, as a problem worthy of in-

vestigation, the discovery of the forms of the second sides of the equations (()8), (ft)), in the

case of 2 containing more than a single term.
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6 II. On the notation and properties of certain functions resolvable into a series of deter-

minants.

Let the letters

n, r^---r^ (1),

represent a permutation of the numbers

1, 2 ... k (2).

Then if in the series (l), if one of the letters succeeds mediately or immediately a letter

representing a higher number than its own, then for each line this happens there is said to be

a "derangement" or "inversion" in the series (1) It is to be remarked that if any letter

succeed («) letters representing higher numbers, this is reckoned for the same number (*) of

inversions.

Suppose next the symbol

±. (3),

denotes the sign + or - , according as the number of inversions in the series (1) is even

or odd.

This being premised, consider the symbol

\Ap,, (T, ..(w)| (4),

denoting the sum of all the different terms of the form

±r =•=.-• ^jOr,. 0-», >• ^|t)r,> O-j^J (5).

The letters

n. i-a. ..»•*; s,, S2...S4: &c (6),

denoting any permutations whatever, the same or different, of the series of numbers (2). The
number of terms represented by the symbol (5) is evidently

(i.2...ky (7).

In some cases it will be necessary to leave a certain number of the vertical rows p, a- .

.

unpermuted. This will be represented by writing the mark (f) immediately above the rows in

question. So that for instance

t t

f^,o,a, ..0,0, .(n)] (8).

Pk'^k • • &ki>k

The number of rows with the (f) being (,r), denotes the sum of the

(I a. ..A)"-' (9),

terms, of the form

±,±,..^^,,, O-,,...0|, (/), Apr^, (T,,^...0j, <^j (10).

This is obvious, that if all the rows have the mark (j-) the notation (8) denotes a single

product only, and if the mank (f) be placed over all the rows but (1), the notation (8) be-

longs to a determinant. It is obvious also that we may write

[Ap,.a,..e(p,..{n)\ = ^±„ ±„.. Mp,(r, ..0„,0,, ..(w) (11),

('k<^k--&k<()k i I Pk<^k--&",'P>; I

where 2 refers to the different permutations,

Ui,u.,...u^\ t),, ?)2...«j; &c (12),
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which can be formed out of the numbers (2). The equation (11) would stiU be true, if the

mark (f)
were placed over any number of the columns p, a... .

Suppose in this equation a single column only is left without the mark (f) on the second

side of the equation ; the first side is then expressed as the sum of a number

(1.2... A;)"-', or generally (1 . 2 . . . A:)"-'-', (13),

of determinants, according as we consider the symbol (4) or the more general one (8). And

this may be done in (w) or n-.v different ways respectively.

It may be remarked, that the symbol (8) is the same in form as if a single column only

had the mark (f)
over it; the number («) being at the same time reduced from (n) to (n - a? + 1).

For, the marked columns of symbols may be replaced by a single marked column of new symbols.

Hence, without loss of generality, the theorems which follow may be stated with reference to a single

marked column only.

Suppose the letters

jO,, pi.-.p/,'- <^i^ <r2...CTt; &c (U)

denote certain permutations of

a„a,...a^; /3,, /3, ... /B*; &c (15),

in such a manner that

/>i
= a,_, p2 = ci^^.. pt = a^^; cr, = /3i , 0-2 = /3j^, ..0-4= ^A^; (ifi)-

Then the two following theorems may be proved :

U,o,<t,..(m) = ±,±A.- Ua,/3,..(w)| (17).

If (w) be even, but in the contrary case

(J|0,<r,..(«)| = +±p-- Uai/3,..(w)l (18).

Pk<^k
' ' "kPk

By means of these, and the equation (li), a fundamental property of the symbol (3) may

be demonstrated. We have

(^a,)3,..(w)] =S±^. (^jo,/3,..(n)] (19),

Okl^k ' ^ Pkt^k

which when (m) is even, reduced itself by (17) to

(^a,)3,..(«)] = [^I,^,..(w)] 2(±^±,.l) (20)

t

= 1 .2... A; Jai/3, ..(w)

akf^k

But when (w) is odd, from the equation (18),

'«,, /3,..(M)| = j^«,(3,..(»,

"*/3i ) I a/,, (it

«) 2(± 1) = (21).

"*/3j ) I at, /3j

Since the number of negative and positive values of i^^ are equal.
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From the equation (20), it follows that when (n) is even, the values of a symbol of the

form

(^a,/3„ (n)] (22),

is the same, over whichever of the columns a, /3 . . the mark (j-) is placed. To denote this

indifference, the preceding quantity is better represented by
t

\Aa„ /3, ..(n) (23),

this last form being never employed when (ti) is odd, in which case the same property does

not hold. Hence also an ordinary determinant is represented by
t ft,

Mai/3i , Mill (24),

the latter form being obviously equally general with the former one.

It is obvious from the equations (17), (18), that the expression (22) vanishes, in the case

of (n) even whenever any two of the symbols (a) are equivalent, or any two of the symbols

{(i), he; but if (n) be odd, this property holds for the symbols (/3), &c., but not for the

marked ones (a). In fact, the interchange of the two equal symbols, in each case, changes

the sign of the expression (22), but they evidently leave it unaltered, i. e. the quantity in

question must be zero.

Consider now the symbol
t

Mil — (2p) (25),

kk
which, for shortness, may be denoted by

t

{A.k.2p\ (26).

I proceed to prove a theorem, which may be expressed as follows :

t t

\J.k.2p\ . {B .k.2q} = \JB]k.2p + ^q.2] (27),

where

^r.,.....y...=S.J,,,,„iS,,,,„, (28).

The number of the symbols r,s ... being obviously 2p — 1, and that of x, y ... 2q—l. The
summatory sign S refers to I, and denotes the sum of several terms corresponding to values of

I from 1=1 to 1 = k. Also the theorem would be equally true if I had been placed in any

position whatever in the series r, s ... li and again, in any position whatever in the series at,y ... /,

instead of at the end of each of these. With a very slight modification this may be made to

suit the case of an odd number instead of one of the numbers 2p, 2q-, (in fact, it is only to

place the mark (f) in |y<ij|.. | over the column corresponding to the marked column in |yi..|,

{ji . . ^ being the one for which the number is odd), but it is inap|)Iicable where the two numbers

are odd. Consider the second side of (27). This may be expanded in the form

2 +±.... ±.±,...Zb1, .._..,,,,.. . Zb1,.,,,.,^,^....Zb',. ,,,... (29),

where 2 refers to the different quantities s, . . , w, y, . . as in (II).
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Substituting from (28), this becomes

Effecting the summation with respect lo w, y . . this becomes

2. 5',, . . ^,^ . . + ±. • . ^,.„..,, • . A.,...^ {B1.1..1A (31),

( kk..l^\

2 now referring to s,...only. The quantity under the sign 2 vanishes if any two of the

quantities I are equal, and in the contrary case, we have

(fill../,] =±,|S.fe.2g}, (32),

which reduces the above to

{S.fc.29}.2+±...±,^,.„..,,..^j.,,..,., {S3),

2 referring to the quantities s ... , and also to the quantities /. And this is evidently equivalent

to
t t

{A.k.'2p}{B.k.'2q}, (34),

the theorem to be proved. It is obvious that when p = 1, 9 = 1, the equation (27), coincides

with the theorem (O)) quoted in the introduction to this paper.



VIII. On Small Fiiiite Oscillations. By the Rev. H. Holditch, Fellow of Cuius

College, and of the Cambridge Philosophical Society.

[Read May \5, 1843.]

The system of bodies here considered is supposed to be such, that their position, and the forces

acting upon them in that position, depend upon a single variable ; and the object is to find general

expressions, which may be applied to any particular case, without performing any integration, for

the length of the isochronous pendulum and the time of oscillation, rocking or sliding, when the

body or system of bodies is slightly disturbed from its position of equilibrium, the approximation

including the square of the variation of the independent variable.

By the principle of vis viva,

mu° + THiDj + ... =2 m jPdp + 2mifP^dpi + ...

Let u be the independent variable, and a its value when the system is in equilibrium, and a + ;» its

value at the end of the time t ; also let /3 be the value of z at the beginning of the motion, when
the system is disturbed and left to the action of the forces upon it.

Pdp
Let -^ =/(w)=/(a + ^),

P^dp,

~d^ " ^ ^''^ = (a + Sf),

J -,. mPdp + ntiPidp, + .

nd C7 = —1—i-!

dtt

.-. Uo = mf (a) + wi, (p (a) +

U, = m/i (a) + m, <pi (a) +

U2 = m/2 (a) + mi 02(a) +

(1)>

and mPdp + in^P^dp^ + ... = iUo + UiX + U-^ + ... Irfw (2);

but, when the system is in equilibrium, u = a and C7, = 0, or mf{a) f m,(p(a) + ... = 0, which
determines its position when at rest, and as du = dz, the integration of (2) will give

m f Pdp + mJPidp, + ... = U,.^^^ + U, .^^f^ + U,.^^+ ...
2.3 2.3.4

Agam, let ^ = ^^ (w) = ^/' (a + x),

. „ mds' + m.ds': + ...
and V = !—!

du'

Vol. VIII. Part I. M
W;
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.-. mds^ + m,ds] + ... = (Vo+ V,z + Fj . ^ + ...jdz",

and (F„.r,...n.J)^^t7,(.--/3=) + fA.^\r3.^'. (.).

For a first approximation, K- j^= ^i • C^' - /3'"')> f>"om which it appears that -^vanishes when

ds
sr = ± /3, and since s = /x// iti)du = R («) = R{a ± ^) = /?„ (a) ± B, (a) • ^, ^ vanishes, when

s = R (a) ± R (a) . /3 ; which shews that each body of the system vibrates to an equal distance on

each side of its position of equilibrium.

/^^o ^ / »n >// (af + m, f (a)' + ...

The time of oscillation = 7r V ~yr~ = "
• 'V 7~r^ , . .

•

m \lr (a)° + m,f (aY + ...

And L the length of the pendulum = - g-
mfi (a) + »Ji^, (a) + ...

gdy
In the case of gravity, Pdp = -gdy, and /(?<) = -—

,

mds^ + m,rf«; + ...

and .-. L=—-^ ^—; (>;,
ma y + m^a'y^ + ...

the position of equilibrium being determined from mdy + m^dyi+ ... = 0.

If the body be rio-id, and X, Y the co-ordinates of its centre of gravity, and Mk" the moment

of inertia about the centre, and Q the angle of rotation be made the independent variable ; then

ds' ds\ ,,,, ., dJf + dY'
»n ^^ + »»i ;7^ + ... = Mir + M

.

= Mk- + M dJC
![¥

'

dX'
*' + dS^

and .-. i =_4L (6).
a" 1

~d¥
mds- + m^ds\ + ...

When a rigid body oscillates about a point of suspension, the expression
,„^3y ^ ,„_^-y^ ^

becomes L =
"'^' "^ "''^' "*' "•

, the point of suspension being made the origin (7).

{m + m, + ...) Y

The equation (4) for the purpose of integration may be more conveniently put under the form

— .(p + qz + rz^) =a.{fi' -!>') + b. (^' - z") + c . (/3' - «')

df
= (li -z).{(a + bx + n^ + c/30 . (« + /3) + 6^'}-

Assume (a + bz + cz' + r(3') . (z + /3) + 6/3= = (a + 6^ + c^ + c/3=) . (s; + /3 + ^^= + e^';::),

.-. (a + 6.r + CZ-' + cfi') . (5 + ez) = b,

or. aS + bSz + aez = 6, omitting the squares of /3 and z ;

.-. nS=b, and 6^ + oe = 0,
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b . b-
or , ^ = - , and e = ;

id therefore (a + fi* + car" + c/3^) . (« + /3 + - /3°-
;
/3-jr),

o a

or (a + 6«r + c«= + c/30 . l+-/3.</3 + sr.l--.j3
^ a\ /^,„ f, _* «^\
ft 'V^)\

differs only from the factor (o -\- bz + as^ + cfi') . (z + fi) + 6/3" by quantities of the fourth de-

gree of /3 and z : or

^. (p + 9^ + rz^) = (fi-z). [l +^(iy^(i + z. (l - ~. ^y^.(a + bz + cz^ + cfi^)

is true to the fourth order of those quantities ; and the limits of the oscillation of the system are,

z = (i, and z = 7— , or - 7.

l--.fi
a

Again, as /3 = 7 . (l - -./3j

/3 + ;^ . (1
-
^ . /3] = (7 + ^) . (1

-
^ . /?) , and

dz^ / j2 \

and if a + c/3' = a

d« 1 /p +qz + rz'
dt =

\/(/3 -z).(y + z) / 1^' a + bz +cz'

The position of equilibrium must be a stable one, and therefore JmPdp + Jm^P^dp^ + ...

a maximum, or f/, is negative, and .•. a = a + c/B' = — 6^ + c/3° is positive, and .-. also '\/ -

is positive.

Expanding therefore the last term of the above expression,

v/(/3-^).(7+«) / _6'/3^ I V2p 2ay V2p Sp' 2o 4/,a 8a^/

J

a"

to be integrated between a: = /3 and z = — y, excluding the powers of /3 above the second.

z" dz
For this purpose, taking -—— '

^ , let v/(/3 - ») • (7 + !») = (/3 - *) . .r,

V (p - sr) . (7 + xr)

X = -'
, and -

.
=

-„

,

1 + '"'
v/(/3 - «) . (7 + ») 1 + •"

, «°dg (;3af' - 7)" . 2dai _ Zdai f^ _ fi + y\
sfdz (/3j?' - 7)° . 2da? Zd/v 1^ P + yY
- «) . (7 + .jr)

°
(1 + t^)"-^' rr^" V 1 + •''V

M 2
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the other terras vanishing as 71 is not greater than 2.

The limits of » being ^ and - 7, those of w are 03 and 0, and

r dai
,

. ,. .. (2W -3).(2W-5)...3.1 TT

/ between these limits = — -r—r- -7 :—- . - ;

^(1 + .7'=)" (2n-2) . (2m -4) ...4.2 2

J^/(l3-^).(y+^) I
2 2 4.2J

= - TT . {/3" - n^'-> . O + ^ . i8=) + n . '1^. 3/3-}

Hence /-

V^(/3-«).(7 + «)

-^"v/(/3-«).(7+^)
= — TT .

ifol" j 2 Up Sp" 2a 4pa 8a^ 2j3a 2aV j'

and as

or

a/, _^' ^a'l 2aj r + 2a^j - ^ o-r^ Ua'' 2j'^J

at 4 \p a 4p^ 2pa 4o"/ J
'

or, restoring the quantities U and V, and their differential coefficients,

. = .x/'"-^•(i + C/30 (9),

and i. = "^ (10),

where L and t are expressed by quantities and their differentials.

The times of descent to the position of equilibrium and of ascent from it, will be found

by the integration of equation (8) between the limits, x = (/3, 0), and « = (0, - 7) ; but as the

first powers of the arc will appear, it will be sufficient to integrate
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v/(/3 - «) . (7 + sr) a I 2 \p o/j

a (. V;) re/ 1 + a?'^ J

Ti™ of decent. V^.{(|-t).f-2,.„-V'| + »},

ascent

but tan-' V^ = tan-^ \/l + - . /3 = - + ^

;

p O 4 4ffl

.-. time of descent. Vf-jj* (i^-;)-/5) <").

....:.... ..ee„.= Vf.{|-(i-3.^) „.).

Excess of time of ascent over the time of descent, or

-v/!•(T-^''=^/^•(ll-^'^ <=).

which is remarkable as not involving tt.

The excess of the arc or angle of ascent = 'y-/3 = -.i3^ = —- B^ O*)-^ " ^ a SU^

These results are on the supposition that the displacement of the system was by an increase

of the independent variable ; in the opposite case, the odd differential coefficients of V and the

even ones of U must have their signs changed.

Example. Two bodies m and m, , moving in a circle and connected by a rod subtending

an angle 4 a at the centre are acted upon by a repulsive force in the circumference, varying as

the n"' power of the distance.

Let 2 be the angle at the centre between the radii passing through .S" the centre of force

and m, .-. 2 + 2 0, = 4 a,

P = k .{9, a sin Q)", and p = 2 a sin ;

U =
Pdp + P,dpi U

dd
, or ————7; = m sin" cos — m^ sin" 0, cos 0,,

mds' + m.dsl
V

-j^^
=4re=(m + m,)-

If the bodies are equal, V = Sma",

(7, = 8 ma^k . (2 a sin a)"'' . (n cos'^ a - sin- a),

and L =
A; . (2 a sin a)""' . (sin'a-n cos* a)

'

^ /L { Aa" r^ ^„ (w-l).(ra-2) 2n-2 -| 1

g \ 256 L sm'' a M cos^ a - sin~ «J J

where Aa is the whole angle of oscillation.
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When the body is rigid, the general expressions may be put under more convenient forms
:

for

if tl Id ffe ntial coefficifnts be taken with respect to the angle of rotation round the centre of

Iravitv Jr and }' being its co-ordinates, and Mk^- the moment of mert.a round the centre,

^ ' V =Mk' + M{X\+Y\),

F, = 23f(A',X,+ F,K),

V, = 'iM {Xl + X^X,+ Y\ + r, F3).

And U = - MY,,

r/, = - MY,,

U,= - MY,,

U,= - MY, ;

... V, = M (k' +Xl), F, = 2 MX^X, , and K = 2 3/ (Xl + X,X, + YD ;

/r + X',
.-. L =

C = xl + x,x, + r|

Hk-' + xi)

X,X,Y,

Y, ^1^ rt

16 r, i'ik' + xfy

5 Fl
+ —

.

.(15),

(16).

4,Y^ik^ + Xl) is' Y-

In the case of a particle, L = yr ,

X, Y.!

16 F,

X,Y,
+ -.^, (17).

iX,Y, iS'Yl'

Example. A rod oscillates upon two planes, inclined at the angles a and a, to the horiz

the centre of gravity being at the distances a and a, from the extremities of the rod.

Here ^ = ^ sin + B cos 9,

r = Msin9+ Ncos9,

where 6 is the inclination of the rod to the horizon, and

S =(a + a,) . cos a cos a,

sin (a + a,)

a cos a sin Oj — a, sin a cos oi

a sin a cos oi — Bi cos a sui a,

sin (a + a,)

and A'^:

(a + a)i . sin a sin a,

sin = -

sin (a + a,) ' " sin (a + a,)

.-. F, = J»f cos - JV sin = 0,

M _ ^ N
and i9 = -

y/M' + N" y/M' + N'

(a + a.) . (a sin-a, + fl!i sin-a)
Let M' + N'= . ,, —^ - ««> =

sin (a + Oi)

and ^i./+BiV= ^°-^''->-^°.?;°'"r""'°^ = ^'
a sin'' (a + a,)

Q,

aoi
then ;5r, = - X3 = -^

F^ = - F, = v/Q
PX =
a/Q

, , o'a? + Qk'
, and Z, = '

. —

;
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and r = . V-.(t +^-. L^(^.qT:;^„.) + r6^ 4(/rQ-^ay)J|-

If the planes include a right angle, and the centre of gravity be in the middle of the rod,

L = a + ~ ,

a

both of which are independent of the inclination of the planes to the horizon.

If a particle move in a curve, by a constant force {g), making a given angle rf> with the

axis of X ; then,

dp cos (bdx + sin (bdy . , „, ds

""-^Tu-^- du -^•-'"('^-^^ri7.'

where 9 is the angle made by the normal with the axis of a; ; and making this the variable,

V = R', where R is the radius of curvature

;

F, = ZR] + 1.RR.,

U = g . sm {<p - 6) . R,

U, = ~ g cos ((j) - 6) . R + g . sin (cp - 6) . R„
U.^ = - g .iin ((p ~ 6) . R -2gcos (cp -9) . B, + g . sin ((p - 6) R^,

U3=gcos{(p -9) .R - 3g sin {<p - 9) . R^ - 3g cos (cp - 9) . R^ + g . sin (<p - 9) . R,

In the position of equilibrium U = 0, or (p — 9=0;
U,= -gR,
U,= -2gR„
U,= -gR- SgR,.

gV
Hence L = —rr-= R, and

— t/i

T= TT

q o Art
Excess of time of ascent = '

.

sVgR

Excess oi angle or ascent =
3R

If the arc be made the independent variable,

--'^^^{-'(;^-1^-iS)l <")

i/Xcess of time = - -7=^

3VgR
-- - - /?, . As-^
lixcess of arc = = .

aR
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This last result compared with the former, shews that an increase of the angle of vibration is

attended with a diminution of the arc, and vice versa.

Example. In an ellipse, R = —j- ^—.——-j >'^ ' n (1 — e sm m)8

/?_ = ^^.sin0.cos0.(l -e'=sin'6»)-i,
a

R^ = £i^
. (1 - e' sin= 9) -*

. (cos= 9 + e" sin' 9 - sin^ 9 + ie" sm' 9 . cos= 6),
a

and by substituting these values in (18),

-'Vf{-f[— ©'])
If the ellipse become a circle, R' = ah,

and r=. V^.fl + ^].

If the axis of a cycloid be inclined at 9 to the vertical,

R - 2a cos 0,

i?, = - 2o sin 9,

R^ = —2a cos 9.

L —2a cos 9,

/2a COS. 9 f _A0Vtan^\
-TT V

^
•

(^1 j2 j

o
Increase of angle of ascent = - - . tan 9 . i\9'.

The time of oscillation in a cycloid therefore decreases, as the arc increases, when the axis is not
vertical.

If a central force kf(S), varying according to any law act on a particle in a given curve,
the co-ordinates of the centre of force being a, /3 ; then, taking the arc for the independent variable,

Let ^^ = «, and •M=0(^);

.-. U = k.(f>(x).zi = 0, at the position of equilibrium,

Ui =k.<l}(x).z2,

Us = k.(j)(z) .Xs,

U3 = Sk(f>i (xr) .zl + k(j){z).Zi;

but z = (w-aY+ (y-/3');

• -1 = 2 . (a? - a) .— + 2 . (y - /3) . -p , and if 9 be the angle made by the normal with the axis

c '^^ n ,
dy

of .V, -— = sm9 and —^ = cos :

as ds

.: «, = 2 . (,i' - a . sin + 2 . (y - /3) . cos 9,
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d0
s^a = 2 + 2 .

{
(.T - a) . cos - (y - /3) . sin 0) } .

—
= 2 + 2 .

J
(.r - a) . cos - (y - /3) . sin 0} . R~\

z.,= -2. \{a: -a).sin0+ (y - ,8) . cos
J

. iZ"^ - 2 . {(,t; - a) . cos - (y - /3) . sin 0) .
«-=

. fl,

,

.^, = -2i?-^-2. \{a!-u).cose- (y-/3).sin0| . (R' + R'- . R, - 2R-'Rl)

omitting the terms which vanish ; but since U = 0, (y — /3) . cos 6 + {v — n) . sin = 0,

and therefore {x — a) . cos 9 — (y — fi) . s\n6 = — S.

Hence -=i -_,

Xf3 5 R\

^ S-R S.(.RR,-2R\)

2
~ R^ '^ R^

1 2

Also F=-— = 1, and F, = F^ = ;

as

L =
Rh.i

(20).
-U, kf(S).(S-R)

g [ 16 L3»2 »2 -'J

f As^ri ^/?, i??^.(6i?-5) 3.(^-i?) ., /(5)-]i .

I)

/(^)
If the force vary as the distance, rfj . log \ = 0, and the force does not affect the cor-

rection of the expression for the time.

2R, Si. As
The excess of the time of ascent = -

3 '{S- R)K\/kRf{S)'

SR, A«^

angle

RS-R'' 3
'

rT^^'^'-^-T'
If the force be constant and act in parallel lines, S is infinite, and f(S) constant, and formula

(21) becomes the same as (19)-

(1). To find the time of oscillation of a particle in the centre

of a hollow sphere, the force varying as the ra"" power of the dis-

tance, and the density being = ju . r'".

Let QOR = <p and QCP = 6 ; then the volume of a particle

at Q = r^dr fiinO .dd . d(p, and its force on the particle at P,

where CP = w and QP = p, is

lui .r'^-'dr . sin e . dO . d(p . p"

;

d,E

dp
M . r'"*'dr .sine.de. deb .p'-r +

d.v

Vol.. VIII. 1'art I. N
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= li.f^^dr . sin . d9 .dc^.p"'^. (w - r .cosO) + ... since j)^ = r^ + w^ - 2rxcosd.

Let k = nr"*^ dr. sin 0d9.d^;

.: U = kp—^ix -cosG) + ...

U, = k .(n- I) .p"-^. {,v- r . cos 6)- + Ap""' + ...

= n. r'"+°"^'dr sin0. dO. d<p\(7i - l) .cos-0 + l}, wlien *• = ;

which, being integrated from = to 6 = tt ; from (p = to = Stt, and from r = r, to r = r^,

we have finally

^" 3.(m + w + 2)-^'^^ '^' ''

and r = ^== x/
37r.(m + n+2)

or if Jf be the mass of the hollow sphere;

^ (w + 2) . (m + 3) . 3/. (rr"'"' - r7+'+^)'

If the force varies as the distance, T

If the force varies inversely as the square, T is infinite.

If m + « + 2 = 0, ! = log -
1 .

Wi + w + 2 °
V-i/

r
. 3.(n-l).log-

And if 77! + 3 = 0, T = TT V *"

2

(« + 2). J/.(,-r' -rp')'

(2). To find the correction for the time of oscillation, we have

U, = k .{n - l).{n - 3) . (ri - 5) . p-'-\{x - r . cos 6)' + 6k .(n - \) . {n - S) .
p"' . {.v - r cosBf

+ 3k. {n - l).p"-\

or, making a? = 0, there results for the attracting particle

{r^ = |u . (n - 1) . r'"+"-' dr .sinO-dO. d<p[{n - S) . (w - 5) . cos^ 9 + 6 . {n - 3) . cos^ 9 + s].

drdcp.which, integrated between 6= (0, tt), is 2,u . —^-^ ^-—^ iZ ,."!+»-

5

and again between <^ = (0, 2 tt) and r = (r, , rj) is for the hollow sphere

_ -tM-^M.(w- !).(« + 2)

5.(m + n)
^"^^

' ^'

• T = ^ A./ 3. (m + n + 2). (rr' - r^^^) /, _ 3^^ n.(7i- l). (m + w + 2) ^r" - <'""
I

^ (« + 2).(TO + 3).ilif.(r^"+^-r^+»+=)-\' 80 m + n •^»+»+2_^»+n+2|-

If the sphere be solid and density uniform, and the force inversely as the square of the dis-

ance, T = \/—.

If r equal forces '2.kl.^{^'), be placed in the angles of a regular polygon, the time of oscilla-

on of a particle at the centre will be found to be
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\/- 2A:r . {0((

and as A;r is the whole quantity of attracting matter, the time is the same while kr is, and

therefore if the matter be in the form of a ring, the above is still the time of oscillation.

If the force = k . S\ then (piS") = , and

•\/2

\/-rk.{n+ ]).o"-''l 640^ J'

On Rockins Bodies.

In the position of equilibrium, the centre G of the rocking

body, will be in the same vertical line as the point of support

;

that is, when A is at A^, AG will be vertical.

Let AG =a, AN= y, NP = x,

A,N, = y,, N,P = x„

and PO being a common normal,

let AOP = e, and A.O^P = 0,;

then (p the angle rocked through =0 — 0,;

and if X, Y be the co-ordinates of G, measured from A^,

X = a', — a: . cos <p + (a — y) . sin (p]

V = yi + x . sin <p + (a — y) . cos (p)
' (22),

. dy d.v
also, sm d = —r- , cos 9 = -— , and ds = ds,

;

ds ds

dX dxt dx
. dy

-r— = -r; r~ • cos (b + x .sincb . sin d) + (o - «) .cos d)
d(p d<p d<p ^ ^ d<p T ^ >' T

— cos Q,
ds

+ {a - y') . cos <p
- cos Q . cos (b \- X . sin (p - sin sin (h

d(p "^ d0 ^ ^

= a? . sin ^ + (a — y) . cos 0,

d Y dy, d.v . dy
-rr = -r— + -;— . sm m + x . cos d) . cos d> - (a ~ y) . sm (b
d(p dcp dcp

" ^ d0 ^ ^

• r,
^^ n . ds . ds

= sm y, .
-—- + cos . sin .

-—
- + ,t; . cos - sm . cos rf) . (a ~ v') sin d)d^ ^ d^ ^ ^ d0 ^ "'^ ^

= a? cos (p — (a — y) . sin
;

dX
°^ d^=^-2''

dF (23).

To find X, Y and their differential coefficients with respect to (p ; we have, from (22)

X=0,
Y=a,

N2
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From (23), Xi= Y = a,

r, =0,

y - V ^ _ _^
'^'-^''dcp" d<p'

jr =^ - ^, =^ - a,
d(p d<p

v - V '^'y' _ fffl _ „ _^
^' - -^^ ~

d^i^
'

dcp dcl>'-

'

d^_ _d^r,_d^ ^
' ~ rf^^ ' ~ d^' d<p ^ " '^

d(p'
'

and it will be necessary to express ~ , -p^ , &c. in terras derivable from the separate curves

;

dtp d<p

let R and r be their radii of curvature at P;

ds, . ds

d^s, d^s
let /?, = -77S , r, = -77S ' Sic.
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(R-rf

dcp^ iR::7y
+3«i',- ^^.^^

d(p ^'d(p)
{RKr,-r^RO. (i?,

(R - ry

R'r,-r'R, (R'r,-r'R,Y

(R - r)'
"^

(R - ry
"

If then, a be the angle, the common normal makes with the vertical in the position of equili-

brium ; since «=«,, there results,

dy, Rr
sin a .

d<p R -r
d'y, Rr' . R^r^ - r^'R.

dx, Rr
= cos a

d(p R-r
d'w, . Rr^ R^r, - r<R.

<P~v, Rr' . „ R'r.-r'R, . R'r,-t^R,
TJi = - cos a . -—: - sin a . it r .

——; 2 sin a . r .

d0' (R- ry (R - ry (R - ry

R'r^-r'R, (R^r^-rR^y
+ cos a. —rn TT— + 3 cos a .

(R - ry (R - r)

which values being substituted above, we have finally

Rr
A'l = o , JCi = — sin a .

R^r'

3 '

F, = , Fa = cos a -= a

,

R-r
„ R -2r . R'r^ - r'R,

JL^-cosa. Rr .
—- - a - sin a . —7^ ^
{R - ry (R - r)

R-2r R'r,-r'R,
K. = sin„.i?r.^-^—^ + cos„.-^^—^,

Rr „ „ R-2r . R'r^
r, = a- cos a . y, + Rr- cos a . 77; r-, + sin a .R-r (_R-ry {R-ry'

r'R,-R'r, R'r.,-r'R^ (R'r, - r-R,y
+ 3 r . sin a .

-— —- + cos a .
——- —— + 3 cos a .

^^—-— —i^ .

{R - ry (R - ry {R - ry

Length of pendulum = ^... (24),

cos a . -= aR-r
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and T = TT sj — . (1 + C . Ad)^), where C is to be determined by the substitution of X., F, &c.

g
in (16).

If the pendulum be suspended by a point, r and its differential coefficients vanish, and

^1 = - ^3 = - Kj = Fi = a, and .-. C = 1

,

It)

L = a -{ , measuring a downwards, and
a

-'V^f(-¥)-g

Tf -o r
' RrKjR-^r) R'r.,-r'R,

'

10 l6(R-rY.{Rr-{R-r).a} l6 (R - rf . {Rr - {R - r) . a\
'"^ "

16 (R - ry .{Rr-(R-r).a\4,iR- rf . {k' + a«)
"^

48 "
(ff - r)' . {/?r - (fl - r) . ap

'

If iU and r be constant, or the curves be circles,

R^r . (r - a cos a) 1 cos a. (Sr'R- I'R') a' sin^ a R- r*

^ " 4,{R- rf . (fc" + a^)
"''

Te
"*" l6(R-ry. \Rr cos a - (R - r) .a\ ~ i(R- rf . (k- + a')'

a sin= a . R'r" . (R - 2r) 5 sin^ a . {R^r - 2 r-Rf

4 (fl- r)^ |i?r COS a- (i? - r).ffl
I

. (&> + a') 48 *
(ft - r)* . {cosa..Rr- (i? -r).a}

If R and r be constant, and also a = ;

16 4(i^-r)^ (ft^ + ffl^) l6(fl-rf . JSr- (iZ-r).o} *•
'''

Ex. One sphere within another,

L = -.iR-r)
5

'-^^('-^^•l6(i^)
Ex. If an ellipse whose semiaxis a is horizontal rock within another ellipse whose semiaxis

«, is also horizontal,

{k' + b').(alb-a'b{)
L =

a''a\ — alb' + a'bb

an' a' 3a'e^

(b' + a'e' sm' 0)1 b o'

a^a\ e'
J_

a'a'^bb,. (a', - a')

4 (a^6 - a'fti)" . (fc' + 6') ' 16 " l6(a?6 - 0=6,)^ . (b'al - a°bb^ - a'al)

3a*a* a*elb^ - a\e'b
+

16 (0^6 - 0^6,)' • K/*' - a'bb, - a'a\)

Ifjthe bowl becomes a plane,

_ (fc' + 6') . 6
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r„^/:J.{,..,..(,-«-^.±.l.-)}.
If a body be suspended by an axis whose radius is r on a circular support, whose radius is R ;

and ffl, be the distance of the centre of gravity below the point of support,

k' + a^^=
Tr

'

cos a T=, -(- a
R - r

and, if the pendulum be suspended on another axis, the radius of which is r, , and be isochro-

nous with respect to these axes

;

L =
Rr, Rr

cos a -rr cos a . 1- o, - aR - Ti R - r

a' - a?
and if the axes are equal, L = — = o, + a ,

«! — a

1 13 r . Rr cos a
and k' = (a + a,) .

— + aa^,
R — T

and therefore if Kater's pendulum be supported on a concave or convex surface, the length is

independent of the curvature of the surface.

Rr
1{ A = —

, and it rests on the first axis,
R ~ T

^" " ^ ^- r ^ ^ lie ^ 4rZ. (./ + a)
-^ —l6?-(A+V)-^ir

which is not independent of a, unless R is infinite, and therefore A = r, in which case.

On Sliding Bodies.

When a body oscillates by sliding contact on a horizontal plane, X and its differential

coefficients vanish, and by (15),

The equation (2) becomes Y = w sin Q + {a - y) . cos 9, since 0, = 0, and y, = 0, and .-. (p = B ;

= x . cos 9 — {a — y) . smd +

= <v . cos 9 — (a - y) . sin 9,

(if di/
.-. Y^ = x . cos9 — (a -

2/) . sin + sin . —^ - cos 9 .—

^

cl9 du

dsc (111

Y.^= - ajsin9 - (a - y) . cos 9 + cos .
—

-r + sin .
—- ,

d9 d9
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••• F3=-r, +r„

F, = - F, + r,

;

and taking the limits, V=a,

r, =0,

Fj = »• - a,

F, = a - r + j-2,

^ g- \ V 4A;- 16 l6.(r-a) 48 (r-a)VJ

Etjoample. An ellipse with its axis major horizontal.

Here r =

1,=

= r„ + '>\.e + r^.- + .

A«6

and T = — . V -• '{l + ^^ —rvr; + rrj— ? •

ae ^ ^ I V4A:-6- Ihb" I]

The same principles may also be applied, with great facility, to the oscillations of floating bodies.

H. HOLDITCH.



IX. On some Cases of Fluid Motion. By G. G. Stokes, B.A , Fellow of

Pembroke College.

[Read May 29, 1843.]

Thk equations of Hydrostatics are founded on the principles that the mutual action of two adja-

cent elements of a fluid is normal to the surface which separates them, and that the pressure is equal

in all directions. The latter of these is a necessary consequence of the former, as has been shewn

by Mr. Airy*. An exactly similar proof may be employed in Hydrodynamics, by which it may
be shewn that, if the mutual action of two adjacent elements of a fluid in motion is normal to their

common surface, the pressure must be equal in all directions, in order that the accelerating force

which acts on the centre of gravity of an element may not become infinite, when we suppose the

dimensions of the element indefinitely diminished. In Hydrostatics, the accurate agreement of the

results of our calculations with experiments, (those phenomena which depend on capillary attraction

beinrr excepted), fully justifies our fundamental assumption. The same assumption is made in

Hydrodynamics, and from it are deduced the fundamental equations of fluid motion. But the

verification of our fundamental law in the case of a fluid at rest, does not at all prove it to be

true in the case of a fluid in motion, except in the very limited case of a fluid moving as if it were

solid. Thus, oil is sufficiently fluid to obey the laws of fluid equilibrium, (at least to a great extent),

yet no one would suppose that oil in motion ought to be considered a perfect fluid. It would

appear from the following consideration, that the fluidity of water and other such fluids is not

quite perfect. When a mass of water contained in a vessel of the form of a solid of revolution is

stirred round, and then left to itself, it presently comes to rest. This, no doubt, is owing to the

friction against the sides of the vessel. But if the fluidity of water were perfect, it does not

appear how the retardation due to this friction could be transmitted through the mass. It would

appear that in that case a thin film of fluid close to the sides of the vessel would remain at rest, the

remaining part of the fluid being unaffected by it. And in this respect, that part of Poisson's

solution of tile problem of an oscillating sphere, which relates to friction, appears to me in some
degree unsatisfactory. A term enters into the equation of motion of the sphere depending on the

friction of the fluid on the sphere, while no such term enters into the equations of motion of the

fluid, to express the equal and opposite friction of the sphere on the fluid. In fact, as long as we
regard the fluidity of the fluid as perfect, no such term can enter. The only way by which to

e.stiniate the extent to which the imperfect fluidity of fluids may modify the laws of their motion,

without making any hypothesis as to the molecular constitution of fluids, appears to be, to calculate

according to the hypothesis of perfect fluidity some cases of fluid motion, which are of such a

nature as to be capable of being accurately compared with experiment. The cases of that nature

which have hitherto been calculated, are by no means numerous. My object in the present paper

which I have the honour to lay before the Society, has been partly to calculate some such cases

which may be useful in determining how far we are justified in regarding fluids as perfectly fluid,

and partly to give examples of the methods by which the solution of problems depending on partial

differential equations may be eftected.

In the first seven articles, I have mentioned and explained some general principles, which are

afterwards a])plied. Some of these are not new, but it was convenient to state them for the sake

of reference. Others are I believe new, at least in their develo))ement. In the remaining articles, I

have given different problems, of which I have succeeded in obtaining the solutions. As the pro-

• .See also ProfeMsor MtUcr's Hydrostatics, page 2.

Vol. VIII. I'.uir I. O
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blem to be solved is usually stated at the head of each article, I shall here only mention some

of the results. As a particular case of the problem given in Art. 8, I find that, when a cylinder

oscillates in an infinitely extended fluid, the effect of the inertia of the fluid is to increase the mass of

the cylinder by that of the fluid displaced. In part of Art. 9, I find that when a ball pendulum

oscillates in a concentric spherical envelope, the effect of the inertia of the fluid is to increase the

¥ + Za'
mass of the ball bv times that of the fluid displaced, a beina; the radius of the ball, and

•' 2(1/- a-')

6 that of the envelope. Poisson, in his solution of the problem of the sphere, arrives at the strange

result that the envelope does not at all retard the oscillating sphere. I have pointed out the errone-

ous step by wliich he was led to this conclusion, which I am clearly called upon to do, in venturing

to differ from so high an authority. Of the different cases of fluid motion which I have given, that

which appears to be capable of the most accurate and varied comparison with experiment, is the

motion of fluid in a rectangular box which is closed on all sides, given in Art. 13. The experiment

consists in comparing the calculated and observed times of oscillation. I find that when the motion

is small, the effect of the fluid on the motion of the box is the same as that of a solid having the

same mass, centre of gravit}', and principal axes, but having different moments of inertia, these

moments being given by infinite series, whicli converge with great rapidity. I have also in Art. II,

given some cases of progressive motion, deduced on the supposition that tlie same particles of fluid

remain in contact with the solid, which do not at all agree with experiment.

In almost all the cases given in this paper, the problem of finding the permanent state of tem-

perature in the several solids considered, supposing the surfaces of those solids kept up to constant

temperatures varying from point to point, may be solved by a similar analysis. I find that some of

these cases have been already solved by M. Duhamel in a paper inserted in the 2'2nd Cahier of the

Journal de rEcole Polyfechnique. The cases alluded to are those of the temperature in a solid

sphere, and in a rectangular parallelopiped. Since, however, the application of the formulae in the

two cases of fluid motion and of the permanent state of temperature is different, as well as the

formulae themselves to a certain extent, I thought it might be worth while to give them.

1. The investigations in this paper apply directly to incompressible fluids, as the fluids spoken

of will be supposed to be, unless the contrary is stated. The motions of elastic fluids may in most

cases be divided into two classes, one consisting of those condensations on which sound depends, the

other, of those motions which the fluid takes in consequence of the motion of solid bodies in it.

Those motions of the fluid, which take place in consequence of very rapid motions of solids, (such

as those of bullets), form a connecting link between these two classes. The motions of the second

class are, it is true, accompanied by condensations, and propagated with the velocity of sound, but

if the motions of the solids are not great we may, witliout sensible error, suppose the motions of

the fluid propagated instantaneously to distances where they cease to be sensible, and may neglect the

condensation. The investigations in this paper will apply without sensible error to this kind of

motion of elastic fluids.

In all cases also the motion will be supposed to begin fioin rest, whicii allows us to suppose that

udx + vdy + wdz is an exact differential d(p, where u, v and w are the components, parallel to the

axes of X, y, and ss, of the whole velocity of any particle. In applying our investigations however

to fluids such as they exist in nature, this principle must not be strained too far. When a body is

made to revolve continually in a fluid, the parts of the fluid near the body will soon acquire a rota-

tory motion, in consequence, in all probability, of the mutual friction of the parts of the fluid ; so

that after a time udx + vdy + wdx could no longer be taken an exact differential. It is true that

in motion in two dimensions there is one sort of rotatory motion for which that quantity is an exact

differential; but if a close vessel, filled with fluid at first at rest, be made to revolve uniformly round

a fixed axis, the fluid will soon do so too, and therefore liiat quantity will cease to be an exact dif-
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ferential. For the same reason, in the progressive motion of a solid in a fluid, the effect of friction

continually accumulating, the motion might at last be sensibly different from what it would be if

there were no friction, and that, even if the friction were very small. In the case of small oscillatory

motions however it would appear that the effect of friction in the forward oscillation, supposing that

friction small, would be counteracted by its effect in the backward oscillation, at least if the two

were symmetrical. In this case then we might expect our results to agree very nearly with experi-

ment, so far at least as the time of oscillation is concerned.

The forces which act on the fluid are supposed in the following investigations to be such that

Xdx + Ydy + Zdz is the exact differential of a function of x, y and z, where X, Y, Z, are the

components, parallel to the axes, of the accelerating force acting on the particle whose co-ordinates

are x, y, z. The only effect of such forces, in the case of a homogeneous, incompressible fluid, being

to add the quantity p j(Xdx + Ydy + Zdz) to the pressure, the forces, as well as the pressure due

to them, will for the future be omitted for the sake of simplicity.

2. It is a recognised principle, and one of great importance in these investigations, that when

a problem is determinate any solution which satisfies all the requisite conditions, no matter how ob-

tained, is the solution of the problem. In the case of fluid motion, when the initial circumstances

and the conditions with respect to the boundaries of the fluid are given, the problem is determinate.

If it were required to find what sort of steady motion could take place between given surfaces, the

problem would not be determinate, since different kinds of steady motion might result from different

initial circumstances.

It may be well here to enumerate the conditions which must be satisfied in the case of a homoge-

neous incompressible fluid without a free surface, the case which is considered in this paper. We
have first the equations,

] dp 1 dp 1 dp--— =--Zir - —- = - nr-,, -—
p aw p dy p dz

du du du du
putting 73-, for —

—

h u
-J-

+ f ——^^;r~^ 3"" "^it "^31 for the corresponding quantities for yat ax ay a z

and z, and omitting the forces.

We have also the equation of continuity,

du dv dw
ax ay dz

(J) and (jB) hold at all times for all points of the fluid mass.

If <r be the velocity of the point (.r, y, z) of the surface of a solid in contact with the fluid

resolved along the normal, and v the velocity, resolved along the same normal, of the fluid particle,

which at the time t is in contact with the above point of the solid, we must have

V = (J (.a)*-,

at all times and for all points of the fluid which are in contact with a solid.

If tlie fluid extend to infinity, and the motion at first be zero at an infinite distance, we must
have

u = 0, V = 0, w = 0, at an infinite distance (6).

An analagous condition is, that the motion shall not become infinitely great about a particular

point, as the origin.

• for greater cIcarnesB, those equationii whicll mu«t hold for all values of the variables, or of some of them, are denoted by small
value» of the variables within limits depcndinK on the problem letters. The latter class serve to deleriiiine the forms of the arbi-
•re denoted by capitals, while those which hold only for certain ' trary functions contained in the integrals of the former.

02

'l) r-=-'Z3'a, - — = - STi, (A);
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Lastly, if Mo, v^, w„, be the initial velocities, subject of course to satisfy equations (S) and

(a), we niust have

u = u^, V = v^, w = w^, when t = (c).

In the most general case the equations which u, v and tv are to satisfy at every point of the

mass and at every time are (S) and the three equations

dTH", dSTs d-STi dSTj rfTZTa d-ZJT,

dy da; dss dy ' dx dz

These equations being satisfied, the quantity TtT^dx + -sr-idy + sr^dx will be an exact differen-

tial, whence p may be determined by integrating the value of dp given by equations (.4). Thus

the condition that these latter equations shall be satisfied is equivalent to the condition that the

equations (C) shall be satisfied.

In nearly all the cases considered in this paper, and in all those of which the complete solution

is given, the motion is such that tidx + vdy + wdx is an exact differential d(p. This being the

case, the equations (C) are, as it is well known, always satisfied, the value of p being given by the

equation

'r'^^'^-t-mp(i)*m] <°'-

v// (t) being an arbitrary function of t, which may if we please be included in <^. In this case,

therefore, the single condition which has to be satisfied at all times, and at every point of the mass

is (fi), which becomes in this case

d'd) d'(b d'(b

:r^ + J-T+ T^ = o (-E)-
ax- ay rftr

In the case of impulsive motion, if u^, v^, iv„, be the velocities just before impact, «, v, w,

the velocities just after, and q the impulsive pressure, the equations (A) are replaced by the equations

1 do 1 dq I do ,„^- 3— = - !' + "„5 --:-=-'• + "„, — = - tv + tir (F) i

p dw p dy P dx:

and in order that these equations may be satisfied it is necessary and sufficient that (u-u„)dx
+ (« - v^)dy + (w - iVg)dz be an exact differential dcp, which gives

q = C -
p<l).

The only equation which must be satisfied at every point of the mass is (5), which is equivalent to

(E), since by hypothesis iif,, «)„, and w^ satisfy (B). The conditions (a) and (6) remain the

same as before.

One observation however is necessary here. The values of v, v and iv are always sujjposed to

alter continuously from one point in the interior of a fluid mass to another. At the extreme boun-
daries of the fluid they may however alter abruptly. Suppose now values of tt, v and iv to have
been assigned, which do not alter abruptly, which satisfy equations {B) and (C) as well as the con-

ditions (a), (6) and (c), or, to take a particular case, values which do not alter abruptly, which
satisfy the equation (B) and the same conditions, and which render jidx + vdy + wd.c an exact

differential. Then the values of -— , -— and —- will alter continuously from one point to another,
ax dy ds:

' '^

but it does not follow that the value of p itself cannot alter abruptly. Similarly in impulsive

motion the value of q may alter abruptly, although those of —i- , — and — alter continuously.
dx dy dz

Such abrupt alterations are, however, inadmissible ; whence it follows as an additional condition to

be satisfied,

that the value of p or q, obtained by integrating equations {A) or {F), shall
")

not alter abruptly from one point of the fluid to another. j
^ ''
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An example will make this clearer. Suppose a mass of fluid to be at rest in a finite cylinder,

whose axis coincides witli that of r, the cylinder being entirely filled, and closed at both ends. Sup-

pose the cylinder to be moved by impact with an initial velocity C in the direction of .r ; then shall

u = C, t) = 0, w = 0.

For these values render tidx + vdy + wd« an exact differential d(p, where <p satisfies {E)\ they also

satisfy (o) ; and, lastly, the value of q obtained by integrating equations (F), namely, C' - Cp-v,

does not alter abruptly. But if we had supposed that (p were equal to Cx + C^6, where — tan"' —

,

the equation (E) and the condition (a) would still be satisfied, but the value of q would be

C" - p{C.v + C 9), in which the term pC'9 alters abruptly from ZirpC to 0, as 6 passes through

the value 2 7r. The condition (rf) then alone shews that the former and not the latter is the true

solution of the problem.

The fact that the analytical conditions of a problem in fluid motion, as far as those conditions

depend on the velocities, may be satisfied by values of those velocities, which notwithstanding corre-

spond to a pressure wliich alters abruptly, may be thus explained. Conceive two masses of the same

fluid contained in two similar and equal close vessels A and B. For more simplicity, suppose these

vessels and the fluid in them to be at first at rest. Conceive the fluid in B to be divided by an

infinitely thin lamina which is capable of assuming any form, and, at the same time, of sustaining

pressure. Suppose the vessels A and B to be moved in exactly the same manner, the lamina in

B being also moved in any arbitrary manner. It is clear that, except for one particular motion of

the lamina, the motion of the fluid in B will be different from that of the fluid in A. The velocities

u, V, w, will in general be different on opposite sides of the lamina in B. For particular motions of

the lamina however the velocities u, v, w, may be the same on opposite sides of it, while the

pressures are different. The motion which takes place in B in this case might, only for the con-

dition ((/), be supposed to take place in A.

It is true that equations (A) or (F), could not strictly speaking be said to hold good at those

surfaces where such a discontinuity should exsist. Still, to avoid the liability to error, it is well to

state the condition (rf) distinctly.

When the motion begins from rest, not only must ud<v + vdy + wdz be an exact differential dcp,

and n, v, « , not alter abruptly, but also (p must not alter abruptly, provided the particles in

contact with the several surfaces remain in contact with those surfaces; for if this condition be not

fulfilled, the surface for which it is not fulfilled will as it were cut the fluid into two. For it follows

from the equation (D) that —- must not alter abruptly, since otherwise p would alter abruptly

from one point of the fluid to another; and —^ neither altering abruptly nor becoming infinite, it

follows tiiat cj) will not alter abruptly. Should an impact occur at any period of the motion, it

follows from equations (F) that that cannot cause the value of (p to alter abruptly, since such an

abrupt alteration would give a corresponding abrupt alteration in the value off/.

3. A result which follows at once from the principle laid down in the beginning of tlie last article

is this, that when the motion of a fluid in a close vessel which is at rest, and is completely filled, is

of such a kind that wrf.B + vdy + wdz is an exact differential, it will be steady. For let u, v, iv, be

tiie initial velocities, and let us see if the velocity at tlie same point can remain u, v, w. First,

ndx + rdy+ wdz being an exact differential, equations {A) will be satisfied by a suitable value of />,

which value is given by e(iuation (Z>). Also ecpiatiDU {B) is .satisfied since it is so at first. Tiic

condition («) becomes i- = 0, which is also satisfied since it is satisfied at first. Also the value of p

Riven by e(iuation {]>) will not alter abruptly, for ~ = 0, or a function of ^ and the velocities -- &c.,
dt die



110 Mr. stokes, OiN SOME CASES OF FLUID MOTION.

are siipposeil not to alter abruptly. Hence, all the requisite conditions are satisfied ; and lience,

(Art. 2) the hypothesis of steady motion is correct.

4. In the case of an incompressible fluid, either of infinite extent, or confined, or interrupted in

any manner by any solid bodies, if the motion begin from rest, and if there be none of the cutting

motion mentioned in Art. 2, the motion at the time t will be the same as if it were produced instan-

taneously by the impulsive motion of the several surfaces which bound the fluid, including among

these surfaces those of any solids which may be immersed in it. For let ?<, ii, w, be the velocities at

tlie time ^ Then by a known theorem udw -v vdy -v wda will be an exact differential d<^, and

d) will not alter abruptly (Art. 2). must also satisfy the equation (£), and the conditions

(ff) and (/(). Now if ?/', v' , w , be the velocities on the supposition of an impact, these quantities

must be determined by precisely the same conditions as u^ ii and iv. But the problem of finding

?«', v and w , being evidently determinate, it follows that the identical problem of finding m, x>

and 10 is also determinate, and therefore the two problems have the same solution ; so that

u = u' , V = v , w = w .

This principle has been mentioned by M. Cauchy, in a memoir entitled Menioire sur la Theorie

des Ondes, in the first volume of the memoirs presented to the French Institute, page 14. It

will be employed in this paper to simplify the requisite calculations by enabling us to dispense

u'ith all consideration of the jtrevious motion, in finding the motion of the fluid at any time

in terms of that of the bounding surfaces. One simjjlc deduction from it is that, when all the

bounding surfaces come to rest, each element of tiie fluid will come to rest. Another is, that if the

velocities of the bounding surfaces are altered in any ratio the value of (p will be altered in the same

ratio.

5. Superposition of different motions.

In calculating the inital motion of a fluid, corresponding to given initial motions of the bounding

surfaces, we may resolve the latter into any number of systems of motions, which when compounded
give to each point of each bounding surface a velocity, whicli when resolved along the normal is

equal to the given velocity resolved along the same normal, provided that, if the fluid be enclosed

on all sides, each system be sucli as not to alter its volume. For let ?t', )'', ?<>', v , a', be the values

of «, )•, &c., corresponding to the first system of motions ; u", v", &c., the values of those quantities

corresponding to the second system, and so on ; so that

n = u + u" + ... , V = v' + v" r ..., w = w' + w" + ..., v = v' + r" + ..., <x = <t' + a" + . . . .

Then since we have by hypothesis u'dw + v'dy + w'dz an exact differential d(p', u'dx + xi'dy

+ w"d!s an exact differential dcp", and so on, it follows that udx + vdy + wdz is an exact dif-

ferential. Again by hypothesis n' = u' , v"= a", &c., whence v = a. Also, if the fluid extend to an

infinite distance, u, v, and w must there vanish, since that is the case with each of the systems

u , v', iv', &c. Lastly, the quantities d>', d>'\ &c., not altering abruptly, it follows that <p, which

is equal to cp' + (p"+ ..., will not alter abruptly. Hence the compounded motion will satisfy all

the requisite conditions, and therefore, (Art. 2) it is the actual motion.

It will be observed that the pressure p will not be obtained by adding together the pressures

due to each of the above systems of velocities. To find p we must substitute the complete value of

<b in equation {D). If, liowever, the motion be very small, so that the square of the velocity is

neglected, it will be sufficient to add together the several pressures just mentioned.

In general the most convenient systems into which to decompose the motion of the bounding

surfaces are those formed by considering the motion of each surface, or of a certain portion of each

surface, separately. Such a portion may be either finite or infinitesimal. In fact, in some of the

cases of motion that will be presently given, where (h is expressed by a double integral with a

function under the integral sign expressing the motion of the bounding surfaces, it will be found

that each element of the integral gives a value of (h such that, except about the corresponding

I
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element of the bounding surface, the motion of all particles in contact with those surfaces is

tangential.

A result which follows at once from this principle, and which appears to admit of comparison

with experiment, is the following. Conceive an ellipsoid, or any body which is symmetrical with

respect to three planes at right angles to each other, to be made to oscillate in a fluid in the

direction of each of its three axes in succession, the oscillations being very small. Then, in each

case, as may be shown by the same sort of reasoning as that employed in Art. 8, in the case

of a cylinder, the effect of the inertia of the fluid will be to increase the mass of the solid by
a mass having a certain unknown ratio to that of the fluid displaced. Let the axes of co-ordinates

be parallel to the axes of the solid ; let <r, y, n, be the co-ordinates of the centre of the solid,

and let M, M\ M" , be the imaginary masses which we must suppose added to that of the solid

when it oscillates in the direction of the axes of ,r, y, z, respectively. Let it now be made to oscillate

in the direction of a line making angles «, /3, y, with the axes, and let s be measured along

this line. Then the motions of the fluid due to the motions of the solid in the direction of the

three axes will be superimposed. The motion being supposed to be small, the resultant of the

pressures of the fluid on the solid will be three forces, equal to M cos a , M' cos & —-,
Qi o ft c

M"cosy--~^, respectively, in the directions of the three axes. The resultant of these in the

d's
direction of the motion will be M where

' dt-

jl/ = M cos V -I-
31' cos ^/3 + M" cos -7.

Each of the quantities M, M', M' and J/, may be determined by observation, and we may
And whether the above relation holds between them. Other relations of the same nature may be

deduced from the principle explained in this article.

6. Reflection.

Conceive two solids, A and B, immersed in a fluid of infinite extent, the whole being at rest.

Suppose A to be moved in any manner by impulsive forces, while B is held at rest. Suppose
the solids A and B of such forms that, if either were removed, and the several points of the

surface of the other moved instantaneously in any given manner, the motion of the fluid could

be determined : then the actual motion can be approximated to in the following manner. Conceive

the place of B to be occupied by fluid, and A to receive its given motion ; then bv hypothesis

the initial motion of the fluid can be determined. Let the velocity with which the fluid in

contact with that which is su])posed to occupy B's place penetrates into the latter be found,

and then suppose that the several points of the surface of B are moved with normal velocities

equal and opposite to those just found, jl's place being supposed to be occupied by fluid. The
motion of the fluid corresponding to the velocities of the several points of the surface of B can

then be found, and A must now be treated as B has been, and so on. The system of velocities

of the particles of the fluid corresponding to the first system of velocities of the particles of the

surface of B, form what may be called the motion of A rejtected from B; the motion of the

fluid arising from the second system of velocities of the particles of the surface of A may be

called the motion of A rejlecfed from B mid again from A, and so on. It must be remembered
that all these motions take place simultaneously. It is evident that these reflected motions will

rapidly decrease, at least if the distance between A and B is considerable compared with their

diameters, or rather with the diameter of cither. In this case the calculation of one or two
reflections will give the motion of the fluid due to that of A with great accuracy. It is evident

that the princi|)le of reflection will extend to any number of solid bodies inuncrsed in a fluid

;

or again, the body B may be supposed to be hollow, and to contain the fluid and A, or else

A to contain B. In some cases the series arising from the successive reflections can be sununed.
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in which case the motion will be determined exactly. The principle explained in this article has

been employed in other subjects, and appears likely to be of great use in this. It is the same for

instance as that of successive inflitences in Electricity.

7. If a mass of fluid be at rest or in motion in a close vessel which it entirely fills, the

vessel beinc either at rest or moving in any manner, any additional motion of translation com-

municated to the vessel will not affect the relative motion of the fluid. For it is evident that

on the supposition that the relative motion is not afi^ected the equation (2?) and the condition

(o) will still be satisfied. Also, if fjrj, sr^, ztsj be the components of the effective force of any

particle in the first case, and U, V, W, be the components of the velocity of translation, then

(lU dV dW

will be the components of the effective force of the same particle in the second case. Now since

by hypothesis nr^dx + -urjl;/ + -nrsdz is an exact differential, as follows from equations (C), and

U, V, W, are functions of t only, it follows at once that

is an exact differential, where ,v, y, ;r, are the co-ordinates of any particle referred to the old axes,

which are themselves moving in space with velocities U, F, W. But if .t, , j/, , i-,, be the co-

ordinates of the same particle referred to parallel axes fixed in space, we have

X, = 3) + jUdt, y, = y + fVdt, sr, = ^ + fWdt,

wiicnce, supposing the time constant, dx — dx-^, dy = dy,, dg = dz^, and therefore

^, + — j d.., + (^, + -) dy, + (^^3 + ^^- j d.,

is an exact differential. Hence, equations (A) can be satisfied by a suitable value of p. Denoting

by
J)

the pressure about the particle whose co-ordinates are x, y, x, in the first case, the pressure

about the same particle in the second case will be

IdU dV dW \

none of the terms of which will alter abruptly, since by hypothesis p docs not.

Since then the present hypothesis satisfies all the requisite conditions, it follows from Art. 2

that that hypothesis is correct. If F be the additional effective force of any particle of the vessel

in consequence of the motion of translation, and we take new axes of x', y\ z' , of which the first

is in the direction of F, the additional term introduced into the value of the pressure will be

- pFx, omitting the arbitrary function of thr time. The resultant of the additional pressures on

the sides of the vessel will be equal to F multiplied by the mass of the fluid, and will pass

through the centre of gravity of the fluid, and act in the direction of — x'.

8. Motion between two cylindrical surfaces having a common axis.

Let us conceive a mass of fluid at rest, bounded by two cylindrical surfaces having a com-

mon axis, these surfaces being either infinite or bounded by two planes perpendicular to their

axis. Let us suppose the several generating lines of these cylindrical surfaces to be moved
parallel to themselves in any given manner consistent with the condition that the volume of the

fluid be not altered : it is required to determine the initial motion at any point of the mass.

Since the motion will take place in two dimensions, let the fluid be referred to polar

co-ordinates r, 6, in a plane perpendicular to the axis, r being measured from the axis. Let

a be the radius of the inner surface, i that of the outer, f{9) the normal velocity of any

point of the inner surface, F (9) ll>e corresponding quantity for the outer.
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Since for any particular radius vector between a and h the value of 9 is a periodic function

of Q which does not become infinite, (for the motion at each point of each bounding surface is

supposed to be finite), and which does not alter abruptly, it may be expanded in a converging
series of sines and cosines of Q and its multiples. Let then

= P„ + Sr(P„cosw0+ Q„sinra0) (1).

Substituting the above value in the equation

— r-^ + —i = (2).
dr \ drj de- * '''

d I dP„\
,_(^,__)_,-p„ = 0,

which (j) is to satisfy, and equating to zero the coefficients of corresponding sines and cosines,

which is allowable, since a given function can be expanded in only one series of the form (l),

we find that P„ must satisfy the equation

d ( dPA

of which the general integral is

Po = ^Jogr + B,

the base being e, and P„ and Q„ must both satisfy the same equation, viz.

of which the general integral is

P„ = Ci--" + C'r".

We have then, omitting the arbitrary constant in cp, as will be done for the future, since we
have occasion to use only the differential coefficients of <b,

(p = JJogr + 2r{(^„»-"" + A'y) cosnO + (fi„)-" + B'„r") sinnfi] (.•3)

with the conditions

— =/(&) whenr = a (4),

-j^ = F(e) when r = 6 (5).

Let / (d) = Co + 2"(C„ cos 7ie + D„ sin nO),

F(fi) = C. + 2r(C'„cosn0 + Z)'„sinw0) ;

so that C. = ^ ffiO') dd\ C„ = - r'fiff) cos nO'dff, D„ = - ['"/(O) sin n&dO',

with similar expressions for C,,, &c. Then the condition (4) gives

— + Sr«{(-A«-*"'"' +-<'„<«"-') COSW0 + (-£„«-'"+'> +

= C„ + Sr(C„ COS nd + D„ sin nB) ;

whence.

An = nC'o,

A«-'""''-A«"-' = --c„,

B„a''-<'>-B\a"-' = --D„
n

Vol.. VIII. 1'akt I.
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Similarly, from the condition (5), we get

Ao = bC'„,

J„6-<" + '>-^'„6"-' = --C'„,
w

R j-(-+i)_ B'„b-'= --D'„.
n

It will be observed that aCo = bC'„, by the condition that the volume of fluid remain unchanged,

whicli gives

ai'y(e')de' = bi"F(e')de'.

From the above equations we easily get

nd, changing the sign of n,

nib-" -a") ' '

X= ,r! .^A b''^'C\-a''*^C„\,
n (b" - a-')

with similar expressions for S„ and B',„ involving D in place of C.

We have then

^ = aC„ logr + X-ib'" - «-')"'
J[(6-"+' C'„ - a""*' C„) cosnf)

+ (6-" + 'X>'„-a-" + 'A,) sinw0]a°-"i-"r-"

+ [(6"+' C'„-a"+'C„) cos ?i0 + (6"+' i)'„- «"*'/)„) sin«0])-'} (6),

which completely determines the motion.

It will be necessary however, (Art. 2), to shew that this value of (p does not alter abruptly

for points within the fluid, as may be easily done. For the quantities C„, D„ cannot be greater

than — / ±f(6)d6, where each element of the integral is taken positively; and since by

liypothesis f{d) is finite for all values of from to Stt, it follows that neither C„ nor D„ can

be numerically greater than a constant quantity which is independent of w. The same will be

true of C'„ and Z>'„. Remembering then that r > a and < b, it can be easily shewn that the

series which occur in (6) have their terms numerically less than those of eight geometric series

respectively whose ratios are less than unity ; and since moreover the terms of tlie former set

of series do not alter abruptly, it follows that tp cannot alter abruptly. The same may be

proved in a similar manner of the differential coeflicients of <p. The other infinite series ex-

pressing the value of (p which occur in this paper may be treated in the same way : and in

Art. 10, where (b is expressed by a definite integral, the value of (p and its differential coefficients

will alter continuously, since that is the case with each element of the integral. It will be

unnecessary therefore to refer again to the condition (rf).

If the fluid be infinitely extended, we must suppose C'„ and D'„ to vanish in (6), since the

velocity vanishes at an infinite distance; we must then make b infinite, which reduces the above

equation to

a"*'
<p = a Co log r - 2"—- \C„cosn6 + D„ %mnd\ ()•

This value of <p may be put under the form of a definite integral: for, replacing Co, C„ and

Z)„ bv their values, it becomes
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~ logrf"f{ff)dff - -Sr - (-)" Tne') COS 71 (9 - &)dff.

which becomes on summing the series

^ \ogr ry{9')d9' + - r''log (i - 2 - cos (9 - &) + ^lVcev^*'

;

•iTT •'0 TT -"o (
r r

j

dd> a fi" (I ar cos (9 - 9') - a- 1

whence —£- = — / {- + — ^^ '—,
> f(9)d9

dr -KrJ, X-i
1^- Marcos 1,9-9) + d^y^'

If we suppose r to become equal to a the quantity under the integral sign vanislies, except
for values of 9', which are indefinitely near to 9. The value of the integral itself becomes /(0)*.
Hence it appears, that to the disturbance of each element of the surface, there corresponds
a normal velocity of the particles in contact with the surface, which is zero, except just about
the disturbed clement. The whole disturbance of the fluid will be the aggregate of the dis-

turbances due to those of the several elements of the surface. The case of the initial motion
of fluid within a cylinder, and the analogous cases of motion within and without a sphere, which
will be given in the next article, may be treated in the same manner.

The velocity in the direction of r given by equation (7), (
= —^| ,

= 1-2,, - \C„cosnd + D„h\nn9\,
r \r J

and that perpendicular to r, and reckoned positive in the same direction as 9, (
= — ~] ,

\ rd9j

= ^' i-X {C„s\nn9 - D„cosn9\.
\r I

Conceive a mass of fluid comprised between two infinite parallel planes, and suppose that

a certain portion of this fluid contains solid bodies bounded by cylindrical surfaces perpendicular

to these ])lanes. The whole being at first at rest, suppose that the surfaces of these solids are

moved in any manner, the motion being in two dimensions. Conceive a circular cylindrical

surface described perpendicular to the parallel planes, and with a radius so large that all the

solids are comprised within it. Then, (Art. 4.), we may suppose the motion of the fluid at any
time to liave been produced directly by impact. On this supposition the initial motion of the

part of the fluid without the above cylindrical surface will be determined in terms of the normal
motion of the fluid forming tliat surface, as has just been done. If C„ be different from zero.

aC
then, at a great distance in the fluid, the velocity will be ultimately —"-

, and directed to or from
)•

the axis of the cylinder, and alike in all directions. Since the rate of increase of volume of a

length / of the cylinder is equal to lajjf{9')d9' = ZirlaCa, it appears that the velocity at

a great distance is proportional to the expansion or contraction of a unit of length of the solids.

If however there should be no expansion or contraction, or if the expansion of some of the solids

should make uj) for the contraction of the rest, then in general the most important part of the

C' cos 6
motion at a great distance will consist of a velocity z

'- directed to or from the centre, and

C'sin^i
another — , — perpendicular to the radius vector, the value of C and the direction from wiiicli

9, is measured varying from one instant to another. The resultant of these velocities will vary

inversely as the square of the distance.

• PoiftSon, T/itorie dc la Chaleur, Chnp. vii.

P 2
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Resuming the value of (p given by equation (6), let us suppose that the interior cylindrical

surface is riirid, and moved with a velocity C in the direction from which is measured, the

outer surface being at rest: then f{6) = Ccos9, F(6)=0; whence C, = C, and the other co-

efficients are each zero. We have then

1'=-^^-[-^^l'°'^
(')

Suppose now that the inner cylinder has a small oscillatory motion about an axis parallel

to the axes of the cylinders, the cylinders having their axes coincident in the position of

equiHbrium. Let x^ be the angle which a plane drawn through the axis of rotation, and that of the

solid cylinder at any time makes with a vertical plane drawn through the former. The motion of

translation of the axis of the cylinder will differ from a rectilinear motion by quantities depending

on \l/-: the motion of rotation about its axis will be of the order \|/, but will have no effect on

the fluid. Therefore in considering the motion of the fluid we may, if we neglect squares of yp,

consider the motion of the cylinder rectilinear. The expression given for cp by equation (8) will

be accurately true only for the instant when the axes of the cylinders coincide; but since the

whole resultant pressure on the solid cylinder in consequence of the motion is of the order \p,

we may, if we neglect higher powers of \j/ than the first, employ the approximate value of cp

given by equation (8). Neglecting the square of the velocity, we have

d(b

dd)
In finding the complete value of —^ it would be necessary to express (p by co-ordinates re-

ferred to axes fixed in space, which after differentiation we might suppose to coincide with others

fixed in the body. But the additional terms so introduced depending on the square of the velocity,

which by hypothesis is neglected, we may differentiate the value of (p given by equation (8) as if

the axes were fixed in space. We have then, to the first order of approximation,

„rfC

d(p dt ib-- 1

dt b--a' { r J

If I be the length of the cylinder, the pressure on the element ladO, resolved parallel to .v

and reckoned positive when it acts in the direction of .r,

cos^edO;
dt (P ]

- a' [a
J

b-

and integrating from = to 9 = 2-ir, we have the whole resultant pressure parallel to ,r

b' + a- dC
b' -a' ^ dt

Since —— is the effective force of the axis, parallel to x, and that parallel to y is of the order >^^

we see that the effect of the inertia of the fluid is to increase the mass of the cylinder by

— n, where fx is the mass of the fluid displaced. This imaginary additional mass must be

supposed to be collected at the axis of the cylinder.

If the cylinder oscillate in an infinitely extended fluid 6 = co, and the additional mass becomes

equal to that of the fluid displaced. This appears to be a result capable of being compared with

experiment, though not with very great accuracy. Two cylinders of the same material, and of the
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same radius, but whose lengths differ by several radii, might be made to oscillate in succession in a

fluid, at a depth sufficiently great to allow us to neglect the motion of the surface of the fluid. The
time of oscillation of each might then be calculated as if the cylinder oscillatetl in vacuum, acted on
by a moving force equal to its weight minus that of the fluid displaced, acting downwards through
its centre of gravity, and having its mass increased by an unknown mass collected in the axis.

Equating the time of oscillation so calculated to that given by observation, we should determine the

unknown mass. The difference of these masses would be very nearly equal to the mass which must
be added to that of a cylinder whose length is equal to the difference of the lengths of the first two,

when the motion is in two dimensions. This evidently comes to supposing that, at a distance from
the middle of the longer cylinder not greater than half the difference of the lengths of the two, the

motion may be taken as in two dimensions. The ends of the cylinders may be of any form, provided

that they are all of the same. They may be suspended by fine equal wires, in which case we should

have a compound pendulum, or attached to a rigid body oscillating above the fluid by means of

thin flat bars of metal, whose plane is in the plane of motion. Another way of getting rid of the

motion in three dimensions about the ends would be, to make those ends plane, and to fix two
rigid planes parallel to the plane of motion, which should be almost in contact with the ends of the

cylinder.

9. Motion between two cotieentric spherical surfaces Motion of a ball pendulum enclosed

in a spherical case.

Let a mass of fluid be at rest, comprised between two concentric spherical surfaces. Let the

several points of these surfaces be moved in any manner consistent with the .condition that the

volume of the fluid be not changed : it is required to determine tlie initial motion at any point

of the mass.

Let a, b, be the radii of the inner and outer spherical surfaces respectively ; then employino- the

co-ordinates r, 0, w, where r is the distance from the centre, 9 the angle which r makes with a fixed

line passing through the centre, w the angle which a plane passing through these two lines makes
with a fixed plane through the latter, the value of (p corresponding to any radius vector comprised
between a and b can be expanded in a converging series of Laplace's coefiicients. Let then

«^= '^o+f, + V„+ ,

r„ being a Laplace's coefficient of the n"' order.

Substituting in the equation,

dr'
"^

~^n0 Id V'" lie)
'^

s.\u' 9 rf^
= 0,

which cb is to satisfy, employing the equation

J (i f ^dVA 1 d' V„
7i{n + 1)F„ + —- — sm0--- + ^— -7~r = (9),sm0 d9 \ d9 J sin'9 dia-

and then equating to zero the Laplace's coefficients of the several orders, we find

d"rV„
r —y- w (ra + ] ) r„ = 0.

The general integral of this equation is

c
^'"-Cr'' + ~^^,

where C and C' are functions of 9 and w. Substituting in the equation (!)), and equating coeffi-

cients of the two powers of r wliich enter into it separately to zero, we find that botli C and

C' satisfy it, and therefore are botli Laplace's coefficients of the w"' order. AVe have then

0= 2''(r„r' + Z,r-"' + ") (10),
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where F and Z are each Laplace's coefficients of the «'" order, and do not contain r. Let

f(9 w) "be the normal velocity of the point of the inner surface corresponding to G and w,

F(e, «0 the corresponding quantity for the outer; then the conditions which is to satisfy

are that

-£ =/(0, to) when r = a,

dr

^= F(9, w) when r = 6.

dr

Let f(0, w), expanded in a series of Laplace's coefficients, be

P, + P,... + P„+ ...

which expansion may be performed by the usual formula, if not by inspection :
then the first

condition gives

S: (nY„a'-' - (» + i)Z„a-<»^'') = ^^ P„;

and equating Laplace's coefficients of the same order, we get

nY„a'-' - (« + l)Z„a-<"-^''= P, (11).

Let F(9, m), expanded in a series of Laplace's coefficients, be

P'o + P', ...P'„+...;

then from tlie second condition, we get

wF„6"-'-(n+l)Z„6-'" + ^'= P\, (12).

From (11) and (12) we easily get

P'b"^' - P^a"*'
y = —

(6^°+' - a'»+')
'

ffl-"+' 6^''+'|f„&-'"-" -P„g-'°"''}
^"=

(n + l)(6«" + '-a-^" + ')
'

provided n be greater than 0. If m = 0, we have

-«-=Z„=P„, -6-=Z„ = P',,

But the condition that the volume of the fluid be not altered, gives

a'fjf''f(e, io) sin OdOdco = h'f"pF[e, w) sin OdBdw,

or 4n-fl!=P„ = iT:WP\,

which reduces the two equations just given to one.

We have then, omitting the constant I'o,

^ = - :^ + X {'''"" - o'"-''}'' {- {P',.b"*' - P,.ri"'^)r"

,,2n + ll2n+l 1

+ - (P'„6-<'-"-P„a-<'' -"))•-<" ^'» (13),
n + \ )

whicli determines the motion.

When the fluid is infinitely extended, we have P'„ = since the velocity vanishes at an

infinite distance, and 6 = 05 , whence

Pod' ^^ a''^'Pn

^ r "' (n + !)?•"+'

It may be proved, precisely as was done, (Art. 8), for motion in two dimensions, that if

any portion of an infinitely extended fluid be disturbed by the motion of solid l)odies, or other-
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wise, if all the fluid beyond a certain distance from the part disturbed were at first at rest, the

velocity at a great distance will ultimately be directed to or from the disturbed part, and will

be the same in all directions, and will vary as -^ . The coefficient of — will be proportional

ing on the term in cb. Since the general form of P. is

1

?
to the rate of gain or loss of volume of the part disturbed. If however this rate should be zero,

then the most important part of the velocity at a great distance will in general be that depend-

A cos 9 + B smd cos w + C sin 6 sin w,

we easily find, by making use of rectangular co-ordinates, changing the direction of the axes,

D cos
and then again adopting polar co-ordinates, that the above term in (p takes the form =—

i

r

di being measured from same line passing through the origin. The motion will therefore be the

same as that round a ball pendulum in an incompressible fluid, the centre of the ball being

in the origin ; a case of motion which will be considered immediately. In order to represent the

motion at different times, we must suppose the velocity and direction of motion of the ball to

change with the time.

The value of (p given by equation (13) is applicable to the determination of the motion of

a ball pendulum enclosed in a spherical case which is concentric with the ball in its position of

equilibrium. If C be the velocity of the centre of the ball at the instant when the centres of

the ball and case coincide, and if 6 be measured from the direction in which it is movino-, weo'
shall have

/(e) = c'cosa, F(e) = o;

.-. Po = 0, P, = C cos e, P, = 0, &c., P'o = 0, &c.,

and the value of (p for this instant is accurately

~ W - a? V
which, when & = eo , becomes

_ Ca^ cos e

I? '

which is the known expression for the value of <p for a sphere oscillating in an infinitely extended,

incompressible fluid.

It may be shewn, by precisely the same reasoning as was employed in the case of the cylin-

der, that in calculating the small oscillations of the sphere the value of - - to be employed is

a'
dt ( h'\

-
rr. r. a + -— COS ;

6' - a' V 2 a'j

and from the equation p = — p -J-
, we easily find that the whole resultant pressure on the

sphere in the tlirection of its centre, and tending to retard it is

3 P-d "
" ^

and that perpendicular to this direction is zero. Since is the effective force of the centre
dt

¥ \ dC

;ro. Smce —

-

di

in the direction of the motion, and that perpendicular to this direction is of the second order.
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the efFect of the inertia of the fluid will be to inci-ease the mass of the sphere by a mass

f^ la + — \

3 6' -an 2aV 6' - o= 2

H being the mass of the fluid displaced; so that the effect of the case is, to increase the mass

which we must suppose added to that of the ball in the ratio of 6' + 2a^ to 6^ — al

Poisson, in his solution of the problem of the oscillating sphere given in the Memoires de

rinstiiiit. Tome xi. arrives at a different conclusion, viz. that the case does not at all affect

the motion of the sphere. When the elimination which he proposes at p. 563 is made, the last

term of equation (f) p. 550 becomes — -^ 5—- (-r4H ^ , where a is the velocity of^ •' '^ 2a'c\{l - Sy) \dt' df

)

^

propagation of sound, and S the ratio of the density of air to that of the ball, ^ and t' being

functions derived from others which enter into the value of d) by putting r = c, where c is the

radius of the ball. He then argues that this term may be neglected as insensible, since it involves

S in the numerator and a" in the denominator, tacitly assuming that —f + —^ is not large

since <p is not large. Now for the disturbances of the air which have the same period as

those of the pendulum ~ is not large compared with
cf>, as it is for those on which sound

depends. Let then Poisson's solution of equation (a), p. 547 of the volume already mentioned,

be put under the form

/=M/('-3-(-3hi{/('-3--(-3).
/' and F' denoting the derived functions, and all the Laplace's coeflficients except those of the

first order being omitted, the value of <b just given being supposed to be a Laplace's coefficient

of that order. Then if we expand the above functions in series ascending according to powers

of — , we find
a

9 =
^. !/(') + ^(0} -^ {/"W + F"m +^ {/'"(O - F-(0\ + ... ;

and in order that when a = es this equation may coincide with (10), when all the Laplace's

coefficients except those of the first order are omitted in that equation, it will be seen that it is

necessary to suppose f"'(t)-F"'(,f), and therefore f(f) - F(t), to be of the order «^ while

f(t) + F(i) is not large. Putting then

f(t) = x(0 + «V(0,

/'(0 = x(0-«V(0,
we shall have

dm'+r)
so that — yi:r '*''ll contain a term of the order a", and the term which Poisson proposes to

leave out will be of the same order of magnitude as those retained.

In making the experiment of determining the resistance of the air to an oscillating sphere, it

would appear to be desirable to enclose the sphere in a concentric spherical case, which would at the

same time exclude currents of air, and facilitate in some measure the experiment by increasing the

small quantity which is the subject of observation. The radius of the case however ought not to be
nearly as small as that of the ball, for if it were, in the first place a small error in the position of the
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centre of the ball when at rest might not be insensible, and in the second place the oscillations

would have to be inconveniently small, in order that the value of (j) which has been given might be

sufficiently approximate. The effect of a small slit in the upper part of the case, sufficient to allow

the wire by which the ball is supported to oscillate, would evidently be insensible, for the conden-

sation being insensible in a vertical plane passing through the axis of rotation, since the alteration of

pressure in that plane is insensible, the air would not have a tendency alternately to rush in and out

at the slit.

1 0. Effect of a distant rigid plane on the motion of a ball pendulum.

Although this problem may be more easily solved by an artifice, it may be well to give the direct

solution of it by the method mentioned in Article 6. In order to calculate the motion reflected from
the plane, it will be necessary to solve the following problem :

To find the initial motion at any point of a mass offluid infinitely extended, except where it

is bounded by an infinite solid but not rigid plane, the initial motion of each point of the solid

plane being given.

It is evident that motion directed to or from a centre situated in the plane, the velocity being

the same in all directions, and varying inversely as the square of the distance from that centre,

would satisfy the condition that udx + vdy + wdz is an exact differential, and would give to

the particles in contact with the plane a velocity directed along the plane, except just about

the centre. Let us see if the required motion can be made up of an infinite number of such

motions directed to or from an infinite number of such centres.

Let x, y, z, be the co-ordinates of any particle of fluid, the plane xy coinciding with the

solid plane, and the axis of z being directed into the fluid. Let x', y, be the co-ordinates of

any point in the solid plane : then the part of (p corresponding to the motion of the element

dx dy of the plane will be

\//(a-', y')dx'dy'

\/{a) - x'Y + {y - y'y + x^
'

and therefore the complete value of (p will be given by the equation

-to .« \lr(x',y')dx'dy'

J-a>J-a V {(•»? - x'y- + {y - y'y + «*}

The velocity parallel to z at any point = —
dz

-a: \|/ («', y')zdx'dy

\
{x - x'Y + (y- y'y + «'}*

*

Now when z vanishes the quantity under the integral signs vanishes, except for values of x'

and y indefinitely near to x and y respectively, the function \j/(x', y) being supposed to vanish

when .I'' or y' is infinite. Let then x' = x + ^, y'=y + ri, then, |^ and r/^ being as small as

we please, the value of the above expression when z = becomes

- the limit of / / ^ \^, ^
,

^-j-2—- when z = 0.

Now if \j/ (x', y) does not alter abruptly between the limits x - ^ and .v + ^ of *', and y - r;

and y + ti^ of y, the above expression may be replaced by

. , ^ 1 • <. r^- /"' zdPdn
-v// («,?/) X the hunt of / / --

—

\ ,

which is = - 2 7r\//(r, y).

Vol. VIII. Paiit I. Q
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If now f(a:\ y) be the given normal velocity of any point {x , y) of the solid plane, the ex-

pression for (p given by equation (14) may bf made to give the required normal velocity of

the fluid particles in contact with the solid plane by assuming

^(M,y') = ~— f {'<'', y'),

whence

_ _1_ r" /•" /(.r, y')d.v'dy'

^ 2^7— ./-» {(a? - w'Y + {y- y'f + «=} J

"

This expression will be true for any point at a finite distance from the plane xy even when f{x', y)
does alter abruptly ; for we may first suppose it to alter continuously, but rapidly, and may then

suppose the rapidity of alteration indefinitely increased : this will not cause the value of (p just

given to become illusory for points situated without the plane xy.

If it be convenient to use polar co-ordinates in the plane xy, putting x = q cos to, y = q sin w,

x' = q cos o)', y = q sin &>', and replacing fix , y) by /(?', u>), the equation just given becomes

, ^ _ J_ r" r-" f{q\ w')q'dq'dw'
^

Stt^o •'o 5</' + 9" - 297' cos (w -«)') + «=}i'

To apply this to the case of a sphere oscillating in a fluid perpendicularly to a fixed rigid

plane, let a be the radius of the sphere, and let its centre be moving towards the plane with

a velocity C at the time t. Then, (Art. 4), we may calculate the motion as if it were produced

directly by impact. Let h be the distance of the centre of the sphere from the fixed plane

at the time t, and let the line h be taken for the axis of x, and let r, 6, be the polar co-or-

dinates of any point of the fluid, r being the distance from the centre of the sphere, and 9 the

angle between the lines r and h. Then if the fluid were infinitely extended around the sphere

we should have

Ca" COS0
d)= ^^— (15).

The velocity of any particle, resolved in a direction towards the plane, =—-Z-cos^ ^ sin (J

dr rdO

= ^We-lsin=ei.
For a particle in the plane xy we have

r cos Q = h, r sin 6 = q',

and the above velocity becomes

Ca'^Zh'-q'')

Zih' + q')^

We must now, according to the method explained in (Art. 6), suppose the several points of

the plane xy moved with the above velocity parallel to x. We have then

j(g>w) = —5-

;

2(h' + q'-y

whence, for the motion of the sphere reflected from the plane,

^_Ca^ r- r^' (%h'-q')q'dqdj
^^^^

*T A \ {h' + q'^Y\q^ + q'-Zqq' COS {w-w) + x''\'''

We must next find the velocity, corresponding to this value of cb, with which the fluid pene-

trates tlie surface of the sphere. We have in general

z = h - r cos 0, q = r sin 0,
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whence [q" + q' — 2qq' cos (w — to) + is''} '' = {h" + r' + q'" - 2hr cos 9 — 2q'r sin 9 cos (to — a/) ]
"'.

Now supposing the ratio of a to h to be very small, and retaining the most important term, the value

of ~ when r = a will be equal to the coefficient of r when (p is expanded in a series ascend-

ing according to powers of r,

Ca^ r" r-" {2 K' — q') \h coi 9 +q' sin 9 cos
(fi)

— w')\q'dq'dw'

1^3,. ^ r (fih'' -q'^)q'dq' Ca'cos9
, ^

= - aC«^Acos0_f
(4^H-,'T = - -^^ ^''^-

In order now to determine the motion reflected from the plane and again from the sphere,

we must suppose the several points of the sphere to be moved with a normal velocity ,

oh,

or, which is the same, we must suppose the whole sphere to be moved towards the plane with

a velocity ——- . Hence the value of corresponding to this motion will be given by the equation
8 h

Ca^ cos 9

1'=--uif^ <'«)

For points at a great distance from the centre of the sphere, the motion which is twice

reflected will be very small compared with that which is but once reflected. For points close to

the sphere however, with which alone we are concerned, those motions will be of the same order

of magnitude, and if we take account of the one we must take account of the other.

Putting q = r sin 9, z = h-rcos9 in (iG), expanding, and retaining the two most important

terms, we have

^ /" „ a'r cos 9\

K being a constant, the value of which is not required, and the second term being evidently found
by multiplying the quantity at the second side of (17) by r. Adding together the parts of d)

given by equations (15), (18) and (19), putting r = a, replacing C by -—
, and taking for h the

value which it has in equilibrium, just as in the case of the oscillating cylinder in Article 8, we
have for the small motion of the sphere

dd) dC a I Za\ dC_Z = ^ _ _ 1 + -— -- cos 0.
dt dt 2 \ Sh'J dt

The resultant of the part of the pressure due to the first term is zero : that due to the

second term is greater than if the plane were removed in the ratio of 1 n to 1. Conse-

a'
quently, if we neglect quantities of the order — , the effect of the inertia of the fluid is, to add

It

a mass equal to
I

^ + ~
71 ) 7 to that of the sphere, without increasing the moment of inertia

of the latter about its diameter. The effect therefore of a large spherical case is eight times as

great as that of a tangent plane to the case, perpendicular to the direction of the motion of
the ball.

The efl'ect of a distant rigid plane parallel to the direction of motion of an oscillating

sphere might be calculated in the same manner, but as the method is sufficiently explained by
the first case, it will be well to employ the artifice before alluded to, an artifice whicii is fre-
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quently employed in this subject. It consists in supposing an exactly symmetrical motion to

take place on the opposite side of the rigid plane, by which means we may evidently conceive

the plane removed.

Let the sphere be oscillating in the direction of the axis of >r, the oscillations in this case, as

in the last, beinw so small that they may be taken as rectilinear in calculating the motion of the

fluid ; and instead of a rigid plane conceive an equal sphere to exist at an equal distance on the

opposite side of the plane xy, moving in the same direction and with the same velocity as the

actual sphere. Let r, 9, ai, be the polar co-ordinates of any particle measured from the centre of the

sphere, 6 beinw the angle between r and a line drawn through the centre parallel to the axis of -v,

and w the ano-le which the plane passing through these lines makes with the plane xz. Let /, ff, w,

be the corresponding quantities symmetrically measured from the centre of the imaginary sphere.

If the fluid were infinite we should have for the motion corresponding to that of the given

sphere

Ca^ cos , ,0= -Z-T- (20).

The motion reflected from the plane is evidently the same as that corresponding to the motion

of the imaginary sphere in an infinite mass of fluid, for which we have

CaVose'
, ^^--

2,-. (2')-

Now / cos 9' = r cos 9, r sin 9' sin w = r sin 9 sin w, r sin 9' cos w + r sin 9 cos to = 2 A ;

whence r' = r^ + 4 A' — 4Ar sin 9 cos w,

and equation (21) is reduced to

Ca^r COS0
' 2 \r^ + iK- - i hr &\n 9 cos w\^

o

the above equation is reduced to

Retainnie only the terms of the order —-- or -r- , so as to get the value of —^ to the order —

,

° '' «' h dr h

Ca'r cos9 , ,

•^= I6F- (^^>'

and the value of —^ when r = « is, to the required degree of approxim.ation,
dr

Co? cos 9

TSA^

For the value of rf) corresponding to the motion of the imaginary sphere reflected from the real

sphere, we shall therefore have
'

Co" cos 9

'^=--iiAV^ ^^^>-

Adding together the values of <p given by (20), (22) and (23), putting r = u, and replacing

C bv — , we have, to the requisite degree of approximation,
' dt

d(b at 3 a'\ dC
dF^-^VTei?)^-'"'^-

Hence in this case the motion of the sphere will be the same as if an additional mass equal to

(1 + -I — were collected at its centre. The eifect therefore of a distant rigid plane which is

16 AV 2 ^ ^
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parallel to the direction of the motion of a ball pendulum will be half that of a plane at the

same distance, and perpendicular to that direction. It would seem from Poisson's words at page
562 of the eleventh volume of the Memoires de VInstitut, that he supposed the effect in the

former case to depend on a higher order of small quantities than that in the latter.

If the ball oscillate in a direction inclined to the plane, the motion may be easily deduced
from that in the two cases just given, by means of the principle of superposition.

11. The values of ^ which have been given for the motion of translation of a sphere and
cylinder, do not require us to suppose that either the velocity, or the distance to which tlie

centre of the sphere or axis of the cylinder has been moved is small, provided the same particles

remain in contact with the surface. The same indeed is true of the values corresponding to a

motion of translation combined with a motion of contraction or expansion which is the same in

all directions, but varies in any manner with the time. The value of ih corresponding to a motion

of translation of the cylinder is — , C being the velocity of the axis, and 6 being

measured from a line drawn in the direction of its motion. The whole resultant of the part of

the pressure due to the square of the velocity is zero, since the velocity at the point whose co-

ordinates are r, 6, is the same as that at the point whose co-ordinates are r and ir — d. To find the

resultant of the part depending on -— , it will be necessary to express (p by means of co-ordinates

referred to axes fixed in space. Let Ox, Oy, be rectangular axes passing through the centre of

any section of the cylinder, •ar the angle which the direction of motion of the axis makes with
Ow, ff the inclination of any radius vector to Ox; then

<p = — (r cos 9 cos -ST + r sin 9 sin 'sr)

d' {C'oc + C"y)

X- + y"

putting C' and C" for the resolved parts of the velocity C along the axes of x and y respectively.

Taking now axes Ax', Ay, parallel to the former and fixed in space, putting a and /3 for the

co-ordinates of O, differentiating (p with respect to t, and replacing — by C', and — by C",
do at

and then supposing a and (i to vanish, we have

/ dC_ dC\
d(p a'C 2a'(C'x + C"yy- " V dt ^ ^ dt j

dt .1'^ + y" (3? + yy + r
The resultant of the part of the pressure due to the first two terms is zero, since the pressure

at the point {.v, y) depending on these terms is the same as that at the point (- x, — y). It

will be easily found that the resultant of the whole pressure parallel to x, and acting in tiie

d C*
negative direction, on a length I of the cylinder, is equal to Trpia- —— , and that parallel to 7

dt

,dC"
equal to trplar —— . The resultant of these two will be irpta^F, where F is the effective force

of a point in the axis of the cylinder, and will act in a direction opposite to that of F. Hence
the only effect of the motion of the fluid will be, to increase tlie mass of the cylinder by that of

the fluid displaced. In a similar manner it may be proved that, when a solid sphere moves in

any manner in an infinite fluid, the only effect of the motion of the fluid is to increase the mass

of the sphere by half that of the fluid displaced.
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A similar result may be proved to be true for any solid symmetrical with respect to two

planes at right angles to each other, and moving in the direction of the line of their intersection

in an infinitely extended fluid, the solid and fluid having been at first at rest. Let the planes

of symmetry be taken for the planes of xy and xx, the origin being fixed in the body : then it

is evident that the resultant of the pressure on the solid due to the motion will be in the direction

of the axis of x, and that there will be no resultant couple. Let C be the velocity of the solid

at any time; then the value of (h at that time will be of the form C^{x, y, z), where C alone

contains t, (Art. 4), and the velocity of the particle whose co-ordinates are x, y, x, being pro-

portional to C, the vis vhui of the solid and fluid together will be proportional to C'. Now if no

forces act on the fluid and solid, except the pressure of the fluid, this vis viva must be constant*;

therefore C must be constant; therefore the resultant of the fluid pressure on the solid must be

zero. If now C be a function of t we shall have

p = -p^\^{x,y,
~)-J^

+P^

J)
being the pressure when C is constant. Since therefore the resultant of the fluid pressure

dC
varies for the same solid and fluid as the effective force, and for different fluids varies as p,

the effect of the inertia of the fluid will be, to increase the mass of the solid by n times that of

the fluid displaced, n depending only on the particular solid considered.

Let us consider two such solids, similar to each other, and having the co-ordinates planes

similarly situated, and moving with the same velocities. Let the linear dimensions of the second

be greater than those of the first in the ratio of m to 1. Let ?<, v, w, be the velocities, parallel

to the axes, of the particle (x, y, z) in the fluid about the first ; then shall the corresponding

velocities at the point {mx, my, mz) in the fluid about the second be also u, v, w. For

udmx + vdmy + wdnix = m{udx + vdy + wdz) (24),

and is therefore an exact differential, since udx + vdy + wdz is one: also the normal at the

point (.r, y, z) in the first surface will be inclined to the axes at the same angles as the normal

at the point (ma?, my, mz) of the second surface is inclined to its axes, and therefore the normal

velocities of the two surfaces at these points are the same ; and the velocities of the fluid at these

two points parallel to the axes being also the same, it follows that the normal velocity of each point

of the second surface is equal to that of the fluid in contact with it. Lastly, the motion about

the first solid being supposed to vanish at an infinite distance from it, that about tlie second will

vanish also. Hence the supposition made with respect to the motion of the fluid about the second

surface is correct. Now putting <p for f(jidx + vdy + wdz) for the fluid in the first case, the

corresponding integral for the fluid in the second case will be mcp, if the constant be properly

chosen, as follows from equation (24.). Consequently the value of that part of the expression for

the pressure, on which the resistance depends, will be m times as great for any point in the

• If an incompressible fluid which is homogeneous or hetero-

geneous, and contains in it any number of rigid bodies, be in

motion, the rigid bodies being also in motion, if the rigid bodies

are perfectly smooth, and no contacts are formed or broken among

them, and if no forces act except the pressure of the fluid, tlie

principle of vis viva gives

—r— = 'iffp.vdS «)>
at

where v is the whole velocity of tlie mass w, and the sign 2 ex-

tends over the whole fluid and the rigid bodies spoken of, and

where dS is an clement of the surface which bounds the whole,

71, the pressure about the element dS^ and v the normal velocity of

the particles in that element, reckoned positive when tending into

the fluid, and where the sign jf^extends to all points of the bound-

ing surface. To apply equation («) to the case of motion at

present considered, let us flrst confine ourselves to a spherical

portion of the fluid, whose radius is r, and whose centre is near

the solid, so that dS refers to the surface of this portion. Let us

now suppose r to become inflnite : then the second side of (a) will

vanish, provided p, remain finite, and v decrease in a higher ratio

than — . Both of these will be true, (Art. It. J; for v will vary

ultimately as — , since there is no alteration of volume. Hence

if the sign S extend to inflnity, we shall have Smu- constant.
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second case as it is for the corresponding point in the first. Also, cacli element of the surface

of the second solid will be m" times as great as the corresponding element of the surface of the

first. Hence the whole resistance on the second solid will be m? times as great as that on the

first, and therefore the quantity n depends only on the form, and not on the size of the solid.

When forces act on the fluid, it will only be necessary to add the corresponding pressure.

Hence when a sphere descends from rest in a fluid by the action of gravity, the motion will be

the same as if a moving force equal to that of the sphere mimis that of the fluid displaced

acted on a mass equal to that of the sphere plus half that of the fluid displaced. For a cylinder

which is so long that we may suppose the length infinite, descending horizontally, every thing

will be the same, except that the mass to be moved will be equal to that of the cylinder plus

the whole of the fluid displaced. In these cases, as well as in that of any solid which is sym-
metrical with respect to two vertical planes at right angles to each other, the motion will be

uniformly accelerated, and similar solids of the same material will descend with equal velocities.

These results are utterly opposed even to the commonest observation, which shews that large

solids descend much more rapidly than small ones of the same shape and material, and that the

velocity of a body falling in a fluid, (such as water), does not sensibly increase after a little

time. It becomes then of importance in the theory of resistances to inquire what may be the

cause of this discrepancy between theory and observation. The following are the only ways of

accounting for it which suggest themselves to me.

First. It has been supposed that the same particles remain in contact with the solid through-

out the motion. It must be remembered that we suppose the ultimate molecules of fluids, (if such

exist), to be so close that their distance is quite insensible, a supposition of the truth of which

there can be hardly any doubt. Consequently we reason on a fluid as if it were infinitely divisible.

Now if the motion which takes place in the cases of the sphere and cylinder be examined, sup-

posing for simplicity their motions to be rectilinear, it will be found that a particle in contact

with the surface of either moves along that surface with a velocity which at last becomes in-

finitely small, and that it does not reach the end of the sphere or cylinder from which the whole

is moving until after an infinite time, while any particle not in contact with the surface is at

last left behind. It seems difficult to conceive of what other kind the motion can be, without

supposing a line, (or rather surface) of particles to make an abrupt turn. If it should be said

that the particles may come off" in tangents, it must be remembered that this sort of motion is

included in the condition which has been assumed with respect to the surface.

Secondly. The discrepancy alluded to might be supposed to arise from the friction of the

fluid against the surface of the solid. But, for the reason mentioned in the beginning of this

paper, this explanation does not appear to me satisfactory.

Thirdly. It appears to me very probable that the spreading out motion of the fluid, whicli

is supposed to take place behind the middle of the sphere or cylinder, though dynamically possible,

nay, the only motion dynamically possible when the conditions which have been supposed are

accurately satisfied, is unstable ; so that the slightest cause produces a disturbance in the fluid,

which accumulates as the solid moves on, till the motion is quite changed. Common observation

seems to shew that, when a solid moves rapidly througli a fluid at some distance below the

surface, it leaves behind it a succession of eddies in the fluid. When the solid has attained its

terminal velocity, the product of the resistance, or rather the mean resistance, and any space

through which the solid moves, will be equal to half the vis viva of the corresponding j)ortion

of its tail of eddies, so tliat the resistance will be measured by the vis viva in tlie lengtli of two

units of that tail. So far therefore as the resistance which a ship experiences depends on tlie

disturbance of the water, which is independent of its elevation or depression, that shi]) which

leaves the least wake ought, according to this view, to be cceteris paribus the best sailer. The
resistance on a ship difl'crs from that on a solid in motion immersed in a fluid in the circumstance,

that part of tlie resistance is employed in producing a wave.
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Fourthly, the discrepancy alluded to may be due to the mutual friction, or imperfect fluidity

of the fluid.

12. Motion about an elliptic cylinder of small eccentricity.

The value of (p, which has been deduced, (Art. 8), for the motion of the fluid about a circular

cylinder, is found on the supposition that for each value of r there exists, or may be supposed

to exist, a real and finite value of <p. This will be true, in any case of motion in two dimensions

where udx + vdy is an exact differential, /or tliose values of x for which thejiuid is not interrupted,

but will be true for values of r for which it is interrupted by solids only when it is possible to

replace those solids at any instant by masses of fluid, without affecting the motion of the fluid

exterior to them, those masses moving in such a manner that the motion of the whole fluid might

have been produced instantaneously by impact. In some cases such a substitution could be made,

while in others it probably could not. In any case however we may try whether the expansion

given by equation (3) will enable us to get a result, and if it will, we need be in no fear that it

is wrong, (Art. 2). The same remarks will apply to the question of the possibility of the ex-

pansion of (p in the series of Laplace's coefficients given in equation (10), for values of r for

which the fluid is interrupted. They will also apply to such a question as that of finding the per-

manent temperature of the earth due to the solar heat, the earth being supposed to be a homogeneous

oblate spheroid, and the points of the surface being supposed to be kept up to constant temperatures,

given by observation, depending on the latitude.

In cases of fluid motion such as those mentioned, the motion may be determined by conceiving

the whole mass of fluid divided into two or more portions, taking the most general value of (p

for each portion, this value being in general expressed in a different manner for the different

portions, then limiting the general value of (p for each portion so as to satisfy the conditions

with respect to the surfaces of solids belonging to that portion, and lastly introducing the con-

dition that the velocity and direction of motion of each pair of contiguous particles in any two

of the portions are the same. The question first proposed will afford an example of this method

of solution.

Let an elliptic cylinder be moving with a velocity C, in the direction of the major axis of a

section of it made by a plane perpendicular to its axis. The motion being supposed to be in two

dimensions, it will be sufficient to consider only this section. Let

r = c(l + e cos 20)

be the approximate equation to the ellipse so formed, the centre being the pole, and powers of e

above the first being neglected. Let a circle be described about the same centre, and having a radius

y equal to (l + k)c, k being <t e, and being a small quantity of the order e. Let the portions of

fluid within and without the radius y be considered separately, and putting

r = c + jr,

let the value of (p corresponding to the former portion be

P + qz+ Rz-,

P, Q and R being functions of 0, and the term in z^ being retained, in order to get the value of —i-
dr

true to the order e, while the terms in «', &c. are omitted. Substituting this value of (p in

equation (2), and equating to zero coefficients of different powers of z, we have

2c 2c- dO''

which is the only condition to be satisfied, since the other equations would only determine the co-

efficients.of ar^, &c. in terms of the preceding ones. We have then

I
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1 / 1 d-P\ „ , ^<^=P+Q.--((^.-^).- (.5).

Now if ^ be the angle between the normal at any point of tlie ellipse, and the major axis, we have

^ = + 2 e sin 2 0,

and the velocity of the ellipse resolved along the normal

= Ccos5= C(l -e) COS0 + C6COS30 (26).

The velocity of the fluid at the same point resolved along the normal is

d(h
. ^ d(h

-i- + 2esm20^ ,

dr rdij

d<b 2£ . ^ d(b ..
or -Jf: + _sin2 0--i (27).

dz c dd

Let P and Q be expanded in series of cosines of 9 and its multiples, so that

P = 2°P„cosw0, Q=2°Q„ COSW0,

there being no sines in the expansions of P and Q, since the motion is symmetrical with respect to

the major axis ; then

(P
= ^: {P„ + Q„z -^(Q„--P„)^'} cos nO (28);

g = 2:|Q„ -i(Q„ -^PJ^I cosnO (29) ;

— ?-?=-2o"4^W^-^)4sin.e (^°)-
c + z dd (c \ c c- 1 }

For a point in the ellipse, z = ce cos 2 9, whence from (27), (29) and (30), we find that the

normal velocity of the fluid

p P
= 2° {Q„cosw0 + -[w(w- 2) -2_ Qjcos(« -2)0 + -[m(w + 2)— - Q„] cos (« + 2) 0}

,

which is the same thing as

2°|jC«(w-2)^'- Q,,-2] + Q„ + ^[«(» + 2)^'-Q»«]|cosn0 (31),

if we suppose P and Q. to be zero when affected with a negative suffix. This expression will

have to be equated to the value of C cos ^ given by equation (26).

For the part of the fluid without the radius y we have

(p = A^ log »• + 2" —^ cos n *,

n

since there will be no sines in the expression for (p, because the motion is symmetrical with

respect to the major axis, and no positive powers of r, because the velocity vanishes at an infi-

nite distance.

From the above value of (p we have, for the points at a distance y from the centre,

^ = ^-vr!^cos.0,
dr y y

" The tirfct term of this cxprcsHion in accurately equal to zero,

»ince there is no cxpanHion or conlraction of the solid, (Art, Jt),

I have however retained it, in order to render the solution of the

Vol. VIII. Pakt I. R

problem in the present article independent of the proposition

referred to.
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sin n 6.
d<p ^„ n J„

rdO ' 7" + '

Equating the above expressions to the velocities along and perpendicular to the radius vector

given by equations (29) and (30), when ss is put = kc, and then equating coefficients of cor-

responding sines and cosines we have

(1 -k)Q„ + kn'^= -^ (32),

(1 _A;)-^ + A;Q„=-^, {S3),
c y

when ft > 0, and equating constant terms we have

(l-/t)Q„ = ^,
7

from which equation with (32) and (33) we have, putting 7 = (l + k)c,

— = ^,, Q»=--^, when n>0, and «„ = - .

Substituting these values in the expression (31), it becomes

^:{l(n^^)in-2)^:-'^^+l(n^.)(n^2)^]cosne-,^-'^cos,0.

In the case of a circular cylinder the quantities A„, J^, A^, &c. are each zero. In tlie present

case therefore they are small quantities depending on e. Hence, neglecting quantities of the order

e^ in the above expression, it becomes

—^ H r— cos 3 1^ - ii —rrr cos W 0,
c c' c

which must be equal to C \{\ - e) cos + e cos 39|. Equating coefficients of corresponding

cosines, we have

^. = -C(l -e)c\

A,= - Cec',

and the other quantities A^, A,,, &c. are of an order higher than e. Hence, for the part of

the fluid which lies without the radius 7, we have

(p= - C {(1 - e) - COS0 + ^ cos 36} (34),

and for the part which lies between that radius and the ellipse we have from (28)

<p = - C'f {(1 - e) cos + e cos S6\ + C {(1 - e) cos 9 + 3e cos 39] z

C
cosflar^ (35).

c

The value of (p given by equation (35) may be deduced from that given by equation (34)

by putting r = c + z, and expanding as far as to «^. In the case of the elliptic cylinder then it

appears that the same value of (h serves for the part of the fluid without, and the part within

the radius 7. If the cylinder be moving with a velocity C' in the direction of the minor axis of a

section, the value of (p will be found from that given by equation (34) by changing the sign of e,

putting C' for C, and supposing 9 to be measured from the minor axis.
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If the cylinder revolve round its axis with an angular velocity w, the normal velocity of

the surface at any point will be 2wec sin 20. Since e^ is neglected, we may suppose this normal

velocity to take place on the surface of a circular cylinder whose radius is c; whence, (Art. 8), the

corresponding value of (p will be

toec' .

sin 29.
r

If we suppose all these motions to take place together, we have only, (Art. 5), to add together

the values of <p corresponding to each. If we suppose the motion very small, so as to neglect the

/. , , J , -1. , ,• do) dC , dC . ,

square oi the velocity, we need only retain the terms depending on -— , —— and -—— , in the

value of —t- , and we may calculate the pressure due to each separately. The resultant of the
dt

pressure due to the term —— will evidently be zero, on account of the symmetry of the corre-

sponding motion, while the resultant couple will be of the order e°, since the pressure on any

point of the surface, and the perpendicular from the centre on the normal at that point, are each of

the order e. The pressure due to the term —— will evidently have a resultant in the direction
dt

of the major axis of a section of the cylinder ; and it will be easily proved that the resultant

pressure on a length I of the cylinder is 7rpc^l(l — 2e) —— . That due to the term will be

Trpc'l(\ + 2e) -T— , acting along the minor axis. If the cylinder be constrained to oscillate so that

its axis oscillates in a direction making an angle a with the major axis, and if C" be its velocity,

which is supposed to be very small, the resultant pressures along the major and minor axes will be

dC" . dC"
IX {l — 2e) cos a —— and /i (l + 2e) sin a —— respectively, where fx is the mass of the fluid displaced.

dC"
Resolving these pressures in the direction of the motion, the resolved part will be ^ (1 - 2 e cos 2 a) ,

g2 rf C"
or /u (1 cos 2a) —— , e being the eccentricity ; so that the effect of the inertia of the fluid will be,

to increase the mass of the solid by a mass equal to /u (1 cos 2a), which must be supposed to be

collected at the axis.

A similar method of calculation would apply to any given solid differing little either from

a circular cylinder or from a sphere. In the latter case it would be necessary to use expansions

in series of Laplace's coefficients, instead of expansions in series of sines and cosines.

13. Motion ofJluid in a closed bow whose interior is of the form of a rectangular parallelopiped.

The motion being supposed to begin from rest, the motion at any time may be supposed

to have been produced by impact (Art. 4). The motion of the box at any instant may be
resolved into a motion of translation and three motions of rotation about three axes parallel to

the edges, and passing through the centre of gravity of the fluid, and the part of
<f>

due to

each of these motions may be calculated separately. Considering any one of the motions of

rotation, we shall sec that the normal velocity of each face in consequence of it will ultimately

be the same as if that face revolved round an axis passing tlirough its centre, and that tile

latter motion would not alter the volume of the fluid. Consequently, in calculating tlie part of

r2
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(p due to any one of the angular velocities, we may calculate separately the part due to the motion

of each face.

Let the origin be in a corner of the box, the axes coinciding with its edges, Let a, b, c,

be these edges, U, V, W, the velocities, parallel to the axes, of the centre of gravity of the interior

of the box, ft)', ft)", ft)'", the angular velocities of the box about axes through this point parallel

to those of w, y, x. Let us first consider the part of cp due to the motion of the face ,ra: in

consequence of the angular velocity w '.

The value of (h corresponding to this motion must satisfy the equation

-rr + -ri^ = {36),

with the conditions

d(p
0, when X = or o (37),

d.v

-i = 0, when « = 6 (38),
dy

-^ = 0,'" (.V--] , when 2/ = (39),
dy \ 2/

within limits corresponding to those of the box.

Now, for a given value of y, the value of d) between x = and x = a can be expanded in a

convergent series of cosines of —'- and its multiples; and, since (37) is satisfied, ihe series by

which -J- will be expressed will also hold good for the limiting values of ,r, and will he conver-
dx

gent. The general value of (^ then will be of the form 2" r„ cos . Substituting in (36),

and equating coefficients of corresponding cosines, which may be done, since any function of .r can

be expanded in but one such series of cosines between the limits and a, we find that the

general value of Y„ is Ce « +C'e " , or, changing the constants,

mtt(/i- v) i}ir{h-y) rnrjf nwij

r„ = J„ (e ' +e' ' ) + B,, {e - + e' ),

when 11 > 0, and for n = 0,

Yo = J„y + So-

From the condition (R8) we have

TT ^ — J— }l7rX
Ao+ -'2i nB„ (e •' -e " ) cos = :

a a

whence J„ = 0, B„ = 0, and, omitting B^,

nwjb-y) THr(ft-;/)
y^ ^ ^j,

(b = 'Ef A„(e » + e' " ) cos .

' a

From the condition (39), we have

2i nA„ (e " — e " ) cos = ft) \x .

a
^ 'a \ 21

Determining the coefficients in the usual manner, we have
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whence

ct>
=
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- p-^y\^(p, a,y, b) - yj^Cy, b, 0, a)}dydz.
' dt

Substituting the values of the functions, integrating from y = to y = 6, and from ^ = to « = c,

1 IT*

renlacine- 2 bv its value — , and reducing the other terms, it will be found that the couple

due to the pressure on the plane yz \i

pa'bc doT _ Spa'c dm" J_ 1 - e'^ _ Spb'c dw'" ^ ^ IjU^
24 dt ir^ dt n ^^^-— -k dt n

^ ^ ^—r

AVe shall get the couple due to the pressure on the plane xx by interchanging a and 6,

changing the sign of ui", and measuring the couple in the opposite direction, or, which is the same,

by merely interchanging a and 6. Adding together these two couples and doubling their sum

,
duJ" . _ dw" .

we shall find that the couple due to -—- is - C-^ , where

1 + e " 1 + £ *

will be — .4 —

—

dt dt

it ^ t

Similarly, the couple due to -— will be -A——, tending to turn the box from y to x, and
•" ' dt dt

fl " d "

that due to —^ will be - B , tending to turn the box from z to w, where // and B are
dt dt

derived from C by interchanging the requisite quantities. Hence, considering the motions both

of translation and rotation of the box, we see that the small motions of the box will take place

as if the fluid were replaced by a solid having the same mass, centre of gravity, and principal

axes, and having A, B and C for its principal moments. This will be true whether forces act

on the fluid or not, provided that if there are any they are of the kind mentioned in Art. 1.

Putting A , B , C^, for the principal moments of inertia of the solidified fluid we have

o(tbc

12 ^
'

Taking the ratio of C to C , replacing each term such as

\-e~~ , 2e~ -
. „ 384. 1

^ by 1 j^, putting for -^^0-,
1 + e~ n 1 + e" »

, „ 384 . . , J , . ,

its approximate value f260497, and for —- its approximate value 1 254821, and employing sub-

sidiary angles, we have

C ^ a' + b— = 1-260497 -TT-, .,,
C ab^a' + b^)

1-260497 ", 7 "
.̂^
- 1*254821 1--^—— S„ - versin 20„

+ -7-1—F^ ^o - versin 2 &„ \-\,
a {a' + b') n J

nnb n T «

where tan 0„ = e" ^n
, tan 6'„ = e~ 'i'

, so that

L tan 9„ = 10 - k— , L tan ff„ = 10 - A; — , where k = -6821882.
a b
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The numerical calculation of this ratio is very easy, on account of the great rapidity with

which the series contained in it converge, both on account of the coefficients, and on account of the

A B C
rapid diminution of the angles 0„ and Q'„. The values of — and — will be derived from that of —
by putting c for a in the first case, and c for b in the second. The calculation of the small motions

of the box will thus be reduced to a question of ordinary rigid dynamics.

These results appear capable of being accurately compared with experiment. For this purpose

it will only be necessary to attach a box, capable of containing fluid, to a rigid body oscillating

as a pendulum. The box may itself form the rigid body. The centre of gravity of the interior

of the box should be in a vertical plane passing through the axis of suspension, which will be known
by observing whether the position of equilibrium of the whole is affected by filling the box with

fluid. The mass, moment of inertia, and depth of the centre of gravity of the solid, including the

box, must first be found. The last of these may be found by loading the upper part of the

oscillating body till the equilibrium just becomes unstable: the moment of inertia will then be found

by means of the time of oscillation when the weight is removed ; or else both may be determined by

the times of oscillation when the solid is loaded with another of known mass and form and placed in

a known position, and again when it is not loaded. The same must then be done when the box is

filled with fluid. We shall thus determine the moment of inertia and depth of the centre of

gravity of the fluid; and, subtracting the moment of inertia due to the motion of translation of the

fluid, we shall thus get that due to the motion of rotation of the box, and thus determine in

succession by observation the quantities J, B and C, or any one of them. These quantities might

also be determined by making tlie box oscillate by torsion, and observing the time of oscillation. It

must be remembered that the moment of inertia due to the motion of translation of the centre

of gravity of the fluid, being capable of being derived from the general dynamical principle, that the

motion of the centre of gravity of any system is the same as if the whole mass were collected there,

and the external moving forces applied there, is of no use whatever in determining the question

of the equality of the pressure in all directions, or that of the amount of friction. It would seem to

be most convenient to have the centre of gravity of the fluid in the axis of suspension. In this case

if M, M', be the masses of the solid and fluid, /x, /x, their moments of inertia, f, t', the times

of oscillation, in seconds, when the box is empty and when it is full respectively, /i the depth of the

centre of gravity of the solid, / the length of the second's pendulum, we have

Ij. + n' = It"^ Mil ;

whence fx
- l{t'" — t^)Mh.

If the centre of gravity of the fluid be at a depth h' below the axis of suspension, we shall have

fi =l{t"^ — t-) Mh + It'"' M'h' ; in this case /x' — M'/i' will be the moment of inertia due to the

motion of rotation of the box.

When one of the quantities a, b, becomes infinitely great compared with the other, the ratio

C— becomes 1, as will be seen from equation (40). This result might have been expected. When

a = b tlie value of — is -ISGSSJ.

The experiment of the box appears capable of great variety as well as accuracy. We may take

boxes in which the edges liave various ratios to each other, and may make the same box oscillate in

various positions.

15. Initial motion in a rectangular box, the several points of the surface of which are moved

with given velocities, consistent with the condition that the volume of thefluid is not altered.
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Employing the same notation as in the last case, let F {.v, y) be the given normal velocity at any

point of the face in the plane ay. Let fo fo J^ (.-v, y) dwdy = Wal, and let

F{.w,y)^f{cc,y) + W

:

then, since the normal motion of the above face due to the function / (d-, y) does not alter the

volume of the fluid, we may consider separately the part of cp due to this quantity. For this

part we have

d'd) d'd) d'd)
, ^—J- + —i + —i =0 (4.1),

dx* df dx' ^ '

with the conditions

—^ = 0, when a' = or o (12),

-2 = 0, when ?/ = or t (43),
dy

—i- = 0, when X = c (44),
dz

^=/C^', !/)> when^ = (45),

within limits corresponding to those of the box.

For a given value of x the value of (p from >t = to .r = n and from y = to y = b may be

expanded in a series of the form

2o S„ P,„.„ cos cos —-- ,

a b

the sign 2 referring to m, and 2' to n: and since the values of d>, —^ and —-^ do not alter° ^ dx dy

abruptly, and equations (42) and (43) are satisfied, it follows that the series by which <p,

— and — are expressed are convergent, and hold good for the limiting values of .i- and y.
dx dy

Substituting the value of <p just given in (41), equating to zero coefficients of corresponding

cosines, and introducing the condition (44), we have, omitting the constant, or supposing A„a = 0,

(p = 2,0 \ .^,»,„j£ " +e '
i

cos cos —-— ,

,
p' iif of

where — = — +—.
c a-

Determining the coefficients such as J,„„ from the condition (45) in the usual manner we have,

m and n being > 0,

."in ri
^ — ' - -. ~ ~(e - e ) / / /Cf) y) cos cos —;— dxdy,

rpab
-'o •'o

«

Ao.„ = (e » - 6" < )"'
/ /

/('", y) cos ---^ dady*.

with a similar expression for ^„|,,, whence the value of d) corresponding to f(,v,y) is known. In a

similar manner we may find the values corresponding to the similar functions belonging to each of

the other faces. If W be the quantity corresponding to IF for tlie face opposite to the plane xy.

• The tunclion /(.r, ^) in these integrr.ls may be replaced by /'(.(, ^ ), since f^ )^ FFcos - - - cos f/j(/^ = 0, unless ;n=H=0,
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and U, U', correspond to JF, W', for the faces perpendicular to the axis of x, and if V, V', be the

corresponding quantities for y, there remains only to be found the part of <p due to these six

quantities. Since U, U', are the velocities parallel to the axis of x of the faces perpendicular to that

axis, and so for V, V, &c., the motion corresponding to these six quantities may be resolved into

three motions of translation parallel to the three axes, the velocities being U, V and W, and

that motion which is due to the motions of the faces opposite to the planes yx, xz, oey, moving with

velocities U' — U, V - V, W — W, parallel to the axes of a;, y, z, respectively. The condition

that the volume of the fluid remains the same requires that

- (U"- U) + 7 (F'- F) + - (IF'- IF) = 0.
a c

It will be found that the velocities

„ = - (f7'_ U), v =
l {V- V), w = - (IF'- IF),

a c

satisfy all the requisite conditions. Hence the part of (p due to the si.\ quantities U, U', V, V,

W, IF', is

Ua!+Vy+ Wz + ([/'- U) — + (V'-V)^ + (W- W) — .

2a 20 2c

This quantity, added to the six others which have already been given, gives the value of <p which

contains the complete solution of the problem.

The case of motion which has just been given seems at first sight to be an imaginary one,

capable of no practical application. It may however be applied to the determination of the small

motion of a ball pendulum oscillating in a case in the form of a rectangular parallelepiped, the

dimensions of the case being great compared with the radius of the ball. For this purpose it will be

necessary to calculate the motion of the ball reflected from the case, by means of the formulas

just given, and then the motion again reflected from the sphere, exactly as has been done in the case

of a rigid plane Art. 10. In the present instance however the result contains definite integrals, the

numerical calculation of which would be very troublesome.

G. G. STOKES.

Pembroke College,

M»y, 1843.

Vol.. VIII. Part I.



X. Notice on the Occurrence of Land and Freshwater Shells ivith Bones of' some

extinct Animals in the Gravel near Cambridge. By P. B. Brodie, F.G.S , of

Emmannel College.

[Read, April 30, 1838 ]

The discovery of recent shells associated with bones of some extinct mammalia, and other animals,

is a subject of considerable interest, especially as the same fact has also been noticed in several

other distant localities. The shells in question were found in a gravel pit at Barnwell, ad-

joining the river, in a bed of fine sandy gravel, about fourteen feet from the suiface, the whole bed

consisting of alternating layers of fine white sand and pebbly gravel, resting upon a thin bed of

brown clay ; altogether amounting to a thickness of about twenty feet. The stratum in which

most of the shells occur is composed of a thin bed of shelly gravel, abounding in many perfect

specimens, and comminuted fragments of the same fossils. To this succeeds an equally thin

bed of fine white loam, containing shells far more perfect but less numerous. This gravel, though of

course derivative, appears to differ from the coarser beds of the same formation ; for while the

latter chiefly consist of rolled fragments of older rocks, the former, on the other hand, contains

but a small proportion of such materials, and appears to be more immediately derived from a

finer sediment formed by local inundations. Indeed, many of the terrestrial and aquatic shells

are of so fragile and delicate a texture, that they must have been inevitably injured had they

been swept away by any violent aqueous action. In most of the specimens, the mouths of the

Univalves, and the hinges of the Bivalves, are in excellent preservation, whilst the associated

bones exemplify the same fact. The shells are also very abundant, and generally of small size

;

all the genera, and most of the species being identical with those now living, though one or

two species do not appear to be so. Among the terrestrial specimens the following genera and

species may be enumerated.

Helix hortensis.

carthusiana. \ ICi

Bulimus clavulus.

Claiisilia.

f Pupa umbilieata.

sex-dentata.

The aquatic shells afford examples of the following genera

:

Cyclas, a new species.

Succinea amphibia. '

oblonga.
\

species undetermined.

)

Paludina, species undetermined, f

Operculfe of |

Valvata obtusa.

spii'orbis.

Planorbis niarginatus.

and some others.

[ LjTiincea aujicularis.

1 glutionosa.

species undetennincd.

Tcstacellus.

The above undetermined species may not, perhaps, have any living representative. The Rev.

Leonard Jenyns has decided the Cyclas to be a new species. Seed-vessels of Chara or Gyrogonite,

and wood partly charred accompany them.

The bones discovered in the shelly gravel consist of the following specimens. A large tibia

and a small molar tooth of an elephant. Tibia of the gigantic ox. Lower portion of the horn

of a stag. Tibia of a deer, with teeth and vertebra; of the same animal. From the brown clay

forming the basis of the gravel, and overlying the chalk marl, was obtained the pelvis of a

small elephant ; but no shells occur in this bed. Some of the other localities, in which I have

also observed the same facts, are in the neighbourhood of Maidstone in Kent, and Salisbury in
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Wiltshire. In the former place a bed of brown clay fills up fissures in the lower green sand,

containing bones of mammalia and other animals. The shells accompanying them belong chiefly

to the genus Pupa. In the latter locality a thick bed of brown clay affords the bones and

teeth of elephants, with remains of the horse and deer, a jaw of a fox, and some others. The
only shells hitherto found associated with them belong to the genus Helix. Recent shells also

occur with bones of numerous quadrupeds in clay and gravel near Ilford, Essex, where several

of the shells appear to be identical with those above mentioned. (See Loudon's Magazine, Vol. ix.

p. 263, and Lyell, Vol. III. p. 140.) Recent marine shells have also been discovered by Sir P. Egerton

in a bed of gravel in Cheshire, which are described in the second Volume of the Geological Pro-

ceedings. From the occurrence then of the same facts in these distant localities, it may be

asked, whether any conclusions might be drawn with regard to the probable contemporaneous

origin of these respective deposits ; and what argument might be founded on the excellent

preservation of many recent land and freshwater shells associated with bones of some extinct

animals, in strata, evidently of diluvial origin.

Since writing the above, I have observed that there are two distinct beds containing shells.

The uppermost, is the fine, white sandy stratum, containing Helix and Paludina in great abun-

dance, with other shells. While the lower one, is a hard white marl (resembling chalk), charged

with numerous Pupa, small Planorbes, some Clausilia, and a very few Seed-vessels of Chara.

Large and small fragments of wood abound. This distinction of the two shell beds is necessary

to be observed, because they do not contain shells common to both. No Pupa, Chara or wood

occur in the upper sandy layer ; indeed the general characters of each are very different ; one

being a fine sandy shelly bed ; the other, a hard white marl, and in this latter formation

the bones were found. These two beds however lie within a few inches of each other, so that

the distinction is chiefly necessary, with reference to the different Testacea and Mollusca which

they each contain.

P. B. BRODIE.
Emmanuel Colelge,

April 28, 1838.

The following Notes to the above communication are added by Professor Sedgwick.

In a paper by J. Okes, Esq., published in the first Volume of the Cambridge Transactions (p. 175), there is

a description of some fossil remains of a beaver dug up from the bed of the Old West Water about three miles

south of Chatteris : and in a subsequent communication he described numerous fossil bones found in beds of

gravel which extend from Barnwell Abbey to Jesus Common. All the specimens were subsequently deposited

in the Woodwardian Museum: and, with those derived from the Barnwell gravel, were some species of land

and fresh water shells (Helix hortensis, &c.) well preserved and in a few instances retaining traces of their

original colours. Mr Okes considered these shells to belong to the period when the bones and gravel were

deposited. But the conclusion admitted of some doubt, as the pits from which the bones were derived gave

no clear sections ; and it mas just possible that the shells might have fallen down among the bones (during the

progress of the excavations), from the superficial part of the gravel.

Similar phenomena fell under my own notice, a year or two afterwards, while workmen were em])loyed in

excavating the foundations of the new houses at the west end of Barnwell. But there was still a dilliculty
;

because the sections did not shew the exact position of the shells, so as to prove that they were strictly con-

temporaneous with the deposit of the bones. The ob.servations of Mr Brodie have settled this question, and
there can now be no doubt that the shells above mentioned were as old as the period of the gravel.



140 Mr BRODIE, on LAND AND FRESHWATER SHELLS, &c.

It is well known, that there are three kinds of diluvial drift in the country round Cambridge.

(I.) The great hrown clat/ forming the table-land between Canabridgeshire and Bedfordshire—extending

in patches, sometimes of verj- great extent, through Norfolk, Suffolk and Essex, &c. &c.—often containing

rounded masses of stone of considerable size.

(2.) A coarse gravel generally occupying the crests of hills, e.g. Harston Hill, and the Gogmagogs.

Among the rolled masses in this gravel may be found specimens of most of the older formations of England.

(3.) The fine flint-gravel of the lower lands, the well known material for the repair of the roads. It is

a very extensive formation, and though often indicating the irregular action of water, is generally at a nearly

dead level. It appears to have been formed during some long period, while the water (by the elevation of

the land) was slowly subsiding to what is called a lower level. This gravel is the newest formation of the

three; and over it comes the bog earth, the deposits from land floods, and the vegetable soil.

Bones of the beaver (?), and certainly of the mammoth, rhinoceros &c. &c., have been found in the brown

clay (No 1.), but the organic remains of mammals are most abundant in the flint-gravel (No. 3.), though

generally in a very bad state of preservation, and much rubbed and comminuted. In a few spots, where the

coarser flint-gravel alternates with masses of fine siliceous sand, the bones and teeth &c. are found entire
;

but even then they are generally so brittle that they cannot be extracted or preserved without considerable

difliculty. If the above explanation be true, there can be no difficulty in understanding how remains of

mammals, and land or freshwater shells, may have been drifted into the flint-gravel during the period of its

formation : but this is a point, the discussion of which would lead rae beyond the limits of this note.

Among the fossil remains of mammals in the flint-gravel (No. 3.), the bones of the following genera

deserve notice.

(I.) Mammoth, or fossil elephant. The remains of this species are most abundant—such as molars and

tusks, sometimes quite entire ; fragments of the pelvis and other strong portions of the skeleton.

(2.) Rhinoceros, also very abundant. In the Barnwell gravel I have found many molars, a humerus,

a femur ; and bones of the extremities, such as metatarsals and metacarpals, &c.

(3.) Hippopotamus—one or two fragments of molar teeth, but rare.

(4.) Equus—teeth and other bones in considerable abundance.

(5.) Bos, very abundant—Remains, such as teeth, horns, fragments of the leg bones, jaws, portions of the

cr.anium, &c. &c. are scattered through the flint-gi-avel. The species, or variety, seems to have been like that

of Walton, and was of enormous size. A portion of a fine cranium was found by Mr Okes : a perfect ramus

of the lower jaw was found by Dr Clark in the gravel pits of Parker's Piece.

(6.) Cervus—bones, &c. of several species—among them are fragments of the horns of the gigantic cervus

(Irish Elk). ^__,^
/ J^^^^it^^^N A. SEDGWICK.
/^ fr.' sU >% 'A

TniNiTY College, / j)9&f,<f^''^ \

March8,lSi4. [ iVkviO'l'C' j

N.B. The aliove communication of Mr Brodie was unfortimately mislaid ; and, in consequence, its publication has

been delayed more than five years.
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XI. On the Foundation of Algebra, No. III. By Augustus De Morgan,
V.P.R.A.S., F.C.P.S., of Trinity College; Professor of Mathematics in Ufiiversity

College, London.

[Read, Nov. 27, 1843.]

In two former papers (Vol. vii. pp. 173, and 287) I have described the view which I take

of the three fundamental symbols of Algebra, A + B, AB, and A". This third communication is

a generalization of the view taken in the second.

In establishing an independent definition of A", a step which was seen to be indispensable

if all its cases are to be explained from the commencement, a preliminary extension of the idea

of a logarithm is necessary. I proposed to call the extended logarithm by the name of the

logometer. In recapitulation it may be desirable to state, that the complete symbols of the new
algebra are all capitals, that the positive and negative quantities of the older algebra are small

letters, and that the equation R = (r, p) means that R represents a line of the length r inclined

to the unit-line at an angle p.

Any definition of A^ may be allowed which satisfies the conditions

A'>A'^ = A"*", A^C = (AC)", iAy = A'''^,

or rather the proper definition is the most general of those which satisfy these conditions ; unless

it should happen that the results of the most general definition can themselves be conveniently

expressed in terms of the results of a less general definition. This does happen, as I am about

to shew in regard to A"; a wider definition of it even than the one I gave in my last paper is

practicable, and must be considered : though it will turn out not to be necessary, because it is

capable of expression in terms of its more simple case.

The function which, whatever be its name (I call it the logometer), plays the part of the

logarithm in a complete system of algebra, is fully defined by the equation

\A + XB = \{AB), or \ {a, a) +\ih, (3) = \{ab, a + fi),

and this function being settled, A'^ can be no other than X"' (BX^). In my last paper, I pro-

posed as the definition of X (/•, p), tlie line which has the projections log r and p on the unit-line

and its perpendicular: so that X (r, p) = log r + jo y/— 1. But it would equally satisfy the

fundamental condition if we were to propose as the definition of \{r,p) the following,

X (c, p) = log r (m + n ^- 1) + p (^ + V <y- 1),

where m, n, n, v are any constants. The geometrical de-

finition is as follows. To find the logometer of a line R
or (r, p) ; let there be two fixed lines OF and OG
(m + « ^/ - 1 and fi. + v \/—^)i which we may call the

base of leiigtk and the base of direction : accordingly OF
lias y/(ot^ + ri') and OG has \/iiJ? + li') units. Let

OP : OF :: log r (the units in the logarithm of the _
length of R) : U and let OQ : OG as p (tlie units in the

angle of R) : 1 ; then will OR, the diagonal of the paral-

lelogram on OP and OQ, be the logometer of R.

Vol. VIII. rAin II. T
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In my last paper, the bases of length and direction were on the unit-line and its perpendicular,

and the lengths of these bases were units.

If the logometer be p + q^-l, its primitive, {r, p), is found from

vp - nq mq -np
log r =

, p = •

° mv-nn mv - n/x

We are now to express X^': it is convenient to express the radical letter X by its length and

direction (x, ^), and the exponent by its projections, v + w,^/-l. If X^, which by definition

is \-'(l'A^), be called Z or («, ^), we have

log x: = {v - bw) log x - cw^, ^= (v + bw) ^ + aw log ,v,

m^ + n^ mn + nv /jr + v'

where a = , b = , c = .

mv - n/x mv-nn mv - n/x

If we prefer to express the bases of length and direction by their lengths and directions, as

m + n^~l = (g, y), fx + V \/ - i = (k, k),

we have

g 1 cos ((c - 7) k I

= -. ; , C =
k sin ((c - 7)

'

sin (/f - 7)
'

g sin (< - 7)
'

which are connected by ac - 6" = 1.

Some mode of expressing X^ should be contrived, such as X^„^„, which may show its

dependence on the arbitrary constants in the bases; this will allow us to reserve X^ for its

common signification, as an abridged form of Xj'mi. But, before proceeding further, I may

notice that the logometer of my last paper is not as general as it might be, even on the sup-

position that X^ is to have no extended meaning. For if k - 7 be a right angle, and if k = g,

then a = 1, 6 = 0, c = 1, log x = v log a? — w^, ^ = v^ + w log a?, which two last equations simply

express that X^ has the ordinary meaning. That is to say, every result in the last paper remains

if, instead of the bases of length and direction being units, they be any equal lines, and if instead

of being on the unit-line and its perpendicular, they be on any lines which are at right angles

to one another, provided only that the base of direction be a right angle in advance of that of

length.

Returning to the most general definition, we have

-A,„„fi^ or (,.x, ^)„i„^^ — t

_ [t— (6-ov'-l)iii]logar + [i.+ (4 + cV-l)K]f V-l _ _j,f- ((.-<! V-l)i(' [f+(»+f\'-l)«']f ^-\

Of the three fundamental equations J"^^ = J^^^, A"C'' = (JC)" and (^'')"^=J"^ it is

instantly seen that the two first are satisfied by this new signification of the exponent ; and that

they are satisfied independently of the relation between a, b, and e, or ac-b'-=\. The third

is a little more intricate: the formation of (X" + '"'^-')"'+"'''^-' requires us to write (« - bw) log.r

- cwf for log X and (v + bw) ^ + aiv log x for f, v' for v and to' for tv in the first or second of

the preceding expressions for X^ . This being done, it is found that in consequence of ac - A^ = 1,

the result is precisely the same as if try' - ivtv' had been written for v and vw' + v' w for w, without

any substitutes being employed for x and ^. But these last changes turn

n + w,y-\ into (v + tv^ -I) (v + w' ^y-\).

The theory of quantities once called real admits of no extension ; for if f and «• vanish,

x'^^ ^ = g'loe'', or ,v". But the following deductions.

sV-i _ -be + as^-t ,«v-i _ a a ~
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show that the signification of ordinary exponentials involving -y/— 1 is completely changed: thus

el,„^' signifies a line of the length e
''* inclined at the angle ad to the unit-line.

Without going further into details we may see that, as before remarked, it is not necessary to

retain this extended notion of A^, since the consequences of the extension can be expressed by the

particular case in general use; which cannot be said of JB as compared with A + B, or of A"
as compared with AB. This rejection is a generalization of the rejection of all logai-ithniic bases in

favor of e, and the extended definition of A" is itself a substitution of logarithmic bases in their most

general form. For whereas, in the common system, e and e^"' are the logarithmic bases* employed
for ordinary and periodic magnitude, we have, in the system above described, employed

^,. + „V-ir and e*----^-')-.

Great care will be necessary, in verifying the conclusions, not to confound the meanings of A^„
and A"^, or the operations performed upon them. Thus the function whose WM^iz-logometer is 1,

may be represented by
' V-i

e»i + W-i or by e""'"

and €"*"J^'' = X'. AVithout such care, the inquirer will infallibly be led to equations of con-

dition between m, n, fi, and v, which he will find are satisfied by m= i, n = Q, n = 0, v - I :

that is, he will imagine he has proved the system of my last paper to be necessary.

From the expression of X in terms of its logometer, we derive the following, e meaning
(f , 0) ;

^V-l,

On this it is to be observed, that the notion formed from the ordinary modes of expression,

namely, that in ep + i^-^ there is a peculiar reference to length in p, and to direction in q, is not

altogether correct. Tlie imaginary part (it may perhaps be allowed to retain the nominal dis-

tinction of real and imaginary) determines the direction, but the length depends upon both parts.

The interpretation of c^*^',/"' is, that it represents a line of the length e''"'"' inclined to the unit-

line at an angle aq\ or (e''"*"', aq). One case, and one only is indefinite, when (fi + v^/- 1) -^

(m + w-^— 1) is real, that is, when m = 0, /^ = 0, or when « = 0, u = 0, or when m : n :: ix : v,

which last includes the others. In this case the line takes the form (0, co ) or (m , eo ) the inde-

finite character of the result arising from the coincidence of the bases of length and direction
;

it resembles the attempt in common algebra to form a system of logarithms to the base unity.

But when
{ij. + r ^y - ]) -H (»« + n %/- = ~ \/- 1, which gives 6 = 0, a = - I, we find («, ^)

represented by le"'^,,"'. Here the bases of length and direction are at right angles to one another,

but that of length is in advance of that of direction. This case requires that n = n, v — — m,
and the logometer is (m 4- n '^— 1) (log ,r — ^ -y/— 1).

There would be little use in entering into more detail than is necessary to illustrate the

general meaning of the symbol A". But it must be considered necessary, in all future explana-

tions of the elements of algebra, to point out the complete meaning of this symbol, not only

to avoid defective reasoning, but to prevent the student from attaching an undue weight to the

connexion of -\/- 1 with the representation of direction. It is a strong corroboration of what

seems to have been pointed out by the course of the complete science up to the present time,

namely, that we must not expect any new imaginary or impossible quantities. I must own that

* Ar far an 1 know the basCH actually employed are four, « and e*^'' in analysis as above described, 10 iu tlie facilitation of com-

putatlona, and ^2 in the numerical coHHideration of the musical scale.

t2
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I rather expected to find something of the sort in the present inquiry : remembering that the first

great diflficultv arose from the inverse process to addition, the next from an inverse process to

multiplication, I should not have been surprised to have found a third in the most general direct

and inverse consideration of J^. But though we are not to look for any new inexplicables

from A + B, AB, or A", it should be remembered that there is a scale of ascent in the funda-

mental mode of deriving them from one another which does stop anywhere. Addition being

obtained, and the general notion of operation, the solution of (p{cc + l) = cpx + c gives (pj; = c.r,

and introduces multiplication. Next (p{a; + 1) = c(p<v gives <p,v = c\ and introduces involution.

But (p(,i' + 1) = c*', the solution of which gives the next step, gives for (h.i' a function which has

not been considered ; though its particular cases

(pl=a, ^2 = c", (pS^c'", (j)i = c'-''"°\ &c.

are known. If (px could be completely inverted, new inexplicables might, and perhaps would

arise, either from this or some succeeding case.

A. DE MORGAN.
University College, Lokdon,

October 7, 184.3.



XII. On the Measure of the Force of Testimony in Cases of Legal Evidence. By
John Tozer, Esq. M.A., Barrister-at-Law, Fellow of Gofiville and Cuius

College.

[Read Nov. 27, 1843.]

* On the question of the possibility or advantage of measuring numerically the force of tes-

timony, the opinions which pervade the legal literature of the English language differ almost

invariably from the conclusions of science. This paper contains an attempt to trace the effect of

those conclusions in their application to a practical example, and to shew that they afford the

best means of analysing the processes which are necessarily adopted in such examples. The mere
purpose of rendering demonstrated truths more accessible, might seem to assign to the observations

which follow a place in professional rather than in scientific literature: it must however be remem-
bered, that practical men are concei'ned with practical rules, and with principles no further than

may be sufficient to render those rules intelligible. The occasional devotion of time to higher pur-

suits can scarely be regarded by them as other than treasonable to their personal interests; the

assertion of the supremacy of science over art they must for the most part leave to the culti-

vators of science.

The proposition that a moral certainty is a mathematical probability whose numerical measure

lies between unity and some definite numerical fraction, puts in issue either directly or indirectly

every question that can be raised on the subject treated of in this paper, though the subject itself

is of a much more limited extent than the proposition. The vague way in which the processes

by which this proposition, and those which must stand or fall with it, can alone be established

or disproved, have been described by even the ablest of our legal authorities, removes every

feeling of diffidence in approaching the subject. Professor Starkie, in speaking of the mode of

estimating the weight of the united testimony of numbers, says, " If definite degrees of probability-

could be attached to the testimony of each witness, the resulting probability in favour of their united

testimony would be obtained not by the mere addition of the numbers expressing the several pro-

babilities, hut by a process of multiplication.'''' 1 Starkie, 3rd ed. SS*. And in a work there cited

occurs this passage: " On one side of the equation are mentally collected all tlie facts and circum-

stances witich fiave an ajfirmatiue value ; and on tlie ottier, all those which eittier lead to an
opposite infereyice, or tend to diminish the weiglit or to shew the non-relevancy of all or any

of the circumstances which have been put into the opposite scale. The value of each sepa-

rate portion of the evidence is separately estimated, and, as in algebraic addition, the opposite

quantities, positive and negative, are united, and the balance of probabilities is what remains
as the ground of human belief atid judgment.'''' Wills on Circumstantial Evidence, 14.

Symbolical language has given expression to no processes of greater refinement and beauty than

those employed in the investigations of the theory of probabilities. No elaborate o)ies are required

in this particular application of its principles; but the expression, "a process of multiplication."

conveys to the mind no adequate idea of the simplest of them. Subjects which have'been deemed
worthy of their attention by Laplace and Poisson cannot be thus dismissed.

"The notions of those who have supjio.sed that mere moral prob.ibilities or relations could

ever be re|)reseMted by numbers or space, and thus be subjected to arithmetical analysis, caniuit

but be regarded as visionary and chimerical." Starkie 571.
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" Whenever the probability is of a definite and limited nature, (whether in the proportion of

one hundred to one, or of one thousand to one, or any other ratio, is immaterial), it cannot be

safely made the ground of conviction ; for to act U])on it in any case would be to decide, that

for the sake of convicting many criminals, the life of one innocent man might be sacrificed." 57-i-

" The distinction between evidence of a conclusive tendency which is sufficient for the pur-

pose, and that which is inconclusive, appears to be this : the latter is limited and concluded by

some deo-ree or other of finite probability, beyond which it cannot go ; the former, though not

demonstrative, is attended with a degree of probability of an indefinite and unlimited nature" Ibid.

Tlie above short passages are cited as containing a clear enunciation of the propositions dis-

sented from, and not as affording a complete exposition of the author's views, for which the

work itself is referred to.

A passage from Lord Brougham's Natural Theology is also cited to by Mr. Wills, as includ-

ing the noble author among the advocates of the truth of the last of these propositions; it does

not however appear to do so. If the propositions are true, the conclusions here arrived at must

be erroneous.

The expression of the value of a probability numerically is a necessary consequence of any

attempt to express that value accurately : if a certain event has been observed to accompany a

certain set of appearances more frequently than the appearances have been observed to occur without

the occurrence of the event, we may say that a repetition of the appearances creates a probability

of the repetition of the event—we may even say that that probability is great or small ; but if we

wish to say how great or how small, we are immediately forced on the enquiry, how many times

have the appearances to our knowledge occurred, and, out of these, how many times has the event

accompanied them. That the fraction which expresses the ratio of these numbers measures the pro-

bability of the occurrence of the event accompanying the appearances, is a consequence of the

definition of the term " probability ;" and if the term " moral probability" have any other definition,

that definition remains yet to be enunciated.

If the appearances are of ordinary occurrence, or capable of being resolved into others which are

so, the fact that tlie particular combination may never before have been presented to the senses of

the person deciding, is not material ; the conceiving that if they were repeated a certain number of

times the event would accompany them a certain other number of times, is a process essential to the

conception of measuring the probability at all. If, again, the appearances afford some probability

of the event, but are so unusual that the judgment hesitates to assign the definite numbers it assigns

in the previous cases, the process is only varied to this extent : instead of assigning a numerical mea-

sure to the probability itself, we assign numerical values to the limits within which it lies. The
measure here then is indefinite, but it is so because, to the imperfect experience of the observer, the

probability is so; the indefiniteness has not been introduced in the process of measurement: the

least value also that the judgment assigns to the measure of the probability may be large enough

to measure a moral certainty, or the greatest so small that the probability must in ordinary occur-

rences be disregarded, without expanding or narrowing the limits through which indefiniteness may
range. If the probability be conclusive, its conclusiveness depends on the magnitude of the least

possible value of its measure; if it raise but a "light presumption," it would do so if the measure

of the highest limit were that of the probability itself. Suppose, for example, a medical witness to

assert, that certain appearances had led him to the conclusion that a person had died from taking

hydrocyanic acid. To determine then whether the allegation possesses the degree of probability

which would warrant our treating the fact alleged as true, we estimate the ability generally of the

witness to judge, his opportunities of judging in the particular case, and his sincerity. The phe-

nomenon then that we witness is that of a man possessing the ability and the inclination to speak

correctly, which the values we assign to these would confer on this particular witness making this

particular allegation; if then in our opinion this phenomenon would in 997 cases out of 1000 be

produced by the fact asserted, and in three cases out of 1000 by some other cause, and if we have
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assured ourselves that to suspend our judgments from a fear of erring no more than three times out

997
of 1000 would be to defeat the purposes for which laws were instituted ; measures a probability

1000 ' '

which we consider large enough to warrant decision ; and the testimony of this witness does therefore

warrant decision; and it would do no more if in our judgments the witness would be impelled to give

his evidence by any other cause than the presence of the acid no more than three times in a million ;

the actual value of the probability in such a case, perhaps cannot, and certainly need not, be assigned,

but the value of its inferior limit is definite, and its measure is a numerical fraction. The mind of

the person deciding may have done no more than perceive that the probability equalled or exceeded in

magnitude those on which he habitually decided in affairs of equal importance; but if called on to

assign measures to the probabilities he has employed, he must say that his decision would not be with-

held from a fear of erring three times in 1000, and that the chance of erring in the case before him

was within that limit : the employment of numbers is a consequence of the effort to be definite. If,

again, we wish to compare the effect of evidence on different minds, though each may say in a parti-

cular instance that enough has or has not been adduced to produce conviction, the answer to the

question, how much has been adduced ? or, how much will prod\ice conviction? is, and is necessarily,

a numerical fraction. The conclusiveness or inconclusivcness of evidence is then altogether inde-

pendent of the definiteness or iiulcfiniteness of the probability it raises; the only condition necessary

to conclusiveness is, that that probability should be measured by a numerical fraction which e.\ceeds

some given definite magnitude. As regards criminal cases, the nature of the evidence does not admit

that demonstration can be obtained ; we cannot therefore ensure that out of some definite number of

persons punished one innocent person will not be punished as guilty; the only effect of making

the standard of conviction indefinite, is to make the number of cases indefinite in whicli the wrongful

decision has occurred; but it leaves us in doubt as to whether the injustice is increased or diminished.

It is humiliating to intellectual pride to admit that our best exertions will not protect us from

inflicting wrong on others, but nothing can be gained by shrinking from measuring the extent of our

ability to do so. " Selon Condorcet, la chance d'etre condamne injustement pourrait etre equiva-

lente a celle d^in danger que nous jugeons assez petite pour ne pas menie chercher a nous y
soustraire dans les habitudes de la vie ; car, dit il, la societe a bien le droit, pour sa siirete, d'ex-

poser un de ses membres a un danger dont la chance lui est, pour ainsi dire, indifferente; mais cette

consideration est beaucoup trop subtile dans une question aussi grave. Laplace donne une definition,

bien plus propre a eclairer la question, de la chance d'erreur qu''on est force d''admettre dans les

jugements en matiere criminelle. Selon lui cette probabilite doit etre telle qu'il y ait plus de

danger pour la surete publique, a Tacquittement d'un coupable, que de crainte de la condamnation

d'un innocent." Poisson sur la Prohahilite des Jugements. 5.

Condorcet assumes that a man has no more fear of dying at 25 than at 20, and that he therefore

neglects a probability measured by , and infers that we may neglect this in our decisions.

Condorcet, Probabilite des Decisions.

If in the term "danger to the public" we include the danger arising from a callousness or indif-

ference to the infliction of wrong, or from a diminution of respect for the laws, the definition of

Laplace seems unexceptionable.

In the example taken below, the formula first obtained applies to all facts the truth of which

may be estaljlished or disproved by ex])eriment; it assumes that the witnesses giving their testimony

have no wish to deceive. The peculiarity in facts of this nature is, that the repeating and varying

of the experiments tends successively to eliminate the several causes by which the ap|)earances could

have been produced, and to leave the" fact attested as the only known cause by which they can he

accounted for. If the tribunal be competent to judge of the skill and success with wiiich the

experiments have been conducted, their detail is submitted to its consideration ; if it be not, the

concluMuns are partly arrived at by the witnesses themselves, and taken on trust by tlie tribunal.
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The phenomenon then actually witnessed is that of a witness alleging that, from appearances

which his experiments have produced, he infers the existence of a certain fact, and the object is to

determine the probability of tiiat fact being true. First then we consider, for each separate experi-

ment, on the hypothesis that the fact is true, what is the probability that it would have produced

appearances sufficient to convince the mind of the witness, and induce him to give the testi-

mony he has given. We then take each of the known possible causes of such appearances, and

similarly calculate the probabilities that each one of those severally would, if it existed, have pro-

duced them in such a way as to have impelled the giving of tlie testimony. And, lastly, the pro-

bability of some unknown cause having so acted. The probability of the hypothesis that the

alleo-ed fact is the true cause, is then determined by the known processes of the science. If the

operations have been conducted in symbolical language, no step has thus far been taken without the

sanction of rigid demonstration ; the effect has been to resolve the probability whose value is sought

into tiie elementary probabilities of which it is composed. To the next step therefore, which is that

of assigning numerical values to the symbols in which the result is expressed, has been given all the

facility of which it is capable. In the particular case of persons accused of crime, the minimum

value of the probabilities which favour the accusation alone are required, the precise numerical

value of their measures never need therefore be assigned. The values which in our judgments those

which favour the hypothesis cannot fall short of, and which those that favour any other hypothesis

cannot exceed, are all that are necessary to be decided; the result is a number which is not greater

than the numerical value of the measure of the probability whose value is sought: and as far as this

particular fact is concerned, conviction or acquittal must follow, as this measure does or does not

exceed the standard which justifies decision. The actual measure of the value of the probability

is left indefinite in magnitude; its least possible value alone is defined, but the assigning of accurate

values to the elementary probabilities, and thus defining the actual measure, will not in the slightest

degree affect the result.

The next formula applies to allegations of facts the truth of which cannot be tested by experi-

ment ; the consideration of the credibility of the witness is also introduced; the modification by

which it is made to differ slightly from that given by Poisson, does not affect the principle by which

it is obtained. The hypothesis that the fact alleged is true will account for its being alleged,

first, when the witness is neither deceived, nor intending to deceive ; and secondly, when both the

one and the other, provided that among the various allegations which he may make for the purpose

of deceiving, he should chance to make that which is in fact true. The various ways in which he

may be deceived without intending to deceive, endeavour to deceive without being himself deceived,

and being himself deceived also endeavour to deceive without alleging the fact which did occur; all

suggest hypotheses which will or may, with some degree of probability, account for the testimony

being given, though the fact which it alleges is not true. The probability that the hypothesis

which assumes the fact alleged to be true is the correct one, is then as before given by the scientific

process, and this whether its truth be alleged by one or more witnesses, or alleged by some and denied

by others. The antecedent probability, of the fact alleged having occurred, is also taken account of

in the formula.

The same process applies to ascertaining the probability that a fact is true which is alleged,

but which is not material to the issue, of which an example also occurs. We then have a witness

alleging a fact the probability of whose truth we have measured ; and also other facts, the probability

of whose truth we wish to measure ; and the former modifies the values of the probabilities, that

the witness deceives, or is deceived, which are involved in the equations which express the latter.

When the measures of the probabilities of those facts which must be proved to sustain the

accusation have been ascertained, their product will measure the probability of a series of facts

being true, from which the truth of the accusation is an inference; the probability of the accusa-

tion being true will therefore be this product, or this product multiplied by the fraction which

expresses the probability of the inference being true, on the assumption that all the facts of the



IN CASES OF LEGAL EVIDENCE. 147

series are so, as the inference is or is not a necessary one: and the numerical values of the com-

ponent fractions, or of their limits being assigned a nunieiical measure of the probability of the

accusation being true, or of its inferior limit, will be obtained ; and the evidence will or will not

warrant conviction as this number does or does not exceed the certain prescribed value; and
whether the precise value be or be not definitely assigned, that is, whether the probability be defi-

nite or indefinite, will be immaterial, so long as this condition is fulfilled.

In civil cases, the questions to be decided having been elicited by the parties in their pleadings,

the value of the evidence by which they are to be determined is estimated in the same way ;

but it will frequently be necessary to assign the numerical values with greater accuracy. The
following paragraph applies to such cases, and seems also to involve an admission of all that is

contended for in favour of scientific investigation. " In some instances, nevertheless, where from

paucity of circumstances the usual means of judging of the credit due to conflicting witnesses fail,

it is possible that the abstract principles adverted to may operate by way of appro.^iimation,

especially in those cases where the decision is to depend on a mere preponderance of evidence
"

Starkie 554. A paucity of circumstances or incompleteness of data is what distinguishes the evi-

dence in favour of events which are merely probable, from that which supports those which are

certain, and it is the business of the science to determine the probability of the truth of the event

from the data which are offered to support or disprove it, however limited in extent these data niav

be. When the numerical measure of this probability is precisely 1, the dala are insuflicient for

decision, and in no other case ; in criminal cases, this punctum indifferens is claimed by the legal

presumption in favour of innocence.

If, therefore, in a case where the mere preponderance is to decide, we obtain a result by-

assigning to the probabilities which favour the claim of A the least values of which in our judg-

ments they are capable, and to those which favour the claim of B the greatest values of which

in our judgments they are capable; and another result, from the greatest which favour .^'s claim,

and the least which favour JB's ; then if each of these exceed ^, the decision is in favour of A,
and if each be less than ^, in favour of B \ but if one be greater and the other less than A,

more accurate values must be assigned to the numerical limits, till both the limiting values of the

probability be made to exceed or fall short of ^, or till on assigning what in our judgments are

correct values, a result precisely equal to ^ is obtained; in which latter case no decision can be

arrived at. The only peculiarity tiien in a case whose decision must depend on a mere prepon-

derance of evidence is this, that a more accurate estimate of the probabilities it involves must be

made.

A consideration of the investigations by which these remarks are illustrated, will shew that the

mode of estimating the force of evidence employed in a court, is a process which algebraic investi-

gation analyses, and of which it explains the theory ; and an approximation, (in most cases, scien-

tifically speaking, a rude one,) to a result which is obtained with accuracy by assigning numerical

values to the algebraic symbols. The complication which exhibits itself in the algebraic process is

in the nature of the subject, and is not in any degree introduced by the operation employed.

The difficulties are difficulties which belong to the act of in any way eliciting truth from a compli-

cated series of circumstances; the practical process, to a certain extent, evades, and necessarily evades,

these; the algebraic encounters then), and resolves them into their elements. The employment

of symbolical language facilitates the processes of deductive reasoning, but docs not change them ;

the assigning of numerical measures to the probabilities involved defines with accuracy their mag-

nitudes, but in nowise modifies them.

Again, the analytical process does not exclude considerations other tiian those which result from

the bare probabilities. Presumptions of law may be adopted in its formulae, and these may be

dictated by reasons of |)()licy, or other motives, as well as by the necessity for substituting a])proxi-

mations in j)racticc. They are inferences to wiiicii legislative enactment or judicial decision has

attached the legal consequences which properly belong to facts, and analysis therefore assigns to

them the measure of certainty. At the commencement of a criminal proceeding the law presumes

Vol. VIII. Pakt II. U
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that the accused is innocent ; and tlie analyst therefore assigns unity as a measure of the probability

of his innocence, though it may merely represent the confidence which the state reposes in the

inteority of its individual members. The claim to the property in waste lands beside a road is

advanced by the owner of the adjoining freehold, with a probability in favour of its justice measured

by unity, which must be reduced below one half by any claimant who would deprive him of

the benefit of the presumption. The consequences attached by the statutes of limitation to the ex-

piration of the periods which they assign, cause 1 or to be employed as the measures of pro-

babilities imperceptibly near in value to those to which by the non-expiration of the periods or 1

would be immediately before assigned. Some legal presumptions have, however, the effect of

modifying the probability, that the inference which they establish is a just one; it is perhaps

immaterial whether that raised by the production of a subsequent receipt in favour of the payment

of previous rent be absolute or capable of being rebutted. If it were absolute, and generally

known to be such, the knowledge that a conclusive presumption existed would diminish the proba-

bility of such a receipt being given when any previous rent was unpaid. In the presumptions

raised in criminal cases against the innocence of a prisoner, the probability that the inference is

just can never be less than that which justifies conviction.

The presumption of guilt in the case of stolen property of which the possession by an accused

party is unaccounted for is defined by decisions on actual cases, and becomes more accurately so

as the number of these decisions is increased: the test of consistency among these appears to be simply

this, that for each case the probability that the guilt of the accused is the cause of the unaccounted-

for possession of the property should have the same numerical measure.

Proceeding to the investigation of the reasoning processes by the algebraic solution of an example.

In a case of alleged poisoning by arsenic, to determine from the testimony of the witnesses the

probability of the presence of the poison.

Let there be n witnesses, who respectively allege, with a greater or less degree of confidence, that

they discovered As ; and m others that they were unable to do so ; and suppose there is no doubt

about the veracity of any of them.

An ordinary jury is not competent, from a detail of the processes of experiment, to decide on the

success with which they have been conducted. The phenomenon, therefore, which they witness is

the delivery of the testimony by a number of witnesses, whose respective abilities to judge it is a

part of their duty to estimate.

In the case where As is present:

Let p,...p„ be the probabilities that the first n witnesses would elicit from its presence

such appearances as to induce them to allege its presence.

§',...<]'„, that the m latter ones would do so.

Then 1 - p, 1 — g would be the probabilities that they would not succeed in doing so.

Where As is not present :

Let r,, r^,..r„ be the probabilities that some other substance has caused the appearances

in the case of the first n witnesses.

«i, S2...s^ in the case of the latter m witnesses.

Then 1 - r, 1 - s are the probabilities that appearances causing the testimony to be given would

not be exhibited by any other substance than As.

Then if P be the probability that As was present,

p ^ Pi---f)„-(l -q^) (1 -gj
V\---Pn • (1 - ?l)-"0 - 9") + n...'>'„ (1 - «,)...(! - Sj

'

If the jury were capable of judging of tlie evidence as furnished l)y the immediate result

of the experiments, selecting among the various causes of appearances which might be mis-

taken for those produced by As, would be performed by its members instead of by the witnesses.
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or as well as by them. In the particular case, antimony, the persalts of tin, and probably

some other substances, exhibit with some tests what to inferior skill would be such appearances.

Suppose there are n such causes of fallacious results, and let m several experiments be made,

Pi, g,, r, , be the respective probabilities that As, if it were present, and each of the other sub-

stances severally, if it were present, would produce the appearances witnessed by
the application of any one test.

<, that some substance, other than those known and enumerated, would do so if it were

present.

Pa, q-i.-.t^ P„fU---tn the corresponding probabilities for the other tests.

P the probability that As is present.

Then P= P^-V^ P'

]h--Pn + (If-9« + &C + t,.t^...t„

If this substance exist in moderate quantity, and even an ordinary degree of skill be employed,

the experiments may be varied so as to produce appearances which could not have been produced

by some one or more of the causes other than the presence of As, and therefore a factor will be

successively introduced into the terms ^i...?,, J'j...r„, &c. of the denominator, and the expres-

sion is reduced to

I

P=
1 + J.. .._=..

Px P„

It may be observed generallv, that it is the presence of this terra —...-2 in the denomi-
Pi Pn

nator representing possible hypotheses, yet unthought of, that distinguishes the proof of a physical

fact from a mathematical demonstration.

The successive elimination of the known causes of error is precisely that which common sense

employs in arriving at a moral certainty ; when this cannot be effected, the previous expression

remains, and the probability of the fact alleged being true is arrived at by assigning numerical

values to its elementary probabilities.

The evidence which is the subject of the following formulas is that, or nearly that which was
given in a case which occurred of a woman who was accused of having caused the death of her

husband, by administering As ; it is merely used as an illustration, and therefore no particular pains

is taken to state the evidence very accurately. The death and its cause were not disputed, the

probabilities therefore of the presence of As, and of its having caused the death, are taken in the

investigation as measured by 1.

The first witness, whose evidence is here considered, alleged that she had seen the accused on

the morning of a particular day making some pills.

Consider, therefore, first, the probability of a fact being true which depends for its evidence on

the testimony of a single witness. In such a case the allegation may have been made, either because

the event alleged took place, and the witness saw and believed it to do so ; or because the witness

believed it to have taken place, though it did not in fact do so ; or because the witness was actuated

by a wish to deceive, and made the allegation without believing in its truth. Call the event

alleged E^, and as a convenient mode of expressing the probabilities involved in the investiga-

tion, let there be w - 1 other events E.. £„, which include, first, all those by the belief in

the occurrence of which the disposition, on the part of the witness, to make the jiarticular

allegation could be influenced, whetiier they might in fact have occurred or not: and secondly,

all those which the witness might be induced to allege on the particular subject, without believ-

ing them whether they could or could not have occurred.

u 2
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Take then,

A, ^2 ^
2A' 2A' 2A'

the respective probabilities of the happening of the events E^ ... E„ as derived from our knowledge

of the nature of the events themselves;

26' 26' 26'

the probabilities that they will be respectively believed, the witness being deceived

;

2a 2a 2a

the probabilities that they will respectively be alleged, the witness not believing the one alleged

to have occurred

;

u the probability that the witness is not deceived ;

V that the testimony is not given with a knowledge that it is false

;

Pi that the occurrence of £, would cause the allegation to be made;

p. that the occurrence of £,• any one of the events E^ ... E„ would do so;

Tfi that the fact alleged is true.

Now the occurrence of £, will cause the allegation to be made, if the witness be neither deceived

nor intendino- to deceive, of which the probability is uv ; and also, if both the one and the other,

provided the event chosen for the purpose of deceiving be that which in fact occurred.

The probability of the hypothesis is (l - u) (1 - t>), and the probability of the particular mode

of being deceived being the believing in the occurrence of some one of the events E,, other than

£ is
'-—

, since £, cannot be believed, but if E, be believed, the probability that E^ will

26 - 6,

be alleged, is ^
, since E, will not be alleged ; the probability therefore that E, will be

° 2a - a,

, , . f^i 6,

believed, and Ei alleged is --—r-
.
= .

2o — 0, Za — a,

And the whole probability that E^ will be alleged on the hypothesis is

«i [v b 6i
I

26 - 6, \ 2a - a 2a - o,J

Hence,

ai f 6 ^1 I

Pi = uv + (1 - u) (1 - v) —- IS.- :=^ } .^ 25 - 6, I
2a - a 2a - aj

Again, the occurrence of £, will cause the allegation to be made, first when the witness is

deceived, and does not intend to deceive, but believes E-^ to have occurred.

The probability of the hypothesis is (l - u)v.

6,
that jE, will be believed, and therefore alleged -— —

.

2o - 6;

Secondly, when not deceived, but intending to deceive.

The probability of the hypothesis is u(l - v)\

that £, will be alleged ~ .

' ^ 2a - Oj

Thirdly, when both deceiving and deceived provided among the modes of deceiving the allega-

tion of the occurrence of £, be not cho.sen.
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The probability of the hypothesis is (l - u) (l - ») ;

that the belief in the occurrence of E. is the mode of bains- deceived,
'

26 - 6i

'

that jB] will be alleged, E, being believed,

that Ey will be believed and £, alleged,

2a - a,
'

a, b.

26 — 6j 2<i — a,

the whole probability, on the hypotheses, that £, will be alleged, is

^1 {^ __b 6^ bj 1

> — 6; ( 266 — a 2cs — a, 2a - aj26

£, and Ej being excluded in the several values of £„ because one is alleged and the other happened.

Hence,

26 - o, 2a — a,- 26 - o,. (. 2a -a 2a - Oj 2a — a,-)

A J 2A 1
And TTi =

•Eh ^h p,h, ^' •

The value of Epih^ being

2pA- = (1 - «)^'6, (2 ^A^ -—^1 + «(l - .)a, {2—^ - -A_|
(.26-6 26 -

6,

J

t 2a - o 2a - a^)

+ (l-M)(i-ri)a,[^|
^^_^ 2a-ajr 26-6 26-6j~l (26-6)(2a-a)

"
(26-6,)(2a-a,)jJ'

It is here supposed that the occurrence of an event, which is not believed to have occurred, will

not affect the disposition to believe in the occurrence of any one event which did not occur in

preference to any other ; and that the disposition to allege the occurrence of any event which

is not believed to have occurred in preference to any other, is independent of the event which is

believed ; if this assumption be not made, the values of a will be different for different values of r,

and the values of 6 different for the different values of i, but the process will be the same.

The expression for 2p;Aj is adapted to the case of all the circumstances by which the belief

or veracity of the witness can be influenced being known ; when the data are less complete the

expression becomes much simplified, the result of course becoming less accurate, as from the insuf-

ficiency of the data it must do.

Taking

r( b b^ \ \ h a^ ^i 1
+ (,-.)(.- .) L|2^^-^

-
^^-^j |2- ^^-^ - ^^-^j

h a,.b ai6i
"1-1

a,) (26 - 6,)J

J

h, (26 - 6) (2a - a) (2a

If the data be so incomplete, that among the events by the occurrence of which, either the

belief of the witness, or his disposition to allege one fact in preference to another, is influenced, no
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reason be afforded for thinking that one rather than another has occurred, h = h,; and therefore

— disappears from the formula.

If anion'' the events, the belief in which may have prompted the allegation, no reason be

shewn why one rather than another should be believed, 6 =fc,; and the multiplier of (1 - n)v be-

26-6

Similarly, if no reason be shewn why the witness in attempting to deceive should make any

particular allegation rather than another, 2:=r-
—- - =r;;

—— = 1.

And lastly, if in the case of a witness both deceived and intending to deceive, if there be no

reason why the probability that he would allege any one fact should differ from the probability that

he would believe any other, a = h; and the multiplier of (1 - ?<) (l - «) becomes 1 1 - =
j

.

With these hypotheses we therefore have

i2A;Pj= {l-u)v + {\ -u)M+(l -ii){l-v) (l -
°

).
Ill V .^CE — aj

And with the same assumptions,

n.

Pj =Mt, + (1 - u) (1 - V)-
2a - a

And

] ^, W / U / W / U / V 2a - a/

^^''" ,Wi_,)(i-,),-^
"

\u I \v J z,a - a

The next material allegation was made by another witness to the effect, that she saw the accused

exchange some pills which she had procured for others : the evidence of this fact, as of the former,

is contained in the testimony of a single witness; but the antecedent probability of its occurrence

is different as we do or do not believe that previously alleged. If then 7r.> be the probability

that this allegation is true,

1

^3 = .

p, |A,7ri + A,(l - TT,);

the previous notation being preserved and adapted as regards the value of its symbols to this

particular allegation,

hi h„

2(A + A')' 2(A + /0

being the probabilities of the occurrence of £, ... £„, on the supposition that the previous fact is

true, and

h\ K
2{h + h')" 2(A + A')'

on the supposition that it is not true.

Among the means of assigning numerical values to the probabilities of the accuracy and

sincerity of a witness, the comparison of the allegations of different witnesses as to immaterial

facts is one of the most important. This witness also alleged, that she saw the accused procure
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the pills for which she substituted others from a surgeon, the surgeon however alleged, that if

she had done so, an entry should appear in a book that he produced, which entry did not appear.

Let Pi pj be determined as in the value of tti , and let

e be the probability that the surgeon omitted the entry from design ;

/ that he did so from neglect

;

Q that the fact alleged is true.

Then the truth of the allegation is consistent with the non-appearance of the entry ;

firstly : if he designed the omission, of which the probability is e ;

secondly : if he did not design the omission, but neglected to make the entry of this, the pro-

bability is (1 - e)/.

Again, whatever may have caused the allegation, any hypothesis which excludes its truth

may be taken also to exclude the possibility of an entry being made ; and therefore 1 will measure

the probability of its not appearing, on every hypothesis but that of the fact having occurred.

Hence Q = ^^^^^—^-^^^——^—^—
.

''^h,p,{e+fil-e)}^'''P'

Referring to the expression for tt, the probability of a fact being true, which has no other sup-

port than the testimony of one witness, we see that the values of u and v which satisfy the equation

1

Pi/i^

are those which they would possess if the probability Q were raised by the testimony of this

witness alone, and this equation therefore affords the means of correcting the values of those

quantities.

The next independent fact was, that the accused bought As ; it depended for its evidence

on the testimony of a single witness ; if therefore tts measure the probability that she did so,

TT, will be determined by the formula for tt,; the numerical values being adapted to the particular

allegation.

The witness, who spake to the making of pills, also alleged that she saw some given by the

accused to the deceased ; and that she herself took one of them which produced efiFects similar to

those produced by Js : as far as this testimony is concerned, the probability that poisonous pills

were administered is compounded of the probabilities that any were administered, and that those

given, if any were so, were poisonous. In this example it is assumed, that the probability that

poisonous pills were given by the accused to the deceased is, as far as the testimony of this

particular witness is concerned, the same as the probability that her previous allegation is true,

or TT,.

Let then P, be the probability that the accused knowingly possessed poison,

Pj that she administered it,

P„ the probability of guilt.

Then, as far as these facts are concerned,

Now each of the facts, whose probabilities are measured by tti, tt^, tfj and tt, afford some

probability that each of the facts whose probabilities are measured by P, , P,, is true, and the

falsehood of any number of them less than the wiiolc does not render cither /', or P,. 0. The
complete expression for each of these quantities will therefore be,
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7r\ir..tr-i + A^iTTiTTj (I-ttj) + AaTTj (I-tt^) tts + ZCs (I-tti) TTiTTsirs

+ fr, (l-TrO'TaTTs + h-^i (1-Ti) (l-7r2)7r3 + fejin (l -7r,) ir^ (l -ttj) + fc, iTi (l -Tr,) (l —ttj)

+ fe, (l-7r,)'ir2(l—TTa) + k^ (l -tti^ (l -^2) T3 + AiolTj (l—tt,) (1 —TT^) (l -Trj).

Both the facts beincr certain when all the circumstances concur, the factor of the first term

is 1 ; A; , As, /ts are the probabilities that the inferences are true when three only out of the

four elementary facts concur, and the remaining one is false; fej, k^, k^, k., when two are true

and two false; and kg, k^, k,„ when one only is true; k,, &c. are not or not necessarily the same

in the value of P, as in that of P,.

The evidence in this case is so far complete, and would or would not warrant the conviction

of the accused, as P„ did or did not exceed or equal the standard of conviction ; there was

however in the particular case a subsequent chain of facts spoken to.

First, a witness alleged that he sold the accused As after the administering first spoken to:

if p, be the probability that this allegation is true, p, will be determined by the formula for tt,.

Let Q, be the probability of the possession of As by the accused, with knowledge, after this

allegation.

Then Q,= l -(1 - P.) (1 - pO-

With regard to the administering subsequent to the second purchase, three witnesses severally

alleged, that they saw the accused administer a white powder, whose appearance, from their de-

scription, corresponded with that of As.

For the probability that this fact is true, let 9,, r,, «, be the respective values of p in

the formula for tti for each of these witnesses respectively, and let p.^ be the probability sought.

Then, preserving the remainder of the notation,

P'^
—

'~T~^h
1 + 2- 9,- )•,«,..

g, r, «i A,

But the fact of possession, with knowledge, of which the probability is Q,, concurring witli the

admitted cause of death, affords, independently of the last fact, some probability of the second

administering.

Hence, if Q., be this latter probability,

/, , /j, and 4 heing the respective probabilities that As was administered, when it was possessed;

and something like it was administered, when it was simply possessed, and simply when some-

thing like it was administered ; the cause of the death being in all the cases assumed.

After this second series of facts, we get

P^ = 1 - (1 - P, P,) (1 - Q, QJ = P,P, + Q, Q, (1 - P, P,).

The numerical values below are assigned for the purpose of completing the illustration, and not

with a view to obtain the actual numerical result in the particular case, the assigning of those values

is no part of the scientific process, but is determined by a consideration of the situation and character

of the witnesses, and of the manner in which they give their testimony.

The operation is also completed for the purpose of shewing, by the attempt to assign numerical

values, that the practical approximation to a correct result must necessarily be a rude one. Though the

elementary probabilities are expressed by low numbers, the resulting numbers rapidly become very

large ; and to assign at once the value of the resulting probability, without the assistance of the

processes of calculation, would be necessarily to assign them very inaccurately; and the process of at

once determining the consequences of that value must be affected with at least as great a chance of

error. We may, perhaps, in criminal cases, make as small as we please the chance of an innocent
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person being convicted ; but it must be either by increasing the chance of a guilty person escaping,

or by rendering the practical process more i)erfect ; if we were to conceive the elementary proba-
bilities to be elicited by the skill of science, and presented to the jury as separate issues, they would
then have to decide on simple facts instead of on complex series of facts, and the remainder of the

process would be logical deduction, and therefore would exclude the possibility of error. A result

so obtained would possess all the accuracy of which the subject is capable: by as much as the prac-

tical process differs from this, by so much is it, as far as mere accuracy is concerned, inferior : the
difference is the price of practicability.

In the value of it,

10 100 u I

11 101 2a -a^ 500^

Then -i_2p,.Ai>>—

,

p, A, ^' ' ^ 1000

For determining the value of tto.

1000
and TT, <t .

1111

1 1 1 /I \ 1 a \

First, Q = — — 2AiP,, --l> <|:0; (--l)> ^O: —-— >_<to.
1

'^ u ^ 200^ ' \v ;/
^100^ ' 2o-a. 100^

The values of it and v being assigned independently of this particular allegation.

Then _L2^p,>.'°'
A, Pi

'
' 20000'

and e<t->>l, f<\>l,

J '
^1. ^ '^^ ^ 2500

and -.
— j2A,p> . Q <t

h,pAe+f{l-e)\ "^'-^^2500' ^^2543-

Since Q differs so little from 1, the values of u and v are not materially diminished by the
evidence as to this collateral fact.

1 11 a 1

Assuming, therefore, 1 = --
, and — 1 = w , — = —

.

^ U 200 V 2a - a 100

43 100 + a? (20000 + 99)

2500 ~ 20000 + w
'

whence a? > — .

82

Employing then this value of 1 in the expression for ttj, which is

'""T

—

~, )
— ^*'^"

1
" 1

, ^i .
I

and putting = — , and — i— ,' ^ 2a-a 50' A, ^100'
Vol. VIII. Paut II.
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1 314.413

PihiWt + ^(I - Tr,)|
16418204

l';41
and TTo <t—;— .

" 1673

3
For TTs ?< <t:

-
:t> ] , J) = 1

,

4

3
and iTj <t - .

4

For the values of P,, P2, then tt, <t 7777 , ttj -^ 7;,^;;;^
, tt, -^ 7 .

1000 1641 3

And for P, alone, substituting the values

A;, <f , ki = 1, «3 = 2, h:4 = 1, res = 2, ACj = 7— , re7 = 7— , «:„ = —, fc^ = i, «:,o = —— ,

100 10 10 50 100

and observing that each of the coefficients k,, k^, k^, and A;,o multiplies the sum of two terms,

121
we get -Pi < — •

For Po,

199 98 195 19 1 1 101

A;, = 1 , fc, = 1 , k..= , ki = ,
Afj = , fee = — ,

fc, = 1 , k^ = , k.j = , A:,„ = —— •

' ' ^ ' ^ 100 100 100 10 100 100 100

122 14.762
Whence P^^ , and P.P^'i;:

123 15129

I 1 1

Again, for pi 1 ^; — ; 1=0;* '^ u 40 I!

1 1
,

40

, ^ u 5041
and Qi <

5043

Also in the value of p2 for each of the quantities q, r, s,

1 11,1 , a 11>— , !>•— . and > — ;

u \r, I) 30 2a - « 10

9 459

gi 4501

Whence results

1 ,^ A , 96702579
2 -r qiUS, >

q^TtSt A, •
• 91282466080

and p., <t .

f^- ^ 912
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And for Q, = {/,p, + /,(!- p.^\ Q, + hp,0 - Qi),

, ^ 99 ,^4 ,^9 j^> 5041

'^100 '^10 '^lO' '^5043'

^ ,

45500
,

2293
*

which give Q, <t , and Q, Q, <t ;*
45992

^1 ><^ -^
23,

g

3508

•5509

In the following cases, Professor Starkie has assumed that a probability to be conclusive

must be indetinite; they are inserted here for the purpose of shewing that conclusiveness is in-

dependent of this property.

Ex. Two pieces of cloth, on being compared, correspond with each other at the junction ; to

determine the probability that they were originally one piece. St. 570. n.

Let the edges be divided into n corresponding portions, and let p, , P2...Pn be the probabilities

that any cause, other than the pieces having been originally one, would have produced the corre-

spondence of the several portions ; then, it being certain that if they were originally one piece, the

edges would correspond. The probability that this is the true cause of the corresponding, is

, and the conclusiveness of the evidence depends on the smallness of the fraction
1 + p,.p2...p„

p, , p2...p„, and not on the question of its value being or not being accurately determinable.

For example, if the breadth be 18 inches, and this be divided into as many equal portions, and

if the values of p,, p2.,.p„ can be accurately assigned, and are each = , then the probability

that the pieces were originally one, is —— , which is a definite measure. But if, as is prac-

tically true, it would be difficult or impossible to assign these measures with accuracy, and we can

only with certainty define their limits, let p,...p„ be each Ip- — , and <^ , the probability will

then be <t -^—— > —^-^^—
, and the measure will be indefinite. In either case the evi-

1 1

'"^10^
'

"^
S'" .

10'«

dence is conclusive; but the probability whose measure is definite, is many thousand times as great

as the other.

Ex. ^ is robbed of 1 penny, 2 sixpences, 3 shillings, 4 half-crowns, 5 crowns, 6 half-sovereigns

and 7 sovereigns ; B is found in the same fair or market in possession of the same combination of

coins. No part of the coin can be identified, and no other circumstances operate against B.

" Although the circumstances raise a high probability of identity, it is still one of a definite

and inconclusive nature." St. ib.

The hypothesis that B is innocent of the theft is opposed by the extraordinary coincidence of the

coins in number and value : the liy])othesis that he is guilty, by the fact, scarcely less extraordinary

that there should be guilt which did not afford any other circumstances of suspicion. It is submitted,

that the want of conclusiveness is a consequence of the probability that guilt, if it existed, would

have left some other evidence of its existence, being as great, or nearly as great, as the probability

that the concurring of the coins in number and value was due to their identity. It would further

x2
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appear, that extreme indefiniteness is the distinguishing character of this problem. All the data, by

which the probabilities that either A or B would possess this particular combination of coins could

be determined, are wanting. The algebraic solution of the problem must therefore involve a sum-

mation through every possible hypothesis for each datum, and no judgment could venture to assign

limits to the resulting probability which did not leave a very wide interval to indefiniteness. It seems

impossible to conceive any addition to the data which would render the evidence of guilt conclusive

which would not also diminish this interval, although therefore the conclusiveness would not be a

consequence of the greater degree of definiteness, the progress towards the former would neces-

sarily be accompanied by a corresponding progress towards the latter.

JOHN TOZER.

Temple, March, 1844.



XIII. On the 3Iot/on of Glaciers. By William Hopkins, M.A., Fellow of

the Cambridge Philosophical Society, of the Geological Society, and of the

Royal Astronomical Society. [Second Memoir.]

[Read Dec. II, 1843.]

1. In my former Memoir on the Theory of Glacial Motion, I have given a full develop-

ment of the sliding theory as supported by my own experiments. According to the views there

advocated, a glacier is a dislocated mass, all the planes of dislocation, or of discontinuity in the

cohesive power being vertical or nearly so, and thus facilitating the more rapid motion of the center of

the glacier with reference to its flanks, but not that of its superficial with reference to its inferior

portion. It was shewn that the lower surface must be in a constant state of disintegration, and it

was thence inferred, that the adhesion between the glacier and its bed must be almost indefinitely

less than that between contiguous particles of the solid ice, and that, consequently, the velocities of the

superficial and inferior portions of the mass must be equal, or differ from each other by quantities

small compared with that of either portion. In my present communication, I propose to investigate

the nature of the motion on certain other hypotheses respecting the constitution of the glacial mass,

that we may compare such motion, or the eflfects of it, with observed phenomena, and thus be enabled

to judge of the admissibility of our hypotheses. I shall not include amongst these hypotheses those

which belong to the dilatation or expansion theories, because, after the facts observed by Professor

Forbes respecting the relative velocities at different distances from the origin of a glacier, and the con-

tinuance of glacial motion during the winter*, it appears to me impossible not to recognise the total

fallacy of those theories. I shall only therefore consider hypotheses appertaining to views of the

subject which, in common with those developed in my former memoir, agree in assigning gravity

as the immediate cause of glacial motion, but differ as to the circumstances which render it effective in

producing that motion down planes of such small inclination. The hypotheses I shall take are as

follows.

(l.) A glacier may be conceived to be divided into strata, of which the surfaces are approxi-

mately parallel to the upper or lower surface of the mass. In such case, each stratum might slide

over that immediately subjacent to it, while the lowest stratum should slide in a similar manner over

the bed of the glacier, or remain firmly attached to it. In this motion each stratum must be sup-

posed to preserve its form and continuity as a solid mass, while between two contiguous strata there

is discontinuity, in the sense in which I shall here use the term, i. e. particles originally in contact

along the common surface of two contiguous strata do not remain in contact during the motion.

(2.) While the upper part of the mass retains its solidity the inferior portions may be conceived

to become disintegrated, so that while the component particles retain their solidity they shall lose their

cohe.sion ; the disintegrated portion thus assuming a character similar to that of a mass of sand. In

this case, we may conceive the motion of the disintegrated portion to take place by a sliding of the

elementary component particles past each other, each particle or element of the mass retaining its

original form, like the hard grains of sand during the motion of a mass of that substance.

• Travt'lA thrnuyk the Atpn nf Savoy, S^c, by Professor Foibes, who wish to obtain a knowledge of glacial phenomena, or who (eel

p. 3f}l
—

'I'liin work is full of adniirublc and well-digt(*ted dulailN,

founded on the most careful ob^crvationH and udincasurenients, and
cAunot be too ttrongly rccoininendcd for the pciuHal of all pemong

interested in the n)any objects of beauty and sublimity which the

Alpine regions present to the traveller.



160 Mr. HOPKINS, ON THE MOTION OF GLACIERS.

(3 ) The facial mass may be conceived to have the property of great plasticity, and to move

by a change of form in the elomentry particles composing it, tlie continuity of the mass, in the sense

above defined, being strictly preserved. It is in this sense that the continuity of a fluid is assumed

to be preserved in those cases of fluid motion which have been subjected to mathematical analysis.

(i) The mass may be supposed to be viscous, and the motion to take place partly by a change

of form in the elementary portions of the mass, and partly by the destruction of the continuity sup-

posed to be strictly preserved in the preceding hypothesis.
. . ,,

My immediate purpose in this communication is to investigate certain properties ol the motion

which would exist in glaciers constituted according to these several hypotheses, and to examine

somewhat more in detail than in my former memoir, the state of internal pressure and tension super-

induced by the unequal velocities of the central and lateral portions of a glacier. i he explanation

of this inequality of motion given in my former memoir, will apply with little alteration if we should

adopt any of the preceding hypotheses; it will not therefore be necessary to recur to that part ot

our problem. We shall have" to examine more especially the relative motions of the superficial and

inferior portions of the mass, to ascertain how far they may be consistent with observed phenomena,

and thus to test the truth of our hypotheses.

2. Let us first suppose the glacier stratified as in (1).

Fig. 1.

Let JBCD represent the vertical section of a mass reposing on the inclined plane JB,

makino- an anfle a with the horizon ; and let MN represent the surface of one of the strata of

which we here suppose the mass to consist. We have first to consider under what condition the

upper part CDMN would slide over that on which it is superincumbent. Assuming the absence

of all cohesion between contiguous strata, the only force opposing the sliding motion will be

the friction along tiie plane MN. Now so long as the original texture of the lower surface of

the sliding body and that of the surface on which the motion takes place, remain unaltered by the

weight of the sliding mass or other cause, it is well known that the inclination at which the

sliding will begin is independent of the weight of the sliding body, and that, if the inclination

be a, we must have
tan a = fjL,

where a is the constant ratio which friction bears to the normal pressure. If tan a were greater

than u, the whole mass would begin to move ; and (supposing the friction the same throughout)

in such a manner that the relative motion of each stratum to the one immediately subjacent to

it would be the same for all the strata. Consequently, if we could ascertain from observation

that no such relative motion existed in the upper strata, we should be certain that none existed

amono- the inferior strata, unless at depths at which the assumed condition that the texture of

the sliding surfaces shall remain unaltered, may be no longer satisfied.

Now iud^ino- from the observations I have made on the descent of ice down inclined planes,

I much doubt whether it be possible that two surfaces of ice at a temperature below that of

freezing could, under any circumstances, be so smooth as to admit of the sliding motion above

contemplated at an inclination so small as that of some observed glaciers ; and therefore I believe
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that no such motion would take place in such a glacier, for instance as that of the Lower Aar,

even if it were perfectly stratified, and there were no adhesion whatever between the strata. Much
more then is such motion impossible in the actual case of a glacier in which there is little or no

indication of stratification, and none whatever of the want of powerful cohesion between two

contiguous portions separated by any nearly horizontal plane, such as MN. If, then, any mo-

tion of the upper portion take place by its sliding over a lower portion, it must be at a depth at

which the hard and crystalline structure of the ice is destroyed*. This brings us to the second of

the cases above specified, as possible modes in which glacial motion may take place.

3. There are three causes, I conceive, which may tend to destroy the crystalline structure

of the mass—temperature, moisture, and pressure. With respect to the first we may observe,

that during the summer the interior temperature, except at points very near the lower surface,

must necessarily be lower than that immediately beneath the upper surface, where however, there

is no such disintegration of the ice as we are now contemplating. Consequently there can be no

such disintegration, as the result of temperature, in the interior of the glacier. Similarly with

respect to moisture, if no sensible disintegration result from it near the upper surface where it is

most completely disseminated by immediate infiltration, it is not to be supposed that any such

effect will be produced in the interior of the mass, except at points so near its lower surface as

to be within the influence of the sub-glacial reservoirs and currents.

It would seem then that the only cause to which we can refer any disintegration of the mass,

except at points very near the lower surface, must be the pressure of the superincumbent portion.

And this must be allowed to be a possible cause of such an effect, for it cannot be doubted that

if ice formed under a small pressure were exposed to a very great pressure, its crystalline structure

would be effectively destroyed. Still it does not follow that we can assert it to be probable

that such is actually the case in existing glaciers ; for the hard crystalline structure of glacial

ice is doubtless acquired gradually, and probably, in its ultimate degree, under a pressure which

bears a considerable ratio to the greatest pressure to which it afterwards becomes subjected ; and

on this account I should deem it the more probable hypothesis that no part of a glacier becomes

disintegrated merely by the pressure which it sustains. Without dwelling, however, on the

assertion of probabilities, we may, to a certain extent, appeal to observation. M. Agassiz has

descended a vertical fissure to the depth of nearly 200 feet, but we hear of no appearance of a

change of structure in the ice, such as here supposed, and which, had it existed, could hardly

have escaped his observation. But more conclusive evidence is found in the bore which

M. Agassiz sunk to the depth of nearly 200 feet. At the bottom of it the ice was found to be

excessively hard, and so little had its structure yielded to the pressure which it sustained, that

its specific gravity could scarcely have exceeded that of the superficial ice, as proved by the

facility with which the broken fragments rose from the bottom of the bore to the surface when

the bore was filled with water. At the depth of the bore, then, we may assert the absence of

even the smallest tendency to disintegration, and therefore we are justified in concluding by in-

duction, that no very sensible effect of that kind existed at considerably greater depths, as for

instance, at the depth of 300 feet or upwards.

4. Nor does it appear to me possible that glacial ice, retaining its crystalline structure,

should possess a degree of plasticity sufficient to admit of a motion of the kind above specified in

(.S). It may be conceived to be possible that the elementary particles of a fluid mass should change

their form indefinitely, and that a continuous motion might result from such change ; hut solid

bodies are susceptible of a relative motion of their parts, from this change of form, by the action

• It was stated by .M. AgasBiz, in hiH Etudes hut les Glaciers^

on the authority of M. HuK', that the upper portion of glaciers

may be observed in deep transvcrHe HsKurcs to project in strata

over the lower portion, so as to itulicate the relative motion above

described. It is now well known tilat there is a rcniarkable absence

of such appearances.
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of external forces, only to a very limited extent, especially when in large masses. Thus if a force

be applied to lengthen a given solid mass, a small extension will be the immediate effect; but

however long that force may be continued, or however slowly it may be increased, we know of no

hard solid substance capable of more than very small extension, so long as it retains that structure

on which its hardness and solidity depend. Metals, for instance, with a hard crystalline structure,

are susceptible of very small extension, until that structure is destroyed by a sufficiently elevated

temperature, when their ductility may become indefinitely great, till it becomes fluidity. In the

same manner it would seem impossible to believe that glacial ice, a substance of very hard and

highly crystalline structure, can have more than an extremely small degree of extensibility ; nor

when it approaches that temperature which dissolves it, does it appear to acquire the property

of ductility above mentioned in metals, but to pass almost immediately from a hard crystalline

texture with powerful cohesion, to a state of dissolution in which the cohesion is entirely destroyed.

Reasoning thus from the known properties of ice, and from the analogies furnished by other sub-

stances, it would seem extremely improbable that a glacier should be susceptible of a continuous

motion due to a change of form in its component particles, independently of all sliding of one par-

ticle past a contiguous one, and of the sliding of the whole mass over the bed on which it reposes.

Though the two causes of motion considered in this and the preceding article are, when strictly

analysed, essentially distinct, the motions resulting from them, so far as such motions can be

subjected to observation in glaciers, would be nearly the same. Disintegration of the mass would

seem to be essential for the effectiveness of either cause. No evidence whatever of such disintegra-

tion has been obtained from observations made at accessible depths in glaciers ; but supposing it to

exist at greater depths, it would seem to me far the more probable that it should reduce the

mass to a state more analogous to that of an aggregation of sand, than to that of an extremely

plastic or semifluid substance. But whether we adopt either of these hypotheses, or that of (4)

(Art. 1), which may be regarded as a combination of the other two, it is easy to shew, as I shall

proceed to do, that the whole mass must necessarily, during its motion, be in a state of longitudinal

compression ; a conclusion which I conceive to be inconsistent with observed appearances.

5. Let the annexed diagram represent a longitudinal section of a glacier, BDH being that

Fig. 2.

of the bed on which it reposes. Let MQP be a line of particles vertical at any proposed instant.

In the motion we are now contemplating each particle will have a velocity infinitesimally greater

than that of the particle immediately below it, the lowest particle at M having no motion if there

be no sliding, as I am now supposing, along the bed BH. Thus the physical line MQP will, at

successive times, form the continuous physical lines Mqp, Mq'p'. These lines, to a certain depth,

will sensibly retain their vertical position ; for it has been shewn that to a depth of about 300 feet at

least the texture of the ice is such as to admit of scarcely a sensible change of form, or, conse-

quently, of a sensible difference of velocity in different particles to that depth. In fact, the almost

invariable and continued verticality of all transverse fissures to depths not unfrequently of from
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100 to 200 feet establishes this fact beyond doubt. Hence if we draw CD parallel to AEG at the

depth of about 300 feet, the portion of the mass above that line will have no motion except

tliat which arises from the motion of the subjacent portions CD B. But the cause of motion we are

now examining is greatest at BC where the glacier is thickest, and diminishes as we approach

to D, where it vanishes. Consequently, the tendency to move will be greatest at the upper

extremity of the glacier, and therefore the whole mass must necessarily be throughout the greater

part of its extent in a state of longitudinal compression. In fact, a large portion DH of the

glacier towards its lower extremity could have no sensible motion from the cause under considera-

tion, (since its depth is less than PQ), except that produced by the pushing force exerted upon
it by the other portion.

Now this state of longitudinal compression appears to be quite inconsistent with observed facts,

at least during the summer-months, when the motion is probably always greatest. During that

season, the velocity on the Mer de Glace of Mont Blanc appears to be considerably greatest near the

lower extremity, and all observed glaciers, as already stated, are traversed by numerous transverse

fissures—facts which indicate unequivocally a state of longitudinal extension, and not of compression.

M. Elie de Beaumont has remarked the obvious appearances of extension which glaciers present, and

Professo; Forbes has borne testimony to the truth of the remark. In winter, it is probable that

there may be a tendency to more rapid motion near the upper extremity of the glacier, as explained

in my former memoir (Art. 11), and a consequent tendency to produce compression; but if the prin-

cipal part of the motion were due to the particular constitution of the mass above supposed, the

tendency to compression would be most obvious during summer, when the motion is greatest; a

conclusion totally at variance with the results of observation.

Hence, then, it appears that any theory resting on any of the four hypotheses respecting the

constitution of a glacier above stated (Art. 1), is not only raised on a foundation unsupported by

direct experiment, but leads to results opposed to those of direct observation. The theory which

assigns the viscosity of the mass as the principal cause of glacial motion necessarily involves these

difficulties, so far as it pretends to any distinctive character which may separate it from other

theories, which, in common with it, assign gravity as the primary cause of the motion to be accounted

for. The absence of longitudinal compression in a glacier is equally opposed also to the theories of

dilatation and expansion.

Formation of Transverse Fissures. Since the publication of my former memoir, I have

discovered that the explanation there given of the origin of transverse fissures, and of the fact of

the convexity of the curves which they form being towards the upper extremity of the glacier,

is imperfect. I shall now offer what appears to me to render the explanation complete.

In this investigation we shall only be concerned with the difference of the velocities of the central

and lateral portions, for, at least to the depth to which observed fissures extend, there is certainly

no difference of velocity for particles in the same vertical line. We may therefore consider the

glacier independently of its thickness, or as a lamina of ice. The explanation will thus, in some

degree, be simplified.

G. When a plain solid lamina having a small degree of compressibility and extensibility, is

brought into a position of constraint by forces acting in the plane of the lamina, the particles on one

side of a geometrical line will exert certain forces on the contiguous particles on the opposite

side of the line. If the lamina were formed of fluid particles the resultant action at each point

of this line of separation would be normal to it; but when the lamina is solid this will not

be generally the case, and therefore the force at any point of the line may be resolved into

two forces, one being normal and tiie other tangential to the line of separation; all forces being

supposed to act in the plane of the lamina. Suppose the line of separation to be a straight line

A'A parallel to the axis of .v, an<I let pq be a portion of it so small that the action on each

))oint oi pq may be considered equal. Let Yi-pq denote the normal force exerted by the

Vol. VIII. Paut II. Y



164 Mr. HOPKINS, ON THE MOTION OF GLACIERS.

particles immediately above pq in the annexed figure, Fig.

on those immediately below it, estimated in the direction

qB; and let f.pq represent the tangential action on pq.

Again, let the line of separation coincide with B'B, paral-

lel to the axis of y, and perpendicular to A'A ; and let

X, . qs denote the normal force exerted by the particles

immediately on the right of qs on the contiguous particles

immediately on tlie left of it, and /'. qs the tangential —
action. Join p and s, and let a perpendicular to ps

make an angle with A'A or the axis of a. Then if

X.ps and Y.ps be the resolved parts of the forces

which the particles on one side of ps exert on those on

the opposite side, estimated in the direction qA and qB
respectively, we shall have

X = X^co%9 + /sin 9,

Y= Fjsin0+/cos0.

To prove these formulas we have only to observe that the forces acting on the sides pq and

qs of the triangular element pqs must be in equilibrium with the forces -X and - Y acting

externally on the side ps, neglecting small quantities of the third order. Hence we have

- X .ps + Xi.qs +f.pq = 0,

- Y.ps + Yi.pq +f.qs = 0,

which, since — = sin 6, and — = cos 0, prove the above formulae*.-— ps

B'

ps

We have also the relation

*/' = /•

To prove this equation, complete the rectangular element pqsr. A tangential force will

act on the element along the side rs in a direction opposite to that of the tangential force (/)
acting along pq, the intensity of which will not differ from / by any finite quantity ; and

similarly, a force (/') will act on the side pr in the direction opposite to that on qs. The
moments of these forces with respect to the middle point of the rectangular element, will be

If.pq.qs, and \f'.pq.qs.

The direction of the resultant of the normal forces on qs will pass at a distance from the

middle point of the element small compared witli qs; that distance will therefore not exceed

a quantity of the second order; and consequently the moment of the force X,.qs about the

middle point of the element will not exceed a quantity of the third order, and may be neglected

in comparison with the moments of the tangential forces / and /', which are of the second order.

Hence, the equilibrium of the element requires that we should have

\f.pq.qs = lf.pq.qs,

f'-f-

With this condition we have

X — X^ cos +/ sin 0,

r= r, sin +fcos0.

If a line be drawn through q pai-allel and equal to ps, the distance between the two lines

will be a small quantity of the first order, and therefore the action on the line through q may

" See Poisson's memoir '* Sur le Mouvement des Corps ^astiques,'* in the Mtmoires d€ I'ImtUut. Vol. iii. p. 3R3.
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be considered to have for its resolved parts the forces X and F, from which they cannot difFer

by quantities exceeding infinitesimals of the first order.

7- Let the length of jts, or of an equal and parallel line through 5, = A ; the resolved

parts of the forces upon it will be \X and \Y. Let \R be the force on X estimated in a

direction making an angle (p with the axis of oc , then shall we have

\R = X^.cos ip + \Y. sin (p,

or R = X cos + F sin d)

;

R is therefore a function of the two independent variables 9 and <p ; and I shall now proceed

to find the values of 9 and (p which render R a maximum or a minimum. Differentiating with

respect to (p, wc have

= X iia <p — Y cos (p,

which shews that for any assigned value of Q, or position of the line of separation, the max-
imum value of R will be that of the resultant of X and Y, and the corresponding value

of cp, that of the angle which the direction of that resultant makes with the axis of x.

Differentiating with respect to 6, we have

dX dY
=— cos<^ + _sm0.

Substituting for X and Y in these two equations, we obtain

{X^ cos Q +/sin Q) sin (p — (Fj sin Q +fcos0) cos^ = 0,

(Xi sin 6 -fcosO) cos(p - (YiCosO —/sin 6) sin cp = 0.

Eliminating (p, we have

(X, cos d+f sin 6) (X, sin - / cos 6) - ( F, sin +/ cos 9) (
}' cosG -f sin 0) = 0,

.-. (XJ+ YJ) (sin-' e - cos^ 0) + {X\ - Y\) sin cos = ;

••• tan2g= ^^[^ (1).

Again, from the two preceding equations containing Q and (b, we have

(X, + / tan 6) tan (^ - (F, tan + /) = 0,

{X, tan e-f)-{Yi-f tan 9) tan <p = 0,

or

X^ tan - Fi tan + / tan tan ^ - / = 0,

^, tan e - F, tan (p + f i&nd tan (p - f = 0.

and enter exactly in the same manner in these two equations, and must therefore be equal.

Hence
2/"

tan2^=^^p~f-j^ (2)-

Equation (1) shews that there arc two positions of the line of separation through any proposed

point, at right angles to cacli otlier, for one of wliich the resultant action between tlie particles on

opposite sides of the line at the ])roposed point is a maximum, and for tlic other ;i minimum ; and

since (p determines the direction of tlic resultant action, equation (2) proves that direction to coincide

with the normal to the line of separation, whenever that line is in a position for which the

y2
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resultant action is a maximum or minimum. These conclusions may also be arrived at by some-

what different though equivalent reasoning, as follows.

8. First to find the value of 6 which gives R a maximum or minimum, we have

and therefore

which by substitution and reduction gives

(XJ + Y,f) (sin= e - cos' 6) + (Xl - Y\) sin cos = 0,

or
2/"

tan 20 = '
.

And, secondly, taking (p as the angle which the resultant of X and Y makes with the axis

of X, we have

Y _ r, sin0+/cos0

*'*"'^"^"^,cos0+/sin0'

and if we put (p = 9, we shall determine that position of the line of separation for which the direction

of the resultant action at any proposed point of it coincides with the normal. We thus obtain

s)nfl{^, COS0 +/sin0} = cos {Y, sin + f cos 6]

,

or

{X, - F,) sin e cos 6 =/ (cos' 9 - sin' 6) ;

.-. tan20 = ^r^^.

This equation shews that that position of the line of separation for which (j> = 6, is that which

corresponds to the maximum or minimum action between the contiguous particles on opposite sides

of the line, as before proved.

9. The maximum action here spoken of is the maximum tension at the proposed point, and

since it is perpendicular to the corresponding line of separation, there will manifestly be the

greatest tendency to form a fissure along that line, and a fissure will be formed along it if the

maximum tension be greater than the cohesive power at the proposed point.

10. To apply the investigation to the case of a glacier, let PQ (fig. 4) be a portion of the

mass contained between two parallel vertical planes perpendicular

to the axis of the glacier and indefinitely near to each other.

By the more rapid motion of the central part, the element PQ
will be brought into the position P'Q' ; and if pqrs be an infi-

nitesimal rectangular portion of PQ, it will be brought into the

position p'q'r's'. Let the longitudinal axis of the glacier be that

of .r. The tangential force/ will arise from the greater velocity

of the central portion of the mass. It will be of the same in-

tensity, as above proved, for each side of the element, and will

manifestly act on the sides respectively in the directions q's'

and r'p', q'p' and rV. It is this force which distorts the element

from its rectangular form. The longitudinal force JST, will

generally be a tension arising from the greater velocity near the lower extremity. The transverse

force F, in actual glaciers, in which the sides have so generally some degree of convergeucy, niay be
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frequently large, and in the preceding formulae must be made negative, because it will generally be a

pressure, and not a tension. Equation (l) thus becomes

If Xx = 0, and F, = 0, = 45" or 135". In the case before us it is easily seen that the former

of these values corresponds to the maximum and the latter to the minimum value of R ; and, there-

fore, the direction of greatest tension at ]}' will bisect the angle rpq , that angle being supposed,

as in the previous reasoning, to differ but little from a right angle. Consequently the greatest

tendency to form a fissure will be along a line bisecting the exterior angle rp'q. If the value of

Xx+ F| be finite, that of 9 will be less than 45°, and the direction of the fissure will so deviate

from the above-mentioned position as to approximate more nearly to perpendicularity to the sides

and axis of the glacier.

If the angle q p r' should deviate from a right angle by a finite quantity before the fissure

should be formed, it would not be difficult, to shew that the line of greatest tension might be still

considered to bisect that angle. This would cause a still further deviation in the direction of the

fissure towards perpendicularity to the sides.

Since the relative motion of particles situated in a transverse line varies most rapidly in tlie

lateral portions, the value of / will be greatest near the sides, and vanish along the axis of the

glacier ; while the value of X-^ + I', will be approximately the same at the sides and center. Conse-

quently, the value of Q will diminish as the distance from the sides increases, and the fissures will

be curved ; the curvature being most rapid near the sides of the glacier, and the convexity being

turned towards the upper extremity of the glacier. The force / will probably be much more

effective than X^ in producing the fissures near the sides of the glacier, while X-^ will possibly be

the more effective in the central portion. The incompleteness of my former explanation consisted

in ascribing the phenomena to the latter force only, to which alone the reasoning there applied

is applicable. The above investigation appears to me to offer the complete solution of the

problem.

11. Riband or Laminated Structure.—I have made no attempt to account for this curious

structure in glacial ice ; but I would observe that it appears to me impossible that it should be

due, as some persons, I think, have supposed, to internal tensions or pressures, producing, as their

direct and immediate effect, an almost infinite number of parallel fissures, into which water percolates,

and forms, when frozen, the bands of blue ice. It is conceivable, as an abstract hypothesis, that

a mass should be accurately homogeneous, and that the external and internal forces should be such

as to have exactly the same tendency to produce a fissure at one point of the mass as at another ;

but practically, this state is no more possible than that a body should rest in a position of unstable

equilibrium—that a cone should rest permanently on its vertex, or a needle on its point. Allowing

the nearest practical approximation to this state of the mass, fissures would necessarily begin to be

formed, first at particular points, after which the uniformity of condition throughout would be

instantly destroyed, and irregular fissures at intervals, large, compared with those between con-

secutive bands of blue ice in the riband structure, would be the necessary consequence. I repeat,

that the formation of a system of parallel fissures, of sensible or insensible width, at distances not

exceeding a few inches, in the mass of a glacier, is no more possible than that the mass should

permanently maintain a position of unstable equilibrium.

The internal pressures and tensions here spoken of are the consequences of external forces acting

on the mass, such as gravity and the resistances of the rocks with which the glacial mass may be in

contact. There is, however, another class of internal forces, the molecular forces, the existence and
nature of wliich may be considered independent of the external conditions to which the mass is

subjected, though their action and effects may very probably be modified by those conditions. I

have investigated the effects of the first kind of forces, and have explained how transverse and



168 Mr. HOPKINS, ON THE MOTION OF GLACIERS,

longitudinal fissures may result from their action ; it is to the molecular forces that I am disposed

to attribute the veined or riband structure, their action being modified in some unknown manner

by the general conditions under which the glacier exists. In expressing this opinion I am offer-

ing no theory of the curious structure in question, but only meeting the theoretical difficulty which

it presents to us by a confession of profound ignorance of the nature and action of those forces, to

which the peculiarity of crystalline structure is generally due. The mechanical solution of the

problem I conceive to be utterly hopeless, till we shall have arrived at some solution of the general

problem whicli crystallization presents to us*.

12. In conclusion, I will state tlie principal objections which have been urged against the

sliding theory, and indicate the answers which the preceding investigations afford. In doing this,

I shall refer principally to the work of Professor Forbes, already mentioned, as that in which those

objections are most systematically stated.

(I.) The enormous friction when a glacier moves over a bed of rock, is spoken of by all

opponents of this theory as an insurmountable objection to it. My experiments shew that the

friction, or rather the force analogous to friction, is extremely small.

(2.) Professor Forbes remarks (p. 362), "As I understand the Gravitation theory, it supposes

the mass of the glacier to be a rigid one, sliding over its trough or bed in the manner of solid

bodies."—I am not aware that any advocate of this theory has fallen into the absurdity of con-

sidering a glacier as a rigid, when he has spoken of it as a solid mass. I have considered it as

a dislocated mass, glacial ice itself having some degree of plasticity.

(3.) When a glacier passes out of a wider into a more contracted channel. Professor Forbes

says that " tlie idea of sliding, in the common legitimate sense of the word, is wholly out of the

i]uestion."—The term "sliding" is certainly not restricted to the motion of a rigid body; it is

applicable to any solid body, in the sense in which a glacier is considered to be such, and on this

hypothesis I have distinctly explained, in my former memoir, how it may pass from a wider into a

narrower channel. In objections of this nature the distinction between solidity and rigidity would
seem to be forgotten.

( !.) " The inclination of the bed is seldom such as to render the overcoming of such obstacles

as the elbows and prominences, contractions and irregularities of the beds of glaciers, even conceiv-

able, being, on an average of the entire Mer de Glace, only 9", a slope practicable to loaded carts

;

but the greater part of the surface inclines less than 5°," (p. 363.) This difficulty has arisen in an

imperfect conception of the enormous pressure which, according to our theory, must be thrown on

abrupt local obstacles-f-.

(5.) Anotiier objection is founded on the fact that changes in the rapidity of glacial movements

are found to be simultaneous with changes of external temperature. " In order to reconcile this to

• At the last meeting of the British Association at Cork,

."^Ir. Phillips mentioned a curious fact, which seems calculated

to throw some light on one of the modes in which external con-

ditions may modify the action of molecular forces, assuming

the lamellar structure of rocks to be due to such forces. It

appeared that certain Trilobites were frequently found in some

i»f the older rocks in South Wales, so deformed as to their

ijeneral proportions as to present, to a casual observer, the ap.

pearance of dift'erent species. On comparing, however, a number

of cases, it became evident that the specimens had been com-

pressed in a direction perpendicular to the planes of structure^

from which it was justly inferred, that the general mass in which

these remains were imbedded had probably been subjected to

a great pressure in the direction above mentioned. It would

seem to be a legitimate inference from this fact, that the posi-

tion of the planes of structure had probably been mainly deter-

mined by the direction of greatest pressure. Perhaps some of the

facts mentioned by Professor Forbes might admit of a similar ...-

terpretation.

I may here mention a curious effect of crystallization in the

structure of hailstones, which may possibly have some bearing on

the question before us. I had an opportunity of witnessing it at

Cambridge, on the 9th of August, 1843, during one of the most

desolating hail-storms ever known in this country. IVIany of the

hailstones were of the form of rather flat double convex lenses,

nearly as large as the palm of the hand, and consisted of white

opaque ice in the center, surrounded by a ring of dark transparent

ice, with an exterior ring of ice like that in the center. In some

cases there were two or three dark rings, the central part and the

exterior ring being always opaque. These successive rings (with

the exception of their circular form) exactly resembled the alternate

opaque and transparent bands in glacial ice, where the riband

structure is best developed.

t Art. 15. of my former memoir.
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the sliding theory, it should be shewn that the disengagement of the glacier from its bed depends on

the kind of weather which affects its surface and temperature." The action of the subglacial

currents does fully account, I conceive, for the phenomenon in question.

(6.) It has been contended that, according to the sliding theory, the glacier ought to descend

with an accelerated motion. This objection never bad any real foundation, but only arose, as I

have shewn in my former memoir, from an erroneous conception of the nature of the retarding forces

which must act on the glacier during its sliding motion, whatever might be the cause of such

motion. My experiments, however, afford the most complete answer to the objection.

(7.) It is said that the flow of heat from the earth is not sufficient to produce the effect which

this theory ascribes to it:—I reply, that all which the theory requires is, that the lower surface

of the glacier should be constantly kept at the temperature at which the disintegration of ice com-

mences. The tangential action of the bed on the bottom of the glacier will in such case be so

modified as to render it impossible for that action to prevent all motion.

(8.) Another objection has been founded on the existence of glaciers of the secondary order,

which are observed to rest on surfaces of great inclination. Professor Forbes remarks, " M. de

Charpentier has very justly quoted several examples as proving, that if glaciers really slide over

the soil, as De Saussure supposed, these could not for a moment sustain their position at an angle

of 30° or more," (p. 79). M. de Charpentier, I presume, would contend that if gravity were the

primary cause of glacial motion, such a glacier would descend with tlie rapidity of an avalanche.

But it appeared from my experiments, that a mass of ice might be placed on a surface as smooth

as that of a paving slab at an angle of nearly 20", without descending with an accelerated motion,

even when the lower surface of the ice was lubricated by its being in a state of dissolution. Now
these secondary glaciers are generally at a great elevation, and of no great thickness, so that it

is highly probable that a considerable portion of their lower surfaces may be frozen to the rocks

on which they rest. This circumstance, together with the probable inequalities of the surface of

those rocks, leaves no difficulty in accounting for the want of accelerated and precipitous move-

ments in such glaciers as those above spoken of, nor even in those of still greater inclination.

They will descend down their highly-inclined beds with an unaccelerated motion, and will then

be precipitated, as avalanches, down the precipices which usually form their lower boundaries.

In another part of his work, Professor Forbes appears to give an opposite phase to the

objection derived from secondary glaciers, and to make it rest on the assumed fact of these

secondary glaciers being frozen to the I'ocks throughout the whole of their lower surfaces. That
these glaciers are partly frozen to their beds, I have above stated to be pi'obable ; that they are

entirely so, no proof has been or can be offered. We possess no knowledge of them which does

not justify the application of the sliding theory to them, as well as to other glaciers.

W. HOPKINS.
Cambbidge,

Dec. 11, 1843.
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[Read Feb. 5, 1844.]

I HAVE upon former occasions laid before the Society dissertations on certain questions which

may be termed metaphysical :—on the nature of the truth of the laws of motion ;—on the ques-

tion whether all matter is heavy :—and on the question whether cause and effect are successive or

simultaneous. As these dissertations have not failed to excite some interest, I hope that I shall

have the indulgence of the Society in making a few remarl;s on another question of the same

kind. In doing this, as my object is to throw some light if possible on a matter of consider-

able obscurity and difficulty, I shall not attempt to avoid the occasional repetition of a sentence or

two which I may have, in substance, delivered elsewhere.

1. All persons who have attended in any degree to the views generally current of the nature

of reasoning are familiar witii the distinction of necessary truths and truths of experience ; and few

such persons, or at least few students of mathematics, require to have this distinction explained

or enforced. All geometricians are satisfied that the geometrical truths with which they are con-

versant are necessarily true : they not only are true, but they must be true. The meaning of the

terms being understood, and the proof being gone through, the truth of the proposition must be

assented to. That parallelograms upon the same base and between the same parallels are equal ;

—

that angles in the same segment are equal ;—these are propositions which we learn to be true

by demonstrations deduced from definitions and axioms; and which, when we have thus learnt them,

we see could not be otherwise. On the other hand, there are other truths which we learn from

experience ; as for instance, that the stars revolve round the pole in one day ; and that the moon

goes through her phases from full to full again in thirty days. These truths we see to be true ;

but we know them only by experience. Men never could have discovered them without looking

at the stars and the moon ; and having so learnt them, still no one will pretend to say that they

are necessarily true. For aught we can see, things might have been otherwise ; and if we had been

placed in another part of the solar system, then, according to the opinions of astronomers, experience

would have presented them otherwise.

2. I take the astronomical truths of experience to contrast with the geometrical necessary trutlis,

as being both of a familiar definite sort; we may easily find other examples of both kinds of truth.

The truths which regard numbers are necessary truths. It is a necessary truth, that 27 and 38

are equal to (i5 ; that half the sum of two numbers added to half their difference is equal to

the greater number. On the other hand, that sugar will dissolve in water ; that plants cannot live

without light ; and in short, the whole body of our knowledge in chemistry, physiology, and the otlier

inductive sciences, consists of truths of experience. If there be any science which offer to us truths

of an ambiguous kind, with regard to which we may for a moment doubt whether they are neces-

sary or experiential, we will defer the consideration of them till we have marked the distinction of

the two kinds more clearly.

3. One mode in which we may express the difference of necessary truths and truths of expe-

rience, is, that necessary truths are those of which we cannot distinctly conceive the contrary.

We can very readily conceive the contrary of experiential truths. We can conceive the stars moving

about the pole or across the sky in any kind of curves with any velocities ; we can conceive the

moon always appearing during the whole month as a luminous disk, as she might do if her
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light were inherent and not borrowed. But we cannot conceive one of the parallelograms on the

same base and between the same parallels larger than the other ; for we find that, if we attempt to

do this, when we separate the parallelograms into parts, we have to conceive one triangle larger than

another, both having all their parts equal ; which we cannot conceive at all, if we conceive tlie

triangles distinctly. We make this impossibility more clear by conceiving the triangles to be placed

so that two sides of the one coincide with two sides of the other ; and it is then seen, that in

order to conceive the triangles unequal, we must conceive the two bases which have the same

extremities both ways, to be different lines, though both straight lines. This it is impossible to

conceive : we assent to the impossibility as an axiom, when it is expressed by saying, that two

straight lines cannot inclose a space; and thus we cannot distinctly conceive the contrary of the pro-

position just mentioned respecting parallelograms.

4. But it is necessary, in applying this distinction, to bear in mind the terms of it ;—that we

cannot distitictty conceive the contrary of a necessary truth. For in a certain loose, indistinct way,

persons conceive the contrary of necessary geometrical truths, when they erroneously conceive false

propositions to be true. Thus, Hobbes erroneously held tiiat he had discovered a means of geome-

trically doubling the cube, as it is called, that is, finding two mean proportionals between two given

lines; a problem which cannot be solved by plane geometry. Hobbes not only proposed a construction

for this purpose, but obstinately maintained that it was right, when it had been proved to be

wrong. But then, the discussion showed how indistinct the geometrical conceptions of Hobbes

were; for when his critics had proved that one of the lines in his diagram would not meet the other

in the point which his reasoning supposed, but in another point near to it ; he maintained, in replv,

that one of these points was large enough to include the other, so that they might be considered as

the same point. Such a mode of conceiving the opposite of a geometrical truth, forms no excep-

tion to the assertion, that this opposite cannot be distinctly conceived.

5. In like manner, the indistinct conceptions of children and of rude savages do not invalidate

the distinction of necessary and expei-iential truths. Children and savages make mistakes even with

regard to numbers ; and might easily happen to assert that 27 and 38 are equal to 63 or 6-1.

But such mistakes cannot make such arithmetical truths cease to be necessary truths. When
any person conceives these numbers and their addition distinctly, by resolving them into parts, or in

any other way, he sees that their sum is necessarily 65. If, on the ground of the possibility of

children and savages conceiving something different, it be held that this is not a necessary truth, it

must be held on the same ground, that it is not a necessary truth that 7 and 4 are equal to 11 ; for

children and savages might be found so unfamiliar with numbers as not to reject the assertion that

7 and 4 are 10, or even that 4 and 3 are 6, or 8. But 1 suppose that no persons would on such

grounds hold that these arithmetical truths are truths known only by experience.

6. Necessary truths are established, as has already been said, by demonstration, proceeding from

definitions and axioms, according to exact and rigorous inferences of reason. Truths of experience

are collected from what we see, also according to inferences of reason, but proceeding in a less exact

and rigorous mode of proof. The former depend upon the relations of the ideas which we have

in our minds : the latter depend upon the appearances or phenomena, which present themselves to

our senses. Necessary truths are formed from our thoughts, the elements of the world within us ;

experiential truths are collected from things, the elements of the world without us. The truths of

experience, as they appear to us in the external world, we call Facts ; and when we are able to find

among our ideas a train which will conform themselves to the apparent facts, we call this a Theory.

7. This distinction and opposition, thus expressed in various forms ; as Necessary ami

Experiential Truth, Ideas and Senses, Thoughts and Things, Theory and Fact, may be termed

the FundamPMtnl Antlthenin of I'liiloxop/11/ ; for almost all the discussions of philosophers liave

been employed in asserting or denying, explaining or obscuring tliis antithesis. It may be ex-

Vol.. VIII. Part II. Z
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pressed in many other ways; but is not difficult, under all these different forms, to recognize the

same opposition : and the same remarks apply to it under its various forms, with corresponding

modifications. Thus, as we have already seen, the antithesis agrees with that of Reasoning and

Observation : again, it is identical with the opposition of Reflection and Sensation : again, sensation

deals with Objects; facts involve Objects, and generally all things without us are Objects:

—

Objects of sensation, of observation. On the other hand, we ourselves who thus observe objects,

and in whom sensation is, may be called the Subjects of sensation and observation. And this

distinction of Subject and Object is one of the most general ways of expressing the fundamental

antithesis, although not yet perhaps quite familiar in English. I shall not scruple however to

speak of the Subjective and Objective element of this antithesis, where the expressions are con-

venient.

8. All these forms of antithesis, and the familiar references to them which men make in all

discussions, shew the fundamental and necessary character of the antithesis. We can have no

knowledge without the union, no philosophy without the separation, of the two elements. We can

have no knowledge, except we have both impressions on our senses from the world without, and

thoughts from our minds within :—except we attend to things, and to our ideas ;—except we

are passive to receive impressions, and active to compare, combine, and mould them. But on the

other hand, philosophy seeks to distinguish the impressions of our senses from the thoughts of

our minds ; to point out the difference of ideas and things ;—to separate the active from the

passive faculties of our being. The two elements, sensations and ideas, are both requisite to the

existence of our knowledge, as both matter and form are requisite to the existence of a body.

But philosophy considers the matter and the form separately. The properties of the form are the

subject of geometry, the properties of the matter are the subject of chemistry or mechanics.

9. But though philosophy considers these elements of knowledge separately, they cannot really

be separated, any more than can matter and form. AVe cannot exhibit matter without form, or

form without matter ; and just as little can we exhibit sensations without ideas, or ideas without

sensations ;—the passive or the active faculties of the mind detached from each other.

In every act of my knowledge, there must be concerned the things whereof I know, and thoughts

of me who know : 1 must both passively receive or have received impressions, and I must actively

combine them and reason on them. No apprehension of tilings is purely ideal : no experience of

external things is purely sensational. If they be conceived as things, the mind must have been

awoke to the conviction of things by sensation : if they be conceived as things, the expressions of

the senses must have been bound together by conceptions. If we thi7ik of any thing, we must

recognize the existence both of thoughts and of things. The fundamental antithesis of philo-

sophy is an antithesis of inseparable elements.

10. Not only cannot these elements be separately exhibited, but they cannot be separately con-

ceived and described. The description of them must always imply their relation ; and the names

by which they are denoted will consequently always bear a relative significance. And thus the

terms which denote the fundamental antithesis of philosophy cannot be applied absolutely and

exclusively in any case. We may illustrate this by a consideration of some of the common modes

of expressing the antithesis of which we speak. The terms Theory and Fact are often emphatically

used as opposed to each other : and they are rightly so used. But yet it is impossible to say

absolutely in any case. This is a Fact and not a Theory ; this is a Theory and not a Fact,

meaning by Theory, true Theory. Is it a fact or a theory that the stars appear to revolve round

the pole ? Is it a fact or a theory that the earth is a globe revolving round its axis ? Is it a

fact or a theory that the earth revolves round the sun ? Is it a fact or a theory that the sun

attracts the earth.' Is it a fact or a theory that a loadstone attracts a needle.' In all these

cases, some persons would answer one way and some persons another. A person who has never
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watched the stars, and has only seen them from time to time, considers their circular motion round
the pole as a theory, just as he considers the motion of the sun in the ecliptic as a theory, or

the apparent motion of the inferior planets round the sun in the zodiac. A person who has

compared the measures of different parts of the earth, and who knows that these measures cannot

be conceived distinctly without supposing the earth a globe, considers its globular form a fact,

just as much as the square form of his chamber. A person to whom the grounds of believing

the earth to revolve round its axis and round the sun, are as familiar as the grounds for believino-

the movements of the mail-coaches in this country, conceives the former events to be facts, just

as steadily as the latter. And a person who, believing the fact of the earth's annual motion,

refers it distinctly to its mechanical course, conceives the sun's attraction as a fact, just as he
conceives as a fact the action of the wind which turns the sails of a mill. We see then, that

in these cases we cannot apply absolutely and exclusively either of the terms. Fact or Theory.
Theory and Fact are the elements which correspond to our Ideas and our Senses. The Facts are

Facts so far as the Ideas have been combined with the sensations and absorbed in them : the Theories

are Theories so far as the Ideas are kept distinct from the sensations, and so far as it is considered

as still a question whether they can be made to agree with them. A true Theory is a fact,

a Fact is a familiar theory.

In like manner, if we take the terms Reasoning and Observation ; at first sight thev appear to

be very distinct. Our observation of the world without us, our reasonings in our own minds, appear

to be clearly separated and opposed. But yet we shall find that we cannot apply these terms abso-

lutely and exclusively. I see a book lying a few feet from me : is this a matter of observation ?

At first, perhaps, we might be inclined to say that it clearly is so. But yet, all of us, who have

paid any attention to the process of vision, and to the mode in which we are enabled to judge

of the distance of objects, and to judge them to be distant objects at all, know that this judg-

ment involves inferences drawn from various sensations ;—from the impressions on our two eyes ;

—

from our muscular sensations ; and the like. These inferences are of the nature of reasoning, as much
as when we judge of the distance of an object on the other side of a river by looking at it from

different points, and stepping the distance between them. Or again : we observe the setting sun

illuminate a gilded weathercock ; but this is as much a matter of reasoning as when we observe the

phases of the moon, and infer that she is illuminated by the sun. All observation involves inferences,

and inference is reasoning.

11. Even the simplest terms by which the antithesis is expressed cannot be applied : ideas

and sensations, thoughts and things, subject and object, cannot in any case be applied absolutely and
exclusively. Our sensations require ideas to bind them together, namely, ideas of space, time, num-
ber, and the like. If not so bound together, sensations do not give us any apprehension of things

or objects. All things, all objects, must exist in space and in time—must be one or many. Now
space, time, number, are not sensations or things. They are something different from, and opposed

to sensations and things. We have termed them ideas. It may be said they are relations of

things, or of sensations. But granting this form of expression, still a relation is not a thing or a

sensation ; and therefore we must still have another and opposite element, along with our sensations.

And yet, though we have thus these two elements in every act of perception, we cannot designate

any portion of the act as absolutely and exclusively belonging to one of the elements. Perception

involves sensation, along with ideas of time, space, and the like ; or, if any one prefers the expression,

involves sensations along with the apprehension of relations. Perception is sensation, along with

such ideas as make sensation into an apprehension of things or objects.

12. And as perception of objects implies ideas, as observation implies reasoning; so, on tlie

other hand, ideas cannot exist where sensation has not been : reasoning cannot go on when there

has not been previous observation. This is evident from the necessary order of development of

the human faculties. Sensation necessarily exists from the first moments of our existence, and is

Z2
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constantly at work. Observation begins before we can suppose the existence of any reasoning which

is not involved in observation. Hence, at whatever period we consider our ideas, we must consider

them as having been already engaged in connecting our sensations, and as modified by this employ-

ment. By being so employed, our ideas are unfolded and defined, and such development and

definition cannot be separated from the ideas themselves. We cannot conceive space without bound-

aries or forms ; now forms involve sensations. We cannot conceive time without events which mark

the course of time ; but events involve sensations. We cannot conceive number without conceiving

things which are numbered ; and things imply sensations. And the forms, things, events, which are

thus implied in our ideas, having been the objects of sensation constantly in every part of our life,

have modified, unfolded and fixed our ideas, to an extent which we cannot estimate, but which we

must suppose to be essential to the processes which at present go on in our minds. We cannot say

that objects create ideas ; for to perceive objects we must already have ideas. But we may say,

that objects and the constant perception of objects have so far modified our ideas, that we cannot,

even in thought, separate our ideas from the perception of objects.

AVe cannot say of any ideas, as of the idea of space, or time, or number, that they are absolutely

and exclusively ideas. We cannot conceive what space, or time, or number would be in our minds,

if we bad never perceived any thing or things in space or time. AVe cannot conceive ourselves

in such a condition as never to have perceived any thing or things in space or time. But, on the other

hand, just as little can we conceive ourselves becoming acquainted with space and time or numbers

as objects of sensation. We cannot reason without having the operations of our minds affected by

previous sensations ; but we cannot conceive reasoning to be merely a series of sensations. In order

to be used in reasoning, sensation must become observation ; and, as we have seen, observation

already involves reasoning. In order to be connected by our ideas, sensations must be things or

objects, and things or objects already include ideas. And thus, as we have said, none of the terms

by which the fundamental antithesis is expressed can be absolutely and exclusively applied.

13. I now proceed to make one or two remarks suggested by the views which have thus

been presented. And first I remarif, that since, as we have just seen, none of the terms which

express the fundamental antithesis can be applied absolutely and exclusively, the absolute application

of the antithesis in any particular case can never be a conclusive or immoveable principle. This

remark is the more necessary to be borne in mind, as the terms of this antithesis are often used in a

vehement and peremptory manner. Thus we are often told that such a thing is a Fact and not a

Theory, with all the emphasis which, in speaking or writing, tone or italics or capitals can give.

We see from what has been said, that when this is urged, before we can estimate the truth, or the

value of the assertion, we must ask to whom is it a fact .'' what habits of thought, what previous

information, what ideas does it imply, to conceive the fact as a fact ? Does not the apprehension of

the fact imply assumptions which may with equal justice be called theory, and which are perhaps false

theory ? in which case, the fact is no fact. Did not the ancients assert it as a fact, that the earth

stood still, and the stars moved.'' and can any fact have stronger apparent evidence to justify per-

sons in asserting it emphatically than this had ? These remarks are by no means urged in order to

shew that no fact can be certainly known to be true ; but only to shew that no fact can be certainly

shown to be a fact merely by calling it a fact, however emphatically. There is by no means any

ground of general skepticism with regard to truth involved in the doctrine of the necessary com-

bination of two elements in all our knowledge. On the contrary, ideas are requisite to the essence,

and things to the reality of our knowledge in every case. The proportions of geometry and arith-

metic are examples of knowledge respecting our ideas of space and number, with regard to which

there is no room for doubt. The doctrines of astronomy are examples of truths not less certain

respecting the external world.

li. I remark further, that since in every act of knowledge, observation or perception, both the

elements of tlie fundamental antithesis are involved, and involved in a manner inseparable even
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in our conceptions, it must always be possible to derive one of these elements from the other, if we

are satisfied to accept, as proof of such derivation, that one always co-exists with and implies the

other. Thus an opponent may say, that our ideas of space, time, and number, are derived from

our sensations or perceptions, because we never were in a condition in which we had the ideas of

space and time, and had not sensations or perceptions. But then, we may reply to this, that we no

sooner perceive objects than we perceive them as existing in space and time, and therefore the ideas

of space and time are not derived from the perceptions. In the same manner, an opponent may say,

that all knowledge which is involved in our reasonings is the result of experience ; for instance, our

knowledge of geometry. For every geometrical principle is presented to us by experience as true ;

beginning with the simplest, from which all others are derived by processes of exact reasoning.

But to this we reply, that experience cannot be the origin of such knowledge ; for though experience

shows that such principles are true, it cannot show that they must be true, which we also know. We
never have seen, as a matter of observation, two straight lines inclosing a space ; but we venture

to say further, without the smallest hesitation, that we never shall see it ; and if any one were to

tell us that, according to his experience, such a form was often seen, we should only suppose that he

did not know what he was talking of. No number of acts of experience can add to the certainty of

our knowledge in this respect; which shows that our knowledge is not made up of acts of experience.

We cannot test such knowledge by experience; for if we were to try to do so, we must first know
that the lines with which we make the trial are straight ; and we have no test of straightness

better than this, that two such lines cannot inclose a space. Since then, experience can neither

destroy, add to, nor test our axiomatic knowledge, such knowledge cannot be derived from expe-

rience. Since no one act of experience can affect our knowledge, no numbers of acts of experience

can make it.

15. To this a reply has been oiFered, that it is a characteristic property of geometric forms that

the ideas of them exactly resemble the sensations ; so that these ideas are as fit subjects of experi-

mentation as the realities themselves ; and that by such experimentation we learn the truth of the

axioms of geometry. I might very reasonably ask those who use this language to explain how a

particular class of ideas can be said to resemble sensations ; how, if they do, we can know it to be

so ; how we can prove this resemblance to belong to geometi'ical ideas and sensations ; and how
it comes to be an especial characteristic of those. But I will put the argument in another way.

Experiment can only show what is, not what must be. If experimentation on ideas shows what

must be, it is different from wliat is commonly called experience.

I may add, that not only the mere use of our senses cannot show that the axioms of geometry

must be true, but that, without the light of our ideas, it cannot even show that they are true. If we
had a segment of a circle a mile long and an inch wide, we should have two lines inclosing a space;

but we could not, by seeing or touching any part of either of them, discover that it was a bent line.

16. That mathematical truths are not derived from experience is perhaps still more evident,

if greater evidence be possible, in the case of numbers. We assert that 7 and 8 are 15. We find it

so, if we try with counters, or in any other way. But we do not, on that account, say that the

knowledge is derived from experience. We refer to our conceptions of seven, of eight, and of addi-

tion, and as soon as we possess these conceptions distinctly, we see that the sum must be fifteen.

We cannot be said to make a trial, for we should not believe the apparent result of the trial if it

were different. If any one were to say that the multiplication table is a table of the results of experi-

ence, we should know that he could not be able to go along witli us in our researches into the founda-

tions of human knowledge ; nor, indeed, to pursue with success any speculations on the subject.

17. Attempts have also been made to explain the origin of axiomatic truths by referring

them to the association of ideas. But tliis is one of the cases in which the word association has

been applied so widely and loosely, that no sense can be attached to it. Those who have written

with any degree of distinctness on the subject, have truly taught, tluit the habitual association of tlie



176 dk. whewell, on the fundamental antithesis of philosophy.

ideas leads us to believe a connexion of the things : but they have never told us that this association

gave us the power of forming the ideas. Association may determine belief, but it cannot determine the

possibility of our conceptions. The African i<ing did not believe that water could become solid, because

he had never seen it in that state. But that accident did not make it impossible to conceive it so,

any more than it is impossible for us to conceive frozen quicksilver, or melted diamond, or liquefied

air ; which we may never have seen, but have no difficulty in conceiving. If there were a tropical

philosopher really incapable of conceiving water solidified, he must have been brought into that

mental condition by abstruse speculations on the necessary relations of solidity and fluidity, not by

the association of ideas.

18. To return to the results of the nature of the Fundamental Antithesis. As by assuming

universal and indissoluble connexion of ideas with perceptions, of knowledge with experience, as an

evidence of derivation, we may assert the former to be derived from the latter, so might we, on the

same ground, assert the latter to be derived from the former. We see all forms in space ; and we
might hence assert all forms to be mere modifications of our idea of space. AVe see all events

happen in time ; and we might hence assert all events to be merely limitations and boundary-marks

of our idea of time. AVe conceive all collections of things as two or three, or some other number :

it might hence be asserted that we have an original idea of number, which is reflected in external

things. In this case, as in the other, we are met at once by the impossibility of this being a complete

account of our knowledge. Our ideas of space, of time, of number, however distinctly reflected to

us with limitations and modifications, must be reflected, limited and modified by something different

from themselves. We must have visible or tangible forms to limit space, perceived events to mark
time, distinguishable objects to exemplify number. But still, in forms, and events, and objects, we
have a knowledge which they themselves cannot give us. For we know, without attending to them,

that whatever they are, they will conform and must conform to the truths of geometry and arith-

metic. There is an ideal portion in all our knowledge of the external world ; and if we were

resolved to reduce all our knowledge to one of its two antithetical elements, we might say that all

our knowledge consists in the relation of our ideas. Wherever there is necessary truth, there must

be something more than sensation can supply : and the necessary truths of geometry and arithmetic

show us that our knowledge of objects in space and time depends upon necessary relations of ideas,

whatever other element it may involve.

19. This remark may be carried much further than the domain of geometry and arithmetic.

Our knowledge of matter may at first sight appear to be altogether derived from the senses. Yet
we cannot derive from the senses our knowledge of a truth which we accept as universally certain ;

—

namely, that we cannot by any process add to or diminish the quantity of matter in the world.

This truth neither is nor can be derived from experience; for the experiments which we make to

verify it pre-suppose its truth. When the philosopher was asked what was the weight of smoke,

he bade the inquirer subtract the weight of the ashes from the weight of the fuel. Every one who
thinks clearly of the changes which take place in matter, assents to the justice of this reply : and
this, not because any one had found by trial that such was the weight of the smoke produced in

combustion, but because the weight lost was assumed to have gone into some other form of matter,

not to have been destroyed. When men began to use the balance in chemical analysis, they did no;

prove by trial, but took for granted, as self-evident, that the weight of the whole must be found in

the aggregate weight of the elements. Thus it is involved in the idea of matter that its amount
continues unchanged in all changes which takes place in its consistence. This is a necessary truth : and
thus our knowledge of matter, as collected from chemical experiments, is also a modification of our

idea of matter as the material of the world incapable of addition or diminution.

20. A similar remark may be made with regard to the mechanical properties of matter. Our
knowledge of these is reduced, in our reasonings, to principles which we call the laws of motion.
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These laws of motion, as I have endeavoured to shew in a paper already printed by the Society,

depend upon the idea of Cause, and involve necessary truths, which are necessarily implied in the

idea of cause ;—namely, that every change of motion must have a cause—that the effect is measured

by the cause ;—that re-action is equal and opposite to action. These principles are not derived from

experience. No one, I suppose, would derive from experience the principle, that every event must

have a cause. Every attempt to see the traces of cause in the world assumes this principle. I do

not say that these principles are anterior to experience ; for I have already, I hope, shewn, that

neither of the two elements of our knowledge is, or can be, anterior to the other. But the two ele-

ments are co-ordinate in the development of the human mind ; and the ideal element may be said to

be the origin of our knowledge with the more propriety of the two, inasmuch as our knowledge is

the relation of ideas. The other element of knowledge, in which sensation is concerned, and which

embodies, limits, and defines the necessary truths which express the relations of our ideas, may be

properly termed experience ; and I have, in the Memoir just quoted, endeavoured to shew how the

principles concerning mechanical causation, which I have just stated, are, by observation and experi-

ment, limited and defined, so that they become the laws of motion. And thus we see that such

knowledge is derived from ideas, in a sense quite as general and rigorous, to say the least, as that in

which it is derived from experience.

2] . I will take another example of this ; although it is one less familiar, and the consideration

of it perhaps a little more difficult and obscure. The objects which we find in the world, for

instance, minerals and plants, are of different kinds; and according to their kinds, they are called by

various names, by means of which we know what we mean when we speak of them. The discrimi-

nation of these kind of objects, according to their different forms and other properties, is the business

of chemistry and botany. And this business of discrimination, and of consequent classification,

has been carried on from the first periods of the development of the human mind, by an industrious

and comprehensive series of observations and experiments ; the only way in which any portion of

the task could have been effected. But as the foundation of all this labour, and as a necessary

assumption during every part of its progress, there has been in men's minds the principle, that

objects are so distinguishable by resemblances and differences, that they may be named, and known

by their names. This principle is involved in the idea of a Name ; and without it no progress could

have been made. The principle may be briefly stated thus:—Intelligible Names of kinds are

possible. If we suppose this not to be so, language can no longer exist, nor could the business of

human life go on. If instead of having certain definite kinds of minerals, gold, iron, copper and

the like, of which the external forms and characters are constantly connected with the same properties

and qualities, there were no connexion between the appearance and the properties of the object ;

—

if what seemed externally iron might turn out to resemble lead in its hardness ; and what seemed to

be gold during many trials, might at the next trial be found to be like copper; not only all the

uses of these minerals would fail, but they would not be distinguishable kinds of things, and the

names would be unmeaning. And if this entire uncertainty as to kind and properties prevailed

for all objects, the world would no longer be a world to which language was applicable. To man,

thus unable to distinguisli objects into kinds, and call them by names, all knowledge would be impos-

sible, and all definite apprehension of external objects would fade away into an inconceivable

confusion. In the very apprehension of objects as intelligibly sorted, there is involved a principle

which springs within us, contemporaneous, in its efficacy, with our first intelligent perception of the

kinds of things of whicii the world consists. AVe assume, as a necessary basis of our knowledge,

that things are of definite kinds; and the aim of chemistry, botany, and other sciences is, to find

marks of these kinds; and along with these, to learn their definitely-distinguislied properties. Even
here, therefore, where so large a portion of our knowledge comes from experience and observation, we

cannot proceed without a necessary truth derived from our ideas, as our fundamental principle

of knowledge.
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22. What the marks are, which distinguish the constant differences of kinds of things (definite

marks, selected from among many unessential appearances), and what their definite properties are,

when they are so distinguished, are parts of our knowledge to be learnt from observation, by

various processes ; for instance, among others, by chemical analysis. We find the differences of

bodies, as shown by such analysis, to be of this nature:— that there are various elementary

bodies, which, combining in different definite proportions, form kinds of bodies definitely different.

But, in arriving at this conclusion, we introduce a new idea, that of Elementary Composition,

which is not extracted from the phenomena, but supplied by the mind, and introduced in order

to make the phenomena intelligible. That this notion of elementary composition is not supplied

bv the chemical phenomena of cumbusfion, mixture, &c. as merely an observed fact, we see from

this ; tliat men had in ancient times performed many experiments in which elementary composition

was concerned, and had not seen the fact. It never was truly seen till modern times ; and when

seen, it gave a new aspect to the whole body of known facts. This idea of elementary composition,

then, is supplied by the mind, in order to make the facts of chemical analysis and synthesis

intelligible as analysis and synthesis. And this idea being so supplied, there enters into our

knowledge along with it a corresponding necessary principle;—That the elementary composition of

a body determines its kind and proportions. This is, I say, a principle assumed, as a con-

sequence of the idea of composition, not a result of experience ; for when bodies have been divided

into their kinds, we take for granted that the analysis of a single specimen may serve to determine

the analysis of all bodies of the same kind : and without this assumption, chemical knowledge

with regard to the kinds of bodies would not be possible. It has been said that we take only

one experiment to determine the composition of any particular kind of body, because we have

a thousand experiments to determine that bodies of the same kind have the same composition.

But this is not so. Our belief in the principle that bodies of the same kind have the same com-

])osition is not established by experiments, but is assumed as a necessary consequence of the ideas of

Kind and of Composition. If, in our experiments, we found that bodies supposed to be of the same

kind had not the same composition, we should not at all doubt of the principle just stated, but

conclude at once that the bodies were not of the same kind ;—that the marks by which the kinds

are distinguished had been wrongly stated. This is what has very frequently happened in the

course of the investigations of chemists and mineralogists. And thus we have it, not as an

experiential fact, but as a necessary principle of chemical philosophy, that the Elementary Com-
position of a body determines its Kind and Properties.

23. How bodies differ in their elementary composition, experiment must teach us, as we have

already said that experiment has taught us. But as we have also said, whatever be the nature

of this difference, kinds must be definite, in order that language may be possible: and hence,

whatever be the terms in which we are taught by experiment to express the elementary com-

position of bodies, the result must be conformable to this principle, That the differences of elementary

composition are definite. The law to which we are led by experiment is, that the elements of

bodies continue in definite proportions according to weight. Experiments add other laws ; as for

instance, that of multiple proportions in different kinds of bodies composed of the same elements;

but of these we do not here speak.

24. We are thus led to see that in our knowledge of mechanics, chemistry, and the like,

there are involved certain necessary principles, derived from our ideas, and not from experience.

But to this it may be objected, that the parts of our knowledge in which these principles are in-

volved has, in historical fact, all been acquired by experience. The laws of motion, the doctrine

of definite proportions, and the like, have all become known by experiment and observation ; and

so far from being seen as necessary truths, have been discovered by long-continued labours and

trials, and through innumerable vicissitudes of confusion, error, and imperfect truth. This is

perfectly true: but does not at all disprove what has been said. Perception of external objects
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and experience, experiment and observation are needed, not only, as we have said, to supply the

objective element of all knowledge—to embody, limit, define, and modify our ideas ; but this

intercourse with objects is also requisite to unfold and fix our ideas themselves. As we have already

said, ideas and facts can never be separated. Our ideas cannot be exercised and developed in any

other form than in their combination with facts, and therefore the trials, corrections, controversies,

by which the matter of our knowledge is collected, is also the only way in which the form of

it can be rightly fashioned. Experience is requisite to the clearness and distinctness of our ideas,

not because they are derived from experience, but because they can only be exercised upon ex-

perience. And this consideration sufficiently explains how it is that experiment and observation

have been the means, and the only means, by which men have been led to a knowledge of the

laws of nature. In reality, however, the necessary principles which flow from our ideas, and
which are the basis of such knowledge, have not only been inevitably assumed in the course of such

investigations, but have been often expressly promulgated in words by clear-minded philosophers,

long before their true interpretation was assigned by experiment. This has happened with regard

to such principles as those above mentioned ; That every event must have a cause; That reaction

is equal and opposite to action ; That the quantity of matter in the world cannot be increased or

diminished : and there would be no difficulty in finding similar enunciations of tiie other principles

above mentioned ;—That the kinds of things have definite differences, and that these differences

depend upon their elementary composition. In general, however, it may be allowed, that the

necessary principles which are involved in those laws of nature of which we have a knowledge

become then only clearly known, when the laws of nature are discovered which thus involve the

necessary ideal element.

25. But since this is allowed, it may be further asked, how we are to distinguish between the

necessary principle which is derived from our ideas, and the law of nature which is learnt by expe-

rience. And to this we reply, that the necessary principle may be known by the condition which we
have already mentioned as belonging to such principles :—that it is impossible distinctly to conceive

the contrary. We cannot conceive an event without a cause, except we abandon all distinct idea of

cause ; we cannot distinctly conceive two straight lines inclosing space ; and if we seem to con-

ceive this, it is only because we conceive indistinctly. We cannot conceive 5 and 3 making 7 or 9 ;

if a person were to say that he could conceive this, we should know that he was a person of imma-
ture or rude or bewildered ideas, whose conceptions had no distinctness. And thus we may take it

as the mark of a necessary truth, that we cannot conceive the contrary distinctly.

26. If it be asked what is the test of distinct conception (since it is upon the distinctness

of conception that the matter depends), we may consider what answer we should give to this question

if it were asked with regard to the truths of geometry. If we doubted whether any one had
these distinct conceptions which enable him to see the necessary nature of geometrical truth,

we should inquire if lie could understand the axioms as axioms, and could follow, as demon-
strative, the reasonings which are founded upon them. If this were so, we should be ready to

pnmounce that he had distinct ideas of space, in the sense now supposed. And the same answer
may be given in any other case. That reasoner has distinct conceptions of mechanical causes who
can see the axioms of mechanics as axioms, and can follow the demonstrations derived from them as

demonstrations. If it be said that the science, as presented to him, may be erroneously constructed
;

that the axioms may not be axioms, and tiierefore the demonstrations may i)e futile, we still reply,

that the same might be said with regard to geometry : and yet that tile possibility of this does

not lead us to doubt either of the trutii or of the necessary nature of the pro])ositions contained in

Euclid's Elements. We may add further, that although, no doubt, the authors of elementary

books may be persons of confused minds, who present as axioms what are not axiomatic truths
;

yet that in general, what is presented as an axiom by a thoughtful man, though it may include

some false interpretation or application of our ideas, will also generally include some principle

vhich really is necessarily true, and which would still he involved in the axiom, if it were cor-

Voi.. VIII. Pabt II. Aa
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reeled so as to be true instead of false. And thus we still say, that if in any department of

science a man can conceive distinctly at all, there are principles the contrary of which he cannot

distinctly conceive, and which are therefore necessary truths.

27. But on this it may be asked, whether truth can thus depend upon the particular state of

mind of the person wlio contemplates it ; and whether that can be a necessary truth which is not

so to all men. And to this we again reply, by referring to geometry and arithmetic. It is plain

that truths may be necessary truths which are not so to all men, when we include men of confused

and perplexed intellects ; for to such men it is not a necessary truth that two straight lines cannot

inclose a space, or that li and 17 are 31. It need not be wondered at, therefore, if to such

men it does not appear a necessary truth that reaction is equal and opposite to action, or that the

quantity of matter in the world cannot be increased or diminished. And this view of knowledge and

truth does not make it depend upon the state of mind of the student, any more than geometrical

knowledge and geometrical truth, by the confession of all, depend upon that state. We know that

a man cannot have any knowledge of geometry without so much of attention to the matter of

the science, and so much of care in the management of his own thoughts, as is requisite to keep his

ideas distinct and clear. But we do not, on that account, think of maintaining that geometrical

truth depends merely upon the state of the student's mind. We conceive that he knows it because

it is true, not that it is true because he knows it. We are not surprized that attention and care and

repeated thought should be requisite to the clear apprehension of truth. For such care and such

repetition are requisite to the distinctness and clearness of oiu- ideas: and yet the relations of these

ideas, and their consequences, are not produced by the efforts of attention or repetition which we

exert. They are in themselves something which we may discover, but cannot make or change. The

idea of space, for instance, which is the basis of geometry, cannot give rise to any doubtful proposi-

tions. What is inconsistent with the idea of space cannot be truly obtained from our ideas by any

efforts of thought or curiosity ; if we blunder into any conclusion inconsistent with the idea of space,

our knowledge, so far as this goes, is no knowledge: any more than our observation of the external

world would be knowledge, if, from haste or inattention, or imperfection of sense, we were to

mistake the object which we see before us.

28. But further : not only has truth this reality, which makes it independent of our mistakes,

that it must be what is really consistent with our ideas ; but also, a further reality, to which the

term is more obviously applicable, arising from the principle already explained, that ideas and

perceptions are inseparable. For since, when we contemplate our ideas, they have been frequently

embodied and exemplified in objects, and thus have been fixed and modified; and since this compound

aspect is that under which we constantly have them before us, and free from which they cannot be

exhibited ; our attempts to make our ideas clear and distinct will constantly lead us to contem-

plate them as they are manifested in those external forms in which they are involved. Thus in

studying geometrical truth, we shall be led to contemplate it as exhibited in visible and tangible

figures;—not as if these could be sources of truth, but as enabling us more readily to compare the

aspects which our ideas, applied to the world of objects, may assume. And thus we have an addi-

tional indication of the reality of geometrical truth, in the necessary possibility of its being capable

of being exhibited in a visible or tangible form. And yet even this test by no means supersedes

the necessity of distinct ideas, in order to a knowledge of geometrical truth. For in the case of

the duplication of the cube by Hobbes, mentioned above, the diagram which he drew made two

points appear to coincide, which did not really, and by the nature of our idea of space, coincide;

and thus confirmed him in his error.

Thus the inseparable nature of the Fundamental Antithesis of Ideas and Things gives

reality to our knowledge, and makes objective reality a corrective of our subjective imperfec-

tions in the pursuit of knowledge. But this objective exhibition of knowledge can by no means
supersede a complete development of the subjective condition, namely, distinctness of ideas.

And that there is a subjective condition, by no means makes knowledge altogether subjective,

I
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and thus deprives it of reality ; because, as we have said, the subjective and the objective

elements are inseparably bound together in the fundamental antithesis.

29. It would be easy to apply the.se remarks to other cases, for instance, to the case of the

principle we have just mentioned, that the differences of elementary composition of different kinds of

bodies must be definite. We have stated that this principle is necessarily true;—that the contrary

proposition cannot be distinctly conceived. But by whom ? Evidently, according to the preceding

reasoning, by a person who distinctly conceives Kinds, as marked by intelligible names, and Composi-

tion, as determining the kinds of bodies. Persons new to chemical and classiflcatory science may not

possess these ideas distinctly ; or rather, cannot possess them distinctly ; and therefore cannot appre-

hend the impossibility of conceiving the opposite of tlie above principle ; just as the schoolboy cannot

apprehend the impossibility of the numbers in his multiplication table being other than they are.

But this inaptitude to conceive, in either case, does not alter the necessary character of the truth :

although, in one case, the truth is obvious to all except schoolboys and the like, and the other is pro-

bably not clear to any except those who have attentively studied the philosophy of elementary com-

positions. At the same time, this difference of apprehension of the truth in different persons does

not make the truth doubtful or dependent upon personal qualifications ; for in proportion as persons

attain to distinct ideas, they will see the truth ; and cannot, with such ideas, see anything as truth

which is not truth. When the relations of elements in a compound become as familiar to a person

as the relations of factors in a multiplication table, he will then see what are the necessary axioms

of chemistry, as he now sees the necessary axioms of arithmetic.

30. There is also one other remark which I will here make. In the progress of science, both

the elements of our knowledge are constantly expanded and augmented. By the exercise of observa-

tion and experiment, we have a perpetual accumulation of facts, the materials of knowledge, the

objective element. By thought and discussion, we have a perpetual development of man's ideas

going on : theories are framed, the materials of knowledge are shaped into form ; the subjective

element is evolved ; and by the necessary coincidence of the objective and subjective elements, the

matter and the form, the theory and the facts, each of these processes furthers and corrects the

other : each element moulds and unfolds the other. Now it follows, from this constant develop-

ment of the ideal portion of our knowledge, that we shall constantly be brought in view of new
Necessary Principles, the expression of the conditions belonging to the Ideas which enter into our

expanding knowledge. These principles, at first dimly seen and hesitatingly asserted, at last be-

come clearly and plainly self-evident. Such is the case with the principles which are the basis of the

laws of motion. Such may soon be the case with the principles which are the basis of the philosophy

of chemistry. Such may hereafter be the case with the principles which are to be the basis of the

philosophy of the connected and related polarities of chemistry, electricity, galvanism, magnetism.

That knowledge is possible in these cases, we know ; that our knowledge may be reduced to prin-

ciples gradually more simple, we also know; that we have reached the last stage of simplicity of our

principles, few cultivators of the subject will be disposed to maintain ; and that the additional steps

which lead toward very simple and general principles will also lead to principles which recommend
themselves by a kind of axiomatic character, those who judge from the analogy of the past history

of science will hardly doubt. That the principles thus axiomatic in their form, do also express

some relation of our ideas, of which experiment and observation have given the true and real interpic-

tation, is the doctrine which I have here attempted to establish and illustrate in the most clear and
undoubted of the existing sciences ; and the evidence of this doctrine in those cases seems to be

unexceptionable, and to leave no room to doubt that such is the universal type of the progress of

science. Such a doctrine, as we have now .seen, is clo.sely connected with the views here presented of

the nature of the Fundamental Antithesis of Philosophy, which I have endeavoured to illustrate.

W. WHEWELL.
AA2
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I BELIEVE it will be generally admitted that the heading of this paper describes the only subject

yet remaining, of an elementary character, on which a serious schism exists among mathematicians

as to absolute correctness or incorrectness of results. When such a question arises upon a method
of pure mathematics, there can be little doubt that it must be one which is likely to lead to error

if not cautiously used ; and it is probable that the contending parties have not made any close

agreement upon the use of terms. A review of the leading points of the controversy may be useful,

accompanied by an examination of the maxims which have been adopted, but I think not very

plainly stated, in the rejection of the series called divergent. The manner in which the rejection

just alluded to has been made will require that, instead of dividing series into convergent and
divergent, we should make a more general division, say into convergent and non-convergent.

Non-convergent series may be divided into those of infinite and finite divergence : the former of

which, as in the cases of a + a + a + ... and 1-2 + 3-4. + .. . can be made, by summation of

terms, to differ from a given quantity to any extent; the latter, as in the cases 1 - 1 + 1 - ...

and COS0 + cos2 + ... cannot be made to differ from a finite quantity by more than an amount
which can be ascertained. It is obvious that only the converging series can, properly speaking, be
the objects of arithmetical calculation, in which they occur early, of which ^ = '33333... is a

sufficient instance. All others, whether of finite or infinite divergence, are equally out of the pale

of arithmetic to those who do not acknowledge different degrees of impossibility. I do not here

argue with those who reject everything which is not within the province of arithmetic, but only

with those others who abandon the use of infinitely diverging series, and yet appear to employ

finitely diverging series with confidence. Such appears to be the practice of those analysts

who object to diverging series, both at home and abroad. They seem perfectly reconciled to

1-1 + 1-1 + .. .=1, but cannot admit 1+2 + 4 + 8 + ... = -1.
Many of an earlier school took an opposite position ; they freely used infinitely diverging

series, but, with Euler, considered finitely diverging forms as indeterminate. To use a common
phrase, they spoke as they found : they could actually obtain by rules of algebra, finite expres-

sions from which they could evolve infinitely diverging series : but they were not able to find, or

to satisfy themselves they had found, similar equivalents for most cases, particularly the trigono-

metrical ones, of the remaining species. They made an unguarded use of the word ' indeterminate
:'

sometimes it meant nndeterminable, in the same manner as - when looked at as the solution of an

identical equation ; sometimes only undetermined, either with reference to the state of science at

the time the word was used, or to the state of a particular question at some one particular stage of

the solution (as in the method called that of indeterminate coefficients). The moderns seem to me
to have made a similar confusion in regard to their rejection of divergent series : meaning sometimes

that they cannot be safely used under existing ideas as to their meaning and origin, sometimes

that the mere idea of any one applying them at all, under any circumstances, is an absurdity.
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We must admit that many series are such as we cannot at present safely use, except as means

of discovery, the results of which are to be subsequently verified : and the most determined rejector

of all divergent series doubtless makes this use of them in his closet. But to say that what we

cannot use no others ever can, to refuse that faith in the future prospects of algebra which has

already realised so brilliant a harvest, and to train the future promoter of analysis in a notion

which will necessarily prevent him from turning his steps to quarters from whence his predecessors

have never returned empty-handed, seems to me a departure from all rules of prudence. The
motto which I should adopt against a course which seems to me calculated to stop the progress of

discovery would be contained in a word and a symbol—remember ^y'—l.

I do not pretend to have that confidence in series which, to judge from elementary writers on

algebra, is common among mathematicians : not even in convergent series. A few great forms,

which have had substantive and finite expressions assigned to represent the remnants after any
given term may, no doubt, be perfectly trustworthy. But as for the rest, I cannot bring myself

to that positive assurance with respect to any general class of series which the writers to whom I

shall presently allude appear to have with respect to such divergency as they do admit. The
main object of this paper is to show that they have underrated the character of most of what

they reject, and overrated that of all they receive.

I shall now proceed to the different points of discussion in order.

SECTION I.

Alt Divergent Series, whether their divergence lie finite or infinite, stand vpon the same
basis, and ought to be accepted or rejected together, as Jar as any grounds of con-

fidence are concerned which are not directly derivedfrom exjieriefice.

I SHALL first examine the general arguments on which Poisson supports the contradictory of

the preceding assertion. This great analyst was at the head of the school in which definite integration

had been made in a great measure to take the place of expansion into algebraical series. A definite

integral is a particular kind of series, and has its converging and diverging cases, the latter being

either of infinite or of finite divergence. Thus j^ 6 dx is convergent,
_/„ e' dx is infinitely

divergent, and y,, cos.rd^i? is finitely divergent. Perhaps in the natural bias derived from a

continual contemplation of integration under the form of summation, not of inverse differentiation,

may be seen the reason for the opinion of divergent series adopted by the definite integrators.

Let it only be granted that integration is as fully defined and as generally understood, as any of

the fundamental operations of arithmetic, and the question on diverging series seems to be settled

at once, and by a much easier argument than any of those usually proposed against them. To

take an instance;

—

j„ 2'dx cannot be other than /„ a'da; + j, Z^dcV + J^ S'dx + ... : but the

first is (on the above assumption) infinite, and the second is (log 2) ~'(l + 2 + 4 + ...) which is

therefore infinite. Consequently I + 2 + 4 ... cannot, as usually held in algebra, represent - 1. It

must certainly be charged upon those who have hitherto used divergent series, that they have

never reflected upon and explained, perhaps have never perceived, the singular apparent in-

con-sistency which they were every day committing; namely, treating those very forms as repre-

sentatives of infinity when they were consequences of integration, which they accepted as finite,

when they were results of algebraical development. Referring further discussion of this point

to a subse(|ucnt section, I now make two citations from memoirs by Poisson in the Joiirnn/

de PEciile Polytef/mii/ue, Cahier 1<), pp. 408, 40.9, 501.

Page .501 " On enseigne dans le.s elemcns, qu'une serie divergcnte ne pcut servir il calculer

la valeur approchee de la fonction dont elle resulte par le developpcment : mais quelqiiefois on
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a paru croire qu'une telle serie peut etre employee dans les calculs analytiques a la place de

la fouctioti ; et quoiqiie cette erreiir soit loin d'etre generate parmi les geometres, il n'est

cependant pas inutile de la signaler, car les resultats auxquels on parvient par Tintermediaire

des series divergentes, sont toujours incertains et le phis souvent inexncts."

Pages 408, 409. "On peut voir dans les Memoires de Petersbourg (^Novi Commentarii, torn.

XVII et xviii) la discussion qui s'est elevee autrefois entre Euler et D. Bernouilli au sujet des

series de sinus ou de cosinus prolongees a I'infini. Les details dans lesquels nous venons d'entrer,

ne semblent devoir laisser aucune obscurite sur ce point d'analyse : nous admettrons avec Euler

que les sommes de ces series considerees en elle-memes, n'ont pas des valeurs determinees; mais

nous ajouterons que chacune d'elles a une valeur unique et qu'on peut employer dans Fanalyse,

lorsqu'on les regarde comme les limites des series convergentes, c'est-a-dire, quand on suppose

implicitement leurs termes successifs multiplies par les puissances d'une fraction infiniment peu

differente de I'unito."

I hardly know which of the passages in my Italics ought to excite most surprise. Divergent

series, at the time Poisson wrote, had been nearly universally adopted for more than a century,

and it was only here and there that a difficulty occurred in using them. As to the second

passage, we may clear Poisson of absolute mistatement by remembering that he had both head

and hands full of a subject which had tasked his great powers to their utmost, namely, the

substitution of definite integrals for series in questions of mathematical physics. As far as in-

tegration is concerned, I admit, and even think I shall presently show, that he was fully justified

in what he said : in the meantime I attend to his argument in favour of finitely diverging series.

Let us take the series 1 — 1 + 1 — 1+..., a remarkable specific case of both algebraical and

trigonometrical series. I collect from what I have quoted, and from numerous other parts of

his writings, that Poisson is content to equate^ to 1 — 1 +... , considering the latter as a mere

form indicative of 1 - g + g'— ... , where ^ is a fraction infinitely near to unity, but less. He
will consent to use the limiting form of convergency, to walk on the line which separates con-

vergency from divergency, but not to cross that line, even by an infinitely small quantity.

In using the language of infinitely small quantities, I do not intend to direct any part of

my argument against the ideas connected with the phraseology, because both Poisson's statements

and my comment on them might easily be translated into the language of the theory of limits.

Let us then take 1 — 1 + 1 - ... as indicating 1 -g+g'-—... where 1 - § is infinitely small and

positive. How can 1 — g + g'- ... be called convergent? Because the terms diminish without

limit, and g", if n be injinitely great, becomes infinitely small. The departure from finite

divergence, and commencement of real convergence, is infinitely distant. Now all that is

wanted to make 1 + 2 +4+... equal to — I is the presence of the infinitely great negative re-

mainder, which might be considered as not destroyed, but only removed, when the second side

of (1 - 2)"' = 1 +3+ 2"+... + 2" + 2" + ' (1 - 2)"' is made an infinite series by n = co. If sup-

positions which only take effect at an infinite distance from the beginning of the series are

allowed to be made with regard to series of finite divergence, why may not the same be conceded

in the case of infinite divergence.'' Both 1 — 1 +... and 1 +2 + ... are equally irreducible to

their finite equivalents by the arithmetical computer ; both are equally creatures of algebra : if

a reason can be shown for the distinction between them, those who adhere to infinitely diver-

gent series have a right to ask for it ; but if, as I suspect, that reason be experience, I am
prepared to contend that, when integration is not employed, there has not been produced one

single instance in which divergency, properly treated, has led to error.

That experience is the guide may be safely inferred in all cases of rejection, when those

who reject do it to different extents. Poisson would admit 1^ — 2* + 3^ — 4^ + ... =0, since there

is no question that, g being less than unity, the mere arithmetical computer might establish,

to any number of decimal places, the identity of 1^ - Z^g + 3^ - ... and (1 - g) {\ + g)''. But
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on this equation, l'^ — 2' + ... =0, Abel, another rejector, remarks (Works, li. 266), " Peut-on rien

imagine!- de plus horrible?"

Poisson's mode of allowing ^ = 1 - 1 + ... is clearly equivalent to an adoption of the maxim
that whatever is true up to the limit is true at the limit. When relations of pure magnitude

are in question, there is no doubt of the truth of this principle. But the words iip to must not

be understood inclusively, since then the principle would merely assert that what is true at the

limit and elsewhere, is true at the limit. With this caution, it is impossible to prove that a relation

of magnitude is true at the limit, if at the limit we have no longer calculable magnitude. We may
not say that what is calculable up to the limit is calculable at the limit, nor that what is complicated

up to the limit is complicated at the limit, &c.: but only that relations which are quantitatively true

up to the limits are so at the limits, if the limits be quantities. Assume 1 — 1 + ... to be quantity,

determinate quantity, a«d that quantity may possibly be shown to be J and no other: but it

may not be assumed that 1 - 1 + ... is a quantity, because 1 -^ + ^- ... is a quantity, up to

its limit; or at least if such assumption may be made, no reason has been given for confining

it to any one class of limiting forms.

Again, it is clear enough from the manner in which Fourier, Poisson, Cauchy, &c. use the

limiting form 1 — 1 + ..., that they intend it to signify ^ in an absolute manner. The whole

fabric of periodic series and integrals, which all have had so much share in erecting, would

fall instantly if it were shown to be possible that 1 — 1 + ... might be one quantity as a limiting

form of Afj-A-i+... and another as a limiting form of B„-B^ + .... Fourier's celebrated

expression of a function by means of a definite integral, that of Poisson by means of a series

of periodic integrals, &c., are all stated as absolute truths, and used as such, though they are proved

only as limiting forms of one particular class of convergent series. A person who is much versed in

the writings of the above-mentioned analysts must feel to his finger's ends that one well-established

instance in which I — \ + ... means other than ^ would throw doubt upon all they have written.

Now we have Poisson's assurance that these series, though indeterminate, have each a unique value,

which can be employed in analysis when the series are considered as the limits of convergent series.

Here the word 'indeterminate' is loosely used, in the sense of not determinable by actual summation :

a unique value, which can be employed (and therefore of course first found) is not indeterminate in

any correct sense. But who is to assure us of this uniqueness of value.'' How could Poisson

undertake to make the assertion.? By an induction—an extensive one I grant—but still an induction.

From (1 + j)-' = 1 - X + ... to*

:/ J ^.
g-2i) VIogx

it is always observed that where the series-side of an attainable developement gives I — 1 4- ... the

finite side gives ^. But this induction may be overturned : and if the stability of form which really

has hitherto characterized series of finite divergency should be found not to belong equally to those

of infinite divergency, it .should teach us rather to suspect the former than to content ourselves with

merely empirical rejection. There are two ways of considering a series : absolutely, as a given

algebraical expression, and relatively, as the development of a given function, from which it

actually was pi'oduced. I do not defend the former mode of considering either convergent or non-

convergent series ; and I fully believe that analysts have been led into error, as to both classes, by
incautiously reasoning on series of which the invelopments were unknown. I do not dispute that

the arithmetical value of a specific case of a series may, when that particular case is convergent, be

calculated : but, speaking of general scries, it seems to me that it is dangerous to reason upon them

* This imunce in very good lor the purpose, nincc one «idc or the other must have all the difficulties of divergency : either the

integml or the Meries in divergent.
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until as general an invelopnient is found ; after which, I incline to think that all conclusions upon

the series should be upon them considered as the developments of those particular functions which

produce them. My reasons are as follows.

1. Discontinuity of form is not perceptible in the series itself, though it may very possibly

exist ; to reason upon a series as a continuous function, without knowing from its invelopment that

it is so, is pure assumption. This remark applies particularly to series which are always conver-

gent, and most of all to series which are convergent and also begin to diminish from the first term.

If we spoke of mathematical results in the same sort of language as of physical phenomena, we

should say that there is inaptitude in developments to be the permanent arithmetical representatives

of finite continuous functions, and that series which must of necessity be always convergent, shew

this inaptitude by discontinuity, while the others escape from arithmetic altogether by divergency.

2. When divergent series are employed independently of their invelopments, it is impossible to

distinguish the cases in which they really represent infinity from those in which they are developed

forms of finite quantity. No one can actually calculate with the symbol x , even when its sign is

determinate : for even if eo + eo ' and as x co ' would not puzzle him, it is certain that 05 - co
'

and eo -^ eo ' would require reference to the producing functions. As soon as x is attained, we

must stop for examination : this cannot be done if, when attained, it is seen under the divergent

form which equally belongs to finite quantities, that is, is not seen at all.

3. It cannot be questioned that series which are infinitely divergent, at least, may appear

as very different things in different cases. For instance, an algebraist would be inclined almost to

assert that 1 + 2 + 4 + ... must be - 1 ; for he would say, if it be the object of algebra at all, it

must satisfy the equation z = 1 +Qz. But now let us consider the series 1 + 2a-" + 2'a'"' + 2"
a'"'

+ ... which is certainly convergent, if n and n be both greater than unity, and as certainly increases

without limit, as c - 1 diminishes without limit. When « = 1, the limiting form 1 +2 + 4+ ... is

clearly the representation, not of - 1, but of 05 . The series e''' + xe''"' + x-e'''"' + ... satisfies the

equation

ndU r"
= 7 7^ or C7= / (he.x'

an -J.

fi*S 'd9.
dxdb h dn

where <ht) and \S/Q are arbitrary, and a and /3 are any constants independent of a, b, and n. In

taking this form for U, I follow the example of Poisson, Cauchy, &c., who are always content with

such a form, provided only that it contain the requisite* number of arbitrary functions. To make

the form of U an algebraical equivalent of the series, we must determine cpQ and \|/0 from

b1''d9;

a useless attempt, even when w<l, unless discontinuous forms of \^0 be introduced. Here is a

clear case in which 1 + 2 + 4 + ... represents eo : are we then really to abandon the assertion that it

satisfies the equation 1 +2% = x? If so, the opponents of divergent series have gained their point,

for those developments are not even to be trusted as to their symbolical properties. But I rather

argue that it is not so, in the following manner. Every equation, it is very well known, has as

many roots as units of dimension, only on the supposition that its problem is absolutely of

that dimension, and not a degenerate case of a higher dimension. Plenty of simple problems may be

proposed which illustrate this known result of common algebraical reasoning. Now the equation

which stands related to the series in question in the same manner asl+2« = «tol+2 + 4+ ... is

<pz = tv'e'''"' + (pix + I). If this last could be generally solved, then ^0 would be the series

• They assume that Sf/>e£»', or <^, 6, c-**' +(^26,6^9^+ ... can

alway.s be represented by/f/iW (-''^r/P, which I believe to be true if

(/)C may be discontinuous. But it has not been proved ; should it

happen to be false, * toujours incertains' may be applied to many
of their results, and 'le plus souvent inexncls,' may follow.

I
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required : if, after solution, b were made = 0, we should see that 1 + 2ss = z, the result for .v = 2,

would be only a degenerate form of a more complicated form.

This remark will illustrate my opinion that a series is to be considered strictly in relation to the

function from which it is developed. If x' + af*^ + ... be absolutely under consideration, the

equation (b« = ar(l - x)'' may be strictly obtained, and thence (l - a;)"' for 1 + ,r -t ... But

there is no saying what further degeneracy of form may be seen in passing from cbz = x'e~'"'' +
<p(x + 1) to 1 + 2^ = 21, which is not seen in passing from ^2; = x' + (j){z + 1) to the same.

My conclusion is, that a divergent series may have for its proper value either that which is

usually so considered, or infinity, according to the nature of the function from which it is expanded.

And since every equation has as many roots as it has algebraical dimensions, so many of them being-

infinite as there are vanishing coefficients which precede the first finite coefficient, there can be

no right to say that the symbolical character of divergent series is forfeited, until either the symbol

w takes the place of the ordinary value in a case in which there is no degeneracy, or until some

finite value, different from the ordinary one, is shown, in some one particular case, to be the proper

representative of the series. Let 1 +2 + 4+ ... be shown to be any thing but a root of either

\ +2z = ss, ov of another equation which has degenerated into 1 + 2« = « ; that is, let it come out

any thing but - 1 or w , and as a result of any process which does not involve integration performed

on a divergent series—and I shall then be obliged to confess that divergent series must be aban-

doned, or rather, that the generalizations frequently made on the subject must be much curtailed.

But nevertheless, there is nothing to lead us to doubt that divergent'series of all classes, whether of

finite or infinite divergence, must be treated alike. If any one say that such a difficulty as the

preceding cannot occur in series of finite divergence, he must prove it.

It might perhaps be supposed that, in every doubt which has been raised in the preceding

remarks, the finitely diverging series have been much less hardly borne upon than the others—to an

extent which may make it seem to be almost admitted by myself that the foreign analysts, if not

justified in their dogmatical rejection of infinitely diverging series, have nevertheless chosen, and

judiciously chosen, to confine themselves to the safer of two paths. But it is to be remembered

that I have been obliged, as yet, to mention only their practical division, which really consists in

the separation of all finitely diverging series from the rest. Had I had to make my own division

of series, I should have admitted that there was one of two paths which was much safer than the

other : but I should have asserted that the labors of the writers in question did not extend over the

whole of that path. From the sort of appeal to induction which unfortunately must, in the present

state of our knowledge, help us to a part of our results on series, backed by considerably more of

demonstration than has been applied to the remaining cases, it seems to me pretty clear that the

proper line of demarcation does not separate series of finite and infinite divergence, but series iiaving

all their signs alike from those of terms alternately positive and negative, or consisting of parcels 01

terms alternately positive and negative. This will be the subject of a subsequent section.

SECTION II.

Tlie Operation of Integration as at present imderstood, is one of Arithmetic, as distin-

fruisliedjrom Algebra, and must not he applied unreservedly to Divergent Series.

AccoBDiNc to elementary notions, we differentiate when we find the value of \ip(!v + h) - (p.v\ h~ ^

in a calculable form when A = 0. Integration is usually defined as the inverse question, which

must be, re(|uired (^.i when the calculable form of
\(f)

(x + h) - <^.r| A"' is given for li = 0. This

demands the solution of a functional equation, and it is easy to say. Let this ecjuation be considered

Vol.. VIII. I'Aicr II. Bb
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as solved, and let the process of solution have a name. But the state of our knowledge makes it of

no use whatever to express a conventional solution, since our power of translating our convention

into ordinary language is confined to a small number of cases, all rendered backwards from the

direct process. Common integration is only the memory of differentiation : and the process of

parts, and the few other artifices by which it is effected, are changes, not from the unknown to the

known, but from the forms in which memory will not serve us to those in which it will. We may
assume that any function has an integral, and we may write down fcoiw'dx or fe''"da!\ we

may also have recourse to series, and by assuming an unlimited use of divergency, we may procure

abundance of nominal answers to any question. But we cannot be so much as sure of the fact that

every continuous function has an integral, except by recourse to the summatory definition, namely,

/•' f / w - a\ I a; - a\ , / x - a\\ a; - a
j^ct>vdv = \^<pa + <p[a+-^^^ +cp[.v + ^—-^ +...+ ,^ U- + „ __

j J

__

in which n is made infinite. This definition, as is well known, never fails, nor can fail, to give one

value for every value of a and .r, applied to one branch of the function, except only when (px^

becomes infinite at or between v = a and v = x. In this last case, we have not even the means of

universally defining fcpvdv : all the difficulties of divergent series meet us again.

In confining ourselves to this arithmetical definition of an integral, when one of the limits is

infinite, we must, as to a large number of cases, act precisely as if we separated a class of divergent

series from the rest, and insisted upon their retaining for their values the idea which the attempt at

arithmetical summation gives, infinity. The early problems by which the nature and use of

integration is suggested, being problems on concrete (mostly on space) magnitude, cannot afford the

means of generalizing our definition. No doubt the area of the curve y = €^ represented by

f" edx, is greater than any surface which can be assigned : no doubt also that the series of inscribed

rectangles 1 + e + e^ + ... is the same. AVhen we shall have obtained the definition of an integral

by which we can state such a value for j'^e'dw as is the true correlative to (l-e)"' considered as

the value of 1 + e + ... then, and not till then, shall we be entitled to claim integration as an

instrument of algebra in the widest sense. Some of the objections raised against divergent series,

indeed most of those which are very plausible, are grounded upon the supposition that integration

may be as unreservedly applied to divergent as to convergent series, if the former are to be used

at all. That this cannot be done may be satisfactorily shown by instances, as follows :

\ — X cos av
,

Let (bv = = 1 + acos av + x' cosSati +
' 1 — 2 a; cos av + x'

which never becomes infinite for any value of v, except only when a; = ± 1 ; and the series is con-

vergent when X lies between — I and + 1. Multiply both sides by e'^^dv, and integrate from

ti = to «= 00 , in which case there cannot be any doubt about the purely arithmetical (or convergent)

character of every integration. This gives us, t being 6 •

2
-7- f €-'''(pvdv = i +xt + a^ t^ + a^ f + x^t^'

This resulting series is convergent for all values of x : for, since t is less than J, xt" must

become less than unity after a certain value of n, and thenceforward Sixt")" must be more con-

vergent than any series of simple powers. If x lie between - 1 and + I , the whole of this process

is purely arithmetical, and the identity of the two sides of the last equation might be approximately

verified by actual computation : if not, the original series, though divergent, is changed into

a convergent one by the process. Change x into x~\ and let (pv then become (f>]V ; we find

(bv + <biV = 1, and
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2 /•" ,,, 2 /•« ., 2 /•« „

—z—
I

6 '(bvdv + —y— I e-'d),vdv = —-— / 6"''"d« = 1.

Accordingly, if all that precedes be correct, we have

which is certainly false, unless a convergent series can represent less than half the sum of its terms.

This last series is always convergent, except only when a = 0, or < = 1, in which case the last

equation is found to be algebraically true. If for a; we write - x, the equation is found to be

true when t is equal to the least of x and cv'\ but is certainly not universally true.

Apply the same process to

(1 — x) cosav

1 - 2,r cos2rau + a?"

and the result is

cosa w + x cos Saw + x- cosSau +

'-h'^'^[''^i^}'H'''^i^'''
on which precisely the same remarks might be made. I might multiply instances of this kind to

any extent ; but the following consideration will render them needless, as showing that what we

have seen is precisely what we ought to have expected.

Integration, though only capable of an arithmetical definition, is the most decided changer of

form which we ever use. A change of value in a constant may introduce a totally different form

into an integral ; and in particular, the assumption of infinite value for a constant has this effect

almost without exception. And in regard to definite integrals, there is hardly any end to the

known instances in which complete and apparently arbitrary changes of form (such as cannot pass

one into another through - or the like) arise from alteration of the specific value of a constant.

If then V be expanded into the series /•„ + ^i + A + ••• and if the sum of n terms,

^0 + ^1 + ... + Pn- i
''e called Q„ ; we obviously have

jydv^^P.dv + I'p.dv + ... + L\V-Q„)dv
where w is made infinite after integration. When the series Pq + P, + ... is convergent, then, even

granting that y{V — Q^) dv may have circumstances peculiar to w = oo , it is of no consequence,

since considerations of form are rendered useless by evanescence of value : the elements ofy( V- Q„) dv

must, by the hypothesis of convergency, diminish without limit as compared with the corresponding

elements oifP^dv, fP^dv, &c. Even if integration converted the convergent series into a diver-

gent one, this would still be the case. But if P„ + P, + ... be divergent, we have no longer any

right to draw any conclusion about /"( F — Q,) dt) from observing what takes place -vihh J'P^dw,

J'P\ dv, &c. Applying this to our first example above, we have

1— <rcosa« cos (n + 1) av — X cos nav
= 1 + a? cos av +... + a!"coswa« + of*'

\ -2xcosav + x' I -Zxcosav + X

change .i' into a;"', and add ; which gives

1=2 +

+ '+ lcos(w+ \)av- Ix"*- + — )(

lx + -] cosav + . . . + ix"+ — I cos no v h
1 — 2.1? cos au + X

This equation is identically true, the only restriction being that w must be a positive integer

(0 included). Consequently, wt liave, as specimens of legitimate inference from integrating a

divergent series,

BB 2
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2 f (,r"+^+ —
I
cosMat) - (a" + '

H —]cos(n+l)av

V^tt/, 5 e '^dv
" " 1 - 2a? cos at! + as'

1 /•+»(>r" + ' + .»"<""^'') cosMO«-(«" + .r"'') cos (w + l)au _,

v/ir-'-oo (« + .r )-2cosau

= / 2_\ '_—_a_;^ i co%nav e' dv .

y/ir J_„ f (*• + >t;" ) - cos ffli)

The series continued ad infinitum is expressed by the value of the integral just found, in

which n is made infinite, being the very remainder which is called nothing in the original and

fallacious pi-ocess. Many interesting forms might be derived from the preceding and similar

cases, but having no reference to the subject of this paper.

When the terms of a divergent series separately vanish, the series having remained divergent

up to the time of evanescence, it is customary, in elementary works, to assume that the series

itself vanishes: or + +0 + ... is taken to represent 0. Very frequently, no doubt, the in-

velopment shows that this is correct ; and I think I shall be able to show that if the function

be perfectly continuous on both sides of the epoch of evanescent form, a reason can be given why

it must be so. But so far as the series itself is concerned, we have no right to come to such

a conclusion, unless we can shew that as the evanescent form is approached, the invelopment

diminishes without limit. The following instance will show the necessity of this caution.

^« £-"''' cos ht dt ,

The integral / ^ is convergent for all values of a, however small, and cer-

tainly is not comminuent with a, but approaches the limit ^7re~, the well-known value of

f" cos bt {i + f)'' dt. Expand the first side into

n + 2 .

J^
e-'''-'cosbt(l-t' + t'- + (-i)»r-H(-l)» + '^-^- J

which, from

/ ".-"cosi^ f"di
r(2n-H)cos{(2n + l)tan-'(fta-')}

gives, making tan "' (6a"°) =

(6^ + a')--5cos0- 1.2(6= + a'')-8 cos 30 -h 1.2.3.4(6' + a*)-*cos 50 -,

Sn + l - €'"''00561 ^"'^^dt
+ (- i)"1.2.3...2n{h' + a*) a cos (2re + 1) + (- 1)" + ' / '^ .

If we neglect the last term, or suppose n infinite, we have expanded the given integral into a

divergent series of which all the terms are comminuent with a : for a = gives 9 = Att. When we

have the remainder, we may, by retaining its proper value, allow the preceding form 0^-0 + + ...

to stand for : but otherwise the appearance of that form must be a warning, when it arises from

the value of a divergent series, that there may be some finite equivalent which is not to be neglected.

It is worth noting that immediately before the terms of the preceding series vanish, thev are all

of one sign, or cos0, cos 3 0, 8ec. are of alternate signs. This is one out of the constantly recurring

cases in which it happens that the difficulties of series are mostly incident to the divergent case in

which all the signs are the same; the illustration of which is the subject of the next section but one.
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SECTION III.

It generally happens that the real analytical equivalent of the different values of an

indeterminate expression, is the mean of those different values.

This principle must rest at present upon induction. When Leibnitz pronounced 1 to be the

value of 1 — 1 + ... because there was no apparent reason why either 1 or should be preferred, he

was not only right in his conclusion, but had a glimpse (though not in solid reasons) of a principle

which admits of such frequent confirmation that it may be suspected to be general.

In the first place, if we take any algebraical series, such as a + bsc - c.v^ + ax^ + bx* - cr^ + ...

in which c = a + /;, so that when x = 1, the successive results of summation are a, a + b, 0, a, a + b,

0, &c. we find by common processes that the analytical equivalent is the mean of o, a + b, 0, or

l(2a + 6). The same thing happens if we take other forms which produce the same limiting form, as

a + b cos 6 - c cos 29 + ...

Secondly, if we take a series A„ + A^cosG + /^cos 29 + ... or Fourier's integral J^ f_^ cos

w {x — v) (hv dtv dv, in such manner that it may represent the ordinate of a discontinuous curve,

the branches of which do not join at the common ordinate, it is found that for the abscissa of the

common ordinate the series and the integral represent in both cases, not either or both of the

ordinates, but the mean between them.

Thirdly, the indeterminate symbols sin oo and cos eo are found in numberless cases to represent,

each of them, 0, the mean value of both sin.r and cos.r. The mean value of any function chx,

between a and b, is J^ (pxdx divided by b - a.

Fourthly, if m lie between — / and + I, Poisson has shewn that

1 /- + ', , 1 V- f r +
' mirCx-v) ^ , 1 -,

<px = — j (pvdv + -2, <
I

cos . (pvdvy (from m = 1 to r» = 03 ),

the second side of which is not changed in value, by changing the sign of /. And this second side

is the same whether we make x = — I, or x — + I ; consequently it is wholly undecided whether it

is then to represent (p{- I) or (p{l). Poisson has shown that in either case it represents the mean
of <^(0 and (p{-l).

Fifthly, if we extend the term mean value, and, in cases in which the function becomes infinite,

define it as fl(pxdx-~(b - a), the same principle applies, in a very peculiar manner, to the remaining

trigonometrical functions^ if the part of the integral at which (hx becomes infinite, be examined in

the manner which occurs so frequently in the writings of M. Cauchy. Let us take for instance,

tan tr. In fg" tanxdx, the finite parts destroy one another: and to obtain the expression for it we
must examine the integral from Att-ju, to ^ir + n, and from ^tt - m to |7r + /i, /i being infinitely

small. Now the indefinite integral is - log cos x, so that we have to examine

log e^iii^L^ and log ^_^i(tZLZ^
° cos (^TT + yu) cos (f 7r + m)

each of which is log (- 1) or ttv- 1, when /i = 0. Hence f^ tan xdx is Sttv- I, which divided

by Srr, gives v - 'i 'he proper representation of tan eo , if this principle be true. Now if we

1 • , ^ tan w + tan « ,
,

. „ . . ,

examine the equation tan (.r + «) = ^ and make x infinite, presuming that 03 and^ ^ ^^ 1 - tan iS tan y
' "

« + y are the same angles, we find tan eo = i'x/- 1. In the same manner cot oo is ± v^- 1.

It cannot be argued that since the values of tan x, from * = to x = w, have signs contrary to those

from .r = TT to .x; = 27r, therefore if it \/ - 1 be taken for tlio first, - ttv- 1 should be taken for

the second : the reason being that the signs in the second semicircle are really repetitions of those in
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the first, and only contrary in an inverted order. And it must be remembered that, A being the

mean value of X, (pA is not therefore that oi (pX : thus sin'^i- has the mean value 1, not 0^. Also

that, when a quantity is, at one or more epochs, infinite, its mean value is not necessarily positive

because all its values are positive. Thus tan^a; has -1 for its mean value. The mean value of

sec X or cosec .r is 0. This remarkable coincidence of two modes so remote from each other of

determining the analytical meaning of tan co and cot os , depends at last upon £± = V-i -q^ ^^ equa-

tion which more writers have virtually used than have openly dared to state it. The apparent dis-

turbance of the law of continuity when a; = oo , as in cos' eo + sin' eo = 0, &c. is perhaps what has

prevented the formal recognition of these relations : nevertheless they will, it may confidently be

asserted, not only obtain universal reception, but finally a rational and consistent explanation.

The following is a glimpse, perhaps, of the explanation, as applied to series. In every conver-

gent series, the limit of the sum of all its terms is the mean value obtained from all the summations:

the mean of n partial summations J,, (J, + A^, {A^ + A2+ ... + .4,,)

\&A. + A2+ 'A,+ ... + -A„,
n 71 n

which, as n is increased without limit, has A, + A^ + ... ad inf. for its limit. Hence, by Poisson's

principle, by which I mean the assumption of the right to apply the maxim, " that which is quanti-

tatively true up to the limit, is true in the same sense at the limit, when the limit presents an

incalculable form^''—we may assert most positively, that 1-1 + 1 - ... must be ^ whenever it is the

limiting form of convergency : not on the metaphysical doctrine (probably suggested by the known

result) of Leibnitz, namely, that we can see no reason to prefer to 1, or 1 to 0, and must therefore

• 1 . -1 1 n 1 n + 1

take a mean ; but because n partial summations give the mean - x - or - x according as n^ " W 2 W .2
°

is even or odd, and the limit of both is A. At the same time it is easily proved that whenever

the partial summation gives recurrences in which occurs at stated equal intervals, the limit of the

means must be the mean of one period.

As in other cases, the diverging series whose terms are all of one sign is not elucidated by this

process, which nevertheless, provided we adhere to our principle, brings out the true algebraical

result for series which have terms alternately positive and negative. The mean of 1, \ — a,

I - a + a'', &c. {n summations), is

+ + (- 1)°+' :

1 + a w(l + a)' «(l + a)-

if, when n is infinite, we take (- a)" + ' as 0, the mean of the values between which we cannot then

choose, we have (1 + a)"' as the limit.

SECTION IV.

Series ofalternately positive and negative signs stand upon a much safer basis than those

in tvhich all the terms have the same signs, aud that whether their divergence befinite

or infinite.

At the very outset, namely, in the mode of finding whether the series is convergent or divergent,

there is every possible difference between the two species above-named, which we may term

progressing and alternating. The progressing series d) (l) + ^ (2) + ... is convergent when the

first of the set

^"""•^f:^'
^' = I°g^(^o-l)> P.= log log a^(P, -])... P„=(log)".r(P„.,-l)...
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which is not equal to unity is greater than unity ; and divergent when the first which is not

equal to unity is less than unity. But <p {^) - (p (2) + ... is necessarily convergent, provided

only that <p(co ) = continuously, or that the terms ultimately diminish without limit.

A progressing series must be either convergent or infinitely divergent ; an alternating series may
be convergent, or either finitely or infinitely divergent: but the infinite divergence of the latter

is of a different character from that of the former. I very much doubt whether it is quite

correct to apply the same phrases to both kinds of series.

It is easy to apply Poisson's principle to alternating series, even when they are of infinitely

diverging form. We can always contrive to find positive quantities B^, 5,, &c. in such a

manner that A„B^- A^B^ + A„Bi- ... is convergent, up to a certain value of a variable contained

in fi„ &c., which makes them become severally = 1. Thus !-« + «=_ is a limiting form of

1 - ax'" + a^ic'"' — a^a;~"' + ... which, n being > 1 is certainly convergent down to a; = 1, exclusive;

and this whatever the value of a may be. Whether this limiting form is always (1 + a)-' may be
a question; but, as I think is sufficiently shown in various parts of this paper, the question may
also be asked about the finitely diverging series which have been so confidently allowed.

When an alternating series is convergent, and a certain number of its terms are taken as

an approximation, the first term neglected is a superior limit of the error of approximation. This
very useful property was observed to belong to large classes of alternating series, when finitely or

even infinitely divergent : I do not remember that any one has denied that it is universally true,

while many have implicitly asserted it. When the series is convergent for a certain number
of terms, particularly if the terms become very small before they begin to increase again, it obviously

makes the divergent alternating series practically as useful as the converging series, perhaps even
more so, for it is very frequent that the greater the ultimate divergence, the greater also is the

primitive tendency towards convergence.

In any series Po- P^ + P.^ - ... this theorem is obviously true as long as the remnant
P:, ~ Pn + \ + ••• has the same sign as P„, or the positive sign. Thus, if /"„ - P„

, + ... = Q„, we
have for the series P„ - P, + Q., and Pg- P^ + P., - Q^: if Q, and Q^ be positive, the series is

greater than P,, - P, and less than P„- P^ + P.^; which is a case of the theorem. It is also clear

that if either Q^ or Q^ be negative this case is not true.

That the theorem is not universally true will appear in the following instances

:

i = cos^ a — cos^ 2 a + cos'' 3 a - ...

3t + #- -3i' + t* - 3t'' + ...

It is not true that 1 always lies between cos' o and co.s^ o - cos'' 2 a, or that (1 - 3t) (1 - f)-^

always lies between 1 and I - 3t, whenever t is positive. The following investigations, thouo-h they

will fully explain why it is that the theorem is so often true, are insufficient to distinguish accurately

between those in which it is and is not true.

When (px can be expanded into A - Bx + C.v' - ... (A, B, &c. being positive), we take

the known form

00 + (p'0.a.+ <p"0- + + 0'"'O

—

+ 0'"+"(e.i;)
2 .3...n ^ 2.3

in which 6<l. If then <p'o,
(f>"'0,

8ec. be negative, and cpo, (p"(), he. positive, and if (pw, (p' x, &c.

each preserve, up to ,r = a, the sign it starts with when x = 0, there is no question that tlic theorem is

true from .r = to .r = a. Thus common differentiation with respect to ,v will prove the theorem
for the case of

/ -dv
= 1 - a; + 2j?- - 2.3.r' +

1 + ajv



194 Mr. DE morgan, ON DIVERGENT SERIES.

For any particular series A„ - Aj + ... it is enough that A„ - JiX + ... should be a continuous

function of a? whose differential coefficients preserve their initial signs from a; = to x = 1. But

thouo-h some of them should change sign, the theorem obviously remains unaffected as to summation

stopping at parts of the series in which no change takes place. It is then no wonder that the

theorem should be so frequently true.

Whatever value a function may have when x = 0, it is obvious that if the commencing series of

signs, namely, those of ^0, <p' 0, &c. be h f- —i- - &c. ad infinitum, the function itself, and all

its differential coefficients, are at the first instant in a state of numerical diminution. The reason

is that those whicli begin negative are algebraically increasing, while those which begin positive are

algebraically diminishing : this follows from the well-i<nown (but much too scantily used) theorem

that a function is in a state of algebraical increase or decrease according as its differential coefficient

is for the moment positive or negative. Adopting for convenience the mechanical idea of the differ-

ential coefficient representing the velocity of the function, and supposing w to be the time elapsed,

say in seconds, let (p x = A^ — A^ai + A„a^ - ... be a function of er, A„, A^, &c. all being positive.

And first let A^, A,, A.^, &c. present an unbroken series of diminutions, or A^-A^, A^ - A^, &ec.

an unbroken series of positive signs. Then (px begins = A„, with retardation at the rate of

- A, per second. But Ji, is less than A„ ; therefore this rate of retardation cannot change the sign

of <p X in one second, unless it receive an increase. But this there is no symptom of at the com-

mencement, since <b"0 is positive, and the retardation begins by being checked. Hence, if a func-

tion start with a differential coefficient of a sign different from its own, and numerically less, it cannot

change sign within the next unit of increase of the variable, without the second differential coefficient

first changing sign. Nor can it even change sign before x becomes —^ without a change of sign in

(b"x previously occurring. For if the velocity had continued uniform, it would then have been

A„ -A^ or 0, and would not have changed sign till after x =— - at least ; but since the velocity
Aj Aj

J
of retardation begins by being diminished (0"o being positive), it must make this up before ^ = -r

if a change of sign be to take place; that is, increase of retardation must come on, or (p"x must

become negative. All tliis will be very plainly pictured in the curve y = <px.

Again, if ^,a,' = ^i - A^x + ... and if A, > A.^ similar reasoning shows that <^, x cannot change

sign before x = 1, unless <p^"x first change sign. If neither (p"x nor (p^" x change sign from x =

to X = 1, then it is easily collected that A„- A^ + ... lies between A„ and A„ - A^. And if we

suppose y/„, A^, &c. to diminish until we come to A„, then if (j)„ x = A„ -A„^i x + ... we see that if

neither (pl^iX nor <p„_,x vanish before x=l, we are sure that A„_2 and A„_2- A„_ ^
contain

A„_2 - A„^^ + ... between them; from which it may readily be proved that the theorem is true up

to the last but one of the converging terms, under the preceding pair of conditions.

The useful part of this theorem in calculation, is undoubtedly its usual truth for all the

apparently converging terms of the series. And we see from the above that if these converging

terms last up to A„, then m not being >}i, the theorem is true up to J„_,, inclusive, if neither

^'I_»*' nor 'pin-f'''
vanish before .r = 1 . But the theorem is not universally true even for

converging terms. Let (px = 3 - 2x + x^ - SOx'' + Wx" - 20x^ + ... which has three terras con-

verging, and is of finite divergence ; so that Poisson would admit - 8 = 3 - 2 + 1 - 20 -t- 20 - ...

as the limiting form of the above when .r = 1 . But - 8 does not lie between 3 and 3-2. This

series is the development of (3 + x - x' - 19 a'') (1 + >r)'' and its second differential coefficient will

be found to change sign before x = I.

We will now look at the theorem in another point of view. Every alternating series may be

reduced to a case of <px -
(p {x -(- 1) -H (.t + 2) - ... in which (pv is a positive function from

II = .r to u = CO • If this be the proper developement of ^x, then \^x + \\f{x + \) = (px ; con-
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sequently \|/« + v|/ (u + 1) must be always positive from « = .r to y = os . Hence v|/j) cannot

change from + to — when v = a, without changing again from — to + before v = a + 1. Now
the theorem can only be disturbed by

\f/
?i becoming negative: for xl^.r = Q!),r - \|/

(*• + 1), or,

xj/ (a; + 1) being positive, \^x >(px ; again \\,x = <pa; - <p {w + \) + y^ {w + 2), or, \\/ {x +2) being

positive, \//.r; < (pw — (p{x + 1), and so on.

Hence 1. No function y^x can be expanded as above unless it be one in which its changes of

sign go in pairs, the —I- change following the h— change before the variable has received an

additional unit : 2. except at those epochs at which \^ (x + n) happens to be neg-ative, the theorem

must be true. As long as <px, (p {x + 1), &c. continue diminishing, the theorem must either be

true, or there must be a minimum value of ipx within a unit-change of the variable, reckoning

from the last change of sign. When \^x changes from + to — , \p'x is negative, and when from
- to +, y^'x is positive: there must then be a minimum value of \px between the two changes.

Now as long as (px diminishes, or cp'x is negative, \\/'x + y^' {x + I) is also negative. After the

minimum is past, then, yp'x cannot continue positive until x has increased by a whole unit, or there

must be a maximum value within a unit-change of the variable, reckoning from the minimum. If

then the terms continue diminishing as far as (p (x + n), it may be collected from the above that the

theorem is true for the several summations up to (p(x + n - 1), except for those in the neighbourhood

of the last terms of which are found two roots o{\px for values of x not differing by a unit, followed

by a maximum value of ypx, for a value of x not a unit in advance of that which gives the inter-

mediate minimum of the roots. And if \jy x can ever become infinite, (px being finite, then ...

^{x + 2), yfr {x + 1), yj/x, \p {x - 1), ... are all infinite, with alternate signs. From this it will readily

be seen that in the greater number of cases the theorem must be strictly true.

Again, it is now known that every function (px can be expressed in the form '2Je"', provided that

integration be included under the sign 2, and also the finite summation of terms in which A is

infinitely great, and a infinitely small, and which give a finite sum by difference of sign.

Whether many cases of this reduction do not involve much greater difficulty than those of divergent

series, may be a question. However this may be, it is clear that in whatsoever manner cpx may
be represented by 'S.Ae"', in the same manner (px -

(p (x + 1) + ... may be represented by
Ae"

2 ^. In all cases, then, in which the several terms of 'EAe"' are severally positive, and, if

Ae"''
infinite in number, can be arithmetically summed, it follows that ypx or E ^ is also positive.

1 + e"

Thus for all cases in which (px can be expressed by J^e"''y_vdv, -^v being always positive between
the limits, it follows that the theorem is true.

We find then that this theorem must be true in the great majority of cases: as far as

observation goes it is not known to have failed in any one of the instances in which its use is of

importance. It is enough, without any thing else, to draw a great distinction between the pro-

gressing and alternating series. But this is not all : it is also matter of observation that there is

great difficulty in finding alternating series which become infinite for one or more values of their

variable, without having recourse to those in which the law of the coefficients is discontinuous. It

is most easy, both to make the above theorem fail, and to procure a case in which infinity of value

can be obtained, by means of the development of common algebraic functions, presenting discon-

tinuous coefficients; but it is not easy with coeflScients following a continuous law.

It cannot of course be proved that A^- Af + A^~ ... is necessarily a finite quantity, since cases of

exception may be procured : but some illustrations may be given of the tendency of this form to

represent only finite quantity. I'robably notiiing l)ut the collection of such fe?tdenrien will ever

lead to a rigorous criterion for ascertaining in what cases it can represent infinite quanlity.

In a great many cases, a large majority of those usually considered, the complete alternating

Her'ien A„- A,x + AjX' - ... diminishes without limit, as ,» increases without liinit : and tiie faster

Vol.. VIII. I'Aiir II. Cc
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J„ A-i &c. increase, the more rapidly does this diminution take place. We shall see, in the next

section, that this comminuence oi Ar, - AyX + ... and .r"' is to be looked for as the rule, its failure

being the exception.

Let the series be transformed into

1 f X x^
\A„ - (A, - aA„) + {A2 - 2a A, + a'A) ,— tj

1 +aw\ ' (I +ax) (1 +aa!y

(J3 - 3a ^2 + Sa'Ai - a'Ao) ...(
(1 + a.vy

which is easily done. Let a be taken so small that the series just obtained shall still be alternating,

which can generally be done, though not always, and then, on account of the factor (l + a,r)~\ it

is clear that the original series and *'"' are comminuent except only when the second series and .r

increase without limit together : that is, instead of supposing, as a priori we should do, that the

alternating form with terms increasing without limit has an equal facility of approaching any given

limit, we are rather to look upon it that its facility of approaching any other limit except 0, as ,r

increases without limit, is only equal to that of its approaching os , or increasing without limit. I

am not, of course, disposed to attach much weight to reasoning which rather resembles that of the

theory of probabilities than of pure mathematics: but I do say that it must be better to take such

considerations at their proper value, as suggestions for the conversion of results of observation into

demonstrated theorems, than to allow isolated facts which evidently point at something, to remain in

their state of separation.

This inaptitude to represent infinity, and this tendency to comminuence with a-"' are both cir-

cumstances which render the operation of integration much safer as applied to alternating than to

progressing series. But the principal distinction between the two kinds of series seems to me to

depend upon our present knowledge of the meaning of integration, as explained in a previous

section, being imperfect. The progressing series cannot be expressed differentially without the

operation of what we may call progressing integration ; the alternating series can. This is exem-

plified in the two following remarkable theorems, given by Poisson :

^0 + (p\ + (p2 + ... =^<pO + f'(t>zdz + 22^;" ^fo" cos 2mTr z (pzdz},

(po - (pi + <p2 - ... = 100 -1- 22™if {7^" (cosmnz - cosSmTr;^) <pxdx\.

We may now examine the sort of proof which we can obtain of the usual values of divergent

series, with the view of comparing finite and infinite divergence. Let F = /"„ - P, + P^ - ... and

let P„ = 1 when .i- = 1, independently of re. Also, before * = 1, let the series be convergent ; after-

wards divergent. Let P„ = P„_, - p„_,, whence p„_, = when a; = 1. And

F = P„ - (P„ - p,) + (P, - p,) - ... or F = 1P„ + (jD„ -p^+p,- ...).

Again, let W = Q„ + Q, + Q^ + ... and let Q„ = 2" when ,r = 1. Let Q„ = 2Q„_] - 9„_,

;

whence q„= when x = \. And IF= Q„ + (2Q„ - q^) -(- (2Q, - 9,) -t- ... or W = - Q^- (<y„ + q^

+ q.;, + ...). When x = 1, we have

F = 1P„ + (0-0-fO- ...) ; W^=_i_ (0-1-0 + 0+ ...)

and on the proper equivalents of the two evanescent forms it depends whether 1 - 1 + ] - ... = -^

and I +2+4 + ... = -1 are true or not. Now instances enough may be produced in which

+ + + ... is not an equivalent of : though, by instances merely, it would be found exceed-

ingly difficult to overturn - + ... = 0, as long as the common operations of algebra only are

used. But here again, when the forms of the integral calculus are employed, instances may be

produced in which, though the form - + ... may still be called 0, it is only by means of a

discontinuity which, occurring as it does at the limiting form of an alternating series of finite
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divergency, has a tendency to destroy the exclusive confidence which many modern analysts have
placed in them.

The very foundation of this confidence is, as we have seen from the expressions of Poisson,

a full belief in the maxim that whatever is numerically true up to the limit is true at the limit.

To this principle, reasonable and convincing as it is, let us join the remembrance of a fact so

well ascertained, were it merely as a matter of observation, that alternating series are more safe

and more easily calculated than progressing series, and also the simplest of all theorems on
convergency, namely, that an alternating series is rendered convergent by mere diminution, if

unlimited, of its terms. With these premises let us consider the integral /
'-

d.v. I

believe that this one integral might be made to throw a case of exception in the way of those

who have claimed privileges for the finitely diverging series over other non-arithmetical forms
in every particular as to which their superiority has been asserted.

Poisson, agreeing in this point with all other analysts, asserts that / d.v is J^ tt, o

or — ^TT, according as a is positive, nothing, or negative : any computer using the method of
quadratures would confirm this result in all its parts. But this integral is clearly the same as

/""sinaa; ["sina.v fosina.v
Jo dx + J„ d.v + J2n d.v + .

which is an alternating series, since the second, fourth, &c. integrals are composed entirely

of negative elements. Moreover the terms diminish without limit, since the numerators of the

elements are recurrent, but the denominators constantly increasing, and without limit. However
small a may be, if it be positive, ^ tt is the real value of the series, obtainable by the computer

:

and yet if a be absolutely = 0, each of the terms is also absolutely = 0. But if 1 — I + 1 — ... i.s

to be taken as having the unique value ^, lohich may be employed in analysis (the Italics are

Poisson's expressions) because 1 - g + g' - ... is certainly (1 +§)"', however little g- may fall short

of unity, then surely 0-0 + 0-0 +... may here represent either — - or + —
, since, however

small a may be, when negative it gives the first, and when positive the second: notwithstanding

which, it is certain that - + — ... is in this case = 0.

Here then we have — + — ..., a limiting form, and that which is true up to the limit is

not true at the limit. But why is this principle abandoned, being, as it is, the very point on the

assumed clearness of which the line is drawn between the accepted and the rejected cases of non-

convergeney ? Is it that an infinite series of zeros must represent zero? I think I have shown
.sufficient cause against that assumption. Is it by the principle of mean value discussed in the

last section .'' No one that I know of, except Leibnitz on grounds purely metaphysical, has ever

used this principle, and no one has hitherto stated it in general terms : and moreover the modern
analysts appear to require strictly arithmetical foundations, and would acknowledge no identity

of principle between their methods and one which produces tan oo = v — 1 i they seem also to

suppose that they are quite free of the use of principles established by induction. Either then

the principle that whatever is numerically true up to the limit is to be held true at the limit

must be abandoned, or exceptions of discontinuity, in questions involving integration, must be

admitted to be possible in a manner which renders the cases to which Poisson and others have

confined themselves subject to as great difficulties as those which they have abandoned.

In a preceding part of this paper I spoke of it as a strong ])resumption that A„ + Ayr + A.,.v- + ...

xhould represent A^^ when .v - 0, or that the form + + + ... whicli follows A^^ should =0.
If A^^, A,, &c. be all positive, and if the series be always divergent, however small ,v may be,

It it obvious that whore the preceding represents a function of complete continuity, we may
cc 2
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look for its value at w = 0, from the limit of A^- JyV -{ A.^w^- ... as well as from that of

A +^,.r + ... Accordingly, when there is continuity, all the presumptions of superior safety

which the alternating series presents may be applied to this intermediate case.

SECTION V.

On Double Injinite Series, in which the Terms are infinitely continued in both

Directions.

One look at the series

... + <^ (.r - 3) + ^ (.r - 2) + (.r -l)+(pa) + (p{x + \) +<p{ai + '2) + (i>{,v + 3) -\- ...

will show that, whenever it can represent a definite function of on, which preserves its properties for

different values of x, it must be a solution of the equation \// (.» + l) = \// r .
Various modes of

proof applicable however only to functions and processes of complete continuity, show that, in

all cases to which those proofs apply, the repre.scntation of the above is simply 0, or rather

— either 0, or, in particular cases, -. And certainly, in all cases, it can be reduced to the

v.v ^

limiting form + + + ..., so that, if not always =0, the warning given in another part of this

paper is confirmed. Throughout this section, let Scp.v stand for a double series of the above form.

For <hx write (px.a" and divide by a'' wiiich gives ... + <p {ic - 1) a'' + cp.v + (p {.v + 1) a + ...

Now
1 a

,
a + a'' (f)"x a + 4 o^ + o" <p"'ai

,^,r + ,^(.r + l).a + ... = p3^<^^+^73^,<^.''+(Y3^-^+ (1 - a)' ^T^ + -

in which it need only be noted here that the numerators of the functions of a all read backwards

and forwards the same in their coefficients. Now by the same rule

(pi-.v)+(f>(-x-l).a+ ... = j—^0 (- ,r) - ^^y, 0' ( - -r) + ...

change x into —x in the last, and a into a'', add the result to the preceding equation, and

substract (p .v , which gives S {(j) x . a^) = a" {0 + + + ...). Again, taking the calculus of

operations, let E (px = (p (x + I), then, of all perfectly continuous answers, E~'(px must mean

<p{x-\). The whole operation performed upon cpx in S<px is ... +£-' + £"+£' + ... or

L , or 0. But it must not be forgotten that, in cases in which discontinuity is

]_£-' i-£;'
possible, it does not follow that E~"(px always signifies (.r - w). For if we were to assume,

for instance

/ TT /•= sin (a - «) u , N
<px = (p(x - S) + I

— + / — dvj \px

we should be justified by the result E'E-^(px = <px, whenever a - (.r + 3) is negative, tliough

when a - x is positive, the preceding would not be the same as <p {w - 3)

.

This is an important point, not only in reference to the calculus of operations, but to every

case in which inverse operations are employed. There is, I am well aware, among mathematicians,

something like a disinclination to provide beforehand for discontinuity, which first showed itself in

the struggle against admitting discontinuous functions into the solution of partial differential

equations. But it should be remembered that, in our time, trigonometrical series of the most

continuous form have been shown to represent functions of the most capricious discontinuity. A

-s

,

J
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mathematician has lately amused himself with preserving the first part of the air of ' God save the

King' for posterity by means of a case of Fourier's integral ; and any one who lias studied the pro-

perties of the series A cos .p + B cos 2 x + ... knows that a sturdy computer, who is not afraid of the

method of quadratures, might hand down the means of recovering the profile of his own face from

its equation : and that in a form which no analyst could tell at sight from the equation of a circle,

a parabola, or some other continuous curve. Nor is such discontinuity a mere possibility : it is

constantly occurring in the higher branches of mathematics, and its detection and treatment forms

the most distinctive feature of the most recent school. Surely then it is time to pay attention at the

outset of every plan of investigation to the possibility of the occurrence of discontinuity in inverse

operations.

I do not see how absolute error is to be avoided without such a precaution. Defining

E<p,v as (p(a!+ 1), nothing is clearer than the right to use the symbol E, and those derived from it,

algebraically : all the fundamental symbolic definitions are satisfied by it. If we are to assume, as

of necessity, that E~''(pw can be nothing but (p{a! — n), the symbol S(pai must represent 0, as

shown : and experience points out that it actually does so in every case in which there is no
discontinuity. But in certain cases, as I shall show, S(px does not represent 0, but another

solution of
\l/

(x + l) = \{/ a; : there is then some flaw in the demonstration, which I take to be the

assumption without reserve ot E ~
" (px = (p (^x — n)

.

I might give other ways of expressing S(f>x, all ending in the same result, that, unless some

special mode of introducing and allowing for discontinuity be adopted, it represents 0. But this

paper is already too long, and I therefore pass on to some cases in which it does not represent 0.

Let us consider the series.

which is both ways convergent. We have the two following results,

f"^-ii-m''^invdv=- '
, ^, , r£-*-''"'sin«rf« =

-; ^
Jf, 1 + (6 ± kef Jf, 1 + (6 - key

that one being taken in which e" is raised to a negative power. Let 6 lie between mc and
(m + I) c : then we have

—-^ r7 + 7r-^—T2 + -- = r (6-*'""''° + £-"-"'* + ...) sin «d«
1 + (6 - mc)- l+(6-m-lc/ ^ '

•'ft

1 1

1 + (6 - m + 2c) 1 + (6 - TO + 1 c)^ ^0

in which integration is performed on convergent series only. Hence,

S — -, = / sin«du= /
—

i-^ sin «d«,

where to' = TO + ^. Now to'c - 6 is numerically less thanlc; and Legendre has shown (see my
' Differential Calculus,' page GGQ) that if g be not greater than h.

i: -i:; -T7.sinvdv
2h J -J TTfl-

e'' + e * + 2 cos —
h

whence r „ or -

+ e ''+licos(2m + l \ it e' + e ''-2 cos

is the value of the series, which is, as it should be, a solution of -.^ (6 + c) = x|/t
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Before showing some consequences of this and similar results which will be interesting as

extensions of known theorems, I proceed to verify my assertion that this series, being double,

and not = 0, will show signs of discontinuity. Let us consider the series

^ " T+1^ "^
1 + (6 + c)=

"^ r+ (6 + 2cy '^ •••'

which is convergent when c a? is or negative. This series is a solution of

' y e

hx
.

f' cos ijce' dw r' sin JCe ' dx
whence y = sin a / —; ^ cos x / — j;^ .

There is nothing in this result, as long as the final value of x is negative, to hinder the

computer from finding the value of y by the method of quadratures, and comparing it with the

result of the convergent series. And even when x = 0, the part of the first integral which comes

from between a = - a and ,r = 0, a being infinitely small ; is rendered evanescent by the factor

sin ,1', as special examination will show. If then we make a? = 0, and if we venture to change the

sign of c, and put the two results together, we have, remembering that the term (1 + 6') occurs

twice,

1 1 /-o / 1 1 A • , .S ; H = - / h Sin xe dx
1 + (6 + pcf 1+6^ -'- „ VI - e" 1 - e-'^l

/•o . , 1 ^ 1

= - / Sin if £ 'da; = — ; or 6 j-. r, = 0\
J_^ 1+6- 1 +(6 +xcY

a false result, but agreeing with the theorem already discussed, and which I think may now

be described as follows. The double series S(px is, if its two sides be perfectly continuous, = :

and any method which proceeds by neglecting discontinuity will end in .S*^*' = 0, true or false.

But perhaps it may not be evident at once why I say we have neglected discontinuity in the

preceding process : if so, the following explanation will be necessary.

A continuous equation is one in which the two sides are algebraical equivalents, that is,

in which the right to use the sign of equality is independent of the value of any letter or letters.

If this right be destroyed by the passage of any one letter over a given limit, there is obviously

discontinuity. Now iiy^x = cf)X + <p{x+ 1) + ... bea continuous equation, or if \//a' = (hx + \|/(.i?+ I)

be universally true, we may convert it into

y^/X = - (p(x - 1) + \//(.K - 1), or \j/x = - <p{x - 1) - <p(i- - '-') - ... :

if this be granted, then S<px = o. Conversely, if S<px be not =0, then ^^x = <px + ... being

true, y\/X = — (p(x — 1) — ... is false. Also, if the assumption of the permanence of any equation

make S<px = 0, then, whenever this last is not true, it follows that such assumption of per-

manence is erroneous. In the preceding result, we have assumed the permanence of the equation

e*' dw I 1

/ + .

- e" 1 + b^ 1 + (b + cY

for all values of c. The error of our result is manifest : this permanence then has no existence.

And the warning is that when c is made negative, we integrate over a diverging series : in

fact, our process assumes the ordinary development of (1 - e'')~' when c and .r are both negative,

or £">], and integrates that development.

There have been two discontinuities occurring in the preceding ; the first dependent upon
the introduction of m, the second that just considered. The first may be treated as merely



Mb. DE morgan, ON DIVERGENT SERIES. 201

incidental to one particular process ; we were not bound to Legendre's integral ; and this dis-

continuity disappears in the result. But the second is essential to the problem ; the series

satisfies a certain differential equation, the complete solution of that equation is ascertained, and

therefore the series mttst be represented by its equivalent solution of the equation. No other

equivalent could have been anything but the one we found, or the same in a different form.

As matters stand, then, we cannot have a continuous relation between the series and its invelop-

ment : and this, I will venture to prognosticate, will continue until the definition of integration is

extended.

Let us now try ... + -z- rr + ... which call S' -j

.

Proceeding just as before, and, 6 lying between mc and {m, + l)c, we shall find, m being m + X,

as before,
-b)w —(m'c—6)0

'^'l + (6 + ^e)^
= (-'^"'/ sin ydu.

1 + (h+pcY ^ ' J^ e'" +e-

But Legendre has also shown the following, g being not greater than h:

f

(e^S-e'^Msin—
sin vdv =

"" h Z ,1 Kg
e* + e * + 2 cos —

^

whence the series in question is

(e'- e ')&m [m + ^ --\ir (e'-e ^cos—
\ cl 27r C

or

£<+£ '+2cos2m + l Tf e^ + e <:-2cos^

27r(- I)"

Zira 2it /

e < + e" " + 2 cos
I
2 m + 1 -

c ! c

which is, as it ought to be, a solution of \^(6 + c)= ~ \^b. Now consider the series,

^ "
1 +6* ~ r + (6 + cf

"^
1 + (6 + Zcf

~ '"

which IS a solution of y + -

dx° \ +e"
cos* e"^da r' smwe"da!, r cos* e ax r

whence y = sin x / cos w I

1 + e

on which may be repeated all the remarks on the preceding case. But in this case, when c = 0,

the value of y gives, as it should do, ^e"{\ +6^)"'.

The danger of integrating over a diverging series is thus shown to be incident to alternating

as well as progressing series. It cannot be denied that Poisson has separated the only case in

which integration can be used with some freedom and safety on non-arithmetical series : namely,

the finitely diverging series which lies between the convergent and divergent cases. Whether
the freedom is entire and the .safety absolute is more than can be determined at present

:

unacquainted as we are with all the varieties of the discontinuity which appears in limiting cases

of integration, as now understood. On this point, I must refer to the preceding part of this

paper.

With regard to the alternating double series { A _.iai''- A _iX'^ + A^- A^x + A^x^ - ... we
now learn tliat, whenever complete continuity exists, A - A^x + ..., x being infinite, must have

the same value as A ^^-x'^ - A _.^x~^+ ... when .r"' is nothing; that is, must vanish, generally

speaking. This observed tendency of A - A^x + ... has been already noticed.
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I now take some results of the two series here discussed which are interesting in the way of

verification and extension, though not illustrative of the points on which I am specially writing. If

for h and c we write h : a and c : o, we have
TTCI TTIJ 1— — — tto

?II1} J^ (€*'-€ '"

) COS

c c

Make a = 0, c = 1 , and we have

Vsin KhI

1 1 1

= ... + 7T IT-, + 71 IT-, + r, +

Vsin Trfi/

(6-2)^ (6-1)2 62 (6 + 1)' (6 + 2)'

1 1 1 l_ 1

cos x6 = ... + ^^-^, - j^-^, + ^ -
^^^y. +

^j ^ ^y

(- 1) " d"-^ {I TT \-\_ I _J__ + 1 + __L_ +^— +
rra d6"-4Uin,r6J j

*"
(6 - 2)"

*"
(6 - 1

)» 6" (6 + 1)" (6+2)"

(-l)"d"-|/ ^ X) _! L_ + i__J_ +_JL__...
ni rf6"-'(Uin^6// "• (6-2)" (6-1)" 6" (6+1)" (6 + 2)"

n- 1 1 1 _
sinTrft '" 6-2 6-1 6 6+1 6 + 2

If we had commenced with \{b+pcf - l\~\ and had used the formula j^^t""^"' sin rrfu

= (1 - »»')"', which Poisson would have admitted as a limiting form of ^^
^i-k+mV-ii" gjn vdv, we

should have seen in the final result a right to substitute a\/ - 1 for a in the preceding formulae;

giving

. 27ro . irCL 7r6
sm sin — cos —

1 IT c c* 2ircc
*3

(b + pc)^ - a^ ca Zna 2ir6 (h +pcy - a' ac "wa 27r6
cos cos cos cos

c c c c

Various formulae might be obtained by differentiating these with respect to a, 6, or c ; and

various others by integration, one set of which is remarkable. Multiply the two first equations

severally by ada, and it will be seen that the second sides become integrable : integrate from a = 0,

and make the antilogarithmic change, which gives the following continued products, of which the

well-known formulas for the sine and cosine are particular cases.

^ -?Z2 2ir6
^(e ' + e -

) - cos

27r6
1 - cos

c

x6 Tr6

C c

-[''W^ V^W^- l(e. +e-0 + cos- 1-cos-

the second of which is readily deducible from the first. It is needless to write down the forms

arising from the substitution of a \/- 1 for a.
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From what precedes, we are warned to expect some discontinuity arising in the treatment of

any series (p{x) J= (p{j[t + 1) + ... i{ (p(a; + n) = (p(,v - n), unless that series be an analytical

equivalent of 0. And even in this latter case, it is to be remembered that — is the real form, and

that when -^w = 0, there may arise cases of exception in which the series represents a finite quantity,

and even infinity. This particular point has been so beautifully illustrated by Poisson, in his

treatment of the series ^ + cos + cos 2 + ... that nothing is left for any one else to say, at

present.

In mentioning once more the name of tliis distinguished analyst, I may state that the point in

which I have freely ventured to question his judgment is not as to the wisdom of the course he

took, in rejecting divergency from the integral calculus as he found it, but as to the grounds on

which he asserted a final and fundamental difference between what he adopted and what he rejected.

A. DE MORGAN.

University College, London,

January 15, 1843.

ADDITIONS.

Page 192, line 8. It is not asserted that cos' co + sin^ co = 0, for the mean value of each of the

terms is -i, and cos^ so + sin^ 03 = 1. Many errors may be made by forgetting that
(f>

sin a;(x = co )

r-2n

or
<f>

(0) is not the mean value of
(f>

sin x, but / (p (sin x) dx — 2w.
•'0

Page 201, last four lines. If it should seem for a moment that this reasoning would apply

equally to Au + A^x + ... and — A^iX'' - A .2^~^ - ..., remember that the theorem in Section IV
(to which the exceptions are only occasional) shows that A_iX~^ — A_2X'^ + ... lies between
A_^ ir"' and A_^ a;"' — A _2!i!'^ when a is great : but that we have no such argument from which to

infer the comniinuence of — A_i a?~' — A_2 •'"'^ — ••• and x~^. Still however, the equality of this

last to A^ + Ai X + ..., when there is no discontinuity, would enable us to predict the very large

number of cases in which A^ + Aiiv + ... is infinite and negative when x is infinite and positive.

Vol. VIII. Vaui II. Do



XVI. On the Method of Least Squares. By R. L. Ellis, Esq., M.A., Felloiv of
the Cambridge Philosophical Society.

[Read March 4, 1844.]

The importance attached to the method of least squares is evident from the attention it has

received from some of the most distinguished mathematicians of the present century, and from the

variety of ways in which it has been discussed.

Sometliing, however, remains to be done—namely, to bring the different modes in which the

subject has been presented into juxta-position, so that the relations which they bear to one another

may be clearly apprehended. For there is an essential difference between the way in which the

rule of least squares has been demonstrated by Gauss, and that which was pursued by Laplace.

The former of these mathematicians has in fact given two different demonstrations of the method,

founded on quite distinct principles. The first of these demonstrations is contained in the Tlieoria

Motfis, and is that which is followed by Encke in a paper of which a translation appeared in the

Scientific Memoirs. At a later period Gauss returned to the subject, and subsequently to the

publication of Laplace's investigation gave his second demonstration in the Thenria Comhinationis

Observationum.

The subject has been also discussed by Poisson in the Connaissance des Terns for 1827, and by
several other French writers. Poisson's analysis is founded on the same principle as Laplace's : it is

more general, and perhaps simpler. It is not, however, my intention to dwell upon mere differences

in the mathematical part of the enquiry.

The consequence of the variety of principles which have been made use of by different writers

has naturally been to produce some perplexity as to the true foundation of the method. As the

results of all the investigations coincided, it was natural to suppose that the principles on which

they were founded were essentially the same. Thus Mr. Ivory conceived that if Laplace arrived at

the same result as Gauss, it was because in the process of approximation he had introduced an

assumption which reduced his hypothesis to that on whicli Gauss proceeded. In this I think

Mr. Ivory was certainly mistaken; it is at any rate not difficult to show that he had misunderstood

some part at least of Laplace's reasoning : but that so good a mathematician could have come to the

conclusion to which he was led, shows at once both the difficulty of the analytical part of the

inquiry, and also the obscurity of the principles on which it rests. Again, a recent writer on the

Theory of Probabilities has adopted Poisson's investigation, which, as I have said, is the development

of Laplace's, and which proves in the most general manner the superiority of the rule of least

squares, whatever be the law of probability of error, provided equal positive and negative errors are

equally probable. But in a subsequent chapter we find that he coincides in Mr. Ivory's conclusion,
'

that the tiiethod of least squares is not established by the theory of probabilities, unless we assume
one particular law of probability of error.

These two results are irreconcilable ; either Poisson or Mr. Ivory must be wrong. The latter

indeed expressed his dissent from all that had been done by the French mathematicians on the

subject, and in a series of papers in the Philosophical Magazine gave several demonstrations of

the method of least squares, which he conceived ought not to be derived from the theory of pro-

babilities. In this conclusion I cannot coincide; nor do I think Mr. Ivory's reasoning at all

satisfactory.
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From this imperfect sketch of the history of the subject, we perceive that the methods which

have been pursued may be thus classified.

(l). Gauss's method in the Theoria Motiis, which is followed and developed by Encke and

other German writers.

(2). That of Laplace and Poisson.

(3). Gauss's second method.

(4.). Those of Mr. Ivory.

I proceed to consider these separately, and in detail.

For the analysis of Laplace and Poisson, I have substituted another, founded on what is

generally known as Fouriei-'s theorem, having been first given by him in the Thcorie de la Chaleur.
It will be seen that the mathematical difficulty is greatly diminished by the change.

GAUSS'S FIRST METHOD.

This method is founded on the assumption that in a series of direct observations, of tiie same

quantity or magnitude, the arithmetical mean gives the most probable result. This seems so

natural a postulate that no one would at first refuse to assent to it. For it has been the universal

practice of mankind to take the arithmetical mean of any series of equally good direct observations,

and to employ the result as the approximately true value of the magnitude observed.

The principle of the arithmetical mean seems therefore to be true a priori. Undoubtedly the

conviction that the effect of fortuitous causes will disappear on a long series of trials, is an imme-
diate consequence of our confidence in the permanence of nature. And this conviction leads to the

rule of the arithmetical mean, as giving a result which as the number of observations increases sine

limite, tends to coincide with the true value of the magnitude observed. For let a be this value,

X the observed value, e the error, then we have

.r, - a = e,

w^ — a — fia

&c. = &c.

And as on the long run the action of fortuitous causes disappears, and there is no permanent

cause tending to make the sum of the positive differ from that of the negative errors, Se = 0,

and therefore

S (.??i
- a) = 0\

1

or, a — - 2i?'i ;

n

which expresses the rule of the arithmetical mean, and which is thus seen to be absolutely true

ultimately when n increases sine limite.

In this sense therefore the rule in question is deducible from a priori considerations. But
it is to be remarked, that it is not the only rule to which these considerations might lead ns.

For not only is 2:e = ultimately, but 2/e = o, where fe is any function sucii that fc = -/( - e);

and therefore we should have

2/(.^ - a) = 0,

as an equation which ultimately would give the true value of .r when the number of observations in-

creases sine limite, and which therefore for a finite number of observations may be looked on in

precisely the same way as the equation which expresses the rule of the arithmetical mean. There is

no discrepancy between these two results. At the limit they coincide: short of the limit both are

approximations to the truth. Indeed, we might form some idea how far the action of fortuitous

DD 2
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causes had disappeared from a given series of observations by assigning different forms to /,

and comparing the different values thus found for a.

No satisfactory reason can be assigned why, setting aside mere convenience, the rule of the

arithmetical mean should be singled out from the other rules which are included in the general

equation 2/ (a? - o) = 0.

Let us enquire, therefore, whether there is any sufficient reason for saying that the rule of

the arithmetical mean gives the most probable value of the unknown magnitude. In the first

place, it is only one rule out of many among which it has no prerogative but that of being

in practice more convenient than any other : in the second place, if this were not so, it would

not follow that in the accurate sense of the words it gave the most probable result. This

objection I shall defer for a moment, and proceed to consider the manner in which Gauss makes

use of the postulate on wliich his method is founded.

From the first principles of what is called the tlieory of probabilities a posteriori, it appears

that the most probable value which can be assigned to tiie magnitude whicli our observations are

intended to determine, is that which shall make the a priori probability of the observed phe-

nomena a maximum. That is to say, if a be the true value sought, «, being the value observed

at the first observation, le-i the corresponding quantity for the second, and so on, the errors at

the first, second, &c. observation must be x^- a, Xo- a, kc, respectively; and if (pe.di be the

probability of an error e in any observation of the series, the quantity whicli is to be made a

maximum for a is proportional to

(f>
('^1 - a)<p{x2~ a)... <p {x,- a).

Equating to zero the differential of this with respect to a, we find

(iBi - a) (p {x„ - a)

as the e(|uation for determining a in x. Let ^ = \|/, then it becomes

2" >|/ («! - a) = 0.

Now we have assumed that the most probable value of a is given by the equation

2J (a - a) = :

and it is impossible to make these equations generally coincident, without assuming that

\j/e = me, m being any constant;

(p'e
hence ~— = me,

<pe

and (pe = Ce^-'"'\

Now as the error 6 is necessarily included in the limits - eo + eo , we must have

/
d) e d e = 7= 1>

or if we adopt the usual notation, and replace m by Zh",

„ h h
C = —y-

, and (he = —y e



Mr. ELLIS, ON THE METHOD OF LEAST SQUARES. 207

Consequently, we ai'e thus led to adopt one particular law of probability of error as alone

congruent with the rule of the arithmetical mean.

But, in fact, we are perfectly sure that in different classes of observations the law of proba-

bility of error must vary, and we have no direct proof that in any class it coincides with the

form assigned to it. Therefore one of two things must be true, either the rule of the arith-

metical mean rests on a mere illusory prejudice, or, if it has a valid foundation, the reasoning

now stated must be incorrect. Either alternative is opposed to Gauss's investigation. For the

reasons already given, we are, I think, led to adopt the latter, and then the question arises, wherein

does the incorrectness of the reasoning reside ? It resides in the ambiguity of the words )iioiit

probable. For let us consider what they imply in the theory of probabilities a posteriori.

Suppose there were m different magnitudes a, a., ... o„,, and that each of these were observed

n times in succession. Let this process be repeated p times, p being- a large number which
increases sine limite. Thus we shall have pm sets of observations each containing n obsei-vations.

Of these a certain number K will coincide with the set of observations supposed to be actuallv

under discussion ; and we shall have tiie equation.

ki + k,j + ... k„ = K

:

where k is that portion of K which is derived from observations of Oj..

Then, ultimately, the most probable value which the given series of observations leads us to

assign too, is (supposing a is susceptible only of the values 0,0,... «,„) equal to a,, r being

such tliat the corresponding quantity k, is the maximum value of k.

To make the case now stated entirely coincident with the one which we are in the habit of

considering, we have only to suppose (making m infinite) that the series of magnitudes

a, ... a,„ includes all possible magnitudes from -co to -1- 05 .

Now from this statement, it is clear there is no reason for supposing that because the

arithmetical mean would give the true result if the number of observations were increased

sine limite, it must give the most probable result the number of observations being finite.

The two notions are heterogeneous : the conditions implied by the one may be fulfilled

without introducing those required by the other : and we have already seen that by losing sight

of this distinction, we are led to the inadmissible conclusion, that a principle recognised as true

a priori necessarily implies a result, viz. the universal existence of a special law of error, not only

not true a priori, but not true at all.

Having stated what seem to me to be the objections in point of logical accuracy to this

mode of considering the subject, I will briefly point out the manner in which, from tlie law of

error already obtained, the method of least squares is to be deduced.

Let

6, = 0|.r + 6,2/ + &c. - r,

fa = a.^x + h^y + &c. - V^
(

&c. = &c. I

be the system of equations of condition, which are to be combined together so as to give the

values of x, y, &c. The error committed at the first observation is 61, at the second tj' ""''

so on ; each observation corresponding to an equation of condition.

The probability of the concurrence of all these errors is, (according to the law of error

already arrived at) proportional to

^- h'[iii,x * b^y + tie. - I'l)' + (oax + b,ij + - Ts)' + &c.]

and it is to be made a maximum by the most probable values of ,r, y, &c. These values will

therefore make
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(a,(r + 6,y + &c. - F,)' + («2'^ + hy + - ^zf + ••••,

a minimum: thas is to say, they will make the sum of the squares of errors a minimum.

Hence the method of leagt squares. The conditions of the minimum give the linear equations;

x'S.a^ + y'2ab + &c. = '2aV \

w^ab + y-^h' + hc. = -S.bV I (/3),

&c. = &c. j

in which system there are always the same number of equations as there are unknown quantities

to be determined.

The next investigation of the principle of tiie method of least squares which I shall attempt

to analyze is that of Laplace.

LAPLACE'S DEMONSTRATION.

If, in order to determine tv from the equations of condition stated in the last paragraph, we

multiply the first by |U„ the second by jug, &c., and add: (fi, 1x2, &cc. fulfilling the conditions

S/ua = >> ^M^ = 0, &c. = 0)

we find .r
=

'S./j.V
-

'E/xe;

and if we assume that S/x e is equal to zero, then the resulting value of .r is Sju V: the error

of this determination being the quantity 2|Ue, which we have assumed to be equal to zero,

without knowing whether it really is so or not.

Now supposing there are n equations of condition, and p quantities to be determined, and

that n is greater than p, then we see that there are w factors ix„ n.>...n„, and p conditions for

them to fulfil. They may therefore be subjected to n — p additional conditions.

This beinc premised, let us consider the probability that the quantity S/^e will not be less

than a, or greater than /3, a and /3 being any quantities whatever. The law of probability of

error at each observation being given, the question is evidently analogous to the common problem

of findino- the chance, that with a given set of dice the number of points thrown shall not

be less than one given number or greater than another.

We may therefore suppose that the probability in question has been determined : call it P.

Suppose also that we have taken a= -I and j3 = I, I being any positive quantity.

Then P is a function of /, and of /jlj...ii^.

Let us now so determine m,...m„5 (subject to the conditions already specified,) that P may be a

maximum. When this is done, it follows that there is a greater probability that the error in our

determination of ^r, viz. 2;u6, lies within the limits ± /, than if we had made use of any other set of

factors whatever.

On this principle Laplace determines what he calls the most advantageous system of factors.

It does not follow that the value thus obtained for x is the most probable value that could be

assigned for it. But if we consider a large number of sets of observations, (the quantities a, b, &c.

beino- the same for all) then the error which we commit by using Laplace's factors will in a greater

proportion of cases lie between ± /, than if we had used any other system of factors.

The investigation has reference merely to the different ways in which by the method of factors

a given set of linear equations may be solved.

We now enter on the analysis requisite to determine P.

Let the probability that Ifxe will be precisely equal to u, hepdu. Then manifestly

and we have therefore only to determine p.



Mr. ELLIS, ON THE METHOD OP LEAST SQUARES. 209

Let 6, 62. ..e„ be the errors which occur at the first second &c. observation ; d), e, rf e,, d)^ e, d e.^...

(p„e„d€„ be the probabilities of their occurrence : the form of the function d) determining the law of

probability of error, which, for greater generality, we suppose different at each observation. The
probability of the concurrence of these errors is of course

^,e,^2e2...^„e„d6, ... de„ (l),

and the first principles of the theory of probabilities show that the value of pdu will be obtained by
integrating (l), £i...e„ being subjected to the condition 2jue = u.

Thus

pdu = fipi 6t(p2e2 (p^e^dei ... rfe„ (2)

with the relation

^1 Ci + M2e2-.. + M„e„ = M.

Consequently

pdM = rfe„ /0,€i...^„_,6„_,(^„ "—dei...de,.i (3).

Now by Fourier's theorem

which, replacing — by a, becomes

— / da (pe„cosa(u -
'S,fj.€)de„,

»'

TT

Therefore

M„de,
pdu = ——- da

/
rfe, ... / de^ip^e, ... (b^e^cosa (u - 'Euls) (4).

Now if u and e„ are to vary together

du = ii^de„, and therefore

P= —
J

da
J det ...

J
rfe„0,ei ... ^„e„ cosa (?« - 2;u6) ., (5).

And finally,

P=-f du f da f rfei... /"** de„d),e, ...d)„e„cosa(M - 2/i£) (6).

Now let us suppose that equal positive and negative errors are equally probable. In this case

<pe = (p (- e), and consequently,

y_J (j)€ sin afiede = 0.

Hence (f5) will become

•''=—/ du
I

cosauda f
"

^,6iCosa^ii£,rfe, ... / " d>,£„cosa/i„e„rff„ (7).
— <rj

The next step is to find an approximate value of this expression.

When a = /^J0ecos afxede = f^^<pede = 1,

as the error e must have some value lying between ± eo .
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It is clear this is the greatest value the integral in question can have, and therefore as n increases

sine limite, the continued product

J
" 0,£,COS/KjO6]rfei ... /j"0„€„ COS/U„a6„rf€„

decreases sine limite, (being the product of n factors each less than unity) except for values of a

differing infinitesimally from zero.

Let k" = J (pe.e'de, «' = Jq (pe.e^de,

and develope each of the cosines in the above-written continued product. It is thus seen to be

equal to

1 - a'-2^'k'- + a* (\ S^iV + 2m? M2 ^I '4) - &c.

Again, n being very large and ultimately infinite, it is evident that 2/u''k' is of the same

order of magnitude as n, while Sju? M2 ^1 ^2 '^ ^^ ^^^ order of n\ the former term of the coefficient

of a' may therefore be neglected in comparison with the latter, which again may be replaced by

^CEn" k')", from which it differs by a quantity of the order of n. Similar remarks apply with

respect to the higher powers of a-

Thus the continued product may be replaced by

1 -a'-E,x'k"- + - aU-2/^'ky —a''(^ti'ky + &c.
2 2.3

or by e""^^'''''; a function which is coincident with it when a is infinitesimal. When « is finite

both are, as we have seen, infinitesimal.

Consequently,

P =
IT

- f du f
"
cos au da. e""^"'''^ (S),

IT •'a -'0

P-=7-^,1;kv f'e~ ''''''''' d'' = -7= f'^^^^'^'^'dv (9),
{n-Ztx'k ) Jg VT-^O

where we have supposed

M = 2 {S.^^k^v.

It is evident, that whatever / may be, this expression for P is a maximum when

'S.fi.'k'' is a minimum.

Hence we get the following remarkable conclusion : When the number of observations increases

sine limite the most advantageous system of factors are those which make

lifi'k^ a minimum.

It remains to determine /j. from the condition of the minimum taken in connexion with those

already stated, viz. 2,ua = 1, 'Z/xb = 0, Sec. = 0. We have

^k^lj.dn= \

^"'^'^ =M (A).
^bdfjL

&c.

Let X|, Xi...\p be indeterminate factors, then we may put

^iMi = ffliXi + 61X2 + &c.
1

klfi2= 02X1+62X2 + &c. [ (B).

&c. = Stc. I

::[
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From the n equations (B) we deduce a new system of p equations. To obtain the first of these,

a, O2
we multiply equations (B) by 7; > T? > &c. respectively, and add the results. For the second, we

employ instead of the factors —
- , &c., the factors —, , -5, &c. and then proceed as before. And

' A:; ft, k:^

similarly for the others.

In consequence of the relations

2^1=1, l,/ih = 0, &c. = 0,

the new system of equations will be

ab
1 = \, S — + X2 2 — + &c.

k- k-

^ ab ^ b^

0=X,2-7 + \22- + &c.

0= &c.

(C).

These p equations determine X,, Xj... X^, and thus in virtue of (B) the values of fxt, fi,... fx^

become known. Finally as

cc = n^V^ + ti.^V^+ ... + n^V„,

X will be completely determined.

Now let us recur to the original equations of condition stated in the last paragraph.

e, = a^x + h^y + &c. - F,

€2 = a^a: + b^y + &c. - V^

&c. = &c.

e„ = a„a; + b„y + &c. - V„

From this system we deduce a new one, containing p equations. The first of these is got by
fl, a.

kVt
'-. Xrr. : fliiH sn nn ns hpf

ah

(a).

fl, (It)

multiplying equations (a) by p ? 7:2 ' ^^'' ^"*^ adding the results : the second by using the factors

7i' i3' ^^' ^"*^ ^^ °" ^^ before. The resulting system will be, neglecting all errors,

a flu a \

ab b'^ b
-2-^ + 2.2^ + &c. = E^F

&c. = &c.

(/3')-

The system (/3') contains as many equations as there are unknown quantities x, y, &c. I pro-

ceed to show that if x be determined from this system, its value will be the same as if it had

been obtained from the most advantageous system of factors, namely, that which is determined

by means of (/?) and (C). In order to prove this, we multiply equations (/?') by X,,Xj, 8cc.,

and add the results. Then, in virtue of (C)

Vol. VIII. Part II.

k- Ic'

Ee
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^''
.V = (\, o, + X„ 6, + &c.) -!, + (X, a, + \,b,+ &c.) -| + &c.

that is to say, as is seen on referring to (B),

.V = jUi Fi + /uj Fj + ... + n„ V„,

as before ; which proves that the system (/3') gives the same value for x as the most advantageou.i

system of factors. Moreover, as (/3') is symmetrical in x and a, y and 6, &c. it is clear that it

will also give the most advantageous values for y and the other unknown quantities.

When the law of probability of error is the same at every observation k^ - k^= Sec. and (/3')

reduces itself to (/3) given at p. 208 as the result of the method of least squares. In the general

case, it expresses the modification which the method of least squares must undergo, when all

the observations are not of the same kind, namely, that instead of making the function

2 {ax + by + &c. - F)" a minimum with respect to xy, &c., we must substitute for it the

function 2— (ax + by + &c. - Vf, and then proceed as before.
At

Such, in effect, is Laplace's demonstration, except that he supposed the law of error the

same at each observation. The form in which I have presented it is wholly unlike his. The

introduction of Fourier's theorem enables us to avoid the theory of combinations, and also the

use of imaginary symbols. It must be admitted that there are few mathematical investigations

less inviting than the fourth chapter of the Theorie des Probabilites, which is that in which the

method of least squares is proved.

It may be worth while to recur to the general formula:

_ + I X ,+ * -+00

P=- f du f da
I

rfe, ... / rfe„ ^, e, ...0„ f„cosa (i* - S^e)-

It is certain that 2/ue lies between the limits ± c;. Therefore when I = ta, P should be

equal to unity. I proceed to show that this is the case.

p =- e""''" dti / da de,... J de„ 0, t, ... ^,6,. cosa (?< - 2/it)

when OT = .

Effecting the integration for u.

P
c

when m = 0,

= y= e *'"'da / rffi ... / d6„0,6i ... ^„e„ cos a S«€ ... (10)

r '" "'cos atidu = e
'

m
, + ">

and / e " "'^"'
sin au du = 0.

Integrating for a, we see that when m =

P^ = /^"de, ...
[*'

de.<p,e, ... 0,e, e -'"-""'... (ll).

Or,

P^ =
J </),«, rfe, ... / <p„e„de (12).

and as each of these integrals is separately equal to unity,

P = 1, which was to be proved.
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I proceed to show that in a particular case in which the value of P can be accurately

determined, Laplace's approximation is correct. It has sometimes been thought that the intro-

duction of the negative exponential involves a petitio principii, and is equivalent to assuming a
particular law of error. It is therefore desirable, and I am not aware that it has hitherto been
done, to verify his result in an individual case.

Let the law of error be the same in all the observation.s, and such that d)e = ie'", the upper
sign to be taken when e is positive.

Let /x, = /u, = &c. = 1, then

P = -f''(laj'"'(l€^'<)d6, y ''"(ic"")df„cosa(?^ - le).

1 r" cos Ma
, r"

/J = — / 7:r "Of since / e' cos a€de =
TT -/„ (1 + aO° -^0 1 +a^

The value of p is thus given by a known definite integral, which has been discussed by M. Catalan
in the fifth volume of Linumlle's Journal.

It may be developed in a series of powers of «/. Up to u"-^" - '* no odd power of u can appear

r" a}'
in this development, for / „- da is finite while p is less than n, and therefore the integral

may be developed by Maclaurin's theorem. For higher powers the method ceases to be applicable,

and we must complete the development by other means. But as we suppose n to increase s. 1. the

integral tends to become developable in a series of even powers only of?/. Thus

f" cosua ,
/•» da ^ > r" «'

/ , o,- da = / ,
5- - kn^

/ ^ da + &c.
(

, /• » da

Jr'^
a'da

Then

and generally

Now

-x^U

... IT 1 . 3...2TO - 3
f(n) = -.

;

2 2.4...2W - 2

. „, , TT 1 . 3...2n - 5- ^f{n - I) =-. . 1,
2 2. 4.. .278 - 2

AS/-/ ^N ^ ' .3...2W-7AY(« - 2) = -
. .1.3;

•^

2 2.4....2W -2
!ind generally.

A„,/ ^ "^ 1 .3...2W -3 -2p
'^ '^' 2 2.4...2«-2

'^

1 .3...2p - 1

= /(«) —

^

- •

%n- \ -2p,.,2n - S

EB 2
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Thus

/ 5— = /^w n - - . ?4^ + u* - &c. >
J„ (1 + a^)" I

2 271-3 2.S.i 271 - 5 .271 - 3 j

The coefficient of ii^'' is

1.3...2P-1 1

±/«

2.3...2p 2w - 1 -2p...2re - 3

] 1 1

1.2. ..p. 2f 2n- 1 - 2p...2n~ 3

Let n become infinite, this becomes

fin). '
'

1 .2...p ^iTiy'

and we have only to determine what /(«) then becomes.

Now by AVallis's theorem

/2y^l.3...(2n-i)^^^^^

WJ 2.4...2W-2

1 / 2w \J
Therefore /"n = - when w is infinite,

„ 1 /7r\J
or, /w = - - .

i„ (1 + ay "
2 [n) I

" 4^
"•"

2 " (4n)=
" ""'

1

2 W/

Consequently,

" when w is infinite.

Therefore,

1 -"-

and P=
I
e'*" du.

Jo

Now the value given for P at p. 210 is

P =

In the present case /u = I

.

/f' = 2 Jo ""'e'rfe = 1 : and consequently 2//A--=w.

Thus
1 ^( £.

J' = , / *" du, as before.

Thus Laplace's approximation coincides with the result obtained by an independent method.

This example serves to shew distinctly the nature of the approximation in question.

The function p having been developed in a series of powers of u, we take the principal term

in the coefficient of each power of u ; that is the term divided by the lowest power of ». We
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neglect for instance every such term as -—
:j ii^'', because we have a term in ii''' divided by «''.

71-'' u-'^-^^
Thus we retain -^ and neglect ——-, although, unless ii be large, the former term is of the samt

or a lower order of magnitude than the latter. That Laplace's method does in a very general

manner give an approximation of this kind cannot, I think, be questioned, especially after the

verification we have just gone through. But some doubt may perhaps remain, whether such an

approximation to the form of the function P, if such an expression may be used, is also an

approximation to its numerical value, when we consider that in obtaining it we have neglected

terms demonstrably larger than those retained.

For two recognized exceptions to the generality of Laplace's investigation, viz. where

<pe = - 2' ^"'1 ^^^ '^^^^ '" which //,, H2---, decrease in infinitum sine Umite, I shall only refer

to p. 10 of Poisson's paper in the Connaissance des Terns for 1827. Neither affects the general

argument. We now come to Gauss's second method, which is given in the Theoria Combinationis
Observationum.

GAUSSS SECOND DEMONSTRATION.

The connexion between the method of Laplace, and that which Gauss followed in the Theoria

Comhinationis Observationum, will be readily understood from the following remarks.

After determining /u,...;u„ by the condition that P should be a minimum, Laplace remarked

that the same result would have been obtained (viz., that 'E/u.^k'' must be a minimum), if the

assumed condition had been that the mean error of the result, i. e. the mean arithmetical value

of 2/U6 should be a minimum. (I should rather say that he makes a remark equivalent to this,

and differing from it only in consequence of a difference of notation, &c.) It is in fact easy to see

that the mean value in question is equal to

•'"
, , or to 2_/(, 7ipdu;

Jo Pdu
and as

P =
2 (^Sm'A'^)'

^« , 2 (2^=A-=)'
2 / updu = y=

•^»
V-n-

which is of course a minimum when 'E/j.^k^ is so.

Gauss, adopting this way of considering the subject, pointed out tiiat it involved the

postulate that the importance of the error 2/if, i. e. the detriment of which it is the cause, is

proportional to its arithmetical magnitude. Now, as he observes, the importance of the error

may be just as well su])poscd to vary as the square of its magnitude : in fact, it does not, strictly

speaking, admit of arithmetical evaluation at all. We must assume that it is represented by some

direct function of its magnitude, such that both vanish together. One assumption is not more

arbitrary than another. Let us suppose, therefore, that the importance of the error is repre-

sented by (2;ic)". That is, that (2/uf)'' is the function whose mean value is to be made a

minimum. I now proceed to find it.

C^mO' = ^I'-'C + '2-2,x,^,e,e, (13).
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The mean value of e' is / t'cpede = 2 k'.

Hence, that of S^'e' is aS^^fc'.

The mean value of liM/^ieie.^ is zero, positive and negative errors of the same magnitude

occurring with equal frequency on the long run.

Consequently,

mean of (2Me)= = 2 2,.x-fc' (14);

and, therefore, as before, 2m^^" is to be made a minimum. The rest of the investigation is of

course the same as that of Laplace.

Nothing can be simpler or more satisfactory than this demonstration. It is free from all

analytical difficulty, and applicable whatever be the number of observations, whereas that of

Laplace requires this number to be very large.

Recurring to equation (ll), differentiating it for m\ and then making m = o, we find

f pti^du= f ^t, rfe, ... f (pe„de„('2.ney = 'i'S./j.'k^

;

and as the first member of this equation is evidently the mean value of ^^- or of (2^£)S this is a

new verification of our analysis.

As an illustration of Gauss's principle, let the fourth power of the error be taken as the

measure of its importance

;

(2/jie)* = 2m*«' + 6 2,u,-/V £,'63" + terms involving odd powers of e.

Therefore,

mean of (S/xe)' = 2 2mV + 24>-2^{',i%k^^k2^ (15)

and /Ui ... n„ must be so determined that this may be a minimum.

I have already said that the results- given by what Laplace called the most advantageous

system of factors are not strictly speaking the most probable of all possible results.

As the distinction involved in this remark seems to me to be essential to a right apprehension

of the subject, I will endeavour to illustrate it more fully.

Recurring to the equations of condition, as given in p. 208, we see that the values Laplace

assigns to the factors ^^ ^2 &C', are independent of Fj V^ &.c. They depend merely on the

coefficients a b &c., which are quantities known a priori, i. e. before observation has assigned

certain more or less accurate values to the magnitudes F, F, &c. All we then can say is, that

if we employ Laplace's system of factors, and also any other, in a large number of cases (the

coefficients a b &c., being the same in all) we shall be right within certain limits in a larger

proportion of cases when the former system of factors is made use of than when we employ the

latter. And this conclusion is wholly irrespective of the values of Fj F^ &c., and consequently

of those which we are led in each particular case to assign to ir y &c. The comparison is one

of methods, and not at all one of results. But when F, V^ kc. are known, another way of

considering any particular case presents itself. We can then compare the probability of different

results. For, let us consider a large number of sets of equations of condition (in each of which

not only are a b &c. equal, as in the former case, but also F, Fj &c.) The true values of

the elements x y &c. may be different in each. But in affirming that ^ »; &c., are the most

probable values of a: y &c., we affirm that the true values of x y &c. are more frequently equal

to ? >; &c. than to any other quantities whatever. Here we have no concern with the method

by which the values ^ t) &c. were obtained. The comparison is merely one of results.

As for one particular law of error (that considered in p. 206), the results of the method of

least squares are the most probable possible ; and as the function by which this law of error is
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expressed occurs in Laplace's demonstration of that method, it has been thought that his ap-

proximation involved an undue assumption, and tliat in fact his proof was invalid unless that

particular law of error was supposed to obtain.

It is easily seen that the method of least squares can give the most probable results only

for that law of error (if we except another which involves a discontinuous function). Mr. Ivory

attempted to shew that Laplace's conclusions might be applied to prove that the results of the

method were, in effect, the most probable possible, and thence drew the inference which I have

already mentioned. After some consideration, I have decided on not entering on an analysis of

his reasoning, wliich it would be difficult to make intelligible, without adding too much to the

length of this communication. It is set forth with a good deal of confidence; Laplace's conclusions

are pronounced invalid on the authority of an indirect argument, and without any examination

of the process by which he was led to them. I may just mention that in the whole of Mr.

Ivory's reasoning, the probability that 2/i€ is precisely equal to any assigned magnitude, is,

to all appearance at least, considered a finite quantity, though it is perfectly certain that it must

be infinitesimal.

It would seem as if he had taken Laplace's expression of the probability in question, viz.

C 4*"il'5'ral>)2

2a\/ir V -—S
k

m(1)2

without being aware that in Laplace's notation I and a are infinite, and that consequently the

expression is infinitesimal. (Vide Tilloch's Magazine, lxv. p. 81.)

Mb. IVORY'S DEMONSTRATIONS.

They are three in number. Two appeared in the sixty-fifth, and a third in the sixty-seventh

volumes of Tilloch^s Magazine.

The aim of all three is the same, namely, to demonstrate the rule of least squares without

recourse to the theory of probabilities, which appeared to him to be foreign to the question. The
grounds of this opinion he has not clearly developed : perhaps the best refutation of it will be

found in the unsatisfactory character of the demonstrations which he proposed to substitute for

the methods of Laplace and Poisson. In common with many others, Mr. Ivory appears to have

looked with some distrust on the results obtained by means of this theory : a not unnatural

consequence of the extravagant pretensions sometimes advanced on its behalf.

The first of his demonstrations rests upon what I cannot help considering a vague analogy.

In the equation of condition

e = ax — V,

he remarks that the influence of the error e on the value of ai increases as a decreases, and

versa vice: that consequently the case is precisely similar to that of a lever which is to produce

a given effect, as of course the length of the arm must vary inversely as the weight which it

supports.

Consequently, he argues, the condition to be fulfilled, in order that the equations of condition

may be combined in the most advantageous manner, is the same as what would be the condition

of equilibrium, were a a' a" &c. weights on a lever, acting at arms e e' e" &c. This condition

is of course

2ae = 0, whence 2(aa' - V) a = 0,

the result given by the method of least squares.
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But, granting that the influence of an error e, ought to be greater when a is less, and

versa vice, how are we entitled to assume that the case is precisely similar to that of equilibrium

on a lever.'' Apart from this assumption, there seems to be no reason for inferring that because

this influence increases as a decreases, it must therefore vary inversely as a. By what function

of a the influence of e ought to be represented, is the very essence of the question ; to deter-

mine bv introducing the extraneous idea of equilibrium on a lever, that - is the function re-
-' ° a

quired, seems to be little else than a petitio principii, concealed by a metaphor*.

The second demonstration may be thus briefly stated.

The values of different sets of observations might be compared if we knew the average error in

each set, or if we knew the average value of the squares of the errors in each. In either case that

would be the best set of observations in whicli the quantity taken as the measure of precision was

the smallest.

Similarly, by assigning diff'erent values to the unknown quantities >v,y, he. involved in a system

of equations of condition, we can make it appear that the mean of the squares of the errors has a

m-eater or less value. Therefore as of sets of observations, that is the best in which this quantity

is least ; so of different sets of results deduced from one set of observations, the same is also true

;

and therefore the sum of the squares of the apparent errors is to be made a minimum.

There seems to be involved in this reasoning a confusion of two distinct ideas; the precision of

a .set of observations is undoubtedly measured by the average of the errors actually committed, and

if we knew this average, we should be able to compare the values of diff'erent sets of observations.

But it is not measured by the average of tiie calculated errors, namely, those which are determined

from the equations of condition when particular values have been assigned to w, y, &c.

The problem to be solved may be stated thus. Given that the single observations of which the

set is composed are liable to a certain average of error, to combine them so that the resulting values

of the unknown quantities may be liable to the smallest average of error.

This problem Laplace and Gauss have both solved. Their solutions diff'er, because they

estimated the average error in different manners.

But how are we justified in assuming that to be the best mode of combining the observations

wliicii merely gives the appearance of precision 7iot to the final results, but only to the individual

observations, and which, with reference to them, gives no estimation of the probability that this

appearance of accuracy is not altogether illusory ?

The third of Mr. Ivory's demonstrations is not, I think, more satisfactory than the other two.

The kind of observations to which the method of least squares is applicable, are such, Mr. Ivory

observes, that there exists no bias tending regularly to produce error in one direction, and that the

error in one case is supposed to have no influence whatever on the error in any other case.

From this principle he attempts to show that the method of least squares is the only one

which is consistent with the independence of the errors.

When, however, we speak of the errors as being independent of one another, only this can

be meant, that tlie circumstances under which one observation takes place do not aff"ect the others.

In rerum naturd the errors are independent of one another. Nevertheless, with reference to our

knowledge they are not so, that is to say, if we know one error we know all, at least in the case

in which the equations of condition involve only one unknown quantity, which is that considered

by Mr. Ivory. For the knowledge of one error would imply the knowledge of the true value of

the unknown quantity, and thence that of all the other errors.

• I have omitted to notice some remarks wiiicli Mr. Ivory appends to this demonstration, as they do not appear to affect the view

taken in the text.
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Mr. Ivory states tlie following equations of condition:

e = a so — tn

e = ax — m
&c. = &c.

He thence deduces the following value of w:

X =
., + , and those of e e are

a'S.am a'S.ae
e = -m+

, +
,

, , a' '2am a"S,ae
e = - m + H ^ „ . &c. = &c.

Sffl 2a

He remarks that tliese errors are not independent of one another, as all depend on the sino-le

quantity 2ae, which may be eliminated between any two of the last-written equations : but
that there is one case in which they are independent of one another, namely, when we assume
2a e = 0, which of course leads to the method of least squares, and that in this case, as we
shall have

a 2am
e = - m + ^ „ &c. = &c.

2a"^

each error is determined by " the quantities of its own experiment." But this reasonino- is

perfectly inconclusive. In the case supposed, e e &c. are as much connected together as in

any other, as may be shown by eliminating 2am between the equations

a2a?» , , o'2a?n
e = - m + ^ ., , e = - m + ^ .,

&c. = &c.

;

2 a 2 a"

and besides, apart from any mathematical reasoning, it is clear that as if we know one error

we know all, so also if we assign any value to one, we have in effect assigned values to all,

whether we use the method of least squares or any other.

Moreover, e is not determined by the quantities of its own experiment alone, since 2am
involves the results of all the experiments; there is no difference between this and the general

case, except that 2ae has ceased to appear in the equations. But suppose we multiplied the

equations of condition by any function of a, we might deduce the following values of .v and e :

20a . e 2d)a . m
X = — 1

2a . (ha 2a . (jta

a'S.cba.m a'S.cba.e
e= -m + -~--— + -;^ ^

,2a . (pa 2a . (pa

a''S,(pa.m a'S.cpa.e

2a . (pa 2a . (pa

Mr. Ivory's reasoning would apply word for word as before, and would show that the best

mode of combining the equations of condition was to employ the factors (pa, (pa', &c. whatever be

the form of (p. As it thus would serve to establish, at least apparently, an infinity of contra-

dictory results, the inference is that in no case has it any validity.

I have now completed, though in an imperfect manner, the design indicated at the outset of

this paper, namely, to give an account of the different modes in wliich the subject has been

treated, and to .simplify the analytical investigations. If I have succeeded in doing this, the pre-

sent communication may tend to make a very curious subject more accessible than it has hitherto

been.

Vol. VIII. Part II. Fi-
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The instability of opinion which usually, and perhaps necessarily, characterizes the earlier

researches into any new and extended branch of philosophical enquiry, is strongly exemplified

in the different views which have been entertained respecting the causes to which the transport

of erratic blocks is to be referred. In the first stages of the enquiry rapid currents of water

were generally recognized as the most probable agents in these phenomena. No attempt, however,

was made to calculate the power of this agency, and the theory was associated with hypotheses

far too extravagant to bear the test of careful investigation. The natural consequence was the

very general abandonment of the theory on the suggestion of another possible cause of the

phenomena in question. It was represented that floating ice might have acted as vehicles of

transport, and many facts were collected, from the reports of those who had visited the colder

latitudes, confirmative of this opinion. Again, this latter theory has been lately endangered by

the recognition, on the part of some geologists, of a third theory, which attributes the transport

of blocks to the sole action of glaciers ; a view of the subject which has arisen out of the curious

and interesting observations recently made on the movements of existing glaciers, and the phe-

nomena indicating their far greater extension at some preceding geological epoch.

The entire rejection of any one of these theories would imply a forgetfulness of the fact,

that geology is, in a peculiar sense, a mixed science, not merely as involving investigations which

properly belong to widely different branches of physical and natural science, but also as treating

in some instances of phenomena, (as in the cases of erratic blocks of different kinds, or in different

localities,) which, while they possess a great community of character, may be referrible to totally

dissimilar causes. Both glaciers and floating ice are manifestly adequate with respect to their motive

powers, to produce the phenomena in question. In the following communication I shall investigate the

transporting powers of currents of water, and shall shew that, under certain conditions, such currents

would be generated of sufficient velocity for the transport of boulders, and consequently that this

cause is also adequate to produce the removal of at least a large portion of the boulders which have

travelled from their original sites ; and that, therefore, the theory is not to be rejected on account

of any apparent inefficiency in the cause of transport assigned by it, or the extravagances which

have been formerly associated with it. AVe shall thus, I conceive, be constrained to recognize the

general adequacy of each of the three causes of transport above mentioned ; and in the further

examination of the problem it will only remain for the geologist to ascertain, as far as possible, the

share which each cause has had in producing the actual phenomena of transport by a careful

comparison of observed facts with the probable results of each mode of transport. Each group

of erratic blocks, or each mass of transported materials, may present in this respect a separate

problem ; in the present communication I shall only offer on this branch of the subject a few

general observations, without entering into any discussion of particular examples, beyond what may
be necessary for the elucidation of general views.
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SECTION I.

Transporting Currents.

1. These currents may be divided into River Ctirrents, Tidal Currents, Ocean Currents,
and Elevation Currents. By the latter, I mean those currents which would be produced by the

more or less sudden elevations of determinate portions of that part of the surface of the earth

which is covered with water. They are the only currents among those above mentioned of which
it will here be necessary for me to speak. Currents of this kind are always accompanied by a
corresponding temporary elevation of the surface of the water, constituting a wave. We are

indebted to Mr. Russell for all the experimental knowledge we possess of the nature and properties

of this wave, of the laws of its motion, and of the current which attends it. He has denominated
it the great wave of translation. The details of his experiments will be found in the Proceedings

of the British Associatioti. It will only be necessary for me here to state his general results.

2. Suppose a long canal to be filled with water, and, for the greater simplicity, let it be sup-

posed to be of uniform width and depth. There are various ways in which a wave of translation

might be produced in this canal. One of the simplest, and most appropriate for our immediate
object, would be the sudden elevation of a determinate portion of the bottom of the canal, which
portion, for distinctness, may be conceived to be about its middle point, and of small extent as

compared with the length of the canal. Two waves will thus be sent off in opposite directions.

Each wave will move with uniform velocity, preserving very approximately the same form. Its

length will depend, in great measure, on that of the portion of the bottom elevated to produce the

wave. Each particle of water begins to move when the front of the wave reaches the vertical

transverse section in which the particle is situated, and continues in motion till the wave has passed
over it, when it is again left at rest. Its motion therefore is not oscillatory, but one of translation

in the direction of the wave's motion. Mr. Russell has established experimentally the following
law of this motion :

(1) Every particle in the same vertical transverse sectio?i of the canal has the same motion.

He has also established the following law respecting the propagation of the wave

:

(2) The velocity with which the wave is propagated is equal to that due to half the height of
the crest or highest point of the wave above the bottom of the canal*.

3. From these laws we easily deduce the expression for the velocity of each particle, i.e. for the

velocity of the current which accompanies the wave. Let LPN represent the position of a
longitudinal section of the wave, at the time t, and VPN" at the time t + Zt, AB being the bottom

Pi

of tlie channel, and CFD the level of the general surface of the water. Let P, be the crest of
the wave, QP, = /(,; /» any other point on the surface of the wave at time t, P' the corresponding

• It thould be stated tli.it the cxpcrimenlH and observalionii by
which tliese laws were catutilished, were made on canals not many
feci in depth. There appeun, however, to be no reasonable doubt

that the same laws hold, at least approximately, tor much greater
depth, as I have assumed them to do in the application of these

iovcBtigations to the transport of erratic blocks.

F F 2



222 Mr. HOPKINS, ON THE TRANSPORT OF ERRATIC BLOCKS.

point at time t + St, and mP=m'P' = h, and MiQ = Mm = H, the depth of the canal, supposed

uniform. Also let V be the velocity of propagation of the wave; then will L L' = nn = mm
= NN" = VSt ; and let v be the velocity of the current at P, and therefore also (by the first law)

at every point of the vertical transverse section through P. Also let 6 be the breadth of the

canal; the area of the transverse section through P will = (H + h) b.

Now it is manifest that a volume equal to that whose vertical longitudinal section is LPrL' (or,

in the limit LPP'L') and breadth 6, must have passed through the transverse section MP in the

time St.

Let this volume = U; then if np = y,

SU =b . area qp

= 6 . pp'. Sy

= bVSt.Sy;

.: U = bVhSt,

integrating from y = to y = mP = h.

But by the first law we must have '

U = vb(H + h)k;

and therefore equating these values of U, we have

Also by the second law

H + h

. h

\/g(H+h,)

(!)•

If «, be the velocity of the current in the transverse section through the crest of the wave,

i.V^.H + h,

4. Let us now suppose the wave to diverge from a center; then assuming the breadth

of the wave to remain constant, and therefore the velocity of propagation {V) to be the same for

every part of the wave, we shall have

SU = Znp.pp'. Sy

= 2'7r VStpSy,

where p = Cm, C representing the point from which the wave is diverging. U cannot be found

generally without knowing the relation between p and y, i.e. without knowing the form of the wave ;

but if we suppose the space CL (r) through which the wave has diverged to be much greater than

the breadth (l) of the wave, we shall have approximately p = r, and therefore

SU=2-^VSt.rSy,

and integrating from y = to y = m P = h,

U =2Tr VrhSt.
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Again, since U is now the volume which passes through the cylindrical surface whose radius

= Cm (p) and height = MP{H + h), in time ^t, we must have by the first law

U=2irp'{H + h)vit

= Z-n-r (H + h) vSt nearly.

Equating these values of U we obtain

h
v=V. H + h'

u, = F.
' /f + A,

These approximate expressions for u and v^ are of the same form as the accurate expressions

obtained in the preceding case, but h and h^ are not here independent of the distance through which
the wave has travelled ; they are functions of r. To determine them let us assume the vis viva of

each wave to remain constant during its motion. The element (Sm) of the mass in motion at the

time t, will be the portion of the fluid included between the two cylindrical surfaces whose radii are

p' and p + Sp' and height H+h (MP). Therefore

Sm = 27rp' (H + h) 3p'

= ZTrrffSp' nearly,

if r be much greater than I, and H than h. Also

v = r.~^H+h

= V —- nearly.H
Hence

^v'Sm^2^^rr*'h'Sp\H J,

Now let

A = (jo' - r)

be the equation to the curve LPN when CL = a, a particular value of ;; then assuming the

form of the curve so to change that each ordinate shall be diminished in the same ratio, we
shall have generally when CL = r,

and

or putting p - r - p, and y^' = {<j>f,

which will be independent of r, if

r|\M-j> = c = a constant,



224 Mr. HOPKINS, ON THE TRANSPORT OF ERRATIC BLOCKS.

Hence

or, for any assigned value of p

h = \/- .(pip):

\/r

Consequently,

V and i>i cc

\/r

5. A diverging wave, such as above described, would manifestly be produced in the midst

of the ocean by the elevation of a portion of its bottom. The height and breadth of the

wave will depend on the area of the elevated portion, the height through which it is raised, and

the time occupied in the process of elevation. Suppose this area to be circular, and its radius = R;
and first suppose the elevation to be i7istantaneous, and the height = A,. The resulting wave

will have a steep front, liiie that of the tidal wave called a bore, the height of its crest

being at first equal to that of the elevated surface of the water above the level of the general

surface = A, in the case before us; and the breadth of the wave will be the space through

which its front shall have diverged from the boundary of the original disturbance, when that

boundary shall have been reached by the inner circular boundary of the wave.

6. Let us next suppose the elevation to take place gradually, its amount being still = Aj.

The surface of the water above the elevated area will be raised to a height less than h^, and

consequently the height of the crest of the wave will be less than A,, and the velocity of the

current produced by it will be proportionally less than in the former case. If R be small,

a small increase in the time occupied by the elevatory movement may make a great difference

in Aj, and consequently in the velocity and transporting power of the current; but if R be

large, the corresponding diminution in /jj will be much smaller*.

7. If the elevated area be a parallelogram, of which the length is much greater than the

breadth, two waves will proceed in directions perpendicular to the longer sides of the area, to which

sides the fronts of the wave (except near to its extremities) will be parallel. The breadth of the

wave will depend on that of the elevated area. It is important to remark that the diminution

in the height of the wave, and consequently in the velocity of the attendant current, will be

much less rapid than in the case above considered of the circular wave. Instances of circular

waves would necessarily present themselves in the elevatory movements of such a district as

that of the Cumbrian mountains, while wholly or partially beneath the sea ; and examples of

the other kind, in the simultaneous elevation of the whole of such a range as the great mountain

limestone ridge of the northern part of this kingdom.

8. In the case first considered the wave was supposed to be propagated along a canal of

uniform width and depth. If, on the contrary, the depth or width decrease, the velocity of

the current will be increased, as appears from the expression for «;, (Arts. 3 and 4). Thus, if

a portion of a great wave pass into the mouth of a channel which gradually contracts, the velocity

* For example, let R — 2Q miles, and let the elevation be instan-

taneous. The depth of the ocean might be such that it should

require 15 or 20 minutes for the surface of the water above the

elevated area to be reduced again to the level of the general surface.

In such cases, the elevatory movement might occupy several

minutes without reducing A, very materially. But if, on the

contrary, R did not exceed a mile or two, then, under the

same conditions, h^ would be reduced to a very small quan-

tity, and the transporting power of the wave would be almost

annihilated.
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of the attending current may become much greater than in the uncontracted wave. Such must

have been the case with respect to the portion of a wave diverging from the district of the

Cumbrian mountains, and received into the strait which must have been formed by the

pass of Stainmoor previously to its emergence from the ocean, but subsequently to that of the

higher mountains to the north and south of it.

We may now proceed to investigate the transporting power of currents originating in the

manner above explained.

SECTION II.

Transporting Potver of Currents.

9. Whatever be the specific gravity of a body, if its dimensions be sufficiently small, it

can never acquire more than a small velocity in descending by gravity in any fluid of which

the density is not extremely small. Such a body may therefore be held in suspension in water

for a considerable time, and when placed in running water, soon acquires a horizontal velocity

indefinitely nearly equal to that of the current. It may therefore be transported to considerable

distances before it descend to the bottom ; or when once deposited on the bed of the stream, it may
easily be again disturbed, and carried onward as before. When the body is not however of very

small dimensions it can only be transported along the bottom by the impelling force of the current,

its motion being retarded by friction, or the resistance of solid obstacles. In this latter case it is

necessary to ascertain the relation between the velocity of the current and the dimensions

and weight of the largest mass it is capable of moving. This relation depends not only on the

volume and specific gravity of the mass, but also on its form ; and therefore, in order to ascertain

whether certain given bodies could be moved by a given current, a separate investigation would,

in strictness, be necessary for each, supposing their forms to be different, though they might in all

other respects be the same. To render our results immediately applicable however, with sufficient

accuracy for our general purpose, it will be sufficient to investigate the above-mentioned relation

for a few certain forms, and then to refer any proposed mass to that particular form to which it

most nearly approximates, among those for which the above investigation has been made.

10. A body acted on by a current may be moved by sliding or by rolling. In the former

case, a very uncertain element, the friction of the surface on which the body rests, is necessarily

introduced into our calculations. It will depend on the nature of the surface over which the

transport takes place, and on the force with which the body presses on that surface, and this force

will depend very much on the extent of that portion of the surface of the body whicli may be

in such close contact with the surface on which the body reposes as to exclude the water from

penetrating between them, and exercising there its upward pressure. In those cases, however,

in which the motion takes place by rolling, the uncertainty depending on friction is entirely

removed, for such motion is independent of the magnitude of the friction. Also, during a rolling

motion the body must be revolving round one edge as an instantaneous axis, so that the fluid

pressure will act on all points of the surface except those very near to that axis. The abstraction,

therefore, of the pressures on these latter points will have no material eft'ect on the body's rolling

motion, and may be neglected in our calculations. When the body passes from one edge to

another, as a new instantaneous axis, the whole intervening surface might come in close contact

with that over which the body moves ; but if these edges be not too far apart (as will generally

be the case in those bodies which tend to move by rolling rather than sliding) the body will

necessarily begin, by its momentum to move round the second axis, and will conscciuently admit

the fluid to exert its pressure on the lower surface of the body, after it has passed to a new
axis of instantaneous rotation.
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11. Hence if a body once begin to roll, and we would calculate the force of the current just

sufficient to keep it in motion, we may consider the fluid pressures as acting on every part of its

surface, and our results will be very approximately true, independently of the nature of the surface

over which the motion takes place, provided that surface be sufficiently firm to give the requisite

support to the rolling body. The force, however, thus determined might be insufficient to make

the body begin to move, since it might rest in such a position as to exclude the fluid action from its

lower surface. But here it should be carefully observed, that a current is net to be deemed ineffi-

cient in moving blocks of given weight and form, unless it be capable of moving all such blocks

;

on the contrary, it is to be considered efficient for that purpose, if it be sufficient to move such of

them as may exist under conditions most favorable for transport. In many cases the incipient

motion might be due to accidental causes, as, for example, an impulsive blow from another mass

already in motion ; and, moreover, it is probable that all blocks which may have been transported

by this agency to considerable distances, have been carried on by currents of considerably greater

force than that just sufficient to keep them in motion, and which may liave been sufficient without

accidental causes to move them from rest, even under conditions not the most favorable for their

movement.

The preceding remarks are of the first importance as removing all doubt and uncertainty with

respect to the applicability of our calculated results to actual cases of transport b)' the agency of

currents, whenever those results involve the hypothesis of the rolling motion of the transported

mass. Transported bodies may have moved by rolling or by sliding; but in the latter case, the

retarding action of friction and local obstacles introduces so uncertain an element as to render

calculation comparatively useless ; but if in calculating the force necessary to move a block of

considerable magnitude, we assume it to have moved by rolling, we avoid in a great degree the

uncertainty arising from the above causes, and are in no danger of assigning its transport to a force

much less than that which has been actually required for that purpose.

We may now proceed to investigate the force which a current is capable of exerting on bodies

of particular forms. It will be sufficient for our purpose to take a few prismatic bodies, of which

the sections perpendicular to their axes are triangles, rectangular parallelograms, pentagons or

hexagons. Tliese cases will shew how the transporting power of a current, as estimated by the

mass it is capable of moving, depends on the form of the mass ; and will enable us to estimate, to a

sufficient degree of approximation, the velocity of a current capable of moving any proposed erratic

block.

12. If a plain surface, whose area = .S" be placed at rest in a fluid, whose density is jOj, moving

with a velocity v, in a direction making an angle 6 with the plane, we shall have

R = (p(e).- p,Sim'-6,

R being the moving force of the current on the plane estimated in the direction perpendicular to

the plane ; and if R' be the resolved part of this force in the direction of the current,

R =<p{0).~p,Ssm^9,

which will be the whole force in this direction, if we neglect the friction between the fluid and the

plane.

7]-

When = —, numerous experin)ents, made by different persons, shew that

R =-p,.S

very ai)|ir<)ximately. The experiments have been made with different velocities up to 11 or 12
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miles an hour, and we are justified in concluding by induction, that the expression will hold for

still greater velocities. Hence (p ( — j = 1. It also results from experiment that the value of (p{9)

is very nearly unity for all values of 9 not exceeding 45"*, and therefore, since the applications

I shall make of the above expressions are in cases where is less than that value, we may assume
generally

and R'=-p^Ssia^e.

13. Let us first take the case of a prism, of which the axis is perpendicular to the current,

and the section a triangle ABC-
If this section bisect the prism, it is manifest that the resultant

of the whole pressure upon it produced by the current will pass

through the middle point of AC. If therefore a perpendicular to

AC through this middle point meet AB in B, or between A and B,

it is manifest that the force of the current can have no tendency to

make the prism turn over about the edge through B. Suppose the

triangle equilateral; then on whichever side the prism may rest, the

above perpendicular will pass through the opposite angular point,

and the prism will not roll; and if the triangle be not equilateial, it is easily seen that there must
necessarily be one side which, when the prism rests on it, will be met by the perpendicular. Con-
sequently no triangular prism can continue to roll by the force of a current round each edge in
succession.

To find under what conditions the prism will slide, I shall assume, as the most favorable
condition for such motion, that the water has access to the lower side of the prism. In this

case, taking p for the specific gravity of the prism, and ^j for that of water, we shall have the
weight of the body in water

= (p- Pi) gU,

U = volume of the prism, and g = accelerating force of gravity. Let AB = a, AC = c, the length
of the prism = b, and CAB = Q. Then if /? = the normal force on the side of which AC is the
section due to the current, and R' the horizontal force, we have (supposing Q not much less

than 45°)

v"
R = — pxSsin" 9, ,

R' = -

or, since S = 6c,

-p^S sin" 9;

R = ~ p, be siiv' 9,

' The most dctailnl experiments I have seen on this point are

contained in a work, entitled Nnuvrlles Experiences sur la

HeiiMlunce ilei I'luides, par MM. U'Alemberl, le Marquis de
Condorcet, ctrAI/lii Uossut^ Memhre de r Academic des Sciences,

^c.Sic. Par M. liossut, Rajiporteur, 1777. It was intended to

appear in the Transactions of the Academy; but, on account of

Vol. VIII. Pabt II.

it3 length it was deemed better to publish it separately. M'hen
= 45% these experiments give (/j{y)= l,01i, and values approxi-

mating to unity as their limit, for smaller values of (J. For greater

values of 0, unity is no longer a near approximation to the value of
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R' = — pi be sin' 0.

Therefore, the vertical pressure on the base

= {p - pi) gU + R cos 9

= 1 (|0 - pi) gabc sm 6 + — p\bc sin' 0cos

= 1 fee sin 6 \{p - p\) ga + v^p^ sin QcosG}.

If we suppose the force (/") opposing the body's sliding to follow the ordinary law of friction,

we shall have
/' = /i . vertical pressure on the bottom,

= It- \{p - pi) g U + Rcos 0},

(where /x = coefficient of friction) ; and the condition of the prism being on the point of moving

will be

R' = F.

Hence we obtain

— p, sin^S = li {(p - pi) a { p, sin cos 0}

,

or,
Ui-')'

2g sin (sin - /j. cos 0)

This shews that a triangular prism with its axis perpendicular to the current cannot be moved

by sliding unless tan he > p., whatever be the velocity of the current.

If the section ABC be equilateral, = 6o", and we shall have

— = Vi '

2g v/3(v/F-^)

If we take — = 2, ."5, which may be assumed as a mean value of that ratio, we shall have

V v'sl ^g

14. Let us now take the rectangular parallelopiped, of which ABCD is the transverse

section. Let AB = a, AD = c, and the length = 6. Then

„2 D c

,6c;R'='- pi-

and in order that the body may be on the point of rolling

round the edge perpendicular to the plane of the paper

through B, we must have

V c a
-pibc.-= (p - p,)gabc-,
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and
2g- V|0, / c

Let c = na, then

n
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Therefore (since B = ~2)

''' _^ (p A ''

!?£• 8 Vp, j sin'" 7a" sin 3(f
'

sin=72''sin.'!6'' v^

2ff

8 Vp, J

= .567—,

putting — = 2, 5 .

P\

If we suppose the hody on the point of sliding we find the value of a nearly equal to that

just given, supposing n= 1.

16. Again, let the section of the prism be hexagonal. Let JB = o, and R' be the horizontal

force of the current on the side JC = that on the side CD. Then

when the body is on the point of turning about the side through "

B, we shall have

But

and

and

2R'.H0^(p-p,)gU'-

R' = — pj ab sin' 60,

U=3a.H0.b;

v'^ 3
2 —p^ab sin' 6o = -(p - p^)ga?h.

^g

2ff

4
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rolling movement, and which may be considered, for simplicity, as forming a plain curve. Moreover,

since the greater and smaller axes of this curve will not

diifer much in magnitude, we may suppose it approxi-

mately to be an ellipse. Let its semi-major axis AC
= a, and BC = b; CP=r, CY= p, CV being vertical,

and therefore perpendicular to the horizontal tangent

at P, the point of contact. The horizontal force of

the current {R') will be approximately equal to that

on a sphere whose radius = a, and its direction will

pass nearly through C, which will also approximately

coincide with the centre of gravity of the body. Hence
when the body is in equilibrium in the position above

represented, we shall have

R'p = (p- pi)gU\/r^-p'';

or. R' ^{p-p,)gU\/-^-l;

and in order that R' may be just sufficient to make the body roll over, this equation must hold

when the angle PCY k a maximum, i.e. when - is a minimum. Now
r

vhich

and

gives

Also
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or if a
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19. It will be observed in the expressions above given that the lines denoted by a vary, in

every case, as v^, and consequently the weight of the mass in each case, which varies as a', varies as

v^. Therefore the movingforce of a current estimated by the volume or weight of the mass of any

proposed form which it is just capable of moving, varies as the sixth power of the velocity.

This proposition may be easily proved independently of induction from particular cases.

Let a denote the length of any parameter in a proposed body of given form. Then, when « is

given, the force {F) of the current, estimated as above, varies as the surface of the body, varies as a';

and when the surface is given, the force varies as «'. Therefore

F oc a'«^

and the moment of F to make the body roll

cc a^v^

= Ca^v- (C = constant).

Also, the weight of the body x «', and its moment tending to keep the body at rest

= C'a'.

Hence, when the body is on the point of moving, we must have

Ca'v^ = C'a\

C
,

.•. a = —; V ,c
x v",

and the weight oc o'* oc u° ; which proves the proposition.

This result shews how excessively erroneous an opinion we might form of the transporting power

of rapid currents from that of the ordinary currents subjected to our observation. Thus if a stream

of 10 miles an hour would just move a block of a certain form of 5 tons weight, a current of

15 miles an hour would move a block of similar form of upwards of 55 tons; and a current of 20

miles an hour would, according to the same law, move a block of 320 tons.

Again, according to the same law, a current of two miles an hour would move a pebble of

similar form of only a few ounces in weight. And here it should also be remarked, that minute

inequalities, or a want of perfect hardness in the bed of a current, which would produce little effect on

the motion of a large block, would entirely destroy that of a small pebble; so that the circumstance

of the transporting power of a stream of 2 or 3 miles an hour being inappreciable is perfectly

consistent with the enormous power of rapid currents.

20. Let us now investigate the space through which a block might be conveyed by the current

attending a single wave of elevation.

Let y be the velocity with which the wave is propagated.

r, the greatest velocity of the current, or its velocity in the transverse section through the crest

or highest point of the wave, which will be very near the front of the wave, assuming it to have the

character of a lore, as will necessarily be the case if the elevation producing it be paroxismal.

V the velocity of the current in any other section of the wave;

«, the velocity of a current just sufficient to move the block.
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Let AB represent the surface on which the block rests, CD the general surface of the water and

LPPiN the wave, M the block at the time t, and P the point in which a vertical through M meets

the surface of the wave.

MP and M^P^ are the sections in which the velocities are v and v^ respectively.

Let AM = w, Al = CL = x' ; then will

— = vel. of the block,
dt

and — = v^l- of t'ls wave = V.
dt

Also let «2 be the velocity of a current just sufficient to move the block. Then, when the

velocity of the current at the point where the block is situated becomes = v.^, the block will begin to

move ; and as the velocity of the current increases, that of the block will always very nearly

= difference between the velocity of the current and that just necessary to move the block ; so that

we may consider the instantaneous velocity of the block as approximately =v - v.^. We shall

d.v

then have "77 = " — "21

or, substituting for v its value given by equation (l), (Art. 3.)

dx h— = V -V.J (I).

dt H + h

Also %=V (2);

dx h Vi
••

d^'
" H + h

~ V ^ '

h will be a function of w - x depending on the form of the wave. This form is not known, but as

an approximation we may assume LP, to be a straight line ; we shall then have

h mP Lm x — x'

hi ttiiPi Lrrii I

I being the length of the wave to which Z,»» is very nearly equal. Therefore

— h = x-x (4),

dx I dh
and :r^ = ir*3~^ + '•

dx A, dm

Hence, by substitution in (3) and reduction, we obtain

A, d^' _ _ F V V H
I

' dh v^ V + v^' v„ ' V2
, rr

'

— ./I + U
F + JJa

and integrating,

''-l.x'=C--h + ~H.\og,. i^^.h+H).

Let a = the original distance of the block, and I = the length of the wave; then when x'= a - I,

we shall have h = Aj. Therefore
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"= h.+ H
x -a + l V {h,-h) V H , V + V,

i7^-r-^°s.—-^ (5).
I V2 ^1 "3 *i ' "2

h + HV+ ,

Equations (4) and (5) give the two relations between .v, a,' and h. Our object is to determine

the value of a; when the motion of the block ceases, when we have the condition —— = 0, which
at

gives from (1)

n^J-''^ = ' («)•

From (4) (5) and (6) the required value of a; can be determined, and thence x - a, the space

through which the block will be transported, will be known.

Equation (6) gives

and we have from Art. 3,

Also from (4),

Substituting this value of w' in (5) we obtain

F-«3

V - v^

"2 A,

V hj vl h, »'
_ v^ h-

V+v'H
Since —i will always be less than unity and -^ will generally be a small fraction, we shall obtain

a near approximate value of —-— if we expand the logarithm. We shall thus have, preserving

terms of the second order.

_ «2 / h\ I hj + h hi -

Omitting -^; and substituting the above values of h and A,, we obtain finally

1 ("1 - "^f ,

s = a>-a =-~ r--l, (7),

which gives the space through which the block will be transported.

If we put Uj = we have

*«=^-'^=iT?i;:-^ ('^'

which gives the whole space through which each particle of the fluid is carried by the wave from its

original position.

Vol. VIII. Pakt II. Hh
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If p be sufficiently small,

1 («)i
- v^y

and An = - .
— I

I

I,.

nearly,.

• 0),

.(10)

approximately.

I have supposed the section (Z, P^) of the surface of the wave to be a straight line. It will

generally be some curved line having its convexity turned upwards or downwards according to the

nature of the disturbance in which the wave originates. In the former case, the value of s would

be greater, and in the latter less than that here determined, which may therefore be considered as

an approximation to the mean of the values of s for different waves, in which t>, v^ V and I should

be the same, but the original mode of disturbance, and therefore the form of the wave, different.

21. The following table exhibits numerical values of the velocity (F) with which the wave is

propagated, of the maximum velocity («,) of the attendant current, and of the space (s) through which

a block may be transported, for certain values of the original depth (i/) of the water, of the height

(Aj) of the wave, and of tlie velocity (Dj) of the current just sufficient to move the block. The
values of H and h^ are given in feet, those of V, t), and iij in miles, the velocities being estimated by

the number of miles described in an hour; s is given in terms of I the breadth of the wave. The
values of* are calculated from equation (9). The last column contains Sq calculated from (10).

H



Mh. HOPKINS, ON THE TRANSPORT OF ERRATIC BLOCKS. 237

SECTION III.

Application of' the preceding Theory.—Comparison of different Modes of Transport.

22. In estimating tlie magnitude of a block which may be moved by a given current, the

transport has been supposed to take place over a horizontal surface, sufficiently hard and even

for the block to roll upon it without impediment. If the surface be otherwise constituted,

the motion may be impeded or destroyed. The softness of a clayey surface would probably

be most unfavourable to the motion ; while the want of cohesion of a sandy bottom, from its

opposing a less effective resistance to a motion rather by sliding than rolling, might be highly

favourable to the transport of the block. In any case a constant action of denuding causes

will be highly favourable to it, by the successive removal of temporary and local impediments.

Abrupt inequalities, such for instance as those presented by ravines and steep escarpments,

would present insuperable impediments to this mode of transport. It is important however
to observe, that regular ascents, without rugged inequalities of surface, would offer no such

serious impediment.

The difficulty in this theory arising from the presumed inequalities of the surface over

which the blocks must have been transported, has been, I conceive, in many instances, far too

much insisted on; for it has been made to rest on the assumption that the inequalities of surface

between the present and original sites of erratic blocks were the same, or nearly so, at the

time of transport as at present; an assumption which I regard as totally untenable. There
are three obvious causes of inequality of surface—elevation and disruption, denudation during
gradual emergence from beneath the ocean, and erosion after emergence. So far as sudden, abrupt
inequalities can be traced to the first cause operating previously to the transport, the difficulty

alluded to must be admitted; but in many cases existing inequalities have been produced by
post-tertiary elevations, which we have no right to assume to have been entirely anterior to

the transport of erratic blocks. Again, such great inequalities as those presented by the oolitic

and chalk escarpments, have doubtless been due in a great measure to denudation, durinc the

period of gradual emergence of the land, the higher levels being raised above the sphere of

denuding action, while the lower levels remained exposed to it. Minor local irregularities of

surface are also due in a great degree to erosion. All superficial inequalities, therefore, which
are referrible to these causes, must have been posterior to the removal of erratic blocks trans-

ported by currents, and form no objection to that mode of transport. The only other causes

which can materially affect the configuration of the terrestrial surface, are the deposition of

new sedimentary beds, and denudation produced by ocean currents previously to any partial

emergence of the surface. But it is manifest that both these causes, instead of creating those

abrupt superficial inequalities, which alone would form a serious impediment to the transport we
are considering, must constantly tend to destroy them wherever they may exist from other causes.

For these reasons, I believe that there is no validity in the objection above stated to the theory

of transporting currents. Those greater superficial inequalities which now exist, and are obvi-

ously referrible to denuding agencies, could not, I repeat, be the consequences of superficial

denudation, while the whole surface was submerged beneath the ocean ; and minor abrupt inequa-

lities could not then have continued to exist, even if they had originally existed, for they would
have been destroyed by the action of transporting currents themselves, though no other cause

should have operated to produce that effect.

23. These currents, in addition to tlicir transport of larger blocks, must manifestly tend to

spread out the smaller detritus in a layer over the bottom of the ocean, supposed, for the reasons

above stated, to form an even surface*. As the bottom rises in the process of slow elevation.

In the iitniie for ioHtiiiice, in which ihc bottom of the (icnnan Ocean or English Channel in an even siirfaee.

H H 2
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it will become exposed to all the action of denuding agents, which however will, in many
instances, make less impression on those parts where the covering of detritus is thickest, or is

composed of the coarsest materials. Such parts will therefore, cceteris paribus, emerge first

from beneath the surface of the ocean ; and thus, in the first instance, will form islands, and

subsequently, when the whole shall have risen above the level of the sea, the summits of hills.

Such summits may consequently be expected to be capped with transported materials, of which

all traces may have been destroyed by denuding agents in the surrounding valleys. This pheno-

menon, of such frequent occurrence, is thus simply accounted for according to this theory.

24. It appears by the table above given, (Art. 21) that a wave of between 50 and 100 feet

in height, (in an ocean of the original depth there supposed), would be accompanied with a

current of which the velocity would be from 10 to 20 miles an hour ; and it is demonstrated

in the first section, that (under conditions which I conceive to be entirely admissible) currents

of that velocity would possess a motive power abundantly sufficient to move the largest blocks,

the transport of which it would be deemed necessary to refer to this cause. But I would

particularly direct the attention of the reader to the fact, as exhibited in the values of s, in

the table just referred to, that the space through which a block may be transported by a

single wave, is equal only to a small fraction of the breadth of the wave. Consequently, a

great number of waves might be necessary for the transport of blocks to distances to which

they frequently have been transported. It must also be recollected, that sudden or paroxismal

elevations only will produce waves of elevation of considerable transporting power. Hence it

follows that this theory of transport is essentially and necessarily associated with that theory

which regards the phenomena of elevation as the consequences of a series of paroxismal move-

ments, the movements by which, in my opinion, those phenomena can be most satisfactorily

accounted for. The instantaneous elevation of a determinate portion of the bottom of the sea

would produce a wave whose height would be equal to that of the elevation itself, so that

it may be asserted in general terms, that the theory of transport by elevation currents, in its

application to existing phenomena of transport, involves the hypothesis of a succession of paro-

xismal movements beneath the ocean, the height of many of which must have varied from 50 to

100 feet at least.

25. If we allow the efficiency of each of the three recognized means of transport of

erratic blocks—glaciers, floating ice, and currents—the difficulty which remains is that of sepa-

rating the effects produced by these causes respectively. In some cases it is probable that

doubt will always remain from insufficiency of evidence, but in others, I conceive, our conclu-

sions may involve but little uncertainty. The distinctive characters in the transported materials

must be sought in the magnitude and form of the blocks, the state of their surfaces, and the

distribution of the general mass of the transported materials. The magnitude of a block can

hardly be considered to increase the difficulty of its transport by ice, while it increases in a great

degree the difficulty of transport by water. Again, blocks cannot generally be rounded by

attrition when floated on icebergs or carried on the upper surface of a glacier. A small portion of

those brought down by glaciers are rounded by being rolled between the ice and sides or bottom

of the glacial valley ; but this is a rough grinding, and all the specimens I recollect to have

examined immediately at the termination of a glacier, wanted that more perfect smoothness of

surface which distinguishes a water-worn boulder. It might be contended that blocks floated

on icebergs might be rounded and polished before being taken up by the ice or after being

deposited by it. If such were the case, the effects must be produced either on beaches by the

action of breakers, or at the bottom of the sea by that of currents. The action of breakers,

on large blocks, however, as far as my observation has extended, rarely tends to give to them

a rounded form, but, on the contrary, to wear them into very irregular shapes, till they are

so reduced in magnitude as to be rolled about by the force of the waves ; the most prominent



Mb. HOPKINS, ON THE TRANSPORT OF ERRATIC BLOCKS. 239

points then become subject to the greatest attrition, and the surface afterwards assumes that

form and polish which distinguish a water-worn boulder. I do not recollect, however, to have

observed on any beach instances of this perfect rounding and polishing except in pebbles, much
too small to afford any explanation of the cases of many of the erratic blocks which have been

subjected to some similar and equally effective process of that kind. Moreover, should the

efficiency of this cause be allowed, it must be recollected that the sphere of its operation is

limited to the comparatively small area over which the waves break, for it is there alone that

they can exert any effective power. How then shall we thus account for the water-worn appear-

ance of innumerable blocks existing in the detritus spread out over a wide area, or in cases

where the transported materials exist in layers of great thickness .'' If it should be contended

that the water-worn appearance may be due to the other cause above alluded to—the action

of water remote from shallow coasts—it must be replied, that that force which is capable of

rolling a block is unquestionably sufficient to transport it, and therefore, that the solution does, in

fact, admit the existence of transporting currents.

There is also another important point to be remarked with respect to the transport by ice,

whether on land or by water—it affords no reason why the transported blocks should diminish

in size, and become more generally rounded and polished, the more distant they are from

their original localities. Such would necessarily be the consequences of transport by currents,

but it must be a matter of indifference whether a block has been floated on an iceberg or

carried by a glacier one mile or one hundred miles, so far as regards the form and dimensions

of the block when ultimately deposited by the ice which conveyed it. If the great majority of

the blocks transported from a given locality be rounded and polished, there is a strong presumption

that water has been the transporting agent ; if, moreover, the blocks do not exceed a weight

of a few tons, the probability of that mode of transport is increased ; and, finally, if we find

that the magnitude of the blocks generally diminishes as their distance from their original

site increases, till at length they degenerate into rounded pebbles, the previous probability

appears to me to approximate as nearly to certainty as we can reasonably expect.

On the other hand, when erratic blocks are extremely large, the presumption is in favour of

their having been transported by ice ; and if, moreover, they retain sharp angular points and

edges on their apparently unworn surfaces, and their magnitude bears no relation to the distance

of transport, we may confidently conclude that the transporting agent has been ice, assuming

always that the transport is attributable to one of the causes we have mentioned.

The main distinction between the cases of transport by glaciers and by floating ice, must be

sought for, I conceive, in the distance which the blocks have travelled, and the nature of the

surface over which the transport has taken place, and not in the character of the blocks them-

selves. If the motion of glaciers be due to gravity, as I have endeavoured to shew in a recent

memoir, it would be an absurdity to attribute to their agency the transport of the blocks dis-

seminated over the extensive flat plains of northern Germany and Russia. In such cases I

should not hesitate to refer the removal of large angular blocks to the agency of floating ice. On
the other hand, the transport of numerous blocks on the flanks of the Alpine chain can hardly

be referred to any agency but that of glaciers of greater extent than those now existing. In

other cases the transport may have been effected by a combination of these means. Blocks may
have been brought down by glaciers from the mountains, and then floated on icebergs to distant

localities. This process has been recently observed, on a magnificent scale, in a high northern

latitude, and appears to me the simplest mode of accounting, in certain cases, for the transport

of blocks now far above the level of the sea. If Switzerland were depressed iGOO or 17OO feet

below its present level, the enormous angular block of Pierre a hot above Ncuchatel would be

on the margin of an arm of the sea, occupying the present valley of Switzerland, while on the

opposite margin there would bo rocks bearing the strongest marks of glacial action. Under
this hypothesis, and without assuming any material change in the general configuration of the
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surface, there remains no difficulty in accounting for the transport of the prodigious block above

mentioned from the Alps to the Jura; a fact which on any other hypothesis hitherto made,

presents, in my opinion, mechanical difficulties totally insurmountable. The supposition of an

elevation of 1600 or 1700 feet since the period of transport offers, as I conceive, no a priori

difficulty, when we recollect the evidences of recent elevation in other places. With conclusive

evidence that Snowdon has been elevated 1200 or 1300 feet within a period which we have no

reason for supposing more remote than that of the transport of erratic blocks, there can be

little hesitation in admitting the elevation above supposed in the region of the Alps within the

same period, as an hypothesis as probable at least as any other which might be adopted.

W. HOPKINS.
Cahbridoe,

April 29, 1844.

^^^i&Jt'*'^^Lvr:
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XVIII. On the Foundation of Algebra, No. IV., on Triple Algebra. By Augustus

De Morgan, V.P.R.A.S., F.C.P.S., of Trinitij College; Professor of Mathe-

matics in University Colk'ge, London.

[Read, October 28, 1844.]

In the Philosophical Magazine for July 1844, Sir William Rowan Hamilton lias published the

first part of a paper read before the Royal Irish Academy in November 1843, headed 'On Qua-

ternions, or on a new System of Imaginaries in Algebra.' To this paper I am indebted for the idea

of inventing a distinct system of unit-symbols, and investigating or assigning relations which define

their mode of action on each other. The systems which i shall examine differ entirely from that of

Sir William Hamilton, both as being triple instead of quadruple, and as preserving, in their laws

of operation, a greater resemblance to those of ordinary Algebra.

§ 1. Description of triple systems. A system of Algebra of the n"' character is one in

which there are n distinct symbols, ^|, ^o, ... ^„, each of which is a unit of its l<ind, of a difference

from all other i<inds such that "ifi + cf,^2+ ... cannot be equivalent to 6,^, + 62^2+ ... unless

a, = 6,, Oa = 62, &c. This condition however is connected with the interpretation: a perfect sym-
bolical system might very well exist without it. Having assumed a system, and also the ordinary

laws of addition and subtraction, the introduction of the operation of multiplication requires that

meanings should be assigned to ^1^2, ^1^3, &c., so that each of them may be regarded as coincident

with such a form as a,^, + a.,^,, + On the manner of assigning this form the properties of the

system entirely depend ; and if we are to preserve the ordinary rule of the convertibility of multipli-

cations and divisions, we must not only provide that ^, f^ = f^f,. Sic, but also that ^,'^2^? ... shall

give the same result in whatever order the operations are performed. This role relative to mul-
tiplication may be reduced to two simple rules, AB = BA, and A{BC) = {AB)C. It is exactly

the same thing as to additions, the convertibility of which is contained in the rules A + B = B + A
and {A + B) + C = A Jr (B + C). This second rule is generally concealed in the common rule

of signs, according to which A + {B + O or A + [0 + B + C) is, by the assumed distributive

character of the sign +, allowed to be transformed into ^ -t- (+ S) + (+ C) which again by the

rule of like signs, becomes A + B + C, a symbol identical in meaning with (A + B) + C- We
might also use the signs x and — in the same absolute manner, and assume a corresponding dis-

tributive character, and rule of like and unlike signs: considering x a and -H a as abbreviations of

I X a. and 1 -f- a. But it will be enough for my present purpose to note that the complete conver-

tibility of multiplications will be secured if every triple combination, as ^ifj^si ^??v!! ^^- ^^^ 'i

meaning which is independent of the order of the operations.

Having settled the system, it must next be inquired, for the sake of the interpretation, what is

the modulus of multiplication, namely, what function of a,, a^, &c. is it which, in the product,

has the same value as the product of the functions of the factors. If, agreeably to the laws of

tlie system, the product of a,^, -1- a,lc,s+ •• and ft',^, + n'.>'^.,+ ... be ^,5, + y/af. + ..., A^, A.., &c.

being definite functions of a,, o',, a.^, a\, Sic, the modulus is to be found frym the solution of

the functional equation

</»(«,. ",...) X (•/) (a',, a',, ...) = (p(/l,. A,,...),

Vol. VIII. I'aut III. I i
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on which it is only to be observed that any powers, or products, or products of powers, of solutions,

are themselves solutions. The most convenient modulus is that which, in one or more definite

cases, reduces the system to the simple single or double Algebra already in use. In this common
Algebra, in its widest form, there are two unit-symbols, say ^ and ri, usually (not necessarily)

representing units of length taken off on the rectangular axes of w and y ; and the laws of com-

bination are p = ^, rf = -
f, ^»j = »j^ = ri, which give '^rf = - f = (?»;)»;, &c. The modulus of

multiplication of af + hn is \/{a? + b-). Sir William Hamilton seems to have passed over

triple Algebra altogether on the supposition that the modulus, if any, of a^ + btj +c^ must be

^/(a' + 6^ + c'). It is certain* that there cannot be a system of triple Algebra with such a

modulus ; but it is by no means requisite that the modulus should be a symmetrical function of

a, b, and c. I should also notice that in Sir W. Hamilton's quadruple Algebra there is a complete

departure from the ordinary symbolical rules : AB and BA have different meanings.

§ 2. One mode of derivation of systems of triple Algebra. Let a^, bij, e^, represent lines of

o, 6, and c units measured on the axes of x, y and s. Let it be a condition that 6=0, c = 0,

reduces the Algebra to the common single system ; which might be worded thus : let the Algebra

of the axis of x be the common single Algebra of positive and negative quantities. Also let ri and T
be interchangeable, and related in the same manner to ^. We have then, for the forms which

define the actions of the unit-symbols on each other,

p means p ij^ means p^ -Y q>i + qX,i

rf o^ + 6>; + c^, X,i, l^ + mri + nX^^

^' o^ + cij + 6^. fv l^ + n>i + m^;

audit will be found upon examination that the equations p») = ^(^>;)> ^1' = li^l)^ '''^ = '?(''D'

vV = Ult)^ r? = UW' ?f = HW' UlO = l(tO = t(U), ^vill be .satisfied by the following

conditions ; in using which care must be taken not to form new ones by introduction of subse-

quently vanishing factors without recurring to the original forms. Some of these conditions are

included in the others, but it is nevertheless desirable to be reminded of them.

(1.) a(q - c) + p{q - 6) = /(« - p)- (4.) l(m + n) = 0.

(2.) l" + mp + na = a + (h + c)l. (5.) 2mn = m.

(3.) f + ma + np = p + 2ql. (6.) jn^ + n^ = «.

(7,8.) In = (q - b)m = (c - q)m. (11.) {q + c) (q - c) = am - pn.

(P, 10.) Im = (f/ - c)iH = (6 - q)m. (12.) (<7 + c) (q - b) = an - piii.

From (5.) and (6.) we have either

2' "-4' '" = -i' »* = i-

Proceeding by analogy, we might expect the triple Algebra which is the proper extension of

the common double one to give »/ = - ^, 'C
~ ~ ^^ ^^^ necessary conditions of which are

(13.) a I -i- ab + cp = - 1. (M.) aw + ft- + cq = 0. (15.) am + be + cq = 0.

• Any one who will try to get three squares in which accented

and unaccented letters enter symmetrically, and of which the sura

is equal to the product of a^+b^ + c^ and a'- + 6'^ + c'^ is engnged,

whether he know it or not, upon the following problem ;—To tind

three points of a sphere, each of which is opposite to both of the

other two; also three otlier points each distant by a quadrant from

each of the first three.
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(A,) m = 0, n =0, q = c = h,

a = p,

P = a + 2hl.

But at the same time it is desirable to examine the case of tf = - ^, t" = — ^i the conditions

of which are a = -\, 6 = 0, c = 0. These two systems may be called the simple cubic and
quadratic systems, both being triple. I now proceed to a mere enumeration of cases to be pre-

sently discussed.

Case A. Let m = 0, n = 0; which gives either of the following

(J,) m = 0, n = 0, q = - c,

— Sac - p(c + b) = l(a - p),

P = a + {b +c)l,

P= p - 2cl.

Neither gives a simple quadratic form, unless P = - 1, which is inadmissible.

Simple cubic forms are only such as are contained in

b = c = - q, m = 0, re = 0,

al + b{a + 2)) = - 1, 2h(a + p) = - l{a - p),

P = a + 2bt = p - 2bl,

which give p = a=I, /=— 1, 6 = 0.

Case B. Let m = 0, n = \. We have then

ri' = {q + c){q-b)l + br, + cl, 11= ^,

l-
=

{(l + c)(q-b)l + cri + bl. ^,, = „.

This is the case, and the only one, in which the action of ^ upon both of the others is imper-
ceptible. The following cases will be considered, the first of which is a species of simple quadratic

form, the second a simple cubic, the only one which the case yields.

p=?,
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§ 3. Simple and perfect cubic form. I now proceed to consider the simple cubic form in

case B. The equations of signification* are (dropping the distinctive symbol ^, which is in-

operative),

And the product of a + bt) + c^ and a'+ b'tj + c'^ is

be + cb' + aa + (ab' + ba -cc) rj + (an + ca - bb') ^.

If the equations of signification be also consistently algebraical, and if >; = ^ and ^ = >" satisfy

them, then a +bij. + cv is a modulus of multiplication. Accordingly in the present instance, it

is sufficient that fx and v should be severally equal to — 1, or else that they should be the

imaginary cube roots of - 1. Let them be the latter : then a — b — c, a + /mb + vc, a + vb + /xc,

are moduli, and since any product of roots of moduli is a modulus, we have, taking such roots

as are required by the condition that the Algebra is to become single if b and c always vanish,

the following possible moduli,

a — b — c,

y/ {a' + b^ + (f + ab + a c - be),

x/{a^- h'-c'-Sabe).

These expressions are connected with the third degree in the same manner as a^+ 6- with the second.

Changing the signs of 6 and c &c., their modular character gives the following equations. Let

A = be + cb' + aa\ B = ab'+ba + cc, C = ac'+ ca'+ bb'.

Then (a + 6 + o-) (a'+ b' + c') = A + B + C

{a^+b'+c^- ab -bc-ca) (a'' + b'^+c'^'-db' - b'c'-c'a) = A'+ B- + - AB - BC - CA

{a?+W + c^-3abc) {d^ + 6'' +c'^-S a'b'c) = A^ + B" + C - 3 ABC.

These might, I think, be made of the same sort of use in the theory of numbers with the equation

(a'+ 6') (f''"'+ 6'") = {ad - bb'y+ {ah' + ba')-, which is the modular equation of the common Algebra.

Thus of either of the forms d'+ 6^+ c'— ab - be - ca and a'+ 6^+ r*- Sabe we may say that the

product of two instances must be a third instance.

It appears that this cubic form of triple algebra may involve three cases, according to

the modulus which we employ. Now we know that in common Algebra, a + b^y - 1 is made to

depend upon a length and an angle, in such a manner that the length is represented by the modulus,

and the product of two expi'essions has the product of the lengths for a length, and the sum of

the angles for an angle. Suppose that we make a + ?)>; + c^ to depend upon the modulus and

two angles, each having the same property as the angle of the former case : it is required to

express a + 6»j + c^ by [I, 6, (p\ in such manner that the following equation may be identically true,

[/, e, <p] . [/', &, <p'] = [W, e + e',^ + cp'].

Without as yet specifying which modulus we are to take, we must examine into the conditions

of a species of triple trigonometry, in which two angles form the base of every expression.

Looking at the form of the product of a + br/ + c^ and a'+ 6't; + e'^, it is obvious that the

problem is solved if we can assign

A -- B -'' C --

• In this sense it ought to be remembered that they more resemble — x — = + than ab = c.
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in such manner as to satisfy

Be^^.^^.= B,^A^,+ B^^A,^ - C,^C^, {M).

Here Ag^ is a species of cosine of {Q, <p), and Bg^ and C,^ are two different species of sines.

The second sides of (i/) must admit the interchange of and fi, and also of d) and v- That tiiis

and all other conditions of self-consistence are satisfied, will appear as follows. We have

"8.1. — -^s.o-^o.v + "0.1.-^9,0 ~ C^9,0^0,>''

Again, Ag^.i^j,^y = "$+^^0^0.4,+^ + "o,i(.+v^9+n,o + -"9+/i,o-"o.if+i.

= ("s.O -"m,0 + B^oAgj, — Cg„Ci^„) (Co.cf^O.i' + t,0,.'-"0.(, " "e.^^Hv)

+ (°«,o^n,o+ "iJ.,oCe,a + -^e,o-"M,o) ("o,4>Co,.' + "o,vCo^+ A„^A„^^).

Develope these products, and the results will be seen to be identical with

+ (Bii„A„, + B„^Ai,a - C^.oCo,..) (^9,0-^0,0 + C„j,Ag„ - Bg„B„^)

+ (-"9,0 ^0.* + "0,4.^9,0 + -"9.0-"0,*) (^(i.C^O,!- + "o.v^ll.O + -"f.,0-^0,v)'

which is •Sfl^.C'^.. + B^^Cg^ + Ag^A^^.

The other equations may be treated in the same way.

I am able to find the solutions of all three varieties of this system by means of that in

which the modulus is v'C"'^ + b' + c^ + ab + ac — be) ; in which case the equation answering to

sin^ 9 + cos' = 1 in common trigonometry is

^6,41 "f" "0,4> "* ^e,4t + -"8,4i-"8,0 + Ag^Cg^ — Jigj^Cg^ = 1.

We have

/ b + c\^ /b — n\'
a' + b^ + c^ + ab + ac - be = la+

J
+ 3 I ^1 .

Assume Ag^ + L(Bg^+ Cg^) = cose, a(^8,<,-C9*) = -y-.

Then we must have equations of the following form

Ag^ = COS0+ Lg^,

B =?^-/
'* a/3

•*'

C ^ ""^
/



246 Mr. DE morgan, ON TRIPLE ALGEBRA.

Substitute these values in the first of equations (M), and we have

ifl+^.^+v = SL^^L^,, + cos e L^^ + cos ,i Lg^ + i sin sin ^.

Assume Lg^ = ^(Pg^- cos9) which gives Pe+^,j,+v "^ Pe,iP^,^ the only solution of which

is /> =£''»+P*, giving

-"e* - -jj-cos w + -gf ,

Bei, = ^cos0 + -^sin0-le'''+^*,

C,^ = icos9---^sin0-le-''^^*.

This gives Jg^ - B,^ - C«^ = e""-^^*,

-"e.^) "e,* "^e,* ''''9,,()-"8.*'-9,* ~ *

We can now get solutions on the supposition that the other moduli are used. If we take

I = a — b — c, we have

/cos 9

«->-(T- 51)
•-'••*"'-*•

_ ^c^ sjn0\ „,,^^,

But if we use /^(n' — 6' — c' — 3o6c), we have

Jg^ = f cos . e-^<-'-^^« + leSM+P*),

We must remember that, of any two solutions of {M), either must be the other multiplied by a

solution of Pg^^^^^ = Pg^ P^^; and any solution of {M) multiplied by one of the last is also a

solution of (M). And the form of the solutions might be generalized, but in appearance only,

by writing cos (a'6 + l3'(p) and sin (a 6 + /3'0) for cos 9 and sin 0. But by the same consideration

it appears that the system is not less complete if we write <p for a9 + fi(p- Adopting this simplifi-

cation, the equations of connexion between a &c. and I &c., are at full length as follows :

I = y/' (a^+ b^+c^+ ah + ac - be),

o = i {|cos0 + le*}, a + \{h + c) = I co%e,

1 /s
b = l |icos0 +—^sin0-le*|, ^ (6 - c) = /sin 0,

c = l jicose ^sin0- ^e*}, a - (b + c) = le*.

From these premises it follows that the product of a + 6ij + cT and a'+ b'tj + c'^, or of \l, 9, ^]
and [I', ff, 0'] is \Jl', 9 + 9', <p + <p']. And it is certain that this is the only simple cubic system,

except that noted under case A, which as will afterwards be seen, is deceptive : also that this is the
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only case of that system in which 1 = y/ {a- + kc), the equations (M) admitting no other solution

with that modulus.

We now come to the question of geometrical interpretation, the most difficult part of the question

in one sense, the easiest in another. Every system of Algebra admits of an infinite number of

geometrical interpretations. Take the common one, and instead of supposing ,r + y ^- 1 to stand

for a line r =^ (x^+ y^) inclined to the axis of x at an angle Q = tan "'(y : x), let it stand for

any line r, inclined at an angle Q^, where r, and d^ are unambiguous functions of r and 9.

Then the sign + in [r,, 0,] + [/i, Q'l] must be defined in such a way that the preceding symbol
may stand for the line determined by r = ^y \{x + x''f+ {y + y')-\ and tan 6 = {y + y) : {x + ,i') ;

and similarly with the other signs. There is no question about the superior convenience and
primary character of the usual interpretation : but others are not therefore absolutely excluded.

Analogy would lead us to infer that a, 6, c should represent lines on the axes of ai, y, z

;

and even if we took them to represent areas on the planes of yz, zx, and xy, we should be

able to determine an area on the plane of yz (its form not being in question) by a line on the

axis of X. Again, the same analogy would lead us to take I for the absolute length of a + bri + ci":

but all that is necessary is that (, 6, and (p should be sufficient determinants of that length. For
instance, we may say, let a + brj + c^ represent a length r = -v/(a^+ b^ + (?) inclined to the axes at

angles having cosines X, /x, v, proportional to a, b, c : but then we give up the convenient property

of the modulus of multiplication, and must form (R, A, M, N) the product of (/•, }., m, v) and
(r'j X', fi, v) from the conditions

.B cos A = rr' (/ii/'+ i'^' + XX'),

B cosM = rr' (\iu'+ \'/jL - vv'),
,

B cos Is = rr' (Xv + X'l/ - fifx'),

so that B must depend on the angles of the factors as well as on their lengths. The systems

I have given are the only ones in which the moduli represent the absolute magnitude of the

symbols.

I am not able to present any striking geometrical interpretation. The symbols of the triple

trigonometry on which it must be founded are mixed functions of circular and hyperbolic sines and

cosines. If we take the equilateral hyperbola x'- y^= l, and let x and y be called the hyperbolic

sine and cosine of (p, the double of the sectorial area included between the axis o{ x, the radius vector,

and the curve (for analogy, the angle must be re|)laced by the double of the area of a circular

sector of radius unity), we have e* = COS (p + SIN cp, using capital letters for distinction. We
might very easily invent interpretations : but I see none which I think worth presenting. The
transformation

cos 9 1 . „±^ sm = f cos (60" =F 9)

will of course not be forgotten by any one who makes an attempt. This entrance of both species

of sines and cosines is, both in this and other cases, the consequence of the determination to have
what may be called a doubly logarithmic system, or one in which both angles, or magnitudes

corresponding to them, have their sums in the product.

We may, if we like, consider the system as one in which there is a double modulus of mul-
tiplication ; let l.e* = m, and we have

I - '\/(a'' + b' + c' + ab + ac — be), tit = a - h - c,

a = § / cos 9 + ^m, a + i (/* + e) = / cos <?,

6 = f / cos (fiO" -9) - J m, ^s/3.(h- t) = I sine.

p = §/cos(6W+ 9)-^m.

The product of [/, m, 9) and [(', m', ff] is now [I/', mm', 9 + 0'\.
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The three axes on which a, 6, c, are laid down, ought not to be rectangular axes, but those

of y and «• should be each inclined at 60" to the axis of w, so that units laid down on them may
be cube roots of - 1. The planes of acy and xz being at right angles, and A being the diagonal

of the parallelepiped on a, b, c, we have /- = A^ - f 6c.

Should a simple interpretation be obtained, the ancient difficulty of the imaginary quantity will

immediately occur; for -y/m must take the place of m in -\/[/, m, O], and m may be negative.

This system therefore will never be completely explained until it is interpreted on the supposition

that a, b, &c. have the forms a + a ^— 1, 6 +6,-\/- 1, and also Q, I, kc. By analogy we

might have expected this, in the following manner. As soon as pure arithmetic is converted into

single Algebra by the extended definitions of + and — , and the new symbol \/- 1 occurs, it occurs

in conjunction with both the forms + 1 and — 1 ; and at tlie same time the vehicle of explanation

takes two dimensions. If new distinct symbols be added, such as will require space of three

dimensions, it is therefore natural to suppose that each of those new symbols will combine with the

complete system of the double Algebra. By this, since a + «,-y/- I may mean any line in the

plane of ivy, it is reasonable to suppose that two new symbols will be required, to express removal

into the planes of yz and «x, and that

(o + o-v/- 1) + (6 + 6 \/- 1)>; + (c + c,v^- 1)^,

will signify some line in space, determined by three lines in the three co-ordinates planes.

& 4. Redundant biquadratic form. The last remark suggests an examination of the method

by which systems have hitherto proceeded, with a view to ascertain whether the hints which analogy

might give are exhausted. If we look at the series +1, — 1, \/— 1, we see that one new

unit-symbol is introduced at each step, represented by a square root of the preceding. What then is

the system in which one more unit-symbol is introduced, whose action resembles that of ^y— 1,

the combination with preceding symbols being of the complete character just described.

Let the fundamental symbol be

{a, p, b, q] --= a + J) ^y - \ + (b + q y/ - 1)^,

where "Q means y/ - \- Accordingly, the product of [o, j), 6, </] and [a', -p , b', 5'] is [_A, P, B, Q]
where

J = aa' — pp - bq — b' q, B = ah' + a' b — pq' — p'q,

P = ap' + a'p + bb' - qq, Q = aq' + a q + bp + pb'

.

The modulus of multiplication is found to be

Now it is evident that, a line in space being determined by three data, we have here one to spare,.

since a, 6, p and g must all be given before the fundamental symbol is completely determined. It

Would be in our power for instance, to consider the symbol as meaning a line of given length drawn

from the origin in a given direction at a given time ; or as determining a point which has a given

position at a given instant. Let a + p ^y - i represent in the usual manner a line in the plane

of wy, and let "t represent a unit somewhere in the plane of xz ; we may easily see that it must

be at 45" to the positive axis of x, if the rule of angles in multiplication is to be preserved. To
satisfy this last condition, let [a, p, b, g] represent a length I making an angle with the axis of 1

determined bv

b - q . n b + q
lcosd = a + —-pr- , Ismd = p + ——
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Let ^ signify revolution through 45" in the plane of xz, so that if a+p^l = re°^~',

b + g \/— I = se^^'^, we have (b + q \/- 1)^ signifying a line s at an angle /3 + jtt in the

plane of xz. Moreover we have

/cos0 = rcos a + scos (/3 + ^tt), ^sin = r sin a + s sin (/3 + jtt),

so that the way to find I and 9 geometrically is as follows. In any plane, say that of {vy,

set off }• and s at angles a and /3 + ^tt: the diagonal of the parallelogram on these lines represents

the length I inclined at the angle 6 to the positive axis of x. In various systems I find that

when I sin 6 has the form M ± N, one of the simplest interpretations consists in making N = M tan w,

where w is the angle which the plane of the line and the axis of ,v makes with the positive side of

the plane of xy. In the present instance, this will give

b + q b — q I sin 6 / sin tan to b + q
tan (0 = ;- , Icosd = a + —j— , = p, = —— .

P\/2 y/2 l+tanoj 1 + tan to ^2
Here p, b, q can be found so as to give [I, 6, oi] for any given value of a. The system is now

complete, all the rules of Algebra are true of it, and it only remains to give the results their

easiest geometrical form. The most natural mode of proceeding is to examine the mode of escaping

redundancy, which consists in assigning one relation between a, b, p, and q. The case o{ b = q will

appear exceedingly remarkable, when viewed in connexion with the imperfect system which I shall

describe in the next section.

According to our conventions, a+p-^- 1+6(1 + \/-l)t^ represents a line of the length

/ = ^ ^a^+ (j9 + 6/y/2)-} inclined at an angle having a : / and (p + by/z) : I for its cosine and

sine, with a projection on the plane of yss which makes the angle tan"'|6.Y/2 : p\ with the positive

axis of y. But the relation B = Q does not obtain in the product ; and if we bring it about by a

proper use of our redundant letters, so as to represent the product [Z,, 9, Q] under the form

V + W^-l + X (\ + '^- \)'(^, we shall find that we have sacrificed the equation A(BC)
= (AB)C, which is no longer a formula of the Algebra. Owing to the redundant letter, two lines

may be identical in position, but must not therefore be considered as identical. Now the introduc-

tion of an equation of condition between a, 6, p, q, and the alteration of the product in such a

manner as to satisfy this same condition, is, in point of fact, the substitution for the product of a

line equivalent in position only.

I shall resume this subject in the next section: but in the first place, observe that the modulus
admits of resolution into the square root of the sum of two other squares, namely

Take another angle k such that

p + a p - a
/ cos K = b + —y— , Ism K = q + —;—

.

-v/2 ^/2

This angle k is not a new directing angle, being in fact O-^ir; and ^'^ is - ^- 1.

The modes of interpretation will be better seen, so far as they are easily practicable, in the next

section.

§ .5. Imperfect form, derived from, the preceding. The first system of triple Algebra which I

obtained was that in which P = a + b>i + cT, where iC, rf, and tj^ severally re])rcsent - I. I did not

at first see that though tiiis will give PJ^=P'P, it will not give P'(PP) = (P"1^) P, except in

particular cases ; though it should have been obvious that »}^^, for instance, is not the same thing

OS i'l^)l- Now this is precisely the case of the redundant system already noticed, in which b = q.

If we multiply together a + p ^- 1 -i- h{l + y/ - 1)^ and a + p'^/ - \ + b\l + y/ - \)'^,

Vol.. VIII. Paut III. Kk
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under the condition that ^^ means -y/- !> and if we then reduce the result to a line of the

same value of I, 6, w, in which also b = q, we have

aa - pp' -2bb' - (pb' +p'b)\/2 + (ap' + ap)\/- 1 + (ab' + a'b) (1 + \/- 1)^.

Now for b ^2 write b, and let (1 + y/- 1)^ "^ \/~ be an independent unit symbol (it will be

found by our conventions to be a unit on the axis of sr), and for it write T; also for •%/— !> a

unit on the axis of y, write »j. Then it appears that the product of a + br] + ci^ (write c for p
and then interchange it with b in the preceding), and a + b't] + c'^ is

aa - (6 + c) (6' + c') + (ab' + ba')n + (ac + ca')^,

which is here produced, and can only be produced, from rf= —I, ^^= - 1, >;^= - 1.

I shall give the interpretation of this synthetically, and with some minuteness, since the leading

features of it belong to most of the other imperfect quadratic systems which I have tried.

Let every line drawn through the origin be considered as having for its plane that plane which

also passes through the axis of «; and let the line in which that plane cuts the plane of yz

be called the imaginary axis of that plane and of all lines in it (except the axis of ,t? itself).

Let a line (sr = - y) which bisects the second and fourth right angles in the plane of yz be called

the neutral axis, and one perpendicular to it, which therefore bisects the first and third right angles,

the primary axis. Let every imaginary axis have for its sign the sign of the parts of y and z

which lie on the same side of the neutral axis as itself: and let angles be measured positively

in every plane by revolution from the positive axis of x towards the positive imaginary axis.

Let o + 6»j + c^ represent a line of the length Z = .^|a^+ (6 + c)^| in a plane whose imaginary

axis make with the positive axis of y the angle =tan~'(c : b) having for projections on the real

axis (the axis of x), and its own imaginary axis severally a and b+c; or making with the

axis of X an angle 6 whose sine is 6 + c : I and whose cosine is a : I.

For addition, subtraction, multiplication and division, of two lines, make them both revolve

round the axis of x into, say the plane of wy, taking care to bring the positive part of each

imaginary axis into contact with the positive part of y. Then add, subtract, multiply and divide

as in common double Algebra, and find the plane into which the results are to be finally

transferred by the following rules.

In addition, set off on the primary axis lines equal to the projections of the given lines on their

imaginary axes ; or transfer the imaginary projections by revolution to their proper sides of the

primary axis. From the extremities of the lines so drawn, draw lines perpendicular to the

primary axis, meeting the imaginary axes of ihe two lines, so as to cut off two hypothenuses.

On these hypothenuses describe a parallelogram ; its diagonal from the origin is in the imaginary

axis of the sum. And similarly for the subtraction, or the addition of the equal and opposite line.

In multiplication, first lay down on the primary axis lines proportional to the tangents of

the angles which the factors make with the axis of x, and then proceed (exactly as in addition)

to determine the imaginary axis of the product from the diagonal of the hypothenuses. And

similarly for division.

In every plane, as long as lines are taken in that plane only, there is one complete system

of double Algebra, admitting every rule of ordinary Algebra to its full extent. When lines

from another plane are introduced, we lose the equation A(BC) = {AB)C, unless A and B be

in one plane.

The theory of powers and roots is absolutely identical with that of common double Algebra for

every line which is not on the axis of x, the plane of each line being the locus of all its powers.

And + 1 has only two square roots, as usual ; but — 1 has an infinite number of square roots, every

imao-inary axis of a unit in length being one of them. Also both + 1 and - 1 have an infinite

number of third, fourth, &c. roots, one set of three, four, he, in every plane.
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For a + bri + ci^, or [I, 6, lo], we may write

I sin 9 I sin 9 . tan t» ^
/ cos H ri H . r,

1 + tan (o 1 + tan w ^

and if a/„ — 1 denote the square root of — 1 which is at an angle w to the axis of y, we have

, 1 tan u) y . V /
^

1 + tan te) 1 + tan w a v j^

Call these last -v/- 1 and -^j — 1 ; we have then

r . ^ T w ^ • /I / ^ ,( n s'" ^ y sin tan w , \
[/, 0, col = /(COS0 + S\\\9 W^- 1) =nCOS0 + .a/- 1 + -i/, - 1 .

'- -" ^
^

V 1 + tan (o ^ 1 + tan (o
*^

/

The product of any Ufo positive square roots of - 1 is — I, and the product of a positive

and negative square root is + 1.

The Algebra of the neutral plane, which passes through the neutral axis and the axis of cc is of

a very peculiar character. In the first place, neither side of the neutral axis is necessarily positive

or negative by our conventions, and the signs of this axis must be determined (like that of

tangTr) by the manner in which we come upon it. But this is not the chief peculiarity. If

we call the point whose co-ordinates are a, b, c, the subsidiary point of L or [/, 9, w], the

point and its subsidiary point are always in the same plane : but if the subsidiary point be on

the neutral plane (6 + c = 0), the angle is or tf, and L is on the axis of x. But if on the

other hand L be on the neutral plane, but not on the axis of a, then 6 and c are infinite (with

contrary signs): and in this case, whatever line A may be, L^J, A Js L, A x. L, A-r-L, L-i-A,

are all on the neuti'al plane.

Hence 'a unit, situated on the positive side of the axis of «', is not a complete description of

any line : for under that description comes every case of 1 + m (»; — ^) in which m is finite.

The fundamental unit 1 or l + 0); + 0^is the line which requires that the preceding should be

augmented by ' having its subsidiary point at its extremity.' It is true that no alteration could,

in any case, be produced in I or 9, by substituting one case of 1 + m (rj — ^) for another ; but

the effect would be seen in the value of w. The rules of addition and multiplication, as above

given, fail when one of the lines is of the form a + t7iri — m^; we must replace them by others

drawn from the use of the projections themselves.

I look upon the preceding system, as the one which has most general resemblance to the

common system, from which I derived it, before I considered the subject generally.

It is demonstrably impossible that any system can give the convertibility of three factors, in

which aline of a unit in length is represented by cos + sin . P^, where P„P„. = — 1. Calling

this A, it will be found that A"A'A and A'A"A are not identical unless sin 9 . sin Q'. sin 9"
. P„

= sin . sin ff. sin 9". P„-, which, to be universal, requires P„. = P^..

^ 6. Second imjierfect system deduced from the redundant system. It is natural to examine

that particular mode of getting rid of redundancy, which consists in reducing the modulus of

multiplication to the form \/(a^ + J)' + b'^ + ef). This is obviously

a(b - g) + p(b + f/) = 0, or b(p + a) + q{p - a) = 0.

Now if we examine the corresponding function in the product, we find*

A(B-Q)+{B+Q)
= {(lib - ri) +;>(/;+ f/)

\ \ a'- + b'- + p- + (/'
\ + {a {!>' -(]') + p (/>' + r/')

\ \ a- + h^ + p' +<?'},

• Mo«t caxily Keen thus : since

i* tdentical with the product of the corresponding t'unctiuns of
o, i, &c. and a', 6', ice, the parts afleclcd with v'- arc identical;

whence follows tlic equation in the text, and also

.
+2{a(4-(7) + p(4 + v)|la'(4'-7')l + ip'{4' + 7)l.

K K 2
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So that if this condition be true of the factors, it is true of the product. Now if as before,

a + P\/- 1 = re"'*'"', b + p s/- 1 = Se^*^"', we have, for the expression of the condition,

tan (/3 - a) = 1. This gives either

/3 + \ir = a + \ir, I cos 9 = r cos a — s sin a, I smQ = r sin a + s cos a,

or /3+^7r = a + ^7r, I cos Q = r cos a + s sin a, ^ sin 9 = r sin a - s cos a.

The first will be the most convenient.

But though this condition may be satisfied for the product, when it is so for the factors, the same

is not true of tlie components and the sum, unless a : a :: p : p' . This system then would be

perfect for multiplication, division, and all its consequences, as the former one is for addition and

subtraction.

If we endeavour to find the system in which the sum of two lines is the diagonal of the

parallelogram formed on them as they stand, at angles a and /3 + ^tt to the axis of x in the two

planes; we find the condition to be p{h + q) = 0. Now b - - q satisfies this for additions, and

jo = and b = - q for both additions and multiplications : but an examination of this last case

will shew that it gives nothing more than the common double Algebra ; no line lying out of

the plane of wy.

If there can be a perfect non-redundant system formed out of the redundant system, there must

be some function f(a, b, p, q) such that f{A, B, P, Q) and /(a + a, b + b', p + p', q + q) both

vanish when f(a, b, p, q) and /(«', b', p, q) both vanish. The second condition cannot be satis-

fied unless / (a, b, p, q) be of the first degree with respect to the letters specified, in which case

the first condition cannot be satisfied.

& 7- Imperfect system, independent of all that precede. Let the laws of combination of

the symbols, ^, >;, ^, in the expression a^ + bt] + c^, be

The product of of + bij + c^ and a'^ + b'ri + c'^ is

\aa' - (6 +c) (i' + c')}f + {ac +ca'| tj + \ab' + ba']^.

In this system, the properties of the neutral and primary axes, the conventions of sign connected

with them, the modulus of multiplication, the rule of addition and subtraction, and the meaning

of the angles 6 and w, are precisely as in the system described in j 5. But the product of

two lines in this system differs from that in the preceding one as follows ; the angle made by

its imaginary axis with the axis of y is the complement of that made in 5 5. Or, signifying

by (p the angle made by [/, 0, <p] or a^ + btj + c^ with the primary awis, then if [;, 9, A] and

[I', 9', ^'] have the product \_L, 9, <1>] in § 5, their product is [L, 9, - 0] in the present system.

Let two imaginary axes be called opposite which are equally inclined to the primary axis on

opposite sides of it, and let the planes passing through them and the axis of x be called opposite

planes. Then A"" is in the plane opposite to that of A""; A*, A'"', A", &c. are in the plane of

A; A'', A", A^^, &c. are in the opposite plane. Generally speaking .4^" + ' is in a new plane for

every new value of to. But the character of the square roots of — f resembles that in & 5, and we

have

[l, 9, ^] = /{cos0.f + sin0v'*-^l

lcos9 -t + I sin9. ^ . » + Ism 9 ^ C-
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The imperfection of this system, as in the former case, consists in the want of the equation

A{BC) = iJB)C.

There is a remarkable new consideration, which presents itself in tliese systems of inverted

multiplication, as we might call them. When ^ is an inoperative symbol, that is, when ^tj means

7} and ^^ means ^, the abstract number of common arithmetic, m, may be represented by a line

^ + Otj + 0^. But, in the case before us, the multiplier tn and the multiplier m^ are very distinct

things. The former has only the effect of multiplying the length by m, without altering angles.

But there is still a line which has the effect of the abstract multiplier »», upon a^ + btj + c^:

it is

,, c — b b — c ^my + m n + m T.
a a *

The product of these two lines is m a^ + mbr] + met- Now the second line represents a line of

the length m, on the axis of a: ; not having its subsidiary point at its extremity, but at a finite

distance on the neutral plane. And thus it appears that every such lino of the form ^ + 1^ t]
- pX.

plays the part of the abstract multiplier I to every line of the form n^ + &>; + (?< + (ip)X,-

^ 8. On looking back to ^2, we see under case A, a perfect cubic form with the equations

of signification

r=6 'i'=i K'-b r,x,-i, r? = -e. e'? = -e-

Accordingly every product is of the form m^, or according to our usual interpretation, must
be laid down on the axis of w. Look at the quadratic and cubic cases that come under C and D,
and it will be equally apparent that all products take the form wf -r w(»? + D °'' "'^ + "(i? - X,)i

according to the system : consequently all products come into one plane. It would be easy enough

to make any number of triple systems, under such a condition.

The perfect quadratic system under B may be readily developed. Its modulus of multiplica-

tion is ^y {(V' + (b - cY \ which will require that, in an explanation resembling that of | 5, the

neutral and primary axes should change places. The line m(»7 + ^) is one of no length in such a

system, and if w(>/ + ^) be added to a^ + bri + cY, nothing is changed except the position of

the imaginary axis. Let all the explanations be as in fi 5, after interchanging the neutral and

primary axis : then the system before us is complete when we add to the explanations in S .5,

thus altered, the condition that the product of a^ + 6»j + c^ and a'^ + b't] + c'^ is to have the

addition (bb' + cc) {rj + ^), giving a certain alteration in its imaginary plane.

I should have liked to have delayed the present communication until I could have examined

these and other cases in more detail. But as, owing to the approach of other occupations, any such

delay must have lasted a year, I determined to send my thoughts just as they are, in the hope that

others may be induced to pursue the subject. One great point of the interest which attaches to it,

is the hope that the generalized notions of interpretation which it gives, will be found applicable to

the common double Algebra, which is at present restricted to systems of linear co-ordinates : and as

to which, though the restriction is clearly unnecessary, the proper direction of generalization is

not seen.

A. DE MORGAN.

Univeb«ity College, London,

October 9, 1844.
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ADDITION.

In single Algebra, we use no angles, and, so far as geometrical interpretation is concerned,

only one dimension of space. In double Algebra, we use two dimensions of space, and the rec-

tilinear angle. It might be supposed that in triple Algebra we should use three dimensions of

space, and solid angles, considered as proportional to the areas of their subtending equi-radial

spherical triangles. I can make no use of these solid angles ; but others may be inclined to try

tliem : I accordingly give the following results, connecting the solid angles of a system of co-ordi-

nates with the plane ones.

Let the positive sides of the rectangular axis of x, y, z, meet the sphere in X, Y, Z; let

P be any point on the sphere, and let the cosines of the angles PX, PY, PZ, be X, fj., v. Let

the spherical excesses of the triangles PYZ, PZX, PXY, be a, /3, 7 : their signs being taken

so that the equation a + /3 + 7 =47r, which obviously exists when P is inside the triangle XYZ,
may be permanent. We then easily obtain

,
X-' . \{l + ^ + v)

,cos a = 1 - y- r-r- r , sm a = —: r , 81C.
(1 + /a) (1 + v) (1 + ,1) (1 + •')

1 + \ 1 + iU 1 + v (1 + \) (1 + ,u) (1 + >0

1 + sin a 1 + sin /3 1 + sin 7 (1 + x) (1 + ^u) (1 + v) - X/uf

'

2(1 + X) (1 + m)(1 + v)
which, since X^ -1- fi' + v'^ = I

Also, 1 - cos a + sin a

(1 -(- X + M + ")'

(1+X)(l +,.)(! + .')

2(1 + sin a)

(1 - coso + sin a) + (1 - cos j3 + sin /3) + (1 - C0S7 + sin 7)

Having since I read this paper in proof, examined Sir W. Hamilton's system of quaternions, I

may state that, in my view of the subject, it is not quadruple, but triple, since every symbol is

explicable by a line drawn in space. His object has been, to secure interpretation, though it

sliould cost the loss of some of the symbolic forms of Algebra ; and his success has been of a

most remarkable character. My object has been to detect systems in which the symbolic forms

of common Algebra are true, without making any sacrifice to interpretation. The redundant

biquadratic system in J 4 of this paper has a resemblance to Sir W. Hamilton's quaternion

system in some of its formulse, and a still greater one in its redundant character. It yet remains

to be seen what systems exist in which the axes of y and x are not symmetrically related to

that of ,v.

December 17, 1844.



XIX. Oh the Values of the Sine and Cosine of an Infinite Angle. By
S. Earnshaw, M.A., of St. John's College, Cambridge.

[Read December 9, 1844.]

The usage of Mathematicians in reference to the symbols Sin co and Cos os does not seem to be

in accordance with their expressed opinions. It does not appear to be questioned eitlier by English

or Foreign writers, that when ,i' becomes infinite Sin a? and Cos x cannot be said to be in one part

of their periodicity rather than another. If this mean any thing, it must be understood to signify

that Sin eo and Cos os are indefinite. Yet this is not borne out in the usuage of these symbols

which we find in the writings of any author. Indeed, an opinion has been expressed that their

indeterminateness is only apparent, and therefore not real : and that analysis has furnished definite

equivalents for them by legitimate processes of investigation on principles which are allowed : and
though some writers on Definite Integrals have abstained from stating in direct terms what are the

values which analysis assigns to Sin eo and Cos oo, all agree in practically affirming " that both the

Sine and Cosine of an infinite angle are equal to zero." But while we find these values used where-

ever Sin 05 and Cos m occur in investigations, we do occasionally meet with expressions of doubtful-

ness respecting their universal truth. This seems to indicate that in the opinion of such writers

the values of Sin os and Cos eo depend on the circumstances under which they occur; but what those

circumstances are which have this power over Sin co and Cos os I do not find any where pointed

out. In fact, upon tracing the origin of this doubt respecting the universal truth of the equations

Sin OS = 0, Cos OS = 0, I find that it has arisen from the occurrence of certain results of a character

so obviously suspicious, perhaps I might say, erroneous and contradictory of evident truths, as to

create a reasonable doubt of the propriety of writing zero for Sin os and Cos os in those cases.

But though results have thus forced some writers to doubt respecting the general truth of the

equations Sin os = and Cos eo = 0, it does not appear that they have any where admitted the

demonstrations of the truth of these equations to be defective. We find ourselves then in this

difficult position ;—we have certain investigations presented to us in which there occur no doubted

steps, and these investigations present us with certain absolute results ;—but the certainty of these

results thus established by a process of mathematical reasoning, the accuracy of which is no where

called in question, we are afterwards required to look upon with suspicion ;—and that sort of

suspicion which while it throws doubt upon every thing affords us no clue for ascertaining what are

the cases to which alone it ought to be attached. It is obviously desirable that some effort should

be made to remove this uncertainty. Now some light may Ije thrown upon this difficulty by

27r
considering that Sin«.r and Cosji.r go through a whole period of values while *• increases by — .

2ir . .

As long as n is finite — is finite, and all tlie values included in a period are therefore consecutive,
n

But what happens when n increases in value ? We easily see that as n increases the whole period

becomes condensed so as to occupy a shorter and shorter portion of the current variable ; and
that when n approaches os, the values are no longer consecutive but simultaneous:—hence as n
increases towards os a whole period of values of Sin* or Cosx tends to become simultaneous, and
in the limits are simultaneous.- i.e., Sin eo has at once all values from — 1 to + 1 ; and the same
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property belongs to Cos os. Consequently according to this view it is not true that Sin os and Cos «
have each a single value, or any finite set of values definitely ; but they each have all possible

values from — 1 to + 1 in such a manner and sense that not one of these values is pre-eminent

above another, and no one has a claim to be put forward above its fellows, but all stand in exactly

the same relation to the function Sin eo (or Cos eo) so that at one and the same moment Sin os

(or Cos os) is equal to every one of them but not more properly equal to any one than any other

of them. From this reasoning and kindred reasons of an equally general character, I satisfied

myself that Sin 05 and Cos os cannot be replaced by zero, unless under some special hypothesis,

and that when taken in a general sense they cannot justly be s\ipposed to have definite values at

all. I shall now proceed to some considerations which are preliminary to a more formal proof that

they have not the value zero, even when considered as the limits of more general forms.

In conducting my inquiry into the values of the symbols Sin os, Cos os, I am unavoidably

brought upon the confines of the much controverted subject of divergent series. In a certain sense

which will be explained, I agree with Professor De Morgan that all non-convergent series stand on

the same basis, though I cannot subscribe to the train of reasoning by which this is usually main-

tained, involving as it appears to me some disputable positions. Much of the obscurity which

attaches itself to the subject of divergent series may be traced to the discordant and strange

significations applied to the symbol =, when used in connection with infinite series. The pre-

sumption is that when this symbol stands between two quantities it indicates, that either may be

used for the other in algebraical processes. A very eminent author states that it " may be rendered

by the phrase gives as its result, when it is placed between two expressions, one of which is the

result of an operation which in the other is indicated and not performed ;"—an explanation which

agrees exactly witli what Woodhouse states in his Principles of Analytical Calculations, who insists

upon this definition of it at intervals through his work with an earnestness which indicates the

confidence with which he regarded it as true. Now if this definition be closely examined it cannot

be understood to denote that the expressions connected by = differ in any thing but form ; for

one side denotes that an operation is to be performed, and the other is the result of the actual

operation : if then the operation has been correctly and completely performed, there is no difference

except in form between quantities connected by =. But an examination of the Principles of Ana-
lytical Calculations, will not fail to satisfy us, that in giving this definition the author must have

understood it in some modified sense whicii he has not expressed in the definition itself. For when
it is said that " = is a symbol which serves merely to connect an involved expression and the result

of an operation," it is evident that "numerical equality" could not then be, what the author affirms

it is, a contingent result. But whatever was the sense which the author mentally attached to the

symbol, it involved a principle which necessitated the making distinctions where by ordinary minds

the difference cannot easily be grasped : for it was found impossible to be consistent without demand-

ing a license to consider ^ and (as also and 1 as essentially distinct. Now

what difference is there between 2 and 1 -I- 1, except in form ? Is not 1 -t- 1 an expression in which

an operation is to be performed the result of which is rightly denoted by 2 ? and if so, then by his

own definition 2 and 1 -t- 1 are algebraically equivalent. I must confess that I cannot consent to

such distinctions as are here demanded without being satisfied that there is no means of avoiding

them ; and I cannot but suspect that in the present case there is no other necessity for them, than

what arises from a misapplication of the definition which the author has given of the symbol =.

For if this symbol serve merely to connect an involved expression and the result of an opera-

tion, it is clearly a misuse of it to employ it in connecting an involved expression and a part

only of the result of an operation. Let me explain by an example. Professor Woodhouse writes

= 1 - .T + ,T^ - Now the operation denoted on the left-hand is the division of 1 by 1 + ,t,

1 + a-
'^ '
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and according to the definition of =, the other member is or ought to be the result of that opera-

tion. But we observe that 1 — x + x^ — is a scries of terms following the same law throush-

out, and shewing no indication of any terms which are not included in this law ; yet it may
be asked, have we any just ground for knowing that all the terms resulting from the division

of 1 by 1 + .J7 rfo follow the same law throughout ? Let us examine ; if we stop after one term

1 .r

of the quotient we find = 1
; if we pursue the division a step further we find

1 iC^ 1 v^
=1 - X + ; another step gives = I - x + ae^

'-

, and so on. In all these
\ + X \ + X \ + X i + w
partial operations we observe that one term of the quotient is an exception to the law followed by

the others. It is true, by continuing the process, we may push this anomalous term to any con-

ceivable distance from the beginning of the series, but there is not the slightest indication that

by so pushing it it will at length cease to be, or become zero : on the contrary, as Professor De
Morgan justly remarks, by the prolongation of the operation it is removed farther off but not

destroyed. Consequently, the operation represented by is of a character which can never

be completely comprehended in any series of terms which follow one law : and thei'efore, strictly

speaking, there is no such quantity as the definition requires which can be joined with it by the

symbol =. Shall we then join it with as much of the quotient as does follow a fixed law?

It is clear we cannot without violating the terms of the definition. When therefore we find

= \ - X + X- — ... ad inf. without an implied remainder, we are at a loss to understand in what
1 -I- .r

way this use of it is reconciled with the meaning attached to the sign = in the definition. Yet
it is certain, that most eminent writers do use the symbol = to connect a function with a series

every term of which is supposed to follow a fixed law, as though the operation denoted by the

function were capable of being represented by such a series of terms. Still, though it is thus

rendered evident that the usage has not been sanctioned by the definition, the discrepancy is

not very important in itself, seeing that an alteration may be admitted into the definition which

shall make it agree with usage. The definition may then stand thus ;

—

the sign = is used to

I'onnevt an involved expression with the result of an operation as far as it is expressible in

terms ivliich follow a fixed law. The really important point now to be examined is, whether

that portion of a result herein included will in all cases represent, for algebraical purposes, the

properties of the expression from which it was derived. If it will so represent the expression,

then for algebraical purposes series of all kinds, whether convergent, periodic, or divergent, will

stand on the same basis, and their use in all cases be equally safe. I need hardly say that

this is a much disputed point, which has been warmly attacked and defended. I am induced to

venture into the field oil the side of the assailants from having observed that its advocates have

defended the use of non-convergent series on grounds some of which are capable of being easily

shewn to be fallacious : and though I cannot bind myself to the justness of all the arguments
which have been opposed to them even by the most eminent and skilful analysts, I yet think there

are sufficient reasons left to justify us in rejecting non-convergent series when in accordance with

the above definition their remainders are thrown away.

Now according to the definition above proposed, it is evident that an invelopment and its series

are not efjunl, (they difi'er by the remainder) the question is, are they equivalent ? does the series

embody all the algebraical properties of the invelopment, and no more.'' The discussions which

have been so earnestly carried on with the view of arriving at a satisfactory settlement of this

difficulty have not yet elicited any unanswerable arguments on either side : at any rate they have
not been of such a character as to set the question at rest. Though I dp not presume to hope that

what is here brought forward will have the effect of satisfying those who entertain the opposite

Vol. VIII. 1'aet III. L l
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views, yet something may perchance be said which will in abler hands be made useful in settling

some of the difficulties which beset the consideration of this perplexing subject.

1. The ground on which I would reject the use of non-convergent series is a conviction

that such series may have some algebraical properties which their invelopments possess not, and

may lack others which the invelopments have. For series of ordinary forms I think 1 shall be able

to prove the truth of this as satisfactorily as such an intractable subject as an infinite non-converg-

jng series admits of.

2. Let us notice first, that there is a presumptive ground of suspicion of the truth of this (viz.,

that the algebraical properties of a non-convergent series are identical with those of its invelop-

ment) in the rejection of the anomalous term (the remainder) which if preserved would certainly

render their (numerical as well as) algebraical properties identical. Has the remainder wo alge-

braical properties ? If it has, then it will hardly be believed without proof, that in throwing

3t (and with it its properties) away we have not destroyed the algebraical equivalence which by its

means existed between the invelopment and the series. I will endeavour to illustrate my meaning

by instances.

3. It admits of no doubt that including the remainder the equation ^=l—\+l — \ +
ad inf. is strictly true. We are to examine whether this is algebraically true if the series be

taken without its remainder. Denote the sum of n terms of the series by S„ ; then it will be found

that for all values of n, S„= S\. This equation being strictly true may be made use of in any

algebraical operation : and as it is true however large be the value of n, it is impossible to refuse to

admit that S„ = S^ is a property of the infinite series. Hence 1, not being a root of this equation,

does not enjoy this property which the sum of the infinite series does enjoy, viz., that it is not

altered in value by being squared. ^ is the sum of the series inclusive of the remainder, and S^ is

the sum of the same series exclusive of the remainder. Hence the rejection of the remainder has

altered the algebraical properties of the symbol by which the series is represented.

4. But the algebraical importance of the remainder may be rendered still more striking, and the

a

b

1-1-1+1 + .. .to a terms

1 + 1 + 1 + ... to 6 terms

1 + 1+1 + .. .to a terms

impropriety of rejecting it put in a stronger view. For if any proper fraction — be put in the form

, it will be found by the ordinary process of algebraical division that

1 + 1 + 1 + ... to6 terms
= 1 - 1 + 1 - 1 +

Now many persons have found it difficult to reject ^ as the algebraical equivalent of 1 - 1 + 1 - ...

because by ordinary algebraical development this series ad injinitum can be obtained from ^

.

It is here shewn however that the very same process which elicits the series from i would serve to

elicit it from any proper fraction whatever : and this being so, by what distinguishing property

are we to be guided, so as to be able to select amongst all proper fractions some one particular

value as the equivalent, the unique equivalent of the infinite series ? If 1 be selected as embody-

ing all the algebraical properties of the series, surely we must admit that for as good a reason

- embodies the whole of its properties ; and thence we cannot avoid allowing that -^ and — are in an

algebraical sense equivalent fractions.

5. But it is said in special favor of \ that from whatsoever more general series 1 - 1 + 1 - ...

be deduced the symbolical equivalent is always found to be ^. If deduced, for example, from
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\ — ,1: + ,1.2 _ ... by writine: 1 for .r the sum is A. Now let us turn the fraction
'- '-^

•^ ^
1 +X + X-+ ....v''-'

into a series by the ordinary process of division ; the result is, (6 > «)

1 + 'V + ... a terms , , .^= 1 -*'"+.r*- .i;'> + » + .r2''-
I + o) + ... b terms

This series differs from 1 — ,v + a:^— ... only in being more general, for it includes it as a particular

case (viz., when a = 1, and b = 2). If then it be lawful to write 1 for a; in 1 — ,t' + x-— ... it

is equally lawful to do so in the more general case : which being done we have — = 1 — 1 + 1-.. . ad

btfinUvm. Here then is "a well-established instance in wliich 1 — 1 + 1 — ... means other than 1;"

shall we say witli Professor De Morgan, one such instance throws "doubt on all that Poisson and
Fourier have written ?"

6. It will hardly be considered necessary to defend a system which requires us to receive as a

legitimate consequent that all proper fractions are algebraical equivalents. I apprehend therefore

the last article but one will be sufficient to shew that in numerical forms of series the ability of an
e.xpression to furnish by legitimate expansion a proposed series is no presumption that the two
are algebraically equivalent. Hsie then is fair ground for suspecting the existence of some grievous

violation of just reasoning in depriving an infinite series of its remainder, i. e. in supposing that by
pushing an expansion in iiifinitum the anomalous terms may be disregarded. In converting the

1 + 1 + 1 + ... o, terms . . ,,.,,,
expression .

into a series we observe that for all values of a and b (a <b) the'^

1 + 1 + 1 + ... 6 terms ^ '

series of quotients are the same, and the various cases are distinguishable only by their remainders.

The distinctive properties then of these proper fractions by the process of development are not

thrown into the quotients, but are preserved in the remainders. How then shall we reject the

remainders in any equation which professes to exhibit the equivalence of its members .'

But there is yet another proof, which I shall now offer, that neither 1 nor even any proper
fraction whatever can be the proper equivalent of the series 1 - 1 + 1 —

7. In perusing what has been written upon this series, we cannot but perceive that some authors,.1
setting out with = 1 - ,r + x" as an equation admitted on all hands to be true when w is

I + w '

less than 1, have argued that, being true when x is less than 1, however small \ — x may be, it must
needs be allowed in the limit. If the premises are true, I do not see how we can refuse to allow the

conclusion. But it is obvious the premises assume that the series is convergent towards 1 - 1 + 1 - ...

when 1 - ,1; is indefinitely small ; is this true ? If it is, I admit that i is the equivalent of the series

1 - 1 + 1 - ... in as good a sense as is the equivalent of the converging series 1 — x + or- ...

Mr. De Morgan questions this; but I see no objection in it which would not, if admitted here,

overturn the whole fabric of the Differential Calculus. But we have to answer the question asked
above, is it true that the series I — x + x- -*•' + ... is convergent towards 1 - 1 + 1 - ... as its

limiting form when 1 - ,c is indefinitely small .?

8. Let y be any finite quantity, and assume 1 — .t? = ± - : then when n approaches infinity,

I - X will be indefinitely small ; but tiicn limit of .r" = limit of [
1 =f

-
J

= e^", the upper or lower

fiign being used according as x approaches 1 from inferior or superior values. Here then is a proof

L L2
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that the terms of the series 1 ~ x + w" - ... at an infinite distance from the beginning do not

convero-e towards 1 as their limit, but to one of the indeterminate quantities e'" or e*" ; the values

of these depending upon the law under which x approaches unity. Who shall prescribe this law ?

Surely it is (and must be left) arbitrary in the fullest sense of the woi-d. It is not true then that

the converging and diverging forms of 1 - x + x' - ... approach the same form, viz. 1 - 1 + 1 - 1 + ...

ad infinitum, as their common limit. For the limiting forms both of convergency and diver-

gency are arbitrary, yet so restricted that they never can mutually approach so near as to be

separable by only a single form : for e"*"^ never can approach so near to e"" that only unity lies

between them, because y is necessarily ^«i<e, i.e. neither indefinitely large nor indefinitely small.

9. The unavoidable inference from the last article is that 1 - 1 + 1 - ... is an isolated form

of 1 - X + x"- — and separated from the limits of continuity on either side by a finite interval.

For the same reason it is an isolated form of 1 - w" + x*" — x"*'' + x^'' - ... Let it now be admitted

that is the equivalent of 1 - x + x^ - ... ad infinitum, then it will follow that
1 + X

limit of = limit of (l - a + x- - ...)
1 +x

But limit of (l - x + x" - ...) is not = 1 - 1 + 1 -

.-. limit of is not = 1 — 1 + 1 — ...

1 + X
a

This then is the proof that ^ is not, (and in a similar way it would follow that — is not)

the proper equivalent of 1 — 1+1- even assuming to be the proper equivalent of
I •\- X

1 ± x"
1 - X + x'^ — It is easily shewn, since = I — x + x"- - ... n terms, that ^ (1 =*= e*'') is

= limit (1 - .r + x" - x' + ... ad infinitum), which is therefore indefinite.

10. In a paper " On Divergent Series" by Mr. De Morgan, there is a remark which shews the

important bearing of the results obtained in the preceding articles. " It is clear enough," writes the

Professor, " from the manner in which Fourier, Poisson, Cauchy, &c. use the limiting form

1 — 1 +) — ... that they intend it to signify ^ in an absolute manner. The whole fabric of periodic

series and integrals, which all have had so much share in erecting, would fall instantly if it were

shewn to be possible that 1-1 + 1 - ... might be one quantity as a limiting form oi Ao-Ai + A^- ••

and another as a limiting form of B^- Bi + B.,- ...". I object, of course, to the assumption that

1 — 1 + 1 — ... is a limiting form of the series alluded to ; but passing over that, it is shewn above

that 1 - 1 + 1 - ... when taken as a form of 1 - x" + x'' - ..., which it certainly is, may be one

thing or another, according to the values arbitrarily assigned to a and b. Indeed it is stated

in Woodhouse's Anal. Calc. p. 61, that 1-1 + 1-1+.. . =
, as well as =

. But^ 1+1+1 1+1
Woodhouse either did not observe this evident contradiction, or must have got over it by the

mystical maxim that is not = ^, and is not = -^ ; which is perhaps the case, for in a

note he considers that Euler, Leibnitz, and Waring had fallen into a mistake by making ,

&c. = ^ , -g^ , &c. However, passing by this doctrine, it serves the purpose for which I

quote it, for it exhibits Woodhouse as testifying to the propriety of taking 1 - 1 + 1 - ... to be

a form of the series \ - x + x^ - x* + ... which arises from the expansion of j . In fact,



OF AN INFINITE ANGLE. 261

to this also Mr. De Morgan has given assent where he assumes that 1 — 1+1 — ... is a form of

I — a;' + a:* — ay' + 0;^'^ — I have brought forward these testimonies, because it is not very

unusual to cast a mantle of mystery over this subject, by introducing zeros into the expansion of

. But such a device, however much it may serve to satisfy the eye, cannot satisfy the

head : for — gives 1 - x + x^ - x' + ..., there being no terras between x and a'', a-' and .v"^,

1 T (37 + J.

&c., in this, which is the general form of the series ; and consequently it is not allowable to write

= 1-1 + 0+1-1+0+..., if it be intended to insinuate thereby that the zeros make1+1+1 ^

any difference in the sum of the infinite series: and if they make no difference, why introduce them.-'

11. On principles therefore which are allowed, and used by the writers quoted, it is established

that 1 -1 + 1 — ... has no definite equivalent, in the sense in which this word is generally under-

stood. I think also it is proved, that is in no proper sense the equivalent of 1 — ,v + x" — ...,
1 + iT7

except when this series is convergent. For that the two expressions may be equivalent to each other,

it is essential that each should exhibit the same degree of indeterrainateness of value in particular

cases, and the same kind of discontinuity : but, as we bave seen, there is no such agreement : on the

contrary, while it is admitted that, as x converges towards 1, approaches towards i as its
1 + X **

unique limit, it is here shewn that the other member of the assumed equivalence approaches towards

an indeterminate form of an ambiguous character, and absolutely refuses to approach in any case to

1 - 1 + 1 - ... as a limit of continuity.

12. It is not the purpose of this paper to treat of Diverging Series in general, but only of the

recurring form 1 — 1 + 1 — ... , and of this only because it has been connected with the values

of Sin OS and Cos os , yet as the method above employed is applicable to the general form

0a; = flia." + Ooa,-^ + ... + a,,x'' + ... I may state that the same mode of reasoning when applied to

this, shews that (bx does not embody the algebraical properties of the series, unless the value of x,

and the form of the coefficients, be such as to make a^x" tend to zero as its limit when ti and v

approach co . Series which satisfy this test 1 call convergent series, whether the arithmetical sum
thereof be finite or infinite : and all such series are distinguished by this property, that their invelopcs

may be safely used as equivalent to them in every sense both algebraical and arithmetical.

13. From this it is evident, that the operation of integration performed upon a series will often

(not always) have the effect of removing its discontinuity, and establishing a real equivalence though

none existed before. And so the operation of differentiation will not unfrequently have the effect of

introducing discontinuity, and destroying equivalence.

Hence we see why we may put 1 for x in log^ (l + x) = x -{ • — ..., though we may not

write 1 for x in =1 — a; + x'' — ... from which it was derived by integration.

14. But, in pursuance of the object of this memoir, it is time now to turn to the series

I - Cos0 + Cos20 - Cos 30 + ... whicii has been assumed to be a form which can approach

I - 1 + 1 - as a limit by diminishing 9 towards zero. Now assume y to be any arbitrary

y ...
Jiniie angle, and put = ± - which will be indefinitely small for the terms whore w is infinite.

Hence in such terras Coan6= Cos ± y = Cosy= a. finite quantity, not equal to unity, because y
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cannot be eqtial to zero. Hence the terras of this series at an infinite distance from the beginning

are subject to discontinuity, and cannot be made to approach 1 as their limit ; because if d differ

ever so little from zero there will always be a term so distant from the beginning as that n9 is

finite; that term and all following ones will not approach 1 as their limit. Consequently 1 — 1 + 1 - ...

is an isolated form of 1 — Cos9 + Cos 29 — ...

15. It is not necessary to repeat, in reference to this series, what has been already said upon

1 — .V + a!" — ... ; it is sufficient to remark that all results are nugatory which have been obtained

upon the supposition of 1 - Cos + Cos 2 - ... approaching 1 - 1 + 1 - ... as its limit as

9 changes continuously towards 0. I might here add remarks in reference to the series

a^ + a,Cos0 + a, Cos 20 + ... + a„ Cos i'9 + ... parallel to the remarks in (12) and (13).

16. Since it often happens that by integration as remarked in (13) a real equivalency is

established, it is not unusual to find such series cited as confirmations and verifications of the

propriety of the equivalency assumed to exist before integration. From what has been proved

above however it is evident that such verifications are of no value, and do not in any degree justify

the inference sought to be drawn from them.

17- I come now to examine the limiting values (if such there be) of Sin x and Cos a; when
T approaches co . As a preliminary step it is proper to remark, that oo is an indefinite symbol : and
when it is said that a; approaches eo as its limit, we are not to understand that ,r approaches towards

some definite value, but merely that it approaches to a value of which we have no other property

than this, that it is greater than any finite quantity. Yet there is such a thing as a restricted oo .

Thus, if a? be an odd multiple of tt by the nature of its definition, this restriction will not hinder its

becoming infinite ; yet then the symbol 05 will be specific ; and accordingly it is possible that under

such a condition definite results in certain cases may be obtainable.

18. The above remarks respecting the essential indefiniteness of the symbol cs will enable us

at once to reply to some questions which have been found perplexing. The question has been

asked, is the series P^ - P.^ + P, - P^ + ad infinitum equivalent to the series (P, + A)
— (P., + A) + (P-s + B) — {Pf + B) + ... ad infinitum? This has been rightly answered in the

negative ; but on erroneous grounds. The true reason is this : the terms A, B, C ... are introduced

in such a manner as necessarily involves the notion that co is an even number, and therefore it

creates an error unless it have been stipulated that 05 is an even number. As from the nature of

an infinite series no stipulation of this kind can be allowed, we are justified in saying that the two
series are not equivalent.

19. If J? be defined to be a term of the series 0, 2, 4, 6 ..., then Cos wir = Cos 0" when x = (» ;

but if x be a term of the series 1, 3, 5, 7 ..., then Cos aiir = Cos ir wheu .r = 05 ; but if x be defined

to be a term of the series 0, 1, 2, 3, 4 ..., then it cannot be affirmed that x is an odd number, nor yet

that it is an even number. To say only that x is a whole number, is to express oneself in a way that

requires the result to leave the question as to whether x is odd or even undecided. Hence in this

case we cannot say that Cos eo = CosO", nor yet that it = Costt; but we must express the result in

such terms as leave undecided which of these two is the value of Cos co ; for to select one of them
and reject the other would narrow the restriction laid upon x by its definition, by deciding that it is

not only an integer, but that it is a specific integer. Hence then in this case Cosco = CosO" or Costf
indeterminably.

This mode of reasoning can be extended without difficulty to the case where x is a continuous

variable, and it leads us to this result, that on this hypothesis respecting the nature of x, Cos eo

(derived from Cos x by supposing x to approach towards co ) is equal to the Cosine of any angle

from 0" to 2 7r indeterminably. When I say indeterminably, I mean to say that we cannot fix on

one of these angles and reject the others without violating the generality of the hypothesis : should
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we for instance say that Cos co = 0, the selection of this particular value would be equivalent

to narrowing the hypothesis respecting x, as it would restrict a; to be an odd multiple of - , and con-

fine its variation to the terras of the series -, — , — , ; similar observations may be made
2 2 2 •'

respecting Sin oo .

20. It is also very important to remark that Sin ax and Cos ax do not cease to be functions of

a when x approaches eo .

/I + Cos2.rYj .

For since Cos a- = ± I I , it appears that Cos.t; has an ambiguity of value of which

Cos 2a,' does not partake. We may follow out tliis mode of reasoning to shew that Cos* and Cosoii-

have not the same number of corresponding values, and that if the value of one of these were given

the other would not be determinable from it except in an ambiguous form. Whatever indetermin-

ableness attaches itself then to Cos x when x approaches co , the same, and also another kind of,

indeterminableness belongs to Cosax at the limit. We are then particularly to take notice that

Cos OS derived from Cos x may not be written for Cos x derived from Cosax. Much error has

arisen from want of attention to this caution. Also Cos ax cannot be considered independent of a at

the limit /t? = co , inasmuch as it is subject to two causes of indeterniinateness which are distinct from
each other.

21. Having thus given my reasons for considering that Cos co and Sin co have not definite

values, it may be proper to examine the proofs which have been brought forward by those who have

used definite values for Sin co and Cos eo . The following is the most direct proof I know of:

.-. f" Sin X dx - {j" + J^" + ff^ + ... ad infinitum) Sin x dx ;

.-. 1 - Cos 05 =2 — 2 + 2 — ... ad infinitum = 1 ;

.-. Cos o: = 0.

To this proof there are two objections, either of which is fatal to it. In the very first step it is

assumed that eo is an integer multiple of tt. For this assumption there is certainly no autho-

rity, neither is it compatible with the indeterminate nature of the symbol c© in the left-hand

member of the equation. The next error is made in the summation of the infinite periodic series

2 - 2 + 2 — ..., which I have shewn in the previous articles of this memoir cannot be equal to 1.

22. As the reader may wish to have a further proof of the error of principle involved in

the first step of the above investigation, let him see the effect of a different distribution of co into

parts in the following process of reasoning, in which the question of summation of series is avoided.

( r"- r-' r^' \/^"Sinxdx =1 I ^
'//'*' J i" * ad itifinitum] Sinxdx

3
= -(1 + 0-1 + 1-1-0-1 + )

= - [[' + j„' + hw + ad injinitum] Sinxdx

3 r"
= - I Sin m dx

;

.•, _^* Sin^prf* = 1 - Cos eo = 0, .-. Cos os = i.
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It is for those mathematicians to reconcile these conflicting results, who maintain that providing

the last limit of x be os it is no matter whether it be a specific oo or a general os. The dis-

tinction is of first-rate importance in periodic functions. I think I am fairly entitled to affirm that

specific values for Sin 03 and Cos co are obtained by such processes as that in (21), only because

those very processes assume at the outset a specific form of co .

23. The next proof which I shall examine depends upon the principle of continuity "that

what is true up to the limit is true at the limit." It is as follows :

Since fe'°' Sin xdx = (Cos x \- a Sin x) ;•'

1 + a'
'

' /^" e"°' Sin a;d.r = ,.
'

\ + a'

This being true for all positive values of a, no matter how small, is taken to be true in the

limit when a = 0, which gives (since e'"^' then = 1 for all values of x)

j^ e'" Sin.rd.r = /," Sin xdx = 1

;

.•. Cos CO = 0.

24. To this investigation I have two objections to bring forward. The step which assumes

that e'"' = 1 for all values of x is not true at the limit x = oc , for however small a become ax
will be finite and arbitrary or infinite when x = «> . Hence as we diminish a towards zero e""
approaches, not to 1 as its limit when x — <si , but to e'" an arbitrary value depending upon

the relative laws with which x approaches co , and a zero. Now it is absolutely necessary in the

above proof that for all values of x between zero and 03 , e""' should be equal to 1 ; and as

this is not a true hypothesis, the proof fails.

1 e'"'
Again, it is essential to the above investigation that should be the value of -

1 + a' 1 + a:'

(Cos a? + a Sin a?) between the limits .r = 0, ,r = co . But this will not be the case unless e"'"

vanish when .r = co . Now I have just shewn that when a is made to approach zero e'"'

become e'" at the limit a! = co . This step therefore of the investigation is erroneous, and the

proof fails.

Let us look at the first written equation in (23), and endeavour to answer these questions;

can e'" in the left-hand member be always = 1, and yet in the right-hand member = 0, when
X = CO ? If a; = CO make e""' = in the right-hand side, what can prevent the same being true in

the left-hand side, seeing that the values of x are simultaneous in both members ^ Here is a

plain contradiction of hypothesis in the two members of the fundamental equation the consequences

of which no explanation can remove : and as both hypotheses are required to be true together

to enable us to obtain the final result Coseo = 0, I conclude that this result is not proved to

be true. I think upon examination of the steps of the proof in (23) the reader will admit,

that it is conducted upon the supposition that, as x varies from zero to 03 , e~"' remains constant

on the left-hand, and decreases from l to on the right-hand.

25. These are the usual proofs that Cos co = ; and it is not necessary for me to examine

more, as all that I have met with involve erroneous reasoning of a character similar to that

noticed in the two above given. Before concluding I wish however to notice one or two other

cases in which great caution is necessary in managing the symbols Sin eo and Cos eo.

26. The first which I shall notice is / d,v, which has been said to exhibit some
J„ X
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singular anomalies. It has been asserted to be equal to — , a result which is manifestly sym-

bolically erroneous, seeing that it does not change sign with a, a property which the expression

to be integrated shews must belong to the true integral. Such an objection as this would be held

to be fatal to a result in other branches of analysis, and I am at loss to conceive why it has

not been allowed the same force in this. It is true a proof has been offered that the integral ought
to be independent of a ; but if any thing can be inferred from that proof it is that the

integral ought to be indefinite in every case. The proof alluded to is as follows :

„. Sinaa? Sin a* ,^ , Sin

«

since ;— d.v = d(ax) = dx,

Jrf Sino.r /•» Sin» /•<
I dx =

I dz = I

Sin a;

dx :

whence it is stated that the value of the integral is in every case the same as when a = I : yet

as I have said before, this inference is evidently erroneous when - o is written for a. The
probability is that the true integral is such a function of a as is constant for ordinary values of a,

and changes sign with a ; I say ordinary values, because it is easy to shew that the transformation

fails as a approaches zero. For since the equation ax = z must be respected, by means of

which the transformation is effected, this shews that were a to become indefinitely small, z would
not be CO when x approached co ; but in that case the limits for z would be and y {y being

an arbitrary finite quantity). Consequently as a approaches towards zero, the integral approaches

towards an indeterminate form as its limit.

The value of the integral when a = 0, would therefore seem to be isolated : and cannot be

inferred from the above transformation. Expressed in a series the required expression for the

integral is

^'l.2.3 ^1.2.3.4.5

which confirms the preceding reasoning in the case when a approaches zero.

27- The next case which I shall consider is / dx, which has been stated to be
•'o « + *

equal to — e"'" when h is positive, and to — e'" when b is negative. As in the preceding case,
Ad lid

SO here, the symbolical inaccuracy of the integral brought forward is sufficiently indicated by
the acknowledged necessity of empirically changing the form of it. As the erroneous principle

by which this result is obtained has found its way into a great number of other integrals which,

as well as this, are vitiated and rendered erroneous by it, I shall endeavour fully to expose it.

28. Denoting the required integral by P, we find

,2o "D /-T- ; ;
Sin(6.0) Sin (6 . eo )

dj,P - a- P = - /, Cos bxdx = ^
.

In the usual process, the last member of this equation is assumed to be zero: and with regard

to the first term of it that assumption may be allowed ; but the last term of it, it has been the

object of this paper to prove, is indeterminate. It is also to be remarked, that this term forbids us

to make b approach towards zero, because when b is indefinitely small the right-hand member
approximates to eo . Yet regardless of these cautions the right-liand member has been put equal

to zero, and the value of /•* has been then found by integration to be

P = Ce"' + C'e-"\

Vol. VIII. Paut III. M m
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The first term of this integral has been put equal to zero on the ground that 6 = co would

make P = as were this term allowed to remain. (I shall shew presently that it is not allowable

to put b = 05). The value of C' is then found by putting 6 = 0, the very supposition which must

necessarily render the result erroneous, seeing that dlP - cb'P is then equal to 05 . I infer there-

fore that there is no certain ground for writing — for C ; as little indeed as there is for rejecting

the term Ce"'. In fact, the given function being unchanged when - 6 is written for h, the inte-

gral must possess the same property, which gives C = C, and therefore we ought rather to write

P=C(e'"' + e-'").

29. I shall now endeavour to shew that we may not put 6 = eo in the value of P.

It is easy to shew that

_ (%axQ,oihcD 06 Sin 6,1'") ir = CO

il(aP) - h'iaP) = [-^^^^^ - -^TT^j, = •

For all Jinite values of 6 the right-hand member of this equation vanishes : but when 6 = co

the term - Sin (6 . 0) cannot be put equal to zero ; this term corresponds to the limit .r = 0. Also
a

the intermediate steps by which this equation is obtained from P = I ——-^ dx forbid us to

put 6 = 0. Hence if we put the right-hand member of the equation equal to zero, we are to keep

in mind that that step involves a prohibition against putting 6 either equal to zero or oo . Exclusive

then of these values of 6, we have

dKaP) -b\aP)=0;

and .-. aP = Be"" + B' e-'K

For the same reason as before, B' ^ B ; and by comparison of this with the value of P (admit-

ting that value to be correct for the present), found in the last article we learn that B is inde-

pendent both of a and 6,

... P=-(e"* + e-'"'').

a

How B is to be determined, I know not, seeing that it is not allowable to put 6 = 0, which is

the usual plan.

30. There is great advantage in forming two distinct differential equations for P, as we may

learn from one of them something which may assist us in managing the other. In Art. 29, we

have seen that, subject to the condition of 6 being finite, we have strictly da(oP) -6^(fflP) = 0;

but this condition will not allow us to strike out the right-hand member of the equation in (28).

This shews that B and B' in (29) are functions of 6 ; and (29) shews that C, C in (28) are

functions of a.

In strictness then we ought to integrate the equation

dl(aP) - V{aP) = - ^ Sin (6 M ).
6

C , ai -„6x e-"'' re'"'?>\nib«,)db c°' re-'Sin (605 )rf6

a a J b a J b

C being an absolute constant, the value of which I know no means of determining.
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31. It is not necessary to examine other instances of definite integrals the values of which, as

they have hitherto been obtained, I believe are not to be relied upon. They involve either the

notions that Sin oo = Sin (a . co ) = 0, Cos eo = Cos (a . eo ) = ; or else depend upon the sum of

the series 1 - 1 + 1 — being = 1. The classes of definite integrals free from one or other

of these errors are very few in number, not including some of those which analysts have evidently re-

garded with especial favor. It will be evident, if what has been written in the preceding pages

be allowed, that nothing could be more troublesome than the very general adoption of and 03

as limits of integration when trigonometrical quantities are involved. The expansion also of

functions in the form of series of multiple angles seems in very many instances to be attended

with much uncertainty, on account of the fact that Sinw.i' and Cos w.r become discontinuous

when w is 05 : and Fourier's celebrated theorem, that any function whatever can be developed in

a series of Sines and Cosines of multiple arcs, I regard as being fallacious in all cases where

the coefficients do not converge to zero as n becomes eo . As an instance, I have no doubt that

A is not equal to 1 + Cos a; + Cos2.t7 + Cos 3a? + for any value of a; whatever. But this is

too wide a field to enter upon in this paper, the object of which is to shew that Sin co and Cos eo

are not definite quantities, and that Sin (a co ), Cos(aeo) are functions of a.

32. Perhaps it may be proper to add something in explanation of what is said in (26),

1 . 1 r " Sin a a; ,,..,».»
respecting the integral / dx, that it is such a function oi a as is constant for ordinary

'o ^

values of a, and changes sign with a. This requires that a distinction should be allowed between

arithmetical values and symbolical forms ; and such a distinction must be allowed, if any operation

with respect to a is to be performed on the expression / dx. An example will best
J^ a?

explain what is meant.

In Fourier's Theory of Heat, we find the equation

— = Cosy - 1 Cos 3y + ^ CosSy —

This equality is established (pp. l6^—174) by a method which is remarkable for its exhibiting

no symptoms of the existence of failing cases : and hence it is with surprise we read soon after, that

the left-hand member changes its value when y is comprised between certain limits. Guided

by the investigation which Fourier gives of the sum of the series Cosy — \Cos3y+ we
could have had no suspicion that the result is erroneous in any case ; yet it is manifestly erroneous

when y lies between — and — . Hence the inference is plain, that the value — is not sym-

bolically correct, because it does not contain y, of which the proper form is obviously a function.

The author, at page 208, proves that

J tan-'
[

. °^5j =e-'Cosy-le-''Cos3j/ + ^e'^'CosSy -

And consequently, admitting the propriety of putting x = 0, we obtain

\ tan"' (2 00 Cosy) = Cosy — ^ CosSy + 1 Cos Hy -

Now from this it is obvious that -^tan"' (2eo Cosy) is numerically = — for non-critical values of

V, whenever Cos y is positive ; and equal to - — numerically, whenever Cos y is negative.

M M 2
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It appears from this example that, as has been before remarked, a os, which for distinction I call

a symbolical eo, is not to be confounded with co , a mere arithmetical infinity : for the former

ceases not to be a function of a.

., , r" Sin oa; , . , i. ,i i /" Sin*-
In (Art. 26.) then when it is said that / dx is not symbolically equal to / dx,

^ ^

the assertion is grounded upon this distinction between a os and co ; and it is manifest that in

this case, supported as it is by the example quoted from Fourier, / dw is symboli-

cally a function of a, while / dm is not a function of a. This distinction between a ec

and 00 is of great importance in all definite integrals where the results are understood to be

symbolically exact ; as they are always supposed to be when they are made use of in obtaining from

them other definite integrals by differentiation or integration with regard to parameters. It will be

very obvious to any one who examines the definite integrals which have been published, that many
of them have been obtained without sufficiently observing this caution with respect to symbolical

exactness.

S. EARNSHAW.
Cambridge,

November 9, 1844.



XX. On the Connexion between the Sciences of Mechanics and Geometry. By the

Rev. H. Goodwin, Fellow of Cuius College, and of the Cambridge Philo-

sophical Society.

[Read February 10, 1845.]

1. IT is well known, that the first step in proving the elementary propositions of Mechanics

is usually to explain that for the purposes of demonstration forces are represented by straight

lines, and so simple a step does this appear to be, that it has been complained that students

frequently do not perceive that they have passed a distinct boundary-line in their transition from

Geometry to Mechanics. It becomes therefore a matter of interesting inquiry, what is the ground
of the connexion between the two sciences ? is it merely conventional .'' or only partly so ? or not

at all .'' Is the substitution of lines for forces to be looked upon as a mere ingenious device,

or has it such a natural basis in the reality of things, as to force itself in one form or another

on the mind of every one capable of appreciating the subject ? This is the question which

I propose to examine.

2. Let it be observed then, that an indefinite straight line is merely the expression of the

idea of direction : the idea of direction is a pure idea capable of no simpler expression, and, as

I think, obviously not acquired from experience : no child ever walked from one point to another

by a roundabout path, until it discovered that one path was shorter than any other ; there might

be a difficulty about understanding what was meant by a straight line lying evenly between its

two extreme points, but about the fact that you would go in one determinate direction from one

point if you wished to go to the other, there could be no doubt at all. I hold, therefore, that

the idea of direction is a pure idea, independent of all experience, and that all definitions of a

straight line are attempts, accompanied with more or less success, to give verbal expression to

.this idea*.

And so when I draw a mark on paper which I call a straight line, this is a method of re-

presenting rudely to the eye a certain direction, it enables me to speak of that direction

intelligil)ly and to reason about it, the reasoning of course referring not to the mark on the

paper, but to the ideal line or direction of which that mark is the visible memorandum.
When we speak of a Jinite straight line, we limit the idea of mere direction by introducing

the new one of magnitude. The idea of magnitude is merely that of comparison of one

quantity with another, and a straight line of certain magnitude is represented by taking two points

on a given indefinite straight line, such that the distance between them is so many times greater

than the distance between two standard points.

Thus a finite straight line given in position is the expression of the combined pure ideas

of direction and magnitude ; and a mark on paper standing for such a line is the exhibition to the

eye of these two ideas.

And hence, further, we may say that all propositions concerning indefinite straight lines art-

deductions from tlie pure idea of direction ; all propositions concerning finite straight lines not

given in position are deductions from the pure idea of magnitude; and all those concerning finite

straight lines given in position are deductions from these two pure ideas combined.

• Sec Nute (A).
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We may put what has been said in other words by asserting that all properties of straight

lines are functions either of their direction, or their magnitude, or both ; a straight line has no

other elements than these, and therefore every thing which is predicated of a straight line is

predicated simply in consequence of that straight line having a certain direction and a certain

magnitude.

3. Now from this point, I think we can see a simple road into Mechanical Science ; for if

there be anything physical which depends on no other elements, than those of direction and

magnitude, there is no reason why a mark on a piece of paper should not stand for this physical

embodiment of the two ideas as well as for the geometrical: and further, if there be anything

physical, of which it can be predicated that it has no other elements than direction and magni-

tude, then all propositions which have been proved for straight lines will have their corresponding

propositions, in fact will be true with a change of phraseology, in physics.

In devisinof a method therefore for representing to the eye the forces on which we reason in

Statics, the question is not whether a force can be conveniently represented by an ideal straight

line, but whether a force has such qualities that the same representation which serves for demon-

strations respecting straight lines, will also serve for demonstrations respecting forces.

4. Now when we come to examine a Statical force, we find that it does involve, or rather it

is a physical expression of, those two ideas of direction and magnitude, and of no others. For

we measure a Statical force by the pressure which will counteract it ; and what are the questions

as to the counteracting force.' these two—in what direction it must be applied, and with what

intensity ; it is clear that neither of these is sufficient without the other ; for a particle left to

itself under the action of a force will move off in a certain determinate direction, and it is a truth

which requires no proof, but is purely axiomatic, that a force, however great, applied in any

other but the exactly reverse direction will not prevent motion ; and so likewise it is a self-evident

fact, that the counteracting pressure must be of a certain determinate magnitude and no other.

Thus, to a person who understands what I mean by the term Force, it will be apparent that the

only ideas involved, are those of direction and magnitude ; any cause tending to produce motion

which involves any other element for its complete determination is not a Force, it may be called

so popularly, but jt is not included in the mathematical definition.

And it may be observed here, that as in Euclid, the definition given of a straight line, viz.

" that it lies evenly between its extreme points," is virtually superseded by the axiom, that " two

straio-ht lines cannot inclose a space," so in elementary books of Mechanics, although the definition

is o-iven of a force that it is " any cause which produces or tends to produce motion," yet the

fundamental proposition is usually made to depend on the axiom or fact (or whatever it is to be

called) that a force may be supposed to act at any point in its direction, which is the same thing

as saying, that if the magnitude be given the force depends on direction only.

When the science of Mechanics was first studied, the simple view of force which I have given

would, of course, not be immediately taken ; the effect of force would probably be supposed to

depend on other circumstances ; but this is a matter of no consequence : the question is merely,

what we mean by force now, and what it is supposed to mean in all mechanical treatises ; and

it signifies not whether we start with the idea of a cause of tendency to motion involving the ideas

of direction and magnitude only, and call the embodiment of that idea force by definition, or

whether we examine the world we live in, and shew that such are the elements and the only

elements of force.

5. Let it be granted then that the only ideas involved in that of force, are those of direction

and magnitude, and we come to the case (already spoken of by anticipation) of a thing physical,

involving exactly the same ideas as the straight line in Geometry ; and we therefore lay down

this proposition, that every theorem regarding straight lines will have its fellow in Mechanics, that
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the theorems of the one science can be translated into the language of the other, and that the

demonstration belonging to figures in which the marks represent straight lines will apply pre-

cisely as well to similar figures in which the marks represent forces; for in both cases the

representation must be conventional : no inkmark can be a straight line, and no proposition

concerning straight lines can be true of the inkmarks which represent them, and thouo-h it

requires a greater abstraction of the mind to speak of an inkmark as a force, yet the speaking
of it as a straight line is certainly as really conventional, and the proper utility of the figures

in both cases is that they assist the mind artificially in drawing deductions from the pure
ideas of direction and magnitude.

Velocity is another instance of a thing physical involving the ideas of direction and magnitude
only, and of which therefore it may at once be predicated that the propositions respecting the

straight line refer to it mutatis mutandis.

6. When it is said that every proposition respecting the straight line will have its fellow

respecting force, it is of course equally true that each proposition in Mechanics will have its

fellow in Geometry, and it will be asked, what proposition in Geometry corresponds to the parallelo-

gram, or rather the triangle of forces : to which I reply, that when two

lines AB, BC are given in position and magnitude, the straight line

joining the points A and C will be as strictly their geometrical

resultant, as the force represented by AC will be the resultant of

the forces represented by AB, BC : for by speaking of the resultant

of two lines we necessarily imply that the two lines are given to

determine some third object, and that object must be a straight

line, since the resultant of two things of the same kind must be of the same kind with those

which produce it, and if there be any line which is to be considered as the resultant of AB BC
it must be AC, since this is the only new line whose position and magnitude is in any way
whatever determined by the positions and magnitudes of AB and BC. If therefore we mean
by the resultant of two straight lines given in position the straight line which is determined
in magnitude and position by those straight lines, and this seems the most obvious meaning to

give to the term resultant, then AC is the resultant of AB and BC.
The proposition of finding the resultant of two straight lines given in position may be

generalized into that of finding the resultant of any number of straight lines forming an imperfect

polygon. For if all the sides of a polygon be given except one, then that one will be the

resultant of all the rest, inasmuch as it is the only new line whose position and magnitude
becomes determinate in virtue of the other sides being given. It may be said that the extremity

of one of the last sides may be joined with one of the angular points, and that thus some
other line will be determined, but the obvious answer is, that this will not employ all the data
and that the line so determined will be the resultant of all those which are really made use of.

In fact, a straight line may be given just as really, though not so directly, by givino- in position

all the other sides of a polygon of which this straight line forms the last ; to give those other

sides is, I say, precisely the same thing in fact as to give the line itself.

Conversely, a straight line may be considered as the resultant of any system of straight lines

which with it form a polygon ; and also in such polygon any one side may be called the

resultant of all the rest; if two be missing, they cannot be replaced; but if one only, then is

that missing one just as fixed and determinate as if it were represented as part of the polyo-on.

In speaking of the direction of lines, it is of course necessary to distinguish between a line

AB, and a line BA, the direction of the one being considered

exactly the reverse of that of the other. Thus, in the pre-

ceding investigation AC is the resultant of AB, BC, not of

BA, liC: the resultant of those latter lines would be found by

taking AD ])arallel and equal to BC : then BD would be the

resultant of BA and BC.
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7. The principle of the third side of a triangle being the resultant of the other two may

be applied to demonstrate certain propositions in plane Geometry, which I here introduce for

illustration's sake.

It may be shewn from this principle, that the lines drawn from the bisections of the sides

of a triangle perpendicular to the sides will pass through the same point. For suppose we

bisect two of the sides, and draw lines perpendicular to them, (it is of course necessary to

bisect the sides, because the middle point of a line is the only one which is similarly related to

the two extremities), then these indefinite lines determine a new point, viz. the point of inter-

section ; now if we perform the same operation on the third side, the result must be such that

no new geometrical element is determined, since everything which is functional of the third side

is already implicitly involved in the knowledge of the other two ; therefore this third line must

pass through the point of intersection of the other two, since if it did not it would determine

two new points, which, by what has just been said, is impossible.

The same reasoning applies to the propositions that the lines bisecting the angles of a triangle

pass through the same point; and that the lines joining the angular points with the bisections

of the sides pass through the same point.

And, I may remark, that we have here the explanation of the fact, that some propositions

in pure Geometry admit of simpler proof by referring to mechanical considerations than by the

ordinary geometrical methods ; as for example the last proposition of those first cited finds its

solution at once in the property of the center of gravity of a plane triangle.

8. Taking the view which I have endeavoured to explain of these resultants, it will be

obvious how close the analogy is between this case and that of forces ; ^

for if AB and BC represent two forces, then AC we know represents

their resultant, and in general if two sides of a triangle represent

two forces their resultant is given by the third, and still more generally

if the sides of an imperfect polygon represent forces their resultant

is given by the last side. Now the same thing holds in this case a~

which was true in the case of Geometry, viz. that if AB, BC be given in position and

magnitude, the only third term determined is AC; and therefore if AB, BC represent two

forces, the magnitude and direction of the force AC is at once determined, but this can be

asserted of no other. Now I do not say that this could be considered as a proper proof of

the triangle of forces ; but I do think that it is a way of considering the subject which, by

careful thought, will lead to the intuitive perception of the truth of the proposition. It would

be impossible to admit this as the only proof that the force AC would balance the two AB, BC,
but at least it shews that AC is related to AB and BC in a manner in which no other force

is related, that it is at once determined by them, so that to give them is to give it, and that

this can be predicated in the same sense of no other force ; and from this it seems possible by

degrees to arrive at an intuitive perception of the truth that AC is in fact the resultant of

AB, BC- And after all this is the point at which we should endeavour to arrive ; the funda-

mental proposition in mechanics ought not to have a merely artificial basis, and to be such that

the mind rather concedes it because it cannot deny it, than sees it to be true ; and I cannot feel

a doubt but that there must be some method of viewing the subject, which if we adopt, the

fundamental propositions of Mechanics will gradually grow into as perfect axiomatic clearness as

do the simple propositions of Geometry*.

9. To illustrate this point by contrast, let us for a moment consider the proof which is

frequently given in elementary treatises of the triangle of forces, I mean that which is due to

See Note (B).
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Duchayla. Now this proof is certainly convincing; that is to say, it is not possible to point

oat any flaw in the steps of demonstration, but for persuading the intellect it seems to have no

kind of fitness. The proof is essentially artificial, and is based on a simple case of composition

of forces which seems very insufficient to suggest, as it is pretended that it docs, the result

sought. The character of the proof seems, if I may so express myself, to be that of cunning
rather than honest argument ; and yet I think that, however unsatisfactory the proof may appear

in this light, we must feel convinced that, supposing it accurate as we do, there must be a meaning

and principle about it at bottom, and that these are only smothered and obscured by the artificial

contrivances of the demonstration. This I think we shall find to be really the case if we
examine the proof in the light of the preceding observations. The first part of the proof seems

to involve very faintly the idea of force ; the only principle introduced being this—that a force

may be applied at any point in its direction ; and thus the distinctness of the proposition as a

mechanical one seems rather obscured, but this difficulty of course vanishes if this first part of

the proposition be what I should call a proposition in the science of Pure Direction ; the proof

involves the idea of force only indirectly, and this is exactly what ought to be the case if the

proposition be true of several things, of which force is one : it is equally true of velocity, for

example: force is an embodiment of the pure idea of direction, and therefore all theorems of

pure direction will belong to force, not singly, but to it in common with all other emliodinients

of the same idea. In fact, the first portion of Duchayla's proof appears to be simply this, given

two straight lines in position to ascertain the direction which will be determined by them.

But direction is not the only idea involved in force : there is magnitude as well, and there-

fore there is a second portion of the proof we are considering, in which it is shewn that, allowing the

triangle of forces so far as direction is concerned, that part which regards magnitude necessarily

follows ; the extreme simplicity of this part of the proof shews how intimate the connexion must be

between the two parts of the proposition, a connexion which I think we should not have been led to

expect from anything occurring in the proof itself, for, although the fact that the direction of

the resultant of two equal forces will bisect the angle between them is taken as suggestive of

the general law of direction, there is not a shadow of a hint that in this simple case the law will hold

as respects magnitude : so that a very remarkable proposition is proved by a mere artifice without

apparently the least reason in the nature of things why we should anticipate the result. But if we
consider the proposition from the same point of view as that from which we regarded the question

of the resultant of two straight lines, we shall see that there is a necessary connexion between

the two propositions, I mean those respecting direction and magnitude ; for when we had two

lines AB, BC given, the resultant AC became at once known both in direction and magnitude ; the

two things were co-ordinate, in fact, as this word suggests, they were merely two new co-ordinates

of C which became known from the two given co-ordinates AB, and BC.

10. On the whole, therefore, I would urge that the proposition which we call the triangle of

forces is a result of the combination of the pure ideas o{ direction and magnitude, and will therefore

be true in some sense of all concrete existences which are embodiments of these two ideas and

no other: and therefore I explain the fact of the unmechanical character of the proof we have been

considering by observing, that the proposition is more general than the merely mechanical one,

includes in fact the triangle of forces, the triangle of lines, the triangle of velocities, the triangle

of couples, and perliaps other cognate propositions.

11. This subject will, I think, receive further elucidation as follows:

If / represent any quantity in magnitude only ; then if the quantity depend on direction also, it

will be necessary to nssign the direction in which / is to be measured ; but if this be done, it is

possible to affect I l)y a symi)ol or sign of afl'ection, which shall indicate for itself the diiection

ill which it is measured. This symbol it is well known is e"^^', which is such that if/ represent a

Vol.. VIII. Paht III, N N



274 Mil. GOODWIN, ON THE CONNEXION BETWEEN THE SCIENCES

line as to magnitude only, then le^^-^ will represent the same line measured in a direction

making an angle 9 with some fixed line.

Now if ABC be a right-angled triangle and BAC = 6, and AB = I in

magnitude,

then AB = le^ ^~i = / cos + \/'-V I sin 6

= AC+ \/^i .BC; /
or, if we omit v' - 1 which is a sign of affection, i

AB = AC-\- BC.

We may therefore say, that regard being had to direction as well as magnitude, AB the

hypothenuse is the sum of the two sides AC and BC, or perhaps it would be more distinct

to say that the hypothenuse is the equivalent of the sides, that is to say, that considered as

embodiments of the ideas of direction and magnitude one is equivalent to the other ; if the

direction be disregarded it would be absurd to say that AB = AC + BC, and in like manner, if

direction only be considered, there is no equivalence between the hypothenuse and sides, but com-
bining the two there is an equivalence, and one may be substituted for the other in all sciences which
are developements of these two fundamental ideas.

I may remark further, that we may consider the symbol le^^-^ as the type of the sciences

depending on these ideas, or rather one may say, that the symbol le^'^^ is the germ from which
may be evolved the fundamental principles of these sciences.

12. One more observation may be made on this symbolical representation. The symbol

le^"^-^ is as we know equivalent to the expression /eos0 + v — 1 /sin 0, and therefore if this symbol
were given to a person as the representation of force, it must at once strike him that the fundamental

property of force was that of being made up of two other forces, which we will call as usual

its resolved parts. Now what I would wish to "observe, is, that this connexion supposed to be
suggested by the symbolical formula is precisely that which would probably be suggested to the

mind when it first began to engage itself with mechanical studies.

For suppose we have a force tending to draw a particle P in any direction OP; then if we wish

to examine the nature of this force, and determine its laws, the obvious p p

artifice would seem to be to constrain the particle in various ways, and

reason as to the result. Suppose, for instance, a plane drawn perpendi-

cular to OP and indefinitely near the particle P, then it is manifest that

the particle will not move at all, this is a point which no one will

question, and therefore we arrive at one property of force, namely, tiiat

it produces no effect in a direction perpendicular to its own. But,

suppose we incline the plane at some angle 9 to OP, then motion "

will ensue if not checked, and the question is, what force acting along the plane will be just

sufficient to check motion ? To determine this, take any point O in the direction OP and

draw OP' perpendicular to the constraining plane, then it is easy to see that whatever relation

the line OP has to the original force, the same relation has P'P to the resolved part in the direction

PP' ; to make this apparent, I shall call a plane drawn through a point in the direction in which a

particle has a tendency to move and perpendicular to that direction the impossible plane, and

then the definition of OP will be, that it is the distance between the impossible planes cori-esponding

to Panel 0. now suppose any two other parallel planes to be drawn through P and O, and let

them be perpendicular to PP', then P'P is the distance between these impossible planes, as OP was

between tile two former. This being the case, it will be allowed that if OP represents the original

force, P'P will represent the resolved part in the direction PP', that is, the resolved part will
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be the original force reduced in the proportion of FO : PP' or of 1 : cos t) The question remaining

would be, whether a force could properly be represented by the distance between two impossible

planes, a question which might perhaps be answered satisfactorily and without much difficulty if

we consider tiiat a finite line taken in the direction of a force will represent the two fundamental

properties of force, namely, magnitude and direction. But if it appear in this way that PF
represents the effective part of the force acting on P it will be seen that in like manner P O repre-

sents the ineffective or destroyed part. And therefore the result of the artifice of constraining

the particle P would be that when a force I acts on a particle, which is constrained by a

plane inclined to the direction of the force at an angle Q, the force is equivalent to a force

/cos 9 which is effective and a force / sin which is destroyed, or a force/ cos in the direction

in which motion is possible and a force / sin 6 in the impossible plane. And this is exactly what

would result from considering force under the light of the formula

le^ ^~' = / cos e + v^^l I sin 0.

13. This symbolical representation*, though depending on refined principles, is nevertheless,

I apprehend, valuable in the discussion of the question before us, because it is generally admitted

as a complete method of geometrical representation, and those who study the question must

perceive that its complete character is founded on something much deeper than a mere symbolical

artifice, inasmuch as it expresses the equivalence between a line, considered in its direction and

maa;nitude, and the two rectangular projections of that line. Now it has been the intention of

what immediately precedes to point out the corresponding necessary connexion between a force

and its resolved parts, and the perfect applicability of the same symbolical method to the two

cases tends, it is presumed, to strengthen the characteristic view of this paper, viz., the essential

identity of the Geometrical and Mechanical Sciences, considered as developements of the same

combined fundamental ideas.

l-l. The preceding remarks have been wholly devoted to the consideration of force as acting

on a single particle ; it was my intention to have attempted a discussion of the case of a system of

forces acting on a rigid body, and to have shewn how the science of Mechanics diverges from that

of Geometry, by the introduction of this new idea oi Rigidity; but perhaps what has been already

said will be sufficient to put in a clear light the fundamental views which it is my desire to

explain : my belief is, that these views contain the shadows at least of important truth, and

that they will be seen to do so by any one who will devote attention to the subject. The
great question is, what are the fundamental ideas of Elementary Mechanics, and what of Geometry ?

Are they the same, or are they cognate, or are they altogether distinct .'' If the last, then

the resemblance between certain demonstrations and propositions in the two sciences is a curious

and unexplained fact ; but if the second or the first, then the explanation is obvious. And if

the relation of the two sciences be such as I have represented it, then it seems to me to be most

important that it should be recognized, and that for more reasons than one ; first, this view

connects two streams of truth, usually I believe considered distinct, and traces them to one

fountain head, and this is an important simplification, in the same sense and for the same

reason tliat it is an important simplification to trace two phenomena to the same physical cause
;

but, again, the foundation of geometrical truth is a matter of less question in general than that

of mechanical ; it is I suppose universally allowed that the propositions in pure Geometry are

an they are, because they could not be otherwise, that they are necessary truths in every sense

in which truths can l)0 necessary, but there is not, I apprehend, such clearness of thought prevalent

respecting mechanical truth, it is difficult to make out from the ordinary books on the subject

See Note (C).

N MS
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what the writer's belief is respecting the nature of the trutlis which he is developing ; now this

point is entirely resolved if it is shewn that the principles of Mechanics are identical with those

of Geometry, that the two sciences not only have certain analogies, but are in essence identical

as being two developements of the selfsame ideas, and hence, if this be true, we see at once

the necessary character of the truths of Mechanics, or at least we shew them to stand on the

same ground as others which are supposed to be admitted as necessary. I will close this paper

by saying, that although I am well aware that what I have said in favour of the views propounded

may not with many appear to amount to demonstration, and indeed perhaps demonstration in

such a subject is not altogether possible, yet 1 am persuaded of their fundamental correctness

by this consideration as much as by any, viz., they do seem to point out the road to absolute

intuition of truth, they seem to mark out a method of thought according to which the elementary

truths of Mechanics will present themselves gradually with axiomatic clearness. And certainly,

whether this method be true or not, it cannot I think be doubted by any one who has reflected

on the foundations of truth, that this is the natural course, viz., that all demonstrations gradually

merge in intuition, and that all human knowledge converges towards that absolute intuition which is

the attribute of the divine mind.

NOTES.

Note (A), page 26;).

The word direction appears to be the best abstract word for expressing the idea which is intended to

be embodied in the concrete form of a straight line; the evil of concrete terms is that they appear to

assign physical existence to that which can have none, and by thus leading away the mind from the

true idea tend to prevent the intuition of geometrical truth. If the idea intended to be embodied in the

terms point, straight line, and angle be conceived in their abstract form, the simple propositions respecting

them at once assume the character of axiomatic truth. I will here put down what appear to me to be the

best abstract terms for expressing these three geometrical elements

—

1

.

A point = Position.

2. A straight line = Direction.

3. An angle = Inclination of directions.

I will illustrate the intuitizing force of these terms by applying them to the

doctrine of parallels. The idea of parallelism is that of identity of direction with-

out identity of position ; and from this it is evident that a straight Une CD falling on

two parallel lines AB . A'B' makes the alternate angles equal ; for since the question

is one of direction only, whatever is predicated of the line AB may be predicated

of the line A'B', since they differ in position only and not in direction.

Note (B), page 272.

The proposition in pure Geometry which seems more than any other connected with Mechanics is

Euclid I. 32, and it will be worth while to point out the self-evidence of this proposition both for its

own sake, and also from the assistance it will afford in the intuition of the cognate mechanical proposition.
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I observe first, that Euclid's last corollary seems to be the easiest proposition to grasp, and will be
admitted without formal demonstration as soon as its meaning is apprehended. For if we consider the

changes of direction which a straight line undergoes by successively coinciding with the sides of the polygon
it is clear that when it has been made to coincide with all in succession, it will at last come into its original

position, but a line which has revolved and come into its original position must have described four right

angles; whence the proposition is manifest. From this of course the first corollary and the proposition

itself immediately follow.

It appears therefore that Euclid i. 32. is only a form of the self-evident proposition, that a straight line

being made to deviate from its original direction cannot assume it again until it has deviated through four
right angles.

Now the condition of forces being such as will produce equilibrium, is simply that the lines respecting
them shall form a polygon. And this proposition is I believe only an expression of the fact, that two fores

cannot counteract eacli other unless they act in the same straight line, or, to express myself more in con-
formity with the geometrical proposition, that if a force has been made to change its direction it cannot
produce the same effect as before unless its deviation has been through four right angles ; but this thought
I have not yet fully developed.

Note (C), page 275.

It may be well to remark here that the symbol re^^-' being the complete expression of magnitude and

direction is also the complete expression of linear and angular distance, if r be measured from a fixed point,

and 6 from a fixed straight line: consequently re^^^^ may be taken as the complete position-index of a

point, or of a physical particle, in a given plane.

If we consider a particle whose position is changing with the time (t), then the symbol -r-.re*^'-^ will

express the complete variation of the position-index, and will therefore give the magnitude and direction of

its velocity.

(f
In like manner the symbol -7-5 . re*"'-' will give the complete variation of the velocity, and will therefore

be the symbol for the accelerating force in both magnitude and direction.

Now suppose the particle to be in motion under the action of any forces, the complete expressions for

which are P.e^^^~-^, P'.^'^^, Sec: then if M be the mass of the particle we shall have for its equation

of motion

M-^.rp«^-""'=J'e*>^ + P'e*'^^' +
at

This equation I have given merely in illustration of the principles of the preceding memoir, but in the

Cambridge Mathematical Journal, (Vol. iv. p. 177.) I have shewn that the symbol re^^^^ may be applied

to mechanical investigations with considerable practical convenience.

H. GOODWIN.
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Fellow of Cuius College, and of the Cambridge Philosophical Society.

[Read May 12, 1845.]

In a former Memoir, I have endeavoured to point out the a priori and necessary character of the

fundamental proposition in Mechanics, by connecting it with the propositions of Geometry, and so

bringing the demonstrative character of the two sciences into one and the same point of view. I

there pointed out that the only elements of Force are Magnitude and Direction, and therefore that

the only simple ideas of which the term Force is the expression are those of Magnitude and

Direction, and hence, that all propositions respecting Force ought to follow demonstratively and

perhaps intuitively from the possession of those two ideas combined, even as the propositions

respecting straight lines arise necessarily from the same two ideas. In the course of that Memoir,

I spoke of such a Science as that of pure direction, which should include within itself the Sciences

of Geometry or rather of Position, of Kinematics, of Mechanics, and possibly other Sciences

;

it is the design of the present Memoir, to attempt to establish the fundamental Proposition of such

a Science, or, as perhaps it may be more properly called, the pure Science of Magnitude and

Direction.

1. The fundamental problem will be, to determine the combined effect of any number of

causes, the magnitude and direction of each of which is given. It will be seen that this statement

is perfectly general ; for a line given in a certain direction may be looked upon as cause, the point

in space determined by its extremity as effect, or if two lines be given, having an extremity in

common, the line joining the other extremities which is thus determined may be regarded as effect;

so likewise, if a particle be animated by two simultaneous velocities, they may be looked upon as

causes, the resultant velocity as effect ; and if a particle be acted upon by two forces, the resultant

pressure will be the effect which results from the two given forces as causes ; and hence it will

appear, that the fundamental problem is to find the combined effect of any number of given causes.

2. Now, if the direction in which all the causes acted were the same, it is clear that the

combined effect would be found by mere addition of the quantitative symbols which measure

their respective effects ; the only postulate here involved is, that two causes do not modify each

other's effects, a postulate which is of the nature of an axiom, and which merely expresses such

truths as these, that if a point be taken in a straight line at a distance (a) from a fixed origin,

and another point at a distance (6) from the former, then the distance of the point last deter-

mined from the origin will be a + b, or again, that if there be two forces, one of which can

lift a weight P, and another a weight Q, then the two together can lift a weight P + Q.

3. Hence, when the direction of a number of causes is the same, the process of addition

serves to determine their combined effects, but when the directions are different, it will be necessary

to determine according to what law variation of direction modifies the effect of a cause ; in other

words, suppose we take P as the quantitative symbol of the effect of a certain cause in a given

direction, what will be the symbol for the effect of a cause of equal intensity whose direction

makes an angle G with the given direction ?
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Now, it may be assumed, that the effect of the oblique cause can be measured by a symbol

of the form Pf(9), where f{9) is a modifying function, which would be 1 if 9 were zero

and whose general form must be determined. This assumption appears admissible, because if

there be a symbolical expression for the effect of an oblique cause, it can be of no form more
gen>.ral than that assumed, and if there be no such symbol, this will appear by the impossibility

of determining the form of f(9).

4. To determine the form of the function /, I observe, that the fundamental law of such

causes as we are considering is, that the exact reverse of any cause whose magnitude and direc-

tion are given is one of equal magnitude and exactly opposite direction ; so that, if we denote

opposite affections by + and - , then + P must change into — P, while 9 increases from to tf :

moreover, the change of P, |or rather of Pf(9)}, as 9 varies continuously, must manifestly be

continuous, and not only continuous but uniform, that is, the rate at which the affection changes

from + to — must be the same at all stages of the change, since there is no reason why the

change should be more rapid for one value of 9 than for another :—speaking symbolically, it

may be said that '
' must be the same for all values of if a be a given quantity.

f(.9)

This law, to which f{9) is subject, and which flows at once from the pure idea of direction,

is sufficient to determine the form of /. For suppose the angle tt to be divided into n equal

parts ; then, if the direction vary through one of them, the symbol representing the effect of

the oblique cause will be P/l — j; if it vary through two such divisions, the symbol becomes

Pfi.-\f^-], or p|/(-j i, fit also becomes P/|— IJ, and so on; and when the direction has

varied through n angles each equal to — , the symbol becomes ^yl ~ ) > , but by what has just

been said this symbol must represent the exact reverse of + P, and must therefore be = - P

;

hence we have

/ -) = (— 1)" = cos- + (- nisin- ,

and if we put — = 9,
n

fi9) = (- l)" = cos0+(- l)*sin(9 (J).

It will be observed, that n may be made as large as we please, and therefore, the condition will

1)6 satisfied of 9 varying continuously from to tt ; also the change of/ is not only continuous

but uniform, for it h clear that the expression (- 1)" satisfies the condition that "—
: ——^-^

shall be the same for all values of 9 ; and this follows necessarily from the mode of determining

f, without assuming that /(-tt) = - l, for the fundamental law of variation of/ is expressed by the

('ijuaticm

!/(!))"=/<«
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where 3 is any constant angle, the value of which is indifferent so far as the uniformity of

variation of f(6') is concerned; and it is clear that the form of / as thus determined satisfies

the condition of uniform variation corresponding to the continuous variation of Q.

Hence, therefore, the formula {A) may be regarded as an expression for the law, according

to which change of direction affects any cause, which depends on magnitude and direction only,

and which varies uniformly to its direct opposite while its direction varies continuously to the

exactly opposite direction.

5. I shall now interpret the symbolical equation {A) ; we have

f{d) = cos0 + (- i)i sin^;

hence, /(O) = 1,

^^
' -J.

and therefore the equation

mav be written thus.

P/(0) = P cos + ( - l)i P sin e

P./(0) = Pcose./(O) + Psin0./g) (5).

From this form it may be concluded, that the equation expresses this fact, that the effect of an

oblique cause is measured by that of two whose directions are at right angles to each other,

the direction of one being the original direction that of the other the perpendicular to it, and the

intensity of the former being measured by P cos Q the intensity of the latter by P sin ; and

this comes to the same thing as saying that any cause is equivalent to two other causes, the

directions of whose action are perpendicular to each other, and whose intensities are measured

by P cos and P sin 6, 6 being the angle which tlie direction of P cos 9 makes with the original

direction.

6. The proposition which I have just been endeavouring to establish is the fundamental

one of the pure science of Magnitude and Direction, and may be called tlie principle of the

resolution of causes ; from it may be deduced with ease rules for the calculation of the resultant

effect of any number of causes, since we have only to resolve them in the same directions and

then add the effects ; and if the demonstration given be free from solid objection, we shall have

established a proposition which contains within itself the theorems of position, the theorems of

the composition of forces, of moments, and of velocity both linear and angular.

7- As it may appear improbable that so general a proposition as that which I am con-

sidering should be capable of proof without reference to particular cases, I am anxious to examine

the objections which may be made to the proof just given. But before doing so, I would observe,

that it does not seem unreasonable to suppose a priori that it would be possible to establish

a formula indicating the variation of intensity of a number of causes, which have been all brought

imder the same definition by saying that they are such as depend solely on intensity and direction
;

we may consider it as certain that a law which applies to one will apply to all, and the only question

is, whether we can establish such a law by reasoning which shall apply equally to all causes

comprehended in one definition. Now it is allowed on all hands that the symbols + and - are

proper symbols for exactly opposite affections, and therefore it cannot be objected to, that we

should consider + P and — P as symbols of two causes of equal intensity but exactly opposite in

direction ; the question simply is, according to what law can + P vary continuously and uniformly
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into — P while the angle of direction varies from to two right angles, that is, from the orio-inal

direction to the exact opposite. The answer given by the preceding investigation is, that the symbol
e

(- l)" is that by which P is to be affected; the equivalence of this symbol to cos + (— l)* sin

is a proposition of pure analysis, and it must therefore be allowed that cos 9 + {- \)i sin 6 is the
fl

true sign of affection for P, if it be granted that (- ly^ is the correct sign of affection; in fact,
B

the symbol (— l)" expresses the continuous passage of a quantity from + to — , or of an affection

to the exact opposite, it is an algebraical fact that the symbol cos ^ + (— i)5 sin 9 will express

the same. If therefore there be any flaw in the reasoning it must be in that part by which the

form of the symbol (- 1)" is established; but on reviewing that part it will be seen, that the only

assumption is that an oblique cause can be symbolized by an expression of the form Pf{9), where
P is the magnitude of the direct cause; for if it be granted that Pf{_9) is the expression for

an angle 9, it seems evident that P\f{ff)\^ will be the expression when the angle is doubled,

since P\f(9)\'' is derived from Pf(6) according to the same rule by which Pf{9) is derived from

P; the only question therefore is as to the legitimacy of the assumption of the symbol Pf(0),
and this is, I think, justified by the consideration that the expression for the oblique cause, if

there be one, can involve no other quantity of the same kind as P, and therefore P must occur

as a factor of the expression; the form could not, for instance, be Pf{9) + <p(9), since <p{9)
would be a quantity incommensurable with P. But if this step be granted, the conclusion that

f(9) = (- 1)" seems inevitable, and the equation f(9) = cos9 + (- l)' sin 9 is consequently true,

being algebraically deducible from the former.

8. Supposing then the demonstration free from real objection, we may regard the formula
e

f{e) = (-1)- = cos9 + (-l)i sine (A)

as expressing the law, according to which a cause depending solely on magnitude and direction

w ill vary to its exact opposite, a law true in the nature of things and which will only require

to be interpreted in the case of different causes which come under the definition ; the question

will arise, can the formula be interpreted in a manner free from objection, at least, can an
interpretation which can be depended upon, be put on a symbolical formula from d priori

considerations ? I have already transformed the equation (A) into the equation (B), and have
made use of that form of the equation to give this interpretation, that the effect of an oblique cause

is measured by that of two whose directions are at right angles to each other, the direction of
one being the original direction that of the other the perpendicular to it, and the intensity of
the former being measured by P cos 9 that of the latter by P sin 9. Now perhaps this inter-

pretation may appear doubtful, when we consider that the .sign + connects two quantities which
express causes acting not in the same direction, and whose effect cannot therefore be summed
according to the usual rule; but I think this difficulty will disappear when we consider that the

possibility of resolution of a cause into two components is an obvious truth which may he seen

independently, that is, it is in general possible to find two causes in given directions, whose
effect shall be the same as that of a given cause, and the only peculiarity of the case in whicli

the directions of these causes are at right angles, is that the effects are entirely independent of

each other; for it will be observed that the continuous change of a cause with its exact opposite

necessarily introduces the idea of an impossible plane, or a plane in which the cause produces
no effect whatever; for it is clear that a plane equally inclined to the primitive direction and
the exact opposite of that direction will be a plane of indifference, or one in which tlie cause

produces no effect ; it may be seen therefore, without reference to the e(iuation (/?), that an oblique

cause may be supposed to be the resultant of two components, one in the original direction.

Vol. VIII. Taut III. Go



282 Mr. GOODWIN, ON THE PURE SCIENCE

the other in the plane perpendicular to it or the impossible plane, and this being the case, all

that is done by equation (B) is to assign the relative magnitudes of the two components. We
have, in fact, these two things known respecting the oblique cause which we denote by Pf(6),

first, that

P.f(e) = Pcos0./(O) + Ps\ne.f(jj ; (B)

and, secondly, that the oblique cause may be supposed to result from two component causes,

for one of which 6 = and for the other = -, and putting these two things together, there

can, I conceive, be no doubt as to the conclusion that these components are represented by P cos 6

and P sin 6 respectively. I am not saying that the auxiliary consideration just used is really

necessary for the interpretation of the equation {B), for I am inclined to believe that the generality

of symbolical interpretation would justify us at once in construing the equation thus:—the effect

of P acting at an angle = the effect of P cos acting directly, combined ivith the effect of

P sin acting at right angles to the original direction ; but at least the objection, if there be

one, seems removed by tiie consideration adduced, and that is my reason for adducing it.

9. On the whole, I would submit that the preceding investigation not only is free from

solid objection, but is in fact the true mode of viewing the subject; because it rests upon the

leading idea of a uniform continuous passage of a cause from + to -, while its direction varies

continuously. And if it be objected, that physical laws cannot be conceived of as the results

of symbolical equations, it is to be answered that this is exactly the advantage of this mode

of viewina the subject, that it shews that such laws as that of the composition of forces are

not physical laws, in the sense of being laws known by experience or by induction from

observation, but are necessary laws in the most exact sense of the word : there is nothing more

incredible in the fact of Demoivre's formula containing the laws of Mechanics, than in that of

its containing the laws of Space, and it is as credible that it should be capable of proof from

that formula, that three forces are in equilibrium when they are each proportional to the sine

of the angle contained between the other two, as that the sides of a triangle are proportional

to the opposite sides. The fact of our making these conclusions depend on the interpretation

of symbols is in the present state of analysis no objection at all, and it may well be supposed

that some such method would be necessary in order to bring into one investigation subjects

at first sight apparently so distinct as the laws of space and the laws of equilibrium of forces.

10. And I think it cannot be said that the method adopted in this paper is so artificial as those

which are sometimes applied to what are called fuiictional proofs of the rule for the composition

of forces; for although the quantity (-1)* or \/- 1 enters into the investigation, still it is to

be remembered, (and I wish to lay great stress upon this,) that this quantity is not introduced

by any principles peculiar to this paper, it enters by mathematical necessity and must be inter-

preted ; the only equation which it is incumbent upon me to prove is the equation f(d) = (- i)n,

and if this be established, the remainder necessarily follows. Indeed, so far from this method

being of an artificial and therefore incomplete kind, I would venture to question whether the

unsatisfactory character of some functional proofs of the law of composition of forces, and the

extremely complicated nature of all, may not arise from the oversight of the fact that a function

exists, which will express an oblique force in its totality and not only so far as it is effective.

On this subject, however, I will not enlarge, but only remark that it seems to me a point of

great beauty that a symbol, of such peculiar form as cos + (- l)* sin 9, which meets us at

every turn in analysis, should be the complete expression of a law by which all nature is

governed.
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11. I have now concluded all that I wish to say on the principal subject of this paper,

but before bringing it to an end I am desirous of making some observations on the general

question of the transition of quantities from the + to the - affection, which will, I believe, illus-

trate my general design.

That design may be stated to have been, to shew that there is in the nature of things

one law according to which causes, which depend solely on magnitude and direction, vary with

their obliquity from a given direction to the exact opposite, and according to which the cause

P varies till it becomes — P. Now in considering the general case of the passage of a quantity

from the + to the - affection, it is to be observed, that if the quantity be necessarily of one

dimension, as time for example, then future time being denoted by + t, past time will be denoted

by — t, and t will vary from + to — by simple diminution and passage through zero ; in this

case the sign \/- 1 can have no place as a sign of affection; I believe there is no conceivable

interpretation to be put upon t y/ - 1. And in like manner if distance be measured along a

fixed axis the variation from + to — is by simple diminution ; but, if space be considered in

two dimensions so that a line may assume all oblique positions in varying from + to - , then
e

the symbol (-1)" indicates the law according to which the change from + to - takes place.

Here then are two laws according to which the affection of a quantity may be reversed, and
there may possibly be others, and probably instances might be found in which such chano-e is

abrupt not continuous; for instance, Dr. Peacock illustrates the properties of %/- ' by saying*,

that supposing + o to represent property possessed, and - a to represent debt, then \/^\ .n

may represent property deposited " which admits of similar relations when considered as property
possessed and property owed by another person;" it must however, I think, be admitted, that

the use of the symbol v — 1 in this case is conventional in a sense in which it is not when
applied to lines or forces, and it may be doubted whether the symbol so used can be applied

to the practical purposes of investigation ; and indeed, if I might hazard an opinion, I should

hold it probable that the symbol v - 1 can only then be successfully used when it expresses

a particular stage in the continuous change of affection from + to — .

12. It is not difficult to devise laws, according to which a quantity may change from +
to - , other than those which have been specified. Suppose for example /(0) to represent

the sign of affection for a quantity P, and suppose

P/(0) = P(-ir"l;

this form satisfies the condition that f(9) = 1 and /(tt) = - 1, and therefore so far agrees with

the actual law of lines, forces, &c., as that the affection of P passes from + to - while 6 varies

from to TT. But if we examine this case, we find that it is widely diverse from the actual

law just mentioned ; for we have

f(d) = cos (TTsin
-J

+ (- 1)^ sin JTrsin -
j

.

Now if = /(O) = 1

= ~ /(0)=(-i)*;

• Algebra, 1st Edition, page 366.

o 02
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.-. /(0) = cos (w sin -^ /(O) + sin (^-n- sin -)/(^),

and Pf(e) = PcosU sin -] /(O) + P sin L sin ^W f -V

In this case, therefore, it would seem that the oblique quantity P would be equivalent to two

components, one in the original direction, the other inclined at an angle of 60°, the magnitude

of the former being Pcos (ir sin-j, that of the latter Psin (tt sin-j. But there will be a dis-

tinction between this and that of the ordinary formula cos 9 + (- l)-5 sin 9 which is to be observed

;

for in this latter case the impossible plane determined by f{9) = (— 1)^ coincides with that

determined by f(9) = (- \)K but in the present hypothetical case, we have two impossible direc-

tions, one corresponding to 9 = - or f (9) = (- l)i, the other to = Stt or f(9) = - (- !)*•
3 3

And therefore that which is analogous to the impossible plane in the ordinary case is an im

possible cone whose semi-vertical angle is an angle of 60".

There will be two impossible cones in like manner belonging to the formula

/(0) = (-lp=cos-+ (-l)Jsin-
TT TT

which, together with the formula (J), are particular instances of the general form,

/(e) = (-l)('^° = cos ^^ + (-i)Ssin4^ (C).
7r

13. The preceding cases are examples of the general formula f(9) = (- 1)®, where O is some
function of 9 which = when 9 = 0, and = 1 when 9 = w, the direction or directions for which

2 /b + 1

f(fi) = (- O- are given by = . It may be observed, that all examples must have this

property in common ; that if we suppose a quantity P to be composed of two others whose direc-

tions are the line for which 9=0, and that for which f{9) = (- l)^, and if we call these

components c and y respectively, then x and y satisfy the condition

,T- + y- = P- ;

and therefore if x and y be regarded as oblique co-ordinates of a point, the locus of that point
9

is an ellipse ; in the case of f{9) = (- 1)" this locus becomes a circle.

l*. It is evidently possible to vary indefinitely the law according to which f{9) shall vary

from +1 to — 1, while 9 increases from to tt, even though we confine ourselves to the form

/(6) = (— 1)®; and all these laws will express modes in which the affection of a quantity may
be diametrically reversed ; I am disposed to look upon most of them as fictitious generalizations

which can have no type in the nature of things, just as we might construct a system of geometry

of four dimensions which could have nothing real corresponding to it. It may be possible,

however, to find some which have not this fictitious character, and which express physical laws.

We shall obtain a distinct conception of the manner in which the law expressed by the formula

fi0) = (~ 0" differs from all others, by observing that if (— l)® expresses the law of change from

+ to -, the gradual change of affection, as compared with a change in the value of 9, will be
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, , rfG .^ ^ t> dG I
. , . ,

expressed by -j-r-; now ii 9= — , —— = — a constant quantity, which can be true oi no other
do 7r du TT

law satisfying the conditions /(O) = 1 and /(tt) = - 1 . If, for instance, 9 = —
- , a form which satis-

TT

dG
fies the conditions /(O) = 1 and /(tt) = - 1, we have 377 = 2 —5 , and therefore the intensity of

da tt"

the minus affection which is measured by would increase more rapidly as the angle approached

the value tt. And this also shews distinctly what is meant by saying that the change of affec-

tion, in such causes as we have been considering, is uniform, for this is, in fact, saying that

dG-— must be constant, a condition which must manifestly be satisfied when the case is one of pure

direction, and when, therefore, there is no reason why should increase more rapidly for one value

of d than another. Whether there be real cases of change of affection coming under the general

type represented by (- 1)®, in which this condition of uniformity is not satisfied, remains to

be seen.

Q
15. The condition of uniform change of affection is satisfied by the function G = — , where

2a
a is some constant angle, which, in the actual case of pure direction, is a right angle. If 9
have this value, we have

/(e) = cos^+(-l)-5sin^;
2a 2a

and the impossible direction is given by

=a.

For example, let a = — , then
4

f(e) = cos ze + (- 1)^ sin 26,

a formula which represent the variation of a cause which changes uniformly, and produces exactly

opposite effects in directions at right angles to each other. It seems not improbable that this

formula may be found to represent something real : may it not represent the following case .''

Suppose a disturbing cause in an elastic medium which propagates simultaneously a condensed

wave in two opposite directions, and a rarified wave in the direction perpendicular to them

;

then if <p be the condensation which would exist at a given time and a given distance from

the centre, on the supposition of the condensing cause only acting, may not the complete expres-

sion for the condensation in the direction determined by the angle 6 be

(p cos 20 + (- ])i (psin 20?

A rough approximation to this case would be that of a tuning-fork.

16. A more general law than that expressed by the formula f (0) = (- 1)^ is given by

fie) = »«(- 1)® + m'(- ly + &c.

There is only one example of this formula which I shall notice :

Suppose we have a quantity P determined by the equation

PfiQ) = acos + (- 1)4 6 sin (D),

which comes under the above form of f(0) for the equation, may be written

a + b ? a - b »
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We have here an effect which results from two causes, which separately vary uniformly.

Considering equation (D), we may observe that the difference between it and the equation

pf{e)= p cos e + {- i)i p &\n e (E)

is this, that, although both give 0=0 and = — as the directions of the components, yet the

valuesof P/(0) and Pfl—\ which are the same in the latter case (omitting the sign of affec-

tion) are different in the former : for in equation {D)

Pf(0) = a.

P/g)=M-0^.

In fact, considering the equations (D) and (E) geometrically, the former represents an ellipse,

the latter a circle : the angle will manifestly be the eccentric anomaly.

My reason for introducing the formula (£>) is that I may remark that, whereas the formula

(^E) represents force considered in the light of pure direction, the formula (D) corresponds to

a case of polarity. Pure force must, of course, be free from any polarity, that is to say, its

absolute magnitude must be the same in whatever direction it acts, the direction will modify the

effect, not diminish or increase it ; but there are complicated instances of force in which this is

not the case, but in which there is polarity ; for example, in the case of an elastic medium under

constraint from the action of the particles of a crystallized body which contains it. Now the

formula (D) appears to be exactly calculated to express this kind of force ; to fix our conceptions

let an elastic medium have the same properties in all sections parallel to the plane of ,vy, and

have polarity in that plane ; consider any one section, and let the properties of this section

of the medium be symmetrical about the axes of a; and y, then the origin will be a position

of rest for a particle, and if it be disturbed, the force of restitution may be represented by such

a formula as (Z)).

In examining that formula we find that there are two directions perpendicular to each other,

for which the force of restitution is in the direction of displace-

ment ; for all other displacements the force of restitution is not

in the same direction, but will have to be determined thus ; let

JP be the direction of displacement : take APB proportional to

a + b, and AD, making the same angle with Ax as AB, propor-

tional to a - b; complete the parallelogram ABCD, and draw
through P a line parallel to the diagonal AC; this will be the

direction of the force of restitution. Hence then it appears, that

the formula (D) will represent the kind of law which determines

the force of restitution on a disturbed particle in the case of uniaxal crystals.

H. GOODWIN.



XXII. On the Theories of the Internal Friction of Fluids in Motion, and of the

Equilibrium and Motion of Elastic Solids. By G. G. Stokes, M.A., Fel-

Iniv of Pembroke College.

[Read April 14, 1845.]

The equations of Fluid Motion commonly employed depend upon the fundamental hypothesis

that the mutual action of two adjacent elements of the fluid is normal to the surface which
separates them. From this assumption the equality of pressure in all directions is easily deduced,

and then the equations of motion are formed according to D'Alembert's principle. This appears

to me the most natural light in which to view the subject ; for the two principles of the absence

of tangential action, and of the equality of pressure in all directions ought not to be assumed
as independent hypotheses, as is sometimes done, inasmuch as the latter is a necessary consequence
of the former*. The equations of motion so formed are very complicated, but yet they admit
of solution in some instances, especially in the case of small oscillations. The results of the theory

agree on the whole with observation, so far as the time of oscillation is concerned. But there

is a whole class of motions of which the common theory takes no cognizance whatever, namely, those

which depend on the tangential action called into play by the sliding of one portion of a fluid along

another, or of a fluid along the surface of a solid, or of a different fluid, that action in fact which
performs the same part with fluids that friction does with solids.

Thus, when a ball pendulum oscillates in an indefinitely extended fluid, the common theory
gives the arc of oscillation constant. Observation however shows that it diminishes very rapidly

in the case of a liquid, and diminishes, but less rapidly, in the case of an elastic fluid. It has
indeed been attempted to explain this diminution by supposing a friction to act on the ball,

and this hypothesis may be approximately true, but the imperfection of the theory is shown
from the circumstance that no account is taken of the equal and opposite friction of the ball on
the fluid.

Again, suppose that water is flowing down a straight aqueduct of uniform slope, what will be
the discharge corresponding to a given slope, and a given form of the bed.'' Of what magnitude
must an aqueduct be, in order to supply a given place with a given quantity of water? Of what
form must it be, in order to ensure a given supply of water with the least expense of materials

in the construction .' These, and similar questions are wholly out of the reach of the common
theory of Fluid Motion, since they entirely depend on the laws of the transmission of that

tangential action which in it is wholly neglected. In fact, according to the common theory

the water ought to flow on with uniformly accelerated velocity ; for even the supposition of

a certain friction against the bed would be of no avail, for such friction could not be transmitted

through the mass. The practical importance of such questions as those above mentioned lias

made them the object of numerous experiments, from which empirical formulae have been con-

structed. But such formulae, although fulfilling well enough the purposes for which they were

• Thin may be eauily shown by ihc coniideration of s tetrahedron of the fluid, as in An. 4.
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constructed, can hardly be considered as affording us any material insight into the laws of nature ;

nor will they enable us to pass from the consideration of the phenomena from which they were

derived to that of others of a different class, although depending on the same causes.

In reflecting on the principles according to which the motion of a fluid ought to be calculated

when account is taken of the tangential force, and consequently the pressure not supposed the

same in all directions, I was led to construct the theory explained in the first section of this

paper, or at least the main part of it, which consists of equations (13), and of the principles

on which they are formed. I afterwards found that Poisson had written a memoir on the same

subject, and on referring to it I found that he had arrived at the same equations. The method

which he employed was however so different from mine that I feel justified in laying the latter

before this Society*. The leading principles of my theory will be found in the hypotheses of

Art. I, and in Art. 3.

The second section forms a digression from the main object of this paper, and at first sight

may appear to have little connexion with it. In this section I have, I think, succeeded in shewing

that Lao-range's proof of an important theorem in the ordinary theory of Hydrodynamics is

untenable. The theorem to which I refer is the one of which the object is to show that

udx + vdy + wdx, (using the common notation,) is always an exact differential when it is so

at one instant. I have mentioned the principles of M. Cauchy's proof, a proof, I think, liable

to no sort of objection. I have also given a new proof of the theorem, which would have served to

establish it had M. Cauchy not been so fortunate as to obtain three first integrals of the general

equations of motion. As it is, this proof may possibly be not altogether useless.

Poisson, in the memoir to which I have referred, begins with establishing, according to

his theory, the equations of equilibrium and motion of elastic solids, and makes the equations of

motion of fluids depend on this theory. On reading his memoir, I was led to apply to the theory

of elastic solids principles precisely analogous to those which I have employed in the case of

fluids. The formation of the equations, according to these principles, forms the subject of

Sect. III.

The equations at which I have thus arrived contain two arbitrary constants, whereas Poisson's

equations contain but one. In Sect. iv. I have explained the principles of Poisson's theories of

elastic solids, and of the motion of fluids, and pointed out what appear to me serious objections

against the truth of one of the hypotheses which he employs in the former. This theory seems

to be very generally received, and in consequence it is usual to deduce the measure of the cubical

compressibility of elastic solids from that of their extensibility, when formed into rods or wires,

or from some quantity of the same nature. If the views which I have explained in this section

be correct, the cubical compressibility deduced in this manner is too great, much too great in

the case of the softer substances, and even the softer metals. The equations of Sect. iii. have,

I find, been already obtained by M. Cauchy in his Exercises Mathematiqiies, except that he

has not considered the eftect of the heat developed by sudden compression. The method which

I have employed is different from his, althouglj in some respects it much resembles it.

The equations of motion of elastic solids given in Sect. lu. are the same as those to which

different authors have been led, as being the equations of motion of the luniiniferous ether in

vacuum. It may seem strange that the same equations should have been arrived at for cases

so different ; and I believe this has appeared to some a serious objection to the employment of

those equations in the case of light. I think the reflections which I have made at the end of

Sect. IV., where I have examined the consequences of the law of continuity, a law which seems

to pervade nature, may tend to remove the difficulty.

• The same equations have also been obiained by Navier
]
T. vi.) but his principles dift'er from mine still more than do

in the case of an incompressible fluid, {Mem. de I'lnstilut,
\

Poisson's.



AND THE EQUILIBRIUM AND MOTION OF ELASTIC SOLIDS. 289

SECTION I.

Explanation of the Theory of Fluid Motion proposed. Formation of the Differential

Equations. Application of these Equations to afew simple cases.

1. Before entering on the explanation of this theory, it will be necessary to define, or fix

the precise meaning of a few terras which I shall have occasion to employ.

In the first place, the expression "the velocity of a fluid at any particular point" will require

some notice. If we suppose a fluid to be made up of ultimate molecules, it is easy to see that these

molecules must, in general, move among one another in an irregular manner, through spaces

comparable with the distances between them, when the fluid is in motion. But since there

is no doubt that the distance between two adjacent molecules is quite insensible, we may neglect the

irregular part of the velocity, compared with the common velocity with which all the molecules

in the neighbourhood of the one considered are moving. Or, we may consider the mean velocity

of the molecules in the neighbourhood of the one considered, apart from the velocity due to

the irregular motion. It is this regular velocity which I shall understand by the velocity of
a Jluid at any point, and I shall accordingly regard it as varying continuously with the

co-ordinates of the point.

Let P be any material point in the fluid, and consider the instantaneous motion of a very

small element E of the fluid about P. This motion is compounded of a motion of translation,

the same as that of P, and of the motion of the several points of E relatively to P. If we
conceive a velocity equal and opposite to that of P impressed on the whole element, the remaining

velocities form what I shall call the relative velocities of the points of the fluid about P; and
the motion expressed by these velocities is what I shall call the relative motion in the neigh-

bourhood of P.

It is an undoubted result of observation that the molecular forces, whether in solids, liquids,

or gases, are forces of enormous intensity, but which are sensible at only insensible distances.

Let E' be a very small element of the fluid circumscribing E, and of a thickness greater than

the distance to which the molecular forces are sensible. The forces acting on the element E
are the external forces, and the pressures arising from the molecular action of E'. If the

molecules of E were in positions in which they could remain at rest if E were acted on by no

external force and the molecules of E' were held in their actual positions, they would be in

what I shall call a state of relative equilibrium. Of course they may be far from being in a

state of actual equilibrium. Thus, an element of fluid at the top of a wave may be sensibly in

a state of relative equilibrium, although far removed from its position of equilibrium. Now, in

consequence of the intensity of the molecular forces, the pressures arising from the molecular action

on E will be very great compared with the external moving forces acting on E. Consequently

the state of relative equilibrium, or of relative motion, of the molecules of E will not be sensibly

affected by the external forces acting on E. But the pressures in different directions about

the point P depend on that state of relative equilibrium or motion, and consequently will not

be sensibly affected by the external moving forces acting on E. For the same reason they will not

be sensibly affected by any motion of rotation common to all the points of E ; and it is a direct

consequence of the .second law of motion, that they will not be affected by any motion of translation

common to the whole element. If the molecules of E were in a state of relative equilibrium,

the pressure would be equal in all directions about P, as in the case of fluids at rest. Hence
I shall assume the following principle :

—

That the difference between the pressure on a plane in a given direction passing through

any point P of a Jluid in motion and the pressure which would etrist in all directions

about P if the fluid in its neighbourhood were in a state of relative equilibrium depends

only on the relative motion of the Jluid immediately about P ; and that the relative motion

Vol. VIII. Paet III. P e
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due to any motion of rotation may be eliminated without affecting the differences of the pressures

above mentioned.

Let us see how far this principle will lead us when it is carried out.

2. It will be necessary now to examine the nature of the most general instantaneous motion

of an element of a fluid. The proposition in this article is however purely geometrical, and

may be thus enunciated: "Supposing space, or any portion of space, to be filled with an

infinite number of points which move in any continuous manner, retaining their identity, to

examine the nature of the instantaneous motion of any elementary portion of these points."

Let u V w he the resolved parts, parallel to the rectangular axes Oai, Oy, Oz, of the

velocity of the point P, whose co-ordinates at the instant considered are .v, y, x. Then the

relative velocities at the point P, whose co-ordinates are a) + ic' , y + y', z + x', will be

dud zi , du
,-— ai + — 2/

dx dy
H » parallel to so,

dx

dv dv , du ,— X + 3-2/ + ^-i».
dx dy dss

dw , dw , dw
,-— X + -—y + ^- X .

dx dy ^ ^~dz

neglecting squares and products of x', y', z. Let these velocities be compounded of those due

to the angular velocities w', w", to'" about the axes of x, y, z, and of the velocities U, V, W
parallel to x, y, z. The linear velocities due to the angular velocities being w"z' - w'y ,

J"x' - w'z, w y - u)"x' parallel to the axes of x, y, z, we shall therefore have

du ,U = -r "> +
dx

du

dy^"' J^ + U-"')"'
idn „,\ , d\> , Idv ,\ ,

Idw „\ , (dw ,\ ,
dw ,

Since w, u>", u>"' are arbitrary, let them be so assumed that

dUdV dV _dW dW _ dU
dy dic" dz' dy ^ dx' dz'

which gives

/dw dv\ „ /du du

lu dw\ ,

^ \dy ^ dxj^ ^ ^ \dz dx I

dv

dx

du\

Tyh ....(1)

dti , , /du dv\ ,U=^x +1(^^+ —I y +
dx

, idv du\ , dv , , /dv

W

dyl

/dw dw
^\dx dz

*' + i
/dw dv\

,

Kdy'^Jz)'^

dw\ ,

dy)^^

dw
,

+ -— «.
oar

(2)

The quantities w, id", w" are what I shall call the angular velocities uf the Jtuid at the

point considered. This is evidently an allowable definition, since, in the particular case in which
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the element considered moves as a solid might do, these quantities coincide with the angular

velocities considered in rigid dynamics. A further reason for this definition will appear in Sect. m.
Let us now investigate whether it is possible to determine a;', y , z' so that, considering only

the relative velocities U, V, IF, the line joining the points P, P shall have no angular motion.

The conditions to be satisfied, in order that this may be the case, are evidently that the incre-

ments of the relative co-ordinates x, y, z' of the second point shall be ultimately proportional

to those co-ordinates. If e be the rate of extension of the line joining the two points considered,

we shall therefore have

Fx' + hy + g«' = e x' ,

hx + Gy +fz' = ey ,

+ fy + //«'= ex ; J

.(3)

gx

„ du dv dw dv dw d w du du dv
where F=~, G =— , H ^ --

, 2f = -- + -y , ^g = ^ + T ' ^A = — + —

.

dx dy dz dz dy dx dz dy dx

If we eliminate from equations (3) the two ratios which exist between the three quantities

x\ y, z\ we get the well known cubic equation

(e -F){e- G) (e - H) -f (e - F) - g' {e - G) - h' {e - H) - 2fgh = 0, (4)

which occurs in the investigation of the principal axes of a rigid body, and in various others.

As in these investigations, it may be shewn that there are in general three directions, at right

angles to each other, in which the point P' may be situated so as to satisfy the required conditions.

If two of the roots of (4) are equal, there is one such direction corresponding to the third root, and

an infinite number of others situated in a plane perpendicular to the former; and if the three

roots of (4) are equal, a line drawn in any direction will satisfy the required conditions.

The three directions which have just been determined I shall call axes of extension. They
will in general vary from one point to another, and from one instant of time to another. If we
denote the three roots of (4) by e', e", e'", and if we take new rectangular axes Ox, Oy , Oz ,

parallel to the axes of extension, and denote by m,, U^, &c. the quantities referred to these

axes corresponding to u, U, &c., equations (3) must be satisfied by y'^ = 0, z^ =0, e = e', by a;' = 0,

z' = 0, e = e', and by .r ' = 0, y '= 0, e = e", which requires that /^ = 0, g = 0, A = 0, and

we have

e' = F =—' "= G =^ e" =// =^
' dx^ ' dy^ ' dz^

The values of U^, F, W , which correspond to tiie residual motion after the elimination of

the motion of rotation corresponding to w, w" and w"\ are

U^^e'x', V=e"yf, lV=e"'z'.

The angular velocity of which w', w", u>"' are the components is independent of the arbitrary

directions of the co-ordinate axes : the same is true of the directions of the axes of extension,

and of the values of the roots of equation (4). This might be proved in various ways; perhaps

the following is the simplest. The conditions by which w', w", w" are determined are those which

express that the relative velocities U, V, W, which remain after eliminating a certain angular

velocity, are such that Udx' + Vdy' + Wdz' is ultimately an exact differential, that is to say

when squares and jiroducts of x'
,
y' and ;:;' are neglected. It appears moreover from the solution

that there is only one way in which these conditions can be satisfied for a given system of

co-ordinate axes. Let us take new rectangular axes Ox, Oy, Oz, and let U, V, W be the resolved

parts along these axes of the velocities U, V, W, and x', y', 7.', the relative co-ordinates of P^ ; then

1' p 2
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U =V COS A'x + V COS xy +W cos wz,

dx = cos.rxrfx' + cos xydy' + cos xzdz, &c.

;

whence, taking account of the well known relations between the cosines involved in these equations,

we easily find

Udx + Vdy + Wdss' = Udx' + Vdy' + Wdz'.

It appears therefore that the relative velocities U, V, W, which remain after eliminating a certain

angular velocity, are such that Udx' + Vdy' + Wdz' is ultimately an exact differential. Hence

the values of U, V, W are the same as would have been obtained from equations (2) applied

directly to the new axes, whence the truth of the proposition enunciated at the head of this

paragraph is manifest.

The motion corresponding to the velocities f7, V^, IF may be further decomposed into a

motion of dilatation, positive or negative, which is alike in all directions, and two motions which I

shall call motions of shifting, each of the latter being in two dimensions, and not affecting the

density. For let 3 be the rate of linear extension corresponding to a uniform dilatation ; let crx',

- ay'^ be the velocities parallel to ,r , y^, corresponding to a motion of shifting parallel to the

the plane x^y^, and let cr' x', — <t'»/ be the velocities parallel to x^, z^, corresponding to a similar

motion of shifting parallel to the plane xz^. The velocities parallel to x^, y, %^ respectively

corresponding to the quantities ^, a and a' will be (^ + <t + a) x'^, (^ — a) y', (^ — a') x ', and

equating these to f/, F, W^ we shall get

^ = 1 (e' + e" + e'"), o- = ^ (e + e'"- 2 e"), o-'= ^ (e'+ e"- 2e"')-

Hence the most general instantaneous motion of an elementary portion of a fluid is compounded

of a motion of translation, a motion of rotation, a motion of uniform dilatation, and two motions of

shifting of the kind just mentioned.

3. Having determined the nature of the most general instantaneous motion of an element

of a fluid, we are now prepared to consider the normal pressures and tangential forces called

into play by the relative displacements of the particles. Let p be the pressure which would exist

about the point P if the neighbouring molecules were in a state of relative equilibrium : let p + p^

be the normal pressure, and t^ the tangential action, both referred to a unit of surface, on a plane

passing through P and having a given direction. By the hypotheses of Art. 1. the quantities p_, t^

will be independent of the angular velocities lo', to", w", depending only on the residual relative

velocities U,V,W, or, which comes to the same, on e, e" and e'", or on o-, <r' and 3. Since this residual

motion is symmetrical with respect to the axes of extension, it follows that if the plane considered

is perpendicular to any one of these axes the tangential action on it is zero, since there is no more

reason why it should act in one direction rather than in the opposite ; for by the hypotheses

of Art. 1. the change of density and temperature about the point P is to be neglected, the

constitution of the fluid being ultimately uniform about that point. Denoting then by p+p',

p + p", p + p" the pressures on planes perpendicular to the axes of .r?^, y,, z^, we must have

p'= (e, e", e'"), p"= <^ (e", e'\ e), p"'=
<f>

(e'", e, e"),

<p (e',e",e"') denoting a function of e, e" and e" which is symmetrical with respect to the two

latter quantities. The question is now to determine, on whatever may seem the most probable

hypothesis, the form of the function (p.

Let us first take the simpler case in which there is no dilatation, and only one motion of

shifting, or in which e' = - e, e" = 0, and let us consider what would take place if the

fluid consisted of smooth molecules acting on each other by actual contact. On this supposition,

it is clear, considering the magnitude of the pressures acting on the molecules compared with

their masses, that they would be sensibly in a position of relative equilibrium, except when

the equilibrium of any one of them became impossible from the displacement of the adjoining
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ones, in which case the molecule in question would start into a new position of equilibrium. This

start would cause a corresponding displacement in the molecules immediately about the one which

started, and this disturbance would be propagated immediately in all directions, the nature of the

displacement however being different in different directions, and would soon become insensible.

During the continuance of this disturbance, the pressure on a small plane drawn through the

element considered would not be the same in all directions, nor normal to the plane : or, which

comes to the same, we may suppose a uniform normal pressure p to act, together with a normal

pressure p^^ and a tangential force < , p^^ and t^^ being forces of great intensity and short duration,

that is being of the nature of impulsive forces. As the number of molecules comprised in the

element considered has been supposed extremely great, we may take a time t so short that all

summations with respect to such intervals of time may be replaced without sensible error by

integrations, and yet so long that a very great number of starts shall take place in it.

Consequently we have only to consider the average effect of such starts, and moreover we may
without sensible error replace the impulsive forces such as p^^ and t^., which succeed one another

with great rapidity, by continuous forces. For planes perpendicular to the axes of extension

these continuous forces will be the normal pressures p', p", p'".

Let us now consider a motion of shifting differing from the former only in having e' increased

in the ratio of m to 1. Then, if we suppose each start completed before the starts which would

be sensibly affected by it are begun, it is clear that the same series of starts will take place in the

second case as in the first, but at intervals of time which are less in the ratio of 1 to m.

Consequently the continuous pressures by which the impulsive actions due to these starts may be

replaced must be increased in the ratio of m to 1. Hence the pressures p', p", p" must be

proportional to e , or we must have

p =Ce, p =Ce, p =Ce.
It is natural to suppose that these formulae held good for negative as well as positive values

of e. Assuming this to be true, let the sign of e be changed. This comes to interchanging

X and y, and consequently p'" must remain the same, and p' and p" must be interchanged. We
must therefore have C" = 0, C = — C. Putting then C = - 2/ti we have

p = - Zfie, p" = 2;u.e', p" = 0.

It has hitherto been supposed that the molecules of a fluid are in actual contact. We
have every reason to suppose that this is not the case. But precisely the same reasoning will apply

if they are separated by intervals as great as we please compared with their magnitudes, provided

only we suppose the force of restitution called into play by a small displacement of any one

molecule to be very great.

Let us now take the case of two motions of shifting which coexist, and let us suppose

e = <j + a', e" = - a, e" = - or'. Let the small time t be divided into 2w equal portions, and

let us suppose that in the first interval a shifting motion corresponding to e = 2a, e"= — 2a takes

place parallel to the plane x^ y., and that in the second interval a shifting motion corresponding

to e'= 2y', e"' = -2a-' takes place parallel to the plane at^ z^, and so on alternately. On this

supposition it is clear that if we suppose the time — to be extremely small, the continuous forces

by which the effect of the starts may be replaced will be p'= - 2/i((t + a), p "= 2;u(t, p ' = 2^0-'. By
supposing « indefinitely increased, we may make the motion considered approach as near as we

please to that in which the two motions of shifting coexist ; but we are not at liberty to do so,

•j-

for in order to apply the above reasoning we nuist suppose the time — to be so large that the

average effect of the starts which occur in it may be taken. Consequently it must be taken as an

additional assumption, and not a matter of al)solute demonstration, that the effects of the two

motions of shifting are superimposed.
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Hence if ^ = 0, i. e. if e + e" + e" = 0, we shall have in general

p' = - 2/ie', p" = - 2/ne", p" = - Smb'" (5)

It was by this hypothesis of starts that I first arrived at these equations, and the differential

equations of motion which result from them. On reading Poisson's memoir however, to which

I shall have occasion to refer in Section iv., I was led to reflect that however intense we may

suppose the molecular forces to be, and however near we may suppose the molecules to be to their

positions of relative equilibrium, we are not therefore at liberty to suppose them in those positions,

and consequently not at liberty to suppose the pressure equal in all directions in the intervals of

time between the starts. In fact, by supposing the molecular forces indefinitely increased,

retaining the same ratios to each other, we may suppose the displacements of the molecules from

their positions of relative equilibrium indefinitely diminished, but on the other hand the force of

restitution called into action by a given displacement is indefinitely increased in the same proportion.

But be these displacements what they may, we know that the forces of restitution make equilibrium

with forces equal and opposite to the effective forces ; and in calculating the effective forces we

may neglect the above displacements, or suppose the molecules to move in the paths in which they

would move if the shifting motion took place with indefinite slowness. Let us first consider a

single motion of shifting, or one for which e" = - e', e" = 0, and let j>^ and t^ denote the same

quantities as before. If we now suppose e' increased in the ratio of m to 1, all the effective forces

will be increased in that ratio, and consequently p^ and t^ will be increased in the same ratio. We
may deduce the values of p, p" and p'" just as before, and then pass by the same reasoning to

the case of two motions of shifting which coexist, only that in this case the reasoning will be demon-

strative, since we may suppose the time — indefinitely diminished. If we suppose the state of

things considered in this paragraph to exist along with the motions of starting already considered,

it is easy to see that the expressions for p', p" and p'" will still retain the same form.

There remains yet to be considered the effect of the dilatation. Let us first suppose the

dilatation to exist without any shifting : then it is easily seen that the relative motion of the

fluid at the point considered is the same in all directions. Consequently the only effect which

such a dilatation could have would be to introduce a normal pressure p., alike in all directions, in

addition to that due to the action of the molecules supposed to be in a state of relative equilibrium.

Now the pressure p^ could only arise from the aggregate of the molecular actions called into play

by the displacements of the molecules from their positions of relative equilibrium ; but since these

displacements take place, on an average, indifferently in all directions, it follows that the actions

of which p^ is composed neutralize each other, so that p = 0. The saaie conclusion might be

drawn from the hypothesis of starts, supposing, as it is natural to do, that each start calls into

action as much increase of pressure in some directions as diminution of pressure in others.

If the motion of uniform dilatation coexists with two motions of shifting, I shall suppose,

for the same reason as before, that the effects of these different motions are superimposed. Hence

subtracting 3 from each of the three quantities e, e' and e'", and putting the remainders in the

place of e, e" and e" in equations (5), we have

p = |/z(e" + e" - 2e'), p" = |(n(e"' + e - 2e"), p'" = |,i(e' + e" - 2e"') (fi)

If we had started with assuming (p(e', e", e") to be a linear function of e, e" and e",

avoiding all speculation as to the molecular constitution of a fluid, we should have had at once

p' = Ce + C'{e" + e'"), since p' is symmetrical with respect to e" and e" ; or, changing the

constants, p' = |-/ji(e" + e" - 2e') + k (e' + e" + e"). The expressions for p" and p'" would be

obtained l)y interchanging the requisite quantities. Of course we may at once put (c = if we

assume that in the case of a uniform motion of dilatation the pressure at any instant depends

only on the actual density and temperature at that instant, and not on the rate at which the
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former changes with the time. In most cases to whicli it would be interesting to apply the

theory of the friction of fluids the density of the fluid is either constant, or may without sensible

error be regarded as constant, or else changes slowly with the time. In the first two cases the

results would be the same, and in the third case nearly the same, whether k were equal to zero or

not. Consequently, if theory and experiment should in such cases agree, the experiments must
not be regarded as confirming that part of the theory which relates to supposing k to he

equal to zero.

4. It will be easy now to determine the oblique pressure, or resultant of the normal pressure

and tangential action, on any plane. Let us first consider a plane drawn through the point P
parallel to the plane yx. Let Ox^ make with the axes of .r, y, z angles whose cosines are I', m\ n'

;

let /", m", n" be the same for Oy,, and /'", m", n" the same for Ox^. Let P^ be the pressure,

and (xty'), {xtz) the resolved parts, parallel to y, x respectively, of the tangential force on the

plane considered, all referred to a unit of surface, {xty) being reckoned positive when the part

of the fluid towards — w urges that towards + a? in the positive direction of y, and similarlv

for (vtz). Consider the portion of the fluid comprised within a tetrahedron having its vertex

in the point P, its base parallel to the plane yz, and its three sides parallel to the planes w y , y x

,

xx^ respectively. Let A be the area of the base, and therefore I' A, I" A, I'"A the areas of the faces

perpendicular to the axes of a?^, y., x^. By D'Alembert's principle, the pressures and tangential

actions on the faces of this tetrahedron, the moving forces arising from the external attractions,

not including the molecular forces, and forces equal and opposite to the effective moving forces will

be in equilibrium, and therefore the sums of the resolved parts of these forces in the directions

of .r, y and z will each be zero. Suppose now the dimensions of the tetrahedron indefinitely

diminished, then the resolved parts of the external, and of the effective moving forces will vary

ultimately as the cubes, and those of the pressures and tangential forces on the sides as the

squares of homologous lines. Dividing therefore the three equations arising from equating to zero

the resolved parts of the above forces by A, and taking the limit, we have

Pi= 2/'- {p + p), {xty) = 2/' to' (p + p), (xtx) = ll'n' (p + p'),

the sign 2 denoting the sum obtained by taking the quantities corresponding to the three axes

of extension in succession. Putting for js', p" and p"' their values given by (6), putting e'+e"+e"'

= sS, and observing that 2/'^= I, 'S.l'm'= 0, "S-tn = 0, the above equations become

P,= p -2/ii2re' + 2m^5 (aity) = -2,x1l'm'e', (*<«)=- 2/i2/'wV.

The method of determining the pressure on any plane from the pressures on three planes

at right angles to each other, which has just been given, has already been employed by MM. Cauchy
and Poisson.

The most direct way of obtaining the values of 2i''^e' &c. would be to express I', m' and

n in terms of e by any two of equations (3), in which a;', y , z' are proportional to I', m, n',

together with the equation /'^ + m" + «'"= 1, and then to express the resulting symmetrical function

of the roots of the cubic equation (4) in terms of the coefficients. But this method would

be excessively laborious, and need not be resorted to. For after eliminating the angular motion of

the element of fluid considered the remaining velocities are e'x', e"y', e"'a/, parallel to the axes of

",) y,i ^,- The sum of the resolved parts of these parallel to the axis of x is /'e'.r_'+ l"e"y'+ l"'e"' z'.

Putting for .r ', y^', z' their values l'x'+ m'y + n z' &c., the above sum becomes

.r'2i'°e' +y''^l'm'e' + z''2l'n' e ;

but this sum is the same thing as the velocity U in equation (2), and therefore we have

)Ll''e'= -r- , 'S.I'm' e =
^ + ] , 2/'«V= J 7- + — •

dx ^ \dy drj ^ \dx p.vl
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It may also be very easily proved directly that the value of sS, the rate of cubical dilatation,

satisfies the equation

. du dv dw
^^ = :r +7-+ T O)dx dy dz

Let Pj, {ytz), (j/tx) be the quantities referring to the axis of y, and Pj, {xtx), (zty) those

referring to the axis of z, which correspond to P, &c. referring to the axis of x. Then we see

that iytz) = (zty), (ztx) = (xtz), {xty) = {ytx). Denoting these three quantities by T,, T^, 7',,

and making the requisite substitutions and interchanges, we have

"-"-'-£-*)
dy

dw
.(8)

_, Idv dw\ idw du\ (du dv\

^'--''[dz^Ty)' ^'^-'^IdT+d^J' ^^^-''[d^'-dij-
It may also be useful to know the components, parallel to .r, y, z, of the oblique pressure on a

plane passing through the point P, and having a given direction. Let I, m, n be the cosines of the

angles which a normal to the given plane makes with the axes of x, y, z; let P, Q, R be the

components, referred to a unit of surface, of the oblique pressure on this plane, P, Q, R being

reckoned positive when the part of the fluid in which is situated the normal to which I, m and n
refer is urged by the other part in the positive directions of x, y, z, when /, m and n are positive.

Then considering as before a tetrahedron of which the base is parallel to the given plane, the

vertex in the point P, and the sides parallel to the co-ordinate planes, we shall have

P = IP^ + mT^ + nTi,

:1

T
Q = lT^ + mP^ + nT„} (9)

R = lT^ + mTt+ nP^.

In the simple case of a sliding motion for wrhich m = 0, v =f(x), w = 0, the only forces,

besides the pressure p, which act on planes parallel to the co-ordinate planes are the two tangential

forces 7^3, the value of which in this case is - ;u — . In this case it is easy to show that the axes of
dw

extension are, one of them parallel to Oz, and the two others in a plane parallel to xy, and inclined

at angles of 45° to Ox. We see also that it is necessary to suppose /u. to be positive, since

otherwise the tendency of the forces would be to increase the relative motion of the parts of tiie

fluid, and the equilibrium of the fluid would be unstable.

5. Having found the pressures about the point P on planes parallel to the co-ordinate planes,

it will be easy to form the equations of motion. Let JT, Y, Z be the resolved parts, parallel

to the axes, of the external force, not including the molecular force ; let p be the density, t the

time. Consider an elementary parallelepiped of the fluid, formed by planes parallel to the

co-ordinate planes, and drawn through the point (x, y, z) and the point {x + Ax, y + Ay, z + Az).
The mass of this element will be ultimately pAx Ay Az, and the moving force parallel to x arising

from the external forces will be ultimately pX Ax Ay Az ; the effective moving force parallel

JDu
to .f will be ultimately p -— Ax Ay Az, where D is used, as it will be in the rest of this paper.
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to denote differentiation in wliicli the independent variables are t and three parameters of the

particle considered, (such for instance as its initial co-ordinates,) and not t, ,v, y, «. It is easy also

to show that the moving force acting on the element considered arising from the oblique pressures

, „ . , . , (dP dTs dT.,\
on the faces is ultimately (

-— + —— + -—
1 Aa? Ay Aar, acting in the negative direction. Hence

we have by D''Alembert's principle

(Du „\ dP, dT-i dT,lUu
"^ -T + ~r -^ ^r = 0'&c-' (10)ax ay dz '

.... . Du
. , du du du du Dv

in which equations we must put tor =— its value -— + u + v + w — , and siniilarlv for —' Dt dt da; dy dz ^
dt

and —— • In considering the general equations of motion it will be needless to write down more

than one, since the other two may be at once derived from it by interchanging the requisite

quantities. The equations (lO), the ordinary equation of continuity, as it is called,

dp dpu dpv dpw
:£ + -; +^ + ^5^ = (11)
dt dx dy dz '

which expresses the condition that there is no generation or destruction of mass in the interior

of a fluid, the equation connecting p and p, or in the case of an incompressible fluid the equivalent

equation _- = 0, and the equation for the propagation of heat, if we choose to take account

of that propagation, are the only equations to be satisfied at every point of the interior of
the fluid mass.

As it is quite useless to consider cases of the utmost degree of generality, I shall suppose
the fluid to be homogeneous, and of a uniform temperature throughout, except in so far as the
temperature may be raised by sudden compression in the case of small vibrations. Hence in

equations (10) fi. may be supposed to be constant as far as regards the temperature; for, in the
case of small vibrations, the terms introduced by supposing it to vary with the temperature
would involve the square of the velocity, which is supposed to be neglected. If we suppose

fj.
to be independent of the pressure also, and substitute in (lO) the values of P, &c. given by (8),

the former equations become

fDu \ dp id-u d'u d'u\ /j. d idu dv dw\

p[m-^)-'d:r-''\d^^'-df'-d^)-ld:v[d7v^Ty^d-z) = ''^ ^' <''>

Let us now consider in what cases it is allowable to suppose n to be independent of the

pressure. It has been concluded by Dubuat, from his experiments on the motion of water in

pipes and canals, that the total retardation of the velocity due to friction is not increased by
increasing the pressure. The total retardation depends, partly on the friction of the water
against the sides of the pipe or canal, and partly on the mutual friction, or tangential action,

of the different portions of the water. Now if these two parts of the whole retardation were
separately variable with p, it is very unlikely that they should when combined give a result

independent of p. The amount of the internal friction of the water depends on the value of ,1*.

I shall therefore suppose that for water, and by analogy for other incompressible fluids, « is

independent of the pressure. On this supposition, we have from equations (II) and (12)

fDu \ dp ld?u d^M d^u\
'^ l^- ^) ^ rf^

- " (rf^^rf? ^ rf^j = °' ^^ ('^>

du dv dw
dx dy dz

Vol.. VIII. Paut hi Qq
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These equations are applicable to the determination of the motion of water in pipes and canals,

to the calculation of the effect of friction on the motions of tides and waves, and such questions.

If the motion is very small, so that we may neglect the square of the velocity, we may

put — = ^
, &c. in equations (13). The equations thus simplified are applicable to the

Dt dt

determination of the motion of a pendulum oscillating in water, or of that of a vessel filled with

water and made to oscillate. They are also applicable to the determination of the motion of

a pendulum oscillating in air, for in this case we may, with hardly any error, neglect the

compressibility of the air.

The case of the small vibrations by which sound is propagated in a fluid, whether a

liquid or a gas, is another in which —- may be neglected. For in the case of a liquid reasons
dp

have been shown for supposing /x to be in (/e pendent of p, and in the case of a gas we may neglect

— , if we neglect the small change in the value of fj, arising from the small variation of
dp
pressure due to the forces X, Y, Z.

6. Besides the equations which must hold good at any point in the interior of the mass,

it will be necessary to form also the equations which must be satisfied at its boundaries. Let

J/ be a point in the boundary of the fluid. Let a normal to the surface at M, drawn on the

outside of the fluid, make with the axes angles whose cosines are /, m, n. Let /*", Q', R' be

the components of the pressure of the fluid about M on the solid or fluid with which it is in

contact, these quantities being reckoned positive when the fluid considered presses the solid or fluid

outside it in the positive directions of x, y, x, supposing I, m and n positive. Let S be a

very small element of the surface about M, which will be ultimately plane, S' a plane parallel

and equal to S, and directly opposite to it, taken within the fluid. Let the distance between S
and S' be supposed to vanish in the limit compared with the breadth of S, a supposition which

may be made if we neglect the eff"ect of the curvature of the surface at M ; and let us consider the

forces acting on the element of fluid comprised between S and S., and the motion of this

element. If we suppose equations (8) to hold good to within an insensible distance from the

surface of the fluid, we shall evidently have forces ultimately equal to PS, QS, RS, (P,Q and R
being given by equations (9),) acting on the inner side of the element in the positive directions of

the axes, and forces ultimately equal to P" S, Q' S, R'S acting on the outer side in the negative

directions. The moving forces arising from the external forces acting on the element, and the

eft'ective moving forces will vanish in the limit compared with the forces PS, &c. : the same

will be true of the pressures acting about the edge of the element, if we neglect capillary

attraction, and all forces of the same nature. Hence, taking the limit, we shall have

P' = i', Q'= Q, R' = R.

The method of proceeding will be different according as the bounding surface considered is a

free surface, the surface of a solid, on the surface of separation of two fluids, and it will be

necessary to consider these cases separately. Of course the surface of a liquid exposed to the

air is really the surface of separation of two fluids, but it may in many cases be regarded as

a free surface if we neglect the inertia of the air: it may always be so regarded if we neglect

the friction of the air as well as its inertia.

Let us first take the case of a free surface exposed to a pressure 11, which is supposed to

be the same at all points, but may vary with the time; and let Z, = be the equation to the

surface. In this case we shall have P' = 111, Q' = mY\, R' = nil; and putting for P, Q, R their

values given by (9), and for P^ &c. their values given by (8), and observing that in this case

3 = 0, we shall have
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{du idu dv\ idii dw\\

dx \dy dxl \dz dx I

]

dL dL dL
in which equations I, m, n will have to be replaced by — , - , ^ , to which they are pro-

\X CL u If (Ji *j

portional.

If we choose to take account of capillary attraction, we have only to diminish the pressure 11

by the quantity H ( 1- ~J> "here H is a positive constant depending on the nature of the fluid,

and r,, r, are the principal radii of curvature at the point considered, reckoned positive when

the fluid is concave outwards. Equations (14) with the ordinary equation

dL dL dL dL
37 + " 3— + "-5- + ""^T" = °' ('5)
dt dx ay dz

are the conditions to be satisfied for points at the free surface. Equations (14) are for such

points what the three equations of motion are for internal points, and (15) is for the former

what (11) is for the latter, expressing in fact that there is no generation or destruction of fluid

at the free surface.

The equations (14) admit of being difiierently expressed, in a way which may sometimes

be useful. If we suppose the origin to be in the point considered, and the axis of ss to be the

external normal to the surface, we have I = m = 0, w = l, and the equations become

dw du dw dv „ dw
:^+^ = o, —+-- = 0, n -p + 2,ji— = (16)
dx dz dy dz dz

The relative velocity parallel to 2; of a point (so', y, 0) in the free surface, indefinitely near

. . . dw , dw , ^ ^ dw dw
, , , . . , ,

the origin, is -— x + -p- y : hence we see that — , — are the angular velocities, reckoned
dx dy dx dy

from X lo z and from y to z respectively, of an element of the free surface. Subtracting the

linear velocities due to these angular velocities from the relative velocities of the point {x, y', z'),

and calling the remaining relative velocities U, V, W, we shall have

du , du , (du dw\ ,U = —X + —y + — +3— *'
dx dy \dz dx I

dv , dv
I fdv dw\ ,

dx dy \dzdy \dz dy I

n =— z .

dz
dU

Hence we see that the first two of equations (16) express the conditions that - , =

dV
and —; = 0, which are evidently the conditions to be satisfied in order that there may be no

dz
gliding motion in a direction parallel to the free surface. It would be easy to prove that these

are the conditions to be satisfied in order that the axis of z may be an axis of extension.

The next case to consider is that of a fluid in contact with a solid. The condition which first

occurred to me to assume for this case was, that the film of fluid immediately in contact with the

solid did not move relatively to the surface of the solid. I was led to try this condition from the

following considerations. According to the hypotheses adopted, if there was a very large relative

a Q 2
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motion of the fluid particles immediately about any imaginary surface dividing the fluid, the

tano-ential forces called into action would be very large, so that the amount of relative motion

would be rapidly diminished. Passing to the limit, we might suppose that if at any instant the

velocities altered discontinuously in passing across any imaginary surface, the tangential force

called into action would immediately destroy the finite relative motion of particles indefinitely close

to each other, so as to render the motion continuous; and from analogy the same might be

supposed to be true for the surface of junction of a fluid and solid. But having calculated,

according to the conditions which I have mentioned, the discharge of long straight circular pipes

and rectangular canals, and compared the resulting formulae with some of the experiments of

Bossut and Dubuat, I found that the formulae did not at all agree with experiment. I then

tried Poisson's conditions in the case of a circular pipe, but with no better success. In fact, it

appears from experiment that the tangential force varies nearly as the square of the velocity with

which the fluid flows past the surface of a solid, at least when the velocity is not very small. It

appears however from experiments on pendulums that the total friction varies as the first power

of the velocity, and consequently we may suppose that Poisson's conditions, which include as a

particular case those which I first tried, hold good for very small velocities. I proceed therefore

to deduce these conditions in a manner conformable with the views explained in this paper.

First, suppose the solid at rest, and let L - be the equation to its surface. Let M' be a

point within the fluid, at an insensible distance h from M, Let w be the pressure which would

exi.^t about M if there were no motion of the particles in its neighbourhood, and let p^ be the

additional normal pressure, and t^ the tangential force, due to the relative velocities of the

particles, both with respect to one another and with respect to the surface of the solid. If the

motion is so slow that the starts take place independently of each other, on the hypothesis of starts,

or that the molecules are very nearly in their positions of relative equilibrium, and if we suppose

as before that the effects of different relative velocities are superimposed, it is easy to show that

p and t are linear functions of m, t>, w and their differential coefficients with respect to or, y, and *;

u, t), &.C. denoting here the velocities of the fluid about the point M', in the expressions for which

however the co-ordinates of M may be used for those of M', since h is neglected. Now the

relative velocities about the points M and M' depending on — &c. are comparable with — A,

while those depending on m, v and w are comparable with these quantities, and therefore in

considering the action of the fluid on the solid it is only necessary to consider the quantities

u, V and w. Now since, neglecting //, the velocity at M' is tangential to the surface at J/,

««, I', and w are the components of a certain velocity V tangential to the surface. The pressure p^

must be zero; for changing the signs of u, v, and ui the circumstances concerned in its production

remain the same, whereas its analytical expression changes sign. The tangential force at M will

be in the direction of V, and proportional to it, and consequently its components along the axes

of CO, y, X will be proportional to u, u, w. Reckoning the tangential force positive when,

/, m, and n being positive, the solid is urged in the positive directions of .r, j/, z, the resolved

parts of the tangential force will therefore be vu, vv, vw, where v must evidently be positive,

since the effect of the forces must be to check the relative motion of the fluid and solid. The normal

pressure of the fluid on the solid being equal to iir, its components will be evidently /isr, m-sr-t nnr-

Suppose now the solid to be in motion, and let ti, v', w' be the resolved parts of the velocity

of the point M of the solid, and w, to', &>'" the angular velocities of the solid. By hypothesis,

the forces by which the pres>.ure at any point differs from the normal pressure due to the action of

the molecules supposed to be in a state of relative equilibrium about that point are independent of

any velocity of translation or rotation. Supposing then linear and angular velocities equal and

opposite to those of the solid impressed both on the solid and on the fluid, the former will be for

an instant at rest, and we have only to treat the resulting velocities of the fluid as in the first case.
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Hence P' = iTff + v (u - u), &c. ; and in the equations (8) we n)ay employ the actual velocities

u, V, w, since the pressures P, Q, R are independent of any motion of translation and rotation

common to the whole fluid. Hence the equations P' = P, &.c. give us

which three equations with (15) are those which must be satisfied at the surface of a solid, together

with the equation Z, = 0. It will be observed that in the case of a free surface the pressures

P', Q', R' are given, whereas in the case of the surface of a solid they are known onlv by the

solution of the problem. But on the other hand the form of the surface of the solid is given,

whereas the form of the free surface is known only by the solution of the problem.

Dubuat found by experiment that when the mean velocity of water flowing through a pipe is

less than about one inch in a second, the water near the inner surface of the pipe is at rest.

If these experiments may be trusted, the conditions to be satisfied in the case of small velocities

are those which first occurred to me, and which are included in those just given by supposing v =co .

I have said that when the velocity is not very small the tangential force called into action by

the sliding of water over the inner surface of a pipe varies nearly as the square of the velocity.

This fact appears to admit of a natural explanation. When a current of water flows past an

obstacle, it produces a resistance varying nearly as the square of the velocity. Now even if the

inner surface of a pipe is polished we may suppose that little irregularities exist, forming so many
obstacles to the current. Each little protuberance will experience a resistance varying nearly as

the square of the velocity, from whence there will result a tangential action of the fluid on the

surface of the pipe, which will vary nearly as the square of the velocity ; and the same will be true

of the equal and opposite reaction of the pipe on the fluid. The tangential force due to this cause

will be combined with that by which the fluid close to the pipe is kept at rest when the velocity

is sufficiently small.

There remains to be considered the case of two fluids having a common surface. Let

«', v, w', n', S' denote the quantities belonging to the second fluid corresponding to it, &c,

belonging to the first. Together with the two equations L = and (15) we shall have in this

case the equation derived from (15) by putting u\ v, w for m, t;, ?« ; or, which comes to the

same, we shall have the two former equations with

I (It - u') + m (v - v') + n {zv - w') = (18)

If we consider the principles on which equations (17) were formed to be applicable to the

present case, we shall have six more equations to be satisfied, namely (l7), and the three

equations derived from (17) by interchanging the quantities referring to the two fluids, and

changing the signs of I, m, n. These equations give the value of sr, and leave five equations

of condition. If we must suppose v = cc , as appears most probable, the six equations above

mentioned must be replaced by the six u = u, v' = u, w = w, and

Ip - ixf{u,v, w) ^ Ip' - iu'/('*'i "'i «"')' &c.,

f(u,v,w) denoting the coefficient of /u in the first of equations (17). We have here six equations

of condition instead of five, but then the equation (I8) l)ecoines identical.

7- The most interesting questions connected with this subject require for their solution a

knowledge of the conditions which must be satisfied at the surface of a solid in contact with

the fluid, which, except perhaps in case of very small motions, are unknown. It may be

well however to give some applications of the preceding equations which an independent of

these conditions. Let us then in the first place consider in what manner the transmission of

sound in a fluid is affected by the tangential action. To take the simplest case, sup])ose that

no forces act on the fluid, so that the pressure and density are constant in the state of
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equilibrium, and conceive a series of plane waves to be propagated in the direction of tlie

axis of X, so that u =/(*'> t), v = 0, w = 0. Let p^ be the pressure, and p^ the density of

the fluid when it is in equilibrium, and put p = p,+ p- Then we have from equations (11)

and (12), omitting the square of the disturbance,

1 dp du du dp' 4 d^u

p, dt dx dt dw 3 dx

Let JiAp be the increment of pressure due to a very small increment Ap of density, the

temperature being unaltered, and let m be the ratio of the specific heat of the fluid when

the pressure is constant to its specific heat when the volume is constant ; then the relation

between p and p will be

p'=mA{p- p) (20)

Eliminating p and p from (19) and (20) we get

d'u , d'u 4/u dJ'u
^ rn A — ^

d^ dx^ Sp^tdx'

To obtain a particular solution of this equation, let u = (p (t) cos h \j/ {() sin . Sub-

stituting in the above equation, we see that <p (t) and \j/{t) must satisfy the same equation,

namely,

</>" (t) + '^-^mA<l> (i) + ^J^ <p' it) = 0,

the integral of which is

,/„ 2ir6r „, . 2irbt\
<p (t) = e-" IC cos —- + C sin ——

j
,

where c= ——— , V = m A ;

—

-, C and C being arbitrary constants. Taking the same
3X p^ S^'ft

expression with different arbitrary constants for \|/^ (t), replacing products of sines and cosines

by sums and differences, and combining the resulting sines and cosines two and two, we see

that the resulting value of u represents two series of waves propagated in opposite directions.

Considering only those waves which are propagated in the positive direction of x, we have

M= Ce-'^'cosj— (bt- X) +cA (21)

We see then that the effect of the tangential force is to make the intensity of the sound

diminish as the time increases, and to render the velocity of propagation less than what it

would otherwise be. Both effects are greater for high, than for low notes ; but the former

depends on the first power of n, while the latter depends only on (ix\ It appears from the

experiments of M. Biot, made on empty water pipes in Paris, that the velocity of propagation

of sound is sensibly the same whatever be its pitch. Hence it is necessary to suppose that for air

fX' . . • P——; is insensible compared with ^ or —
. I am not aware of any similar experiments made

^ P: ft

on water, but the ratio of (— ) to A would probably be insensible for water also. The

diminution of intensity as the time increases is, in the case of plane waves, due entirely to

friction ; but as we do not possess any means of measuring the intensity of sound the theory

cannot be tested, nor the numerical value of y. determined, in this way.
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The velocity of sound in air, deduced from the note given by a known tube, is sensibly

less than that determined by direct observation. Poisson thought that this might be due to the

retardation of the air by friction against the sides of the tube. But from the above investigation

it seems unlikely that the effect produced by that cause would be sensible.

The equation (21) may be considered as expressing in all cases the effect of friction; for

we may represent an arbitrary disturbance of the medium as the aggregate of series of plane

waves propagated in all directions.

8. Let us now consider the motion of a mass of uniform inelastic fluid comprised

between two cylinders having a common axis, the cylinders revolving uniformly about their

axis, and the fluid being supposed to have attained its permanent state of motion. Let the

axis of the cylinders be taken for that of z, and let q be the actual velocity of any particle,

so that u = - q smQ, v = q cos Q, w = 0, r and being polar co-ordinates in a plane parallel to xy.

d'f d-f d'f 1 df 1 d'/
Observing that ^ + — =_ + -— +-— , where / is any function of a: and y, and

dp
that -— = 0, we have from equations (13), supposing after differentiation that the axis of .t

d6

coincides with the radius vector of the point considered, and omitting the forces, and the part

of the pressure due to them,

dp q
^ - = 0,

dr r

d'q \ dq q

J^ + -:r-^ = 0, (22)
dr- r dr i-

and the equation of continuity is satisfied identically.

C
The integral of (22) is q = — + C'r.

If a is the radius of the inner, and b that of the outer cylinder, and if q,, q^ are the

velocities of points close to these cylinders respectively, we must have q = q, when r = a, and

q = qi when r = b, whence

If ab
I

9 =
f^^_ ^, { (bqi - ag.) — + (bq, - aq,)r) (23)

If the fluid is infinitely extended, 6 = co , and

q a

9i »•

These cases of motion were considered by Newton, (Principia, Lib. ii. Prop. 51.) The
hypothesis which I have made agrees in this case with his, but he arrives at the result that

the velocity is constant, not, that it varies inversely as the distance. This arises from his having

taken, as the condition of there being no acceleration or retardation of the motion of an annulus,

that the force tending to turn it in one direction must be equal to that tending to turn it in

the opposite, whereas the true condition is that the moment of the force tending to turn it

one way must be equal to the moment of the force tending to turn it tlic other. Of course,

making ttiis alteration, it is easy to arrive at the above result by Newton's reasoning. The
error just mentioned vitiates the result of Prop. 52. It may be shown from the general equations
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that in this case a permanent motion in annuli is impossible, and that, whatever may be the

law of friction between the solid sphere and the fluid. Hence it appears that it is necessary to

suppose that the particle.s move in planes passing through the axis of rotation, while they at

the same time move round it. In fact, it is easy to see that from the excess of centrifugal

force in the neighbourhood of the equator of the revolving sphere the particles in that part

will recede from the sphere, and approach it again in the neighbourhood of the poles, and this

circulating motion will be combined with a motion about the axis. If however we leave the

centrifugal force out of consideration, as Newton has done, the motion in annuli becomes

possible, but the solution is different from Newton's, as might have been expected.

The case of motion considered in this article may perhaps admit of being compared with

experiment, without knowing the conditions which must be satisfied at the surface of a solid.

A hollow, and a solid cylinder might be so mounted as to admit of being turned with different

uniform angular velocities round their common axis, which is supposed to be vertical. If both

cylinders are turned, they ought to be turned in opposite directions, if only one, it ought to

be the outer one ; for if the inner were made to revolve too fast, the fluid near it would have

a tendency to fly outwards in consequence of the centrifugal force, and eddies would be produced.

As long as the angular velocities are not great, so that the surface of the liquid is very nearly

plane, it is not of much importance that the fluid is there terminated; for the conditions which

must be satisfied at a free surface are satisfied for any section of the fluid made by a horizontal

plane, so long as the motion about that section is supposed to be the same as it would be

if the cylinders were infinite. The principal difficulty would probably be to measure accurately

the time of revolution, and distance from the axis, of the different annuli. This would probably

be best done by observing motes in the fluid. It might be possible also to discover in this

way the conditions to be satisfied at the surface of the cylinders ; or at least a law might be

suggested, which could be afterwards compared more accurately with experiment by means of

the discharge of pipes and canals.

If the rotations of the cylinders are in opposite directions, there will be a certain distance from

the axis at which the fluid will not revolve at all. Writing - 9, for 9, in equation (23), we have

for this distance
/ab{bq, + aq.^)

bqi +aq,

9. Although the discharge of a liquid through a long straight pijje or canal, under given

circumstances, cannot be calculated without knowing the conditions to be satisfied at the surface of

contact of the fluid and solid, it may be well to go a certain way towards the solution.

Let the axis of x be parallel to the generating lines of the pipe or canal, and inclined at

an angle a to the horizon ; let the plane yz be vertical, and let y and z be measured downwards.

The motion being uniform, we shall have ti = 0, v = 0, w =f(x,y), and we have from equations (13)

dp dp dp . id" to d^it)\

dm

dp dp . Id'w d'w\

In the case of a canal --- = ; and the calculation of the motion in a pipe may always be reduced

d D
to that of the motion in the same pipe when — is supposed to be zero, as may be shown by

dx
reasoning similar to Dubuat's. Moreover the motion in a canal is a particular case of the motion

in a pipe. For consider a pipe for which — = 0, and which is divided symmetrically by the

dw
plane xx. From the symmetry of the motion, it is clear that we must have — = when x = -,
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but this is precisely the condition which would have to be satisfied if the fluid had a free surface

coinciding with the plane <vx; hence we may suppose the upper half of the fluid removed, without

affecting the motion of the rest, and thus we pass to the case of a canal. Hence it is the same

thing to determine the motion in a canal, as to determine that in the pipe formed by completing the

canal symmetrically with respect to the surface of the fluid.

We have then, to determine the motion, the equation

(Pw drw so sin a

dai'' ay' fi

In. the case of a rectangular pipe, it would not be difficult to express the value of w at any point

in terms of its values at the several points of the perimeter of a section of the pipe. In the case

of a cylindrical pipe the solution is extremely easy : for if we take the axis of the pipe for that of

z, and take polar co-ordinates r, in a plane parallel to vy, and observe that ,„ = 0, since the

motion is supposed to be symmetrical with respect to the axis, the above equation becomes

d'W I dw ffp sin a
+ - — + '^ = 0.

dr r dr ix

Let a be the radius of the pipe, and U the velocity of the fluid close to the surface; then,

integrating the above equation, and determining the abitrary constants by the conditions that w
shall be finite when r = 0, and iv = U when r = o, we have

go sin a
IV = '^ (or - r) + U.

SECTION II.

Objections to Lagrange's proof of the theorem that j/" udx + vdy + wdz is an exact

differential at any one instant it is always so, the pressure being supposed equal

in all directiotis. Principles of M. Cauchys proof. A new proof of the theorem.

A physical interpretation of the circumstance of the above expression being an

exact differential.

10. The proof of this theorem given by Lagrange depends on the legitimacy of supposing

M, « and w capable of expansion according to positive integral powers of t, for a sufficiently

small finite value of t. It is clear that the expansion cannot contain negative powers of t, since

«, V and w are supposed to be finite when t = Q\ but it may be objected to Lagrange's proof

that there are functions of t of which the expansion contains fractional powers of t., and that we do

not know but that ?<, u and w may be such functions. This objection has been considered by

Mr. I'ower*, who has shown that the theorem is true if we suppose ?«, v and w capable of

expansion according to any powers of t. Still the proof remains unsatisfactory, in fact inconclusive,
1

for these are functions of t, (for instance e''' , t log /,) which do not admit of expansion according

• Camltrulye l*h'tl(tsnj)hiral Trfiifuctionti, Vol, vil. Part 3

Vol. VIII. Part III. R r
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to powers of t^ integral or fractional, and we do not know but that u, v and w may be functions of

this nature. I do not here mention the proof which Poisson has given of the theorem in his

Traite de Mechanique, because it appears to me liable to an objection to which I shall presently

have occasion to refer : in fact, Poisson himself did not think the theorem generally true.

It is remarkable that Mr. Power's proof, if it were legitimate, would establish the theorem

even when account is taken of the variation of pressure in different directions, according to the

theory explained in Section I, if we suppose that — = 0. To show this we have only got to treat

equations (12) as Mr. Power has treated the three equations of fluid motion formed on the ordinary

hypothesis. Yet in this case the theorem is evidently untrue. Thus, conceive a mass of fluid which

is bounded by a solid plane coinciding with the plane yz, and which extends infinitely in every

direction on the positive side of the axis of x, and suppose the fluid at first to be at rest. Suppose

now the solid plane to be moved in any manner parallel to the axis of y ; then, unless the solid

plane exerts no tangential force on the fluid, (and we may suppose that it does exert some,) it

is clear that at a given time we shall have w. = 0, « =f(jB), w = 0, and therefore udx + vdy + lodss

will not be an exact differential. It will be interesting then to examine in this case the nature

of the function of t which expresses the value of v.

Supposing X, Y, Z to be zero in equations (12), and observing that in the case considered

dp
we have -— = o, we set

dy ^

dv fjL (Pv

dt p dx^

Differentiating this equation w - 1 times with respect to t, we easily get

dt"
~

\p) dx^"
'

but when t = 0, v = when ,v > 0, and therefore for a given value of

(24)

all the differential

coefficients of u with respect to t are zero. Hence for indefinitely small values of t the value of

u at a given point increases more slowly than if it varied ultimately as any power of t, however

great ; hence ti cannot be expanded in a series according to powers of t. This result' is independent

of the condition to be satisfied at the surface of the solid plane.

I think what has just been proved shows clearly that Lagrange's proof of the theorem

considered, even with Mr. Power's improvement of it, is inadmissible.

11. The theorem is however true, and a proof of it has been given by M. Cauchy*, which

appears to me perfectly free from objection, and which is very simple in principle, although it

depends on rather long equations, M. Cauchy first eliminates p from the three equations of

motion by means of the conditions that
d'p d'p

See, he then changes the independent
dxdy dydx

variables from ,r, y, z, f. to a, b, c, t, where a, b, c are the initial co-ordinates of the particles.

The three transformed equations admit each of being once integrated with respect to t ; and

determining the arbitrary functions of o, 6, c by the initial values of u, v and w, the three

integrals have the form

(..„' = Fill + Gw" + Hw" , &c..

• Memoire sur la Thiorie des Ondes, in the first volume of

the Memoires presentes a VInstitut. W. Cauchy has not had

occasion to enunciate the theorem, but it is contained in his

equations (16). This equation may be obtained in the san.-e

manner in the more general case in which p is supposed to be a

function of p.
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ft)', o)" and w" denoting here the same as in Art. 2, and wa &c. denoting the initial values of

w, &c. for the same particle. Solving the above equations with respect to <«', u>" and u>"', the

resulting equations are

1 idx , dx „ dx

'"=s[d-a'"^ ^db"'" *Tc'""
y^^-'

where .S' is a function of the differential coefficients of x, y and z with respect to o, b and c,

which by the condition of continuitv is shown to be equal to — , n being the initial density about

the particle whose density at the time considered is p. Since — &c. are finite, (for to suppose

them infinite would be equivalent to supposing a discontinuity to exist in the fluid,) it follows at

once from the preceding equations that if &)„' = 0, at" - 0, w^" = 0, that is if u^da + v^db + w^dc
be an exact differential, either for the whole fluid or for any portion of it, then shall w = 0,

(u" = 0, (,,"' = 0, i.e. iid,v + vdy + wdz will be an exact differential, at any subsequent time,

eitlier for the whole mass or for the above portion of it.

12. It is not from seeing the smallest flaw in M. Cauchy's proof that I propose a new one,

but because it is well to view the subject in different lights, and because the proof which I am
about to give does not require such long eciuations. It will be necessary in the first place to prove

the following lemma.

Lemm.^. If o)|, w.,;...ai„ are n functions of t, which satisfy the n differential equations

(25)

at

d,w„-- = P„W, + Q„U>„... + V„w„,
(if

where P„ Q,... V„ may be functions of t, <«i...a.,„ and if when oj, = o, tu^ = 0...w„ = 0, none of the

quantities P,, ...V„ is infinite for any value of t from to T, and if (Oi...w„ are each zero when
f = 0, then shall each of these quantities remain zero for all values oft from to T.

Demonstration. Let r be a finite value of t, then by hypothesis t may be taken so small
that the values of Wi...w„ are sufficiently small to exclude all values which might render any one of
the quantities P,...F„ infinite. Let Z, be a superior limit to the numerical values of the
several quantities Pi...V„ for all values of t from to t ; then it is evident that (o,...a)„ cannot
increase faster than if they satisfied the equations

dwi— = Z,((U, + (Uj ... + w„), \

—J = L(w, + (Uj,... + w„),
j

.(26)

vanishing in this case also when f = 0. But if w, + w,... + w„ = il, we have by adding together
the above equations

if now Q be not equal to zero, dividing this equation by <2 and integrating, we have

il = Ce"-';

R R 2
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but no value of C different from zero will allow Q to vanish when < = 0, whereas by hypothesis

it does vanish; hence Q = 0; but Q is the sum of 71 quantities which evidently cannot be

negative, and therefore each of these must be zero. Since then a)|...(u„ would have to be equal

to zero for all values of t from to t even if they satisfied equations (26), they must d fortiori

be equal to zero in the actual case, since they satisfy equations (25). Hence there is no value of

/ from to T at which any one of the quantities tu, ...ai„ can begin to differ from zero, and

therefore these quantities must remain equal to zero for all values of t from to T.

This lemma might be extended to the case in which « = os , with certain restrictions as to

the convergency of the series. We may also, instead of the integers 1, 2...n, have a continuous

variable a which varies from to a, so that to is a function of the independent variables a and t,

satisfying the differential equation

d

at Jo

where \|/(a, 0, t) does not become infinite for any value of a from to a combined with any
value of t from to T. It may be shown, just as before, that if o) = when t = for all values

of a from to a, then must oi = for all values of t from to T. The proposition might be

further extended to the case in which a = 05 , with a certain restriction as to the convergency of the

integral, but equations (25) are already more general than I shall have occasion to employ.

It appears to me to be sometimes assumed as a principle that two variables, functions of

another, t, are proved to be equal for all values of t when it is shown that they are equal for a

certain value of t, and that whenever they are equal for the same value of t their increments for

the same increment of t are ultimately equal. But according to this principle, if two curves

could be shown always to touch when they meet they must always coincide, a conclusion

manifestly false. I confess I cannot see that Newton in his Principia, Lib. i. Prop. 40 has

proved more than that if the velocities of the two bodies are equal at equal distances, the

increments of those velocities for equal increments of the distances are ultimately equal : at least

something additional seems required to put the proof quite out of the reach of objection. Again
it is usual to speak of the condition, that the motion of a particle of fluid in contact with the

surface of a solid at rest is tangential to the surface, as the same thing as the condition that the

particle shall always remain in contact with the surface. That it is the same thing might be

shown by means of the lemma in this article, supposing the motion continuous ; but independently

of proof I do not see why a particle should not move in a curve not coinciding with the surface,

but touching it where it meets it. The same remark will apply to the condition that a particle

which at one instant lies in a free surface, or is in contact with a solid, shall ultimately lie in the

free surface, or be in contact with the solid, at the consecutive instant. I refer here to the more

general case in which the solid is at rest or in motion. For similar reasons Poisson's proof of the

Hydrodynamical theorem which forms the principal subject of this section has always appeared

to me unsatisfactory, in fact far less satisfactory tlian Lagrange's. I may add that Poisson's

proof, as well as Lagrange's, would apply to the case in which friction is taken into account, in

which case the theorem is not true.

13. Supposing ju to be a function of p, , the ordinary equations of Hydrodynamics
J \P

/

*'^
dx ^ Bt' dy

-"^
Bt' dz '^~Bt ^ ^'

The forces X, Y, Z will here be supposed to be such that Xdx + Ydy + Zdx is an exact

differential, this being the case for any forces emanating from centres, and varying as any functions
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of the distances. Differentiating the first of equations (27) with respect to y, and the second

with respect to !c, subtracting, putting for —— and — their values, adding and subtracting

du dv
, .

I
• ,.— —

, and employing the notation of Art. 2, we obtain
dz dz

Dm" du , dv ,, /du dv\ „.

Dt d« dz \dj! dyj

By treating the first and third, and then the second and third of equations (27) in the same
manner, we should obtain two more equations, which may be got at once from that which has

just been found by interchanging the requisite quantities. Now for points in the interior of

the mass the differential coefficients -—
, &c. will not be infinite, on account of the continuity

dz •'

of the motion, and therefore the three equations just obtained are a particular case of equations (25).

If then udx + vdy + wdz is an exact differential for any portion of the fluid when # = 0,

that is, if o)', w" and w" are each zero when t = 0, it follows from the lemma of the last

article that w, w" and w" will be zero for any value of t, and therefore ud.v + vdy + tvdz
will always remain an exact differential. It will be observed that it is for the same portion

of fluid, not for the fluid occupying the same portion of space, that this is true, since equations

(28), ac. contain the differential coefficients &c., and not , &c.
^ ' Dt dt

14. The circumstance of udx + vdy + w dz being an exact differential admits of a physical

interpretation which may be noticed, as it is well to view a subject of this nature in different

lights.

Conceive an indefinitely small element of a fluid in motion to become suddenly solidified,

and the fluid about it to be suddenly destroyed ; let the form of the element be so taken

that the resulting solid shall be that which is the simplest with respect to rotatory motion,

namely, that which has its three principal moments about axes passing through the centre

of gravity equal to each other, and therefore every axis passing through that point a principal

axis, and let us enquire what will be the linear and angular motion of this element just

after solidification.

By the instantaneous solidification, velocities will be suddenly generated or destroyed in the

different portions of the element, and a set of mutual impulsive forces will be called into

action. Let x, y, z be the co-ordinates of the centre of gravity G of the element at the

instant of solidification, x + x, y +y', z + z those of any other point in it. Let u, «, w be

the velocities of G along the three axes just before solidification, ii , v, w the relative velocities

of the point whose relative co-ordinates are .r', y, z . Let m, », w be the velocities of G, u, o , w^

the relative velocities of the point above mentioned, and w , w" , ui" the angular velocities just

after solidification. Since all the impulsive forces are internal, we have

u = u, V = V, w = w.

We have also, by the principle of the conservation of areas,

2m \y' {w ^ - w) - z' (u - u')} = 0, &c.,

m denoting an element of the mass of the element considered. But u^ = ui' z' - lu"y\ xd is

du , du
,

du ,

ultimately equal to —— r + -:— V + -;— ^ > and similar expressions hold good for the other
^ dx dy'' dz ' "
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quantities. Substituting in the above equations, and observing that ^my'z' — ^m'z\v'
= Sm.r'y' = 0, and 2»i.r'- = 'S.my' = Swsr'^, we have

/dw dv(dw av\

\dy

We see then that an indefinitely small element of the fluid, of which the three principal moments
about the centre of gravity are equal, if suddenly solidified and detached from the rest of

the fluid will begin to move with a motion simply of translation, which may however vanish,

or a motion of translation combined with one of rotation, according as udx + vdy + todz is,

or is not an exact differential, and in the latter case the angular velocities will be the same
as in Art. 2.

The principle which forms the subject of this section might be proved, at least in the case

of a homogeneous incompressible fluid, by considering the change in the motion of a spherical

element of the fluid in the indefinitely small time dt. This method of proving the principle

would show distinctly its intimate connexion with the hypothesis of normal pressure, or the

equivalent hypothesis of the equality of pressure in all directions, since the proof depends on

the impossibility of an angular velocity being generated in the element in the indefinitely small

time df by the pressure of the surrounding fluid, inasmuch as the direction of the pressure at

any point of the surface ultimately passes through the centre of the sphere. The proof I

speak of is however less simple than tiie one already given, and would lead me too far from

my subject.

SECTION III.

Application ofa method analogous to that of Sect. I. to the detennmation of the equations

of equilibrium and motion of elastic solids.

15. All solid bodies are more or less elastic, as is shown by the capability they possess

of transmitting sound, and vibratory motions in general. The solids considered in this section

are supposed to be homogeneous and uncrystallized, so that when in their natural state the

average arrangement of their particles is the same at one point as at another, and the same
in one direction as in another. The natural state will be taken to be that in which no forces

act on them, from which it may be shown that the pressure in the interior is zero at all

points and in all directions, neglecting the small pressure depending on attractions of the
nature of capillary attraction.

Let ,T, y, X be the co-ordinates of any point P in the solid considered when in its natural

state, a, /3, 7 the increments of those co-ordinates at the time considered, whether the body
be in a state of constrained equilibrium or of motion. It will be supposed that a, /3 and y
are so small that their squares and products may be neglected. All the theorems proved in

Art. 2. with reference to linear and angular velocities will be true here with reference to linear

and angular displacements, since these two sets of quantities are resolved according to the same
laws, as long as the angular displacements are supposed to be very small. Thus, the most
general displacement of a very small element of the solid consists of a displacement of translation,

an angular displacement, and three displacements of extension in the direction of three rectangular
axes, which may be called in this case, with more propriety than in the former, axes of
extensioti. The three displacements of extension may be resolved into two displacements of
shifting, each in two dimensions, and a displacement of uniform dilatation, positive or negative.

The pressures about the element considered will depend on the displacements of extension only;
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there may also, in the case of motion, be a small part depending on the relative velocities,

but this part may be neglected, unless we have occasion to consider the effect of the internal

friction in causing the vibrations of solid bodies to subside. It has been shown (Art. 7.) that

the effect of this cause is insensible in the case of sound propagated through air; and there

is no reason to suppose it greater in the case of solids than in the case of fluids, but rather

the contrary. The capability which solids possess of being put into a state of isochronous

vibration shows that the pressures called into action by small displacements depend on homo-
geneous functions of those displacements of one dimension. I shall suppose moreover, according

to the general principle of the superposition of small quantities, that the pressures due to

different displacements are superimposed, and consequently that the pressures are linear functions

of the displacements. Since squares of a, /3 and y are neglected, these pressures may be referred

to a unit of surface in the natural state or after displacement indifferently, and a pressure which

is normal to any surface after displacement may be regarded as normal to the original position

of that surface. Let - ^^ be the pressure corresponding to a uniform linear dilatation ^ when
the solid is in equilibrium, and suppose that it becomes - mJS, in consequence of the heat

developed, when the solid is in a state of rapid vibration. Suppose also that a displacement

of shifting parallel to the plane a;y, for which a = kx, /3 = - ky, 7 = 0, calls into action a
pressure - Bk on a plane perpendicular to the axis of a:, and a pressure Bk on a. plane
perpendicular to that of y; the pressures on these planes being equal and of opposite signs,

that on a plane perpendicular to the axis of ss being zero, and the tangential forces on those

planes being zero, for the same reasons as in Sect. 1. It may also be shown as before that

it is necessary to suppose B positive, in order that the equilibrium of the solid medium may
be stable, and it is easy to see that the same must be the case with A for the same reason.

It is clear that we shall obtain the expressions for the pressures from those already found
for the case of a fluid by merely putting a, jS, 7, B for u, v, w, fx and -AS or -mAS for p,
according as we are considering the case of equilibrium or of vibratory motion, the body being in

the latter case supposed to be constrained only in so far as depends on the motion.

For the case of equilibrium then we have from equations (8)

,...., ..S(±L-S]. r,.-«(^.g),.o ,«,

(da rf/3 dy\— + j~ "*" j~) ' ^""^ '•^^ equations of equilibrium will be obtained from (12) by

Du
putting -r— = 0, p = - AS, making the same substitution as before for m, v, w and u.. We have

therefore, for the equations of equilibrium,

^ ^ , , ^. ^ /<*« ^/3 dy\ „ id'u d'a d'a\
, ^,1(^,5)- (- + -+£). 5 (^--.,.^^-.^^)=o,&c (30)

In the case of a viliratory motion, when the body is in its natural state except so far as depends
on the motion, we have from equations (8)

„ id-a „\ ^ „ idB dy
P,= -mAd-^2B [—-d], T,= - Bi-f- +-Zl,&c., (31)

^dx I \dx dyf

Du
and the equations of motion will be derived from (12) as before, only &c. must be replaced by

d'a— &c., and X, Y, Z put equal to zero. The equations of n)otion, then, are

d'a , , . n^ d Ida dfi dy\ ^ id'a d'a d'a\

at ^ dx \dw dy dzl \dx' dy' d^'l
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16. The conditions to be satisfied at the surface of the solid may be easily deduced from

the analogous conditions in the case of a fluid with a free surface, only it will be necessary

to replace the normal pressure FI by an oblique pressure, of which the components will be

denoted by X,, l', Z,. We have then, making the necessary changes in the quantities involved

in (14),

,. „f da Ida d&. ida dy\\

( a,r \dy dxl \dz dwi ]

for the case of equilibrium, and for the case of motion such as that just considered it will only be

necessary to replace A hy m A in these equations. If we measure the angles of which I, m, n are

the cosines from the external normal, the forces X^, 1\, Zj must be reckoned positive when /, m and

n being positive, the surface of the solid is urged in the negative directions of ,v, y, z, and in other

cases the signs must be taken conformably.

If the solid considered is in a state of constraint when at rest, and is moreover put into a state

of vibration, the pressures and displacements due to these two causes must be calculated separately

and added together. If m were equal to 1, they could be calculated together from the same

equations.

SECTION IV.

Principles of Poissotfs theory of elastic solids, and of the oblique pressures existing in

fluids in motion. Objections to one of his hypotheses. Reflections on the constitution,

and equations of motion of the luminiferous ether in vacuum.

17- In the twentieth Cahier of the Jvurnal de PEcole Polytechnique may be found a memoir

by Poisson, entitled Memnire sitr les Equations generates de FEquilibre et du Mottvement des

Corps solides elastiques et des Fluides, which contains the substance of two memoirs presented

by him to the Academy, brought together with some additions. In this memoir the author

treats principally of the equations of equilibrium and motion of elastic solids, of the equations

of equilibrium of fluids, with reference especially to capillary attraction, and of the equations

of motion of fluids supposing the pressure not to be equal in all directions.

It is supposed by Poisson that all bodies, whether solid or fluid, are composed of ultimate

molecules, separated from each other by vacant spaces. In the cases of an uncrystallized solid

in its natural state, and of a fluid in equilibrium, he supposes that the molecules are arranged

irregularly, and that the average arrangement is the same in all directions. These molecules

he supposes to act on each other with forces, of which the main part is a force in the direction of the

line joining the centres of gravity, and varying as some function of the distance of these points,

and the remainder a secondary force, or it may be two secondary forces, depending on the

molecules not being mathematical points. He supposes that it is on these secondary forces that the

solidity of solid bodies depends. He supposes however that in calculating the pressures these

secondary forces may be neglected, partly because they become insensible at much smaller distances

than the main part of the forces, and partly because they act, on the average, alike in all

directions. He suppo.ses that the molecular force decreases very rapidly as the distance increases,

yet not so rapidly but that the sphere in which the molecular action is sensible contains an immense

number of molecules. He supposes consequently that in estimating the resultant force of a

hemisphere of the medium on a molecule in the centre of its base the action of the neighbouring

molecules, which are situated irregularly, may be neglected compared with the action of those
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more remote, of which the average may be taken. The consequence of this supposition of course is

that the total action is normal to the base of the hemisphere, and sensibly the same for one

. molecule as for an adjacent one.

The rest of the reasoning by which Poisson establishes the equations of motion and equililiriuuj

of elastic solids is purely mathematical, sufficient data having been already assumed. It might

appear that the reasoning in Art. ifi of his memoir, by which the expression for A'^ is simplified,

required the fresh hypothesis of a symmetrical arrangement of the molecules; but it really does not,

being admissible according to the principle of averages. Taking for the natural state of the body

that in which the pressure is zero, the equations at which Poisson arrives contain only one

unknown constant k, whereas the equations of Sect. iii. of this paper contain two, A or m A and B.

This difference depends on the assumption made by Poisson that the irregular part of the force

exerted by a hemisphere of the medium on a molecule in the centre of its base may be neglected in

comparison with the whole force. As a result of this hypothesis, Poisson finds that the change

in direction, and the proportionate change in length, of a line joining two molecules are continuous

functions of the co-ordinates of one of the molecules and the angles which determine the direction of

the line ; whereas in Sect. III., if we adopt the hypothesis of ultimate molecules at all, it is

allowable to suppose that these quantities vary irregularly in passing from one pair of molecules to

an adjacent pair. Of course the equations of Sect. iii. ought to reduce themselves to Poisson's

equations for a particular relation between A and B. Neglecting the heat developed by compression,

as Poisson has done, and therefore putting m = 1, this relation is ^ = 5fl.

18. Poisson's theory of fluid motion is as follows. The time t is supposed to be divided

into a number n of equal parts, each equal to t. In the first of these the fluid is supposed to

be displaced as an elastic solid would be, according to Poisson's previous theory, and therefore

the pressures are given by the same equations. If the causes producing the displacement were

now to cease, the fluid would re-arrange itself, so that the average arrangement about each point

should be the same in all directions after a very short time. During this time, the pressures

would have altered, in an unknown manner, from those corresponding to a displaced solid to a

normal pressure equal to p -t- f—T, the pressures during the alteration involving an unknown

function of the time elapsed since the end of the interval t. Another displacement and another

re-arrangement may now be supposed to take place, and so on. But since these very small

relative motions will take place independently of each other, we may suppose each displacement to

begin at the expiration of the time during which the preceding one is supposed to remain, and we

may suppose each re-arrangement to be going on during the succeeding displacements. Supposing

now n to become infinite, we pass to the case in which the fluid is supposed to be continually

beginning to be displaced as a solid would, and continually re-arranging itself so as to make the

average arrangement about each point the same in all directions.

Poisson's equations (9), page 1.52, which are applicable to the motion of a liquid, or of an

elastic fluid in which the change of density is small, agree with equations (12) of this paper. For

the quantity \^t is the pressure p which would exist at any instant if the motion were then to

cease, and the increment, t or ^^t, of this quantity in the very small time t will depend

1 1 ^"xt Dp
,. , , . ,, 11,,. d.^t

only on the increment, —^^t or —— t, of the density \t or p. Consequently the value ot —— t
dt Dt J M I H J

^f

dyt
will be the same as if the density of the particle considered passed from j^< to ;^< + -\^ t in the

time T by a uniform motion of dilatation. I suppose that according to Poisson's views such a

motion would not require a re-arrangcment of the molecules, since the pressure remains, equjil

Vol.. VIII Paui III. Ss
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in all directions. On this supposition we shall get the value of -y— from that of R' - K in
dt

du dv dw 1 dy^t
the equations of page 140 by putting —- = -— = —- f= -^. We have therefore^ ' " • '^ ^ da: dy dss 3y_t dt

dt 3 y^tdt

Putting now for /3 + /3 its value 9.ak, and for — —~ its value given by equation (2),
\t dt

the expression for •ar, page 152, becomes

idu dv dw\a (du dv dw\
p + - {K + k) {— + ~ + —^ 3

^ \dw dy d«jdy

Observing that a{K + k) = (i, this value of -ay reduces Poisson's equations (9) to the

equations (12) of this paper.

Poisson himself has not made this reduction of his equations, nor any equivalent one, so that

his equations, as he has left them, involve two arbitrary constants. The reduction of these two

to one depends on the assumption that a uniform expansion of any particle does not require a

re-arrangement of the molecules, as it leaves the pressure still equal in all directions. If we do

not make this assumption, but retain the two arbitrary constants, the equations will be the same

as those which would be obtained by the method of this paper, supposing the quantity k of

Art. 3 not to be zero.

19. There is one hypothesis made in the common theory of elastic solids, the truth of

which appears to me very questionable. That hypothesis is the one to which I have already

alluded in Art. 17, respecting the legitimacy of neglecting the irregular part of the action of the

molecules in the immediate neighbourhood of the one considered, in comparison with the total

action of those more remote, which is regular. It is from this hypothesis that it follows as a

result that the molecules are not displaced among one another in an irregular manner, in

consequence of the directive action of neighbouring molecules. Now it is obvious that the

molecules of a fluid admit of being displaced among one another with great readiness. The
molecules of solids, or of most solids at any rate, must admit of new arrangements, for most solids

admit of being bent, permanently, without being broken. Are we then to suppose that when a

solid is constrained it has no tendency to relieve itself from the state of constraint, in consequence

of its molecules tending towards new relative positions, provided the amount of constraint be very

small .' It appears to me to be much more natural to suppose a priori that there should be some

such tendency.

In the case of a uniform dilatation or contraction of a particle, a re-arrangement of its

molecules would be of little or no avail towards relieving it from constraint, and therefore it is

natural to suppose that in this case there is little or no tendency towards such a re-arrangement.

It is quite otherwise, however, in the case of what I have called a displacement of shifting.

Consequently B will be less than if there were no tendency to a re-arrangement. On the

hypothesis mentioned in this article, of which the absence of such tendency is a consequence,

I have said that a relation has been found between A and B, namely A = 5B. It is natural

then to expect to find the ratio of ^ to B greater than 5, approaching more nearly to 5 as the

solid considered is more hard and brittle, but differing materially from 5 for the softer solids,

especially such as Indian rubber, or, to take an extreme case, jelly. According to this view the

relation A = 5B belongs only to an ideal elastic solid, of which the solidity, or whatever we please

to call the property considered, is absolutely perfect.



AND THE EQUILIBRIUM AND MOTION OF ELASTIC SOLIDS. 315

To show how implicitly the common theory of elasticity seems to be received by some, I may
mention that MM. Lame and Clapeyron mention Indian rubber among the substances to which

it would seem they consider their theory applicable *. I do not know whether the coefficient of

elasticity, according to that theory, has been determined experimentally for Indian rubber, but

one would fancy that the cubical compressibility thence deduced, by a method which will be

seen in the next article, would turn out comparable with that of a gas.

20. I am not going to enter into the solution of equations (30), but I wish to make a

few remarks on the results in some simple cases.

If k be the cubical contraction due to a uniform pressure P, then will

-?
If a wire or rod, of which the boundary is any cylindrical surface, be pulled in the

direction of its length by a force of which the value, referred to a unit of surface of a

section of the rod, in P, the rod will extend itself uniformly in the direction of its length,

and contract uniformly in the perpendicular direction; and if e be the extension in the

direction of the length, and c the contraction in any perpendicular direction, both referred to

a unit of length, we shall have

A + B _ A-2B^~ SAP ^' ''~'6AB~

P
also, the cubical dilatation = e — 2 c = — .

A

If a cylindrical wire of radius r be twisted by a couple of which the moment is M, and
if be the angle of torsion for a length z of the wire, we shall have

e =^.
KBr"

The expressions for k, c, e and d, and of course all expressions of the same nature, depend
on the reciprocals of A and B. Suppose now the value of. e, or Q, or any similar quantity

not depending on A alone, be given as the result of observation. It will easily be conceived

that we might find very nearly the same value for B whether we supposed A = 5B or A = nB,
where n may be considerably greater than 5, or even infinite. Consequently the observation of two
such quantities, giving very nearly the same value of B, might be regarded as confirming the

common equations.

If we denote by E the coefficient of elasticity when A is supposed to be equal to 5 B
we have, neglecting the atmospheric pressure-|-,

2P ^ iMz
e = , 6 = ; .

5E TrEr*

If now we denote by £, the value of E deduced from observation of the value of e, and by

A'j the value of E obtained by observing the value of 9, or else, which comes to the same,

by observing the time of oscillation of a known body oscillating by torsion, we shall have

5-i. =^(i +
Zf)'

^-=^' -hence. =I __6 1^

A ~ JE, Ei

'

' Mlmoirei pritenUt a rjntlilul, Tom. iv. p. 469. f Lame, fours de I'lij/siqiie, Tom.

S S 2
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If J be greater than 5 B, Et ought to be a little greater than E^. This appears to agree

with observation. Thus the following numbers are given by M. Lame*£, =8000, E.^ = 7500 for

iron; £, = 2510, E^ = 2250 for brass
-f*.

The difference between the values of JE, and E.^ is

attributed by M. Lame to the errors to which the observation of the small quantity e is liable.

If the above numbers may be trusted, we shall have

A = 60000, B = 7500, =8 for iron ;B

A = 29724, B = 2250, — = 13-2] for brass.
B

The cubical contraction k is almost too small to be made the subject of direct observation
J,

it is therefore usually deduced from the value of e, or from the coefficient of elasticity E
k

found in some other way. On the supposition of a single coefficient E, we have - = ^ , but

retaining the two, A and B, we have = — =9(1+—] — , which will differ greatly

from # if — be much greater than 5. The whole subject therefore requires, I think, a careful
B

examination, before we can set down the values of the coefficients of cubical contraction of

different substances in the list of well ascertained physical data The result, which is generally

admitted, that the ratio of the velocity of propagation of normal, to that of tangential vibrations

in a solid is equal to \/3, is another which depends entirely on the supposition that A - ^B.

The value of m, again, as deduced from observation, will depend upon the ratio of A to B;

and it would be highly desirable to have an accurate list of the values of m for different

substances, in hopes of thereby discovering in what manner the action of iieat on those substances

is related to the physical constants belonging to them, such as their densities, atomic weights, &c.

The observations usually made on elastic solids are made on slender pieces, such as wires,

rods, and thin plates. In such pieces, all the particles being at no great distance from the

surface, it is easy to see that when any small portion is squeezed in one direction it has consider-

able liberty of expanding itself in a direction perpendicular to this, and consequently the

results must depend mainly on the value of B, being not very different from what thty

would be if A were infinite. This is not so much the case with thick, stout pieces. If

therefore such pieces could be put into a state of isochronous vibration, so that the musical

notes and nodal lines could be observed, they would probably be better adapted than slender

pieces for determining the value of mA. The value of m might be determined by comparing

the value of m A, deduced from the observation of vibrations, with the value of A, deduced

from observations made in cases of equilibrium, or, perhaps, of very slow motion.

21. The equations (32) are the same as those which have betn obtained by different

authors as the equations of motion of the luminiferous ether in vacuum. Assuming for the present

that the equations of motion of this medium ought to be determined on the same principles as

the equations of motion of an elastic solid, it will be necessary to consider whether the equations

(32) are altered by introducing the consideration of a uniform pressure 11 existing in the medium

• Ijani^ fours de Physiqur^ Tom. i. prcssibility of solids which would be obtained from I*oisson'»

+ These numbera refer to the l''rench units of length and weight 1
theory is in sonte cases as much as 20 01 .^0 limes too ^reat. See

*
I tind however that direct experiments have been made by the Repot t 0/ the British Association for 1H33. j). '.Vy\ or Arvhnei

Prof. Oersted, According to tliese experiments the cubical com- 1 des decouverles, S^-c for 1U34, p. 94.
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when in equilibrium ; for we have evidently no right to assume, either that no such pressure

exists, or, supposing it to exist, that the medium would expand itself but very slightly if it

were removed. It will now no longer be allowable to confound the pressure referred to a unit

of surface as it was, in the position of equilibrium of the medium, with the pressure referred to a

unit of surface as it actually is. The latter mode of referring the pressure is more natural, and

will be more convenient. Let the pressure, referred to a unit of surface as it is, be resolved

into a normal pressure II + p, and a tangential pressure <,. All the reasoning of Sect. iii.

will apply to the small forces p, and <, ; only it must be remembered that in estimating the

whole oblique pressure a normal pressure II must be compounded with the pressures given by

equations (3l). In forming the equations of motion, the pressure FI will not appear, because

the resultant force due to it acting on the element of the medium which is considered is zero.

The equations (.<i2) will therefore be the equations of motion required.

If we had chosen to refer the pressure to a unit of surface in the original state of the

surface, and had resolved the whole pressure into a pressure H. + P\ normal to the original

position of the surface, and a pressure /, tangential to that position, the reasoning of Sect. iii.

would still have applied, and we should have obtained the same expressions as in (."I) for the

pressures P,, 7*), &c , but the numerical value of A would have been different. According to

this method, the pressure O would have appeared in the equations of motion. It is when the

pressures arc measured according to the method which I have adopted that it is true that

the equilibrium of the medium would be unstable if either A or B were negative. I must

here mention that from some oversight the right-hand sides of Poisson's equations, at page 68

of the niL-moir to which I have referred, are wrong. The first of these equations ought to

. n id'u d'u d'u\ . U d'u
, • •, , ,

.
icontain — (

; + -^^ + , instead or — , and similar changes must he made in the
p ' d dj' dy- dz'

I

f)
di-

other two equations.

It is sometimes brought as an objection to the equations of motion of the luminiferous

ether, that they are the same as those employed for the motion of solid bodies, and that it

seems unnatural to employ the same equations for substances which must be so differently

constituted. It was, perhaps, in consequence of this objection that Poisson proposes, at

page 147 of the memoir which I have cited, to apply to the calculation of the motion of the

luminiferous ether the same principles, with a certain modification, as those which he employed

in arriving at his equations (9) page 152, i. e. the equations (12) of this paper. That modi-

fication consists in supposing that a certain function of the time <p(t) does, not vary very

rapidly compared with the variation of the pressure. Now the law of the transmission of a

motion transversal to the direction of propagation depending on equations (12) of this paper

is expressed, in the simplest case, by the equation (24) ; and we see that this law is the

same as that of the transmis.-.ioii of heat, a law extremely different from that of the trans-

mission of vibratory motions. It seems therefore unlikely that these principles are applicable

to the calculation of the motion of light, unless the modification which I have mentioned be

so great as wholly to alter the character of the motion, that is, unless we supposi' the pns.'ure

to vary extremely fast compared with the function (b(t), whereas in ordinary cases of the

motion of fluids the function (p(t) is supposed to vary extremely fast compared with the pressure.

Another view of the subject may be taken which I think deserves notice. IJefore explaining

tills view however it will be necessary to define what I mean in this paragraph by the word

el'iKlirili/. There are two distinct kinds of elasticity ; one, that by which a body which is

uniformly compressed tends to regain its original volume, the other, that by which a body which is

constrained in a manner independent of compression tends 10 assume its original form. 'I'he

conHtants y/. and B of Sect. III. may be taken as measures of these two kinds of elasticity. In

the present par.igniph, the word will be nsc<l to denote the second kind. Now many highly



318 Mr. stokes, ON THE FRICTION OF FLUIDS IN MOTION,

elastic substances, as iron, copper, &c., are yet to a very sensible degree plastic. The plasticity of

lead is greater than that of iron or copper, and, as appears from experiment, its elasticity less. On
the whole it is probable that the greater the plasticity of a substance the less its elasticity, and

ince versa, although this rule is probably far from being without exception. When the plasticity

of the substance is still further increased, and its elasticity diminished, it passes into a viscous

fluid. There seems no line of demarcation between a solid and a viscous fluid. In fact, the

practical distinction between these two classes of bodies seems to depend on the intensity of

the extraneous force of gravity, compared with the intensity of the forces by which the parts

of the substance are held together. Thus, what on the Earth is a soft solid might, if carried

to the Sun, and retained at the same temperature, be a viscous fluid, the force of gravity at

the surface of the Sun being sufficient to make the substance spread out and become level at

the top : while what on the Earth is a viscous fluid might on the surface of Pallas be a soft solid.

The gradation of viscous, into what are called perfect fluids seems to present as little abruptness as

that of solids into viscous fluids ; and some experiments which have been made on the sudden

conversion of water and ether into vapour, when enclosed in strong vessels and exposed to high

temperatures, go towards breaking down the distinction between liquids and gases.

According to the law of continuity, then, we should expect the property of elasticity to run

through the whole series, only, it may become insensible, or else may be masked by some other

more conspicuous property. It must be remembered that the elasticity here spoken of is that

which consists in the tangential force called into action by a displacement of continuous sliding:

the displacements also which will be spoken of in this paragraph must be understood of such

displacements as are independent of condensation or rarefaction. Now the distinguishing property

of fluids is the extreme mobility of their parts. According to the views explained in this article,

this mobility is merely an extremely great plasticity, so that a fluid admits of a finite, but

exceedingly small amount of constraint before it will be relieved from its state of tension by its

molecules assuming new positions of equilibrium. Consequently the same oblique pressures can be

called into action in a fluid as in a solid, provided the amount of relative displacement of the

parts be exceedingly small. All we know for certain is that the eff'ect of elasticity in fluids,

(elasticity of the second kind be it remembered,) is quite insensible in cases of equilibrium, and

it is probably inseiisible in all ordinary cases of fluid motion. Should it be otherwise, equations (8)

and (12) will not be true, or only approximately true. But a little consideration will show that

the property of elasticity may be quite insensible in ordinary cases of fluid motion, and tiiay yet

be that on which the phenomena of light entirely depend. When we find a vibrating string,

the small extent of vibration of which can be actually seen, filling a whole room with sound,

and remember how rapidly the intensity of the vibrations of the air must diminish as the distance

from the string increases, we may easily conceive how small in general must be the amount

of the relative motion of adjacent particles of air in the case of sound. Now the extent of

the vibration of the ether, in the case of light, may be as small compared with the length of a

wave of light as that of the air is compared with the length of a wave of sound : we have no

reason to suppose it otherwise. When we remember then that the length of a wave of sound in air

varies from some inches to several feet, while the greatest length of a wave of light is about . 00003

of an inch, it is easy to imagine that the relative displacement of the particles of ether may be so

small as not to reach, nor even come near to the greatest relative displacement which could exist

without the molecules of the medium assuming new positions of equilibrium, or, to keep clear of the

idea of molecules, without the medium assuming a new arrangement which might be permanent.

It has been supposed by some that air, like the luminiferous ether, ought to admit of

transversal vibrations. According to the views of this article such would, mathematically speaking,

be the case ; but the extent of such vibrations would be necessarily so very small as to render

them utterly insensible, unless we had organs with a delicacy equal to that of the retina adapted

to ^receive them.
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It has been shown to be highly probable that the ratio of ^ to fi increases rapidly according as

the medium considered is softer and more plastic. For fluids therefore, and among them for

the luminiferous ether, we should expect the ratio of ^ to fi to be extremely great. Now if A^ be

the velocity of propagation of normal vibrations in the medium considered in Sect, iii., and T that

of transversal vibrations, it may be shown from equations (32) that

3p ' p-

This is very easily shown in the simplest case of plane waves : for if /3 = 7 = 0, a =f (x), the equations

(32) give ^ -4 = i ("»^ + *^) J^ ' whence a = (p (Nt - .r) + >// (Nt + x) ; and if a = 7 = 0,

ft =/(.!), the same equations give p 7^ = -B j^ , whence fi = ^(Tt - x) + ^ (Tt + x). Conse-

quently we should expect to find the ratio of N to T extremely great. This agrees with a conclusion

of the late Mr. Green's*. Since the equilibrium of any medium would be unstable if either

J or B were negative, the least possible value of the ratio of N'" to T- is |, a result at which

Mr. Green also arrived. As however it has been shown to be highly probable that A> 5 B even for

A ^
the hardest solids, while for the softer ones — is much greater than 5, it is probable that — is

B ^

greater than ^.3 for the hardest solids, and much greater for the softer ones.

If we suppose that in the luminiferous ether — may be considered infinite, the equations

of motion admit of a simplification. For if we put mA (— +—+ — )
= -/''" equations (3'i),

\dx dy dx I

and suppose mA to become infinite while p remains finite, the equations become

d'a dp id}a d'a d
" df dx [dx' dy- d-x'T

{
/ggx

da dB dy [
and _ + J^ + -J: = 0. \

dx dy dx J

When a vibratory motion is propagated in a medium of which (33) are the equations of

motion, it niay be shown that p = ^ (f) if the medium be indefinitely extended, or else if there be

no motion at its boundaries. In considering therefore the transmission of light in an uninterrupted

vacuum the terms involving p will disappear from equations {fiZ') ; but these terms are, I believe,

important in explaining Difl^raction, which is the principal phenomenon the laws of which depend

only on the equations of motion of the lumniferous ether in vacuum. It will be observed that putting

A - 'X, comes to the same thing as regarding the ether as incompressible with respect to those

motions which constitute Light.

G. G. STOKES.

" Cambridge Phi/otophiral Transactions, Vol. vii. Port I. p.
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By Richard Potter, M.A., late Fellow of Queens" College, Cambridge,

and Professor of Natural Philosophy and Astronomy, University College,

London.

[Read December 8, 1845.]

The data I have employed for the calculations of the heights of the arches of the Aurorae

Boreales, which were seen on the nights of September 17th and October 12th, 1833, are chiefly

contained in the Conspectuses of the observations printed and distributed, together with various

recommendations, to members of the British Association for the advancement of Science.

In one instance, additional information is used from the Yorkshire Gazette; where Mr.

Phillips gave the breadth of an arch which he had omitted in the Conspectus.

In consequence of the attention of scientific men having been drawn to the subject, the

observations on these displays of the Aurora Borealis, were much moi-e complete than had ever

l)een obtained before. The time in the various observations was reduced to Greenwich time,

by Mr. Phillips the Secretary of the Association, which thus facilitates the comparison of the

phenomena noted by different observers : nevertheless they have never before been carefully

discussed. The partial discussion communicated by Professor Airy to this Society in November

1833, and published in the Philosophical Magazine for December of that year, is the only

previous discussion of them, that I am aware of; and the height was investigated only by

a graphical method, which appears to have given results very inaccurate for many of the

observations.

Regular observations on the Aurora of September 17th were taken by Mr. J. Phillips at

York, by Mr. Clare, Mr. Hadfield and myself, at or near Manchester, by Professor Airy, at

Cambridge, and by the Hon. C. Harris, near Gosport.

On the 12th October, regular observations were obtained by Professor Sedgwick, at Dent,

near Sedbergh, by Mr. W. L. Wharton, near Guisborough, by Mr. J. Phillips, at York, by

Mr. Clare, Mr. Hadfield and myself, at or near Manchester, by Dr. Robinson, at Armagh, by

Professor Airy, at Cambridge, and by the Hon. Charles Harris, at Heron Court, near Christ-

church, Hants.

The arches being perpendicular (or very nearly so) to the magnetic meridians of the places

of observations, a base for trigonometical calculation is more certainly obtained with respect to

them, than any other parts of the appearances. In the following calculations, 1 have accordingly

used observations on the arches only.

In the Conspectus for the 17th September, I find only two sets of contemporaneous obser-

vations, the one for Cambridge and Manchester, at 8*'. 25"" Greenwich time; the other for York

and Gosport, at ll''.0"'. Manchester and York are too nearly of the same magnetic latitude

to furnish an adequate base. To these I may add an observation of ray own, of the altitude

of an arch and its extent on the horizon, for calculating the height from an observation at

one place only, by means of a subsidiary hypothesis that the arches are portions of small circles

round the magnetic axis.
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The Conspectus for the 1 2th October, furnishes more sets of contemporaneous observations,

namely, Cambridge and York at 7*. 55" Greenwich time; Guisborough and Heron Court at

8''.20™; Dent and Manchester at 8*. 55"; Armagh and Manchester at 9''.0"'; and about 12 to

14 minutes later; Dent and Heron Court at lo''.40". Observations at Dent and Armagh, might

have been taken, but with a much diminished base line ; and Armagh is situated on so distant

a magnetic meridian from that of Dent or Manchester, that the calculations have a greater

value with respect to the law of terrestrial magnetism, than as giving very accurately the height

of the Aurora.

The regular and perfect arches have their highest points so nearly in the magnetic meri-

dian, that if there be any determinable deviation from this, more accurate methods of observation

must be employed in order to measure it. If two places be situated on the

same magnetic meridian, the point in the arch which has the greatest altitude

above the horizon at the one place, will be the same as the point which has tiie

greatest altitude at the other. If the places are not situated on the same magnetic

meridian, this will not be the case ; and in order to calculate the height of the

arch above the earth's surface, from observations of the altitudes of the highest

points, we must obtain our base by projecting the places on an intermediate

magnetic meridian.

Let A and B be the two places, draw Aa, Bb perpendiculars on the magnetic

meridian, then ab will be the base to be used in the trigonometrical calculations;

and putting v = the magnetic variation, we have the formula in English miles,

(lb = ^difference of latitudes in degrees x cos w ± difference of longitudes in

degrees x cos latitude x sin v \ 69.

The lower sign to be used when the place having the greater latitude, has

the less West longitude. The arc of the magnetic meridian thus found and

its chord, will not sensibly differ for any two of the places of observation ; but

the observed altitudes will require correction for the curvature of the meridian, in order to reduce

the calculation to the case of a rectilineal triangle. a

If C be the centre of the earth, A the point of the arch

supposed to be observed at a and b, the projections as in the

last figure. Then to solve the triangle Aab, we increase the

observed altitude at a by half the angle aCh, and diminish the

observed altitude at 6 by the same quantity, for the angles Abb',

and Aab. Having found the distance Ab, we find the distance

of A from the earth's centime by solving the triangle .^6C ; and

therefore know the height above the earth's surface.

In this way I have calculated the following observations:

When the altitude of the arch was referred to a given star, I have calculated the altitude

of the star from the Right Ascension and Declination given in the Nautical Almanac, for 1833.

In sucii case there was no correction for refraction to be applied, as the star and arcli

were equally affected.

In the observations on the 17th September, we have the following: the time in all cases

being Greenwich time.

From Professor Airy's observations at Cambridge. "8''.2.')"'.—The Aurora appeared in the

form of a large bright cloud, bounded on the lower side by the iiorizon, atui on the upper
»ide by an arch of a small circle (not differing much from a great circle). The extremities

of the arch were in the N. li. and W. N. W. or nearly W. The upper boundary was lower

than /3 Ursa; Majoris by ^ x distance from o Ursa? Majoris to /3 Ursa; Majoris," &c.

Vol. VIII. Pakt III. T t
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From Mr. Clare's observations at Manchester. " 8^. 24™.—The arch 7° broad, includes

Dubhe, Arcturus, and Capella, so that Capella is on the extreme upper edge ; Dubhe rather

above the middle of the breadth, and Arcturus rather below the middle, centre of the arch a

little E. of S Ursse Majoris. Extent of the arch 130°."

Now the altitude of j3 Ursae Majoris at 8^25". was 24°. 17' and | x dist of a and /3 = 8°. 4',

therefore altitude of summit of arch = 16°. 13' at Cambridge.

The altitude of a Ursse Majoris (Dubhe) at Manchester at 8*. 24™. was 31°. 14', and azimuth

22°. 34' N. towards W. about 2j°. from the magnetic meridian. Therefore the altitude of the

summit of the arch = 31°. 14' + 3°. 15' = 34°. 29' nearly.

The distance of Cambridge and Manchester projected on the magnetic meridian whose

variation is 24°. 30' is 119.42 English miles.

These data give the distance of the arch from Manchester 123.27 miles, and the height

above the earth's surface, of the upper edge, 71 miles. The breadth subtending 7° at Manchester,

we find it to be 15 miles. Therefore the height of the lower edge was 56 miles.

The above arch having disappeared, and the Streamers and Auroral light having diminished,

the appearances were subject to slight changes until lO*. 49^™.; when another arch was seen at

York by Mr. Phillips, and near Gosport by the Hon. C. Harris.

From Mr. J. Phillips's observations at York.

" 10^ 40™ 1

I A low faint arch stationary, its upper edge nearly reaching to t/ and 7 Ursae

.° „
I
Majoris; its vertex under Mizar (alt. about 18° in the middle)."

ir. 19™.) •'

In the Yorkshire Gazette for 21st September, 1833, Mr. Phillips states its breadth to be 4°;

therefore the altitude of the under edge was 16°.

From the Hon. C. Harris's observations, at 1 mile W.N.W. of Gosport.

" 10** 40—™ 1 <j
8

1^ Arch from N.W. to N.N.E. Its vertex under ^ Urs* Majoris, and the

ii 4.11' i^^S^ °^ ''^ ^^^^ ^*^^ ^^y between that star and the horizon

Now the altitude of ^ Ursas Majoris at Gosport at lo"". 57™. was 21°. 32', and therefore

the altitude of the lower edge was 10°. 46'.

The distance of York and Gosport projected on the magnetic meridian whose variation is

24°. 30' is 197.66 miles.

These data give the distance from York 1011.53 miles, and the height above the earth's

surface 389 miles.

In the Conspectus for the Aurora of October 12th, we have from Mr. Phillip's observations

at York.
" 7''. 56™ The summit of the arch was now 3° below the stars /3 and y Ursse Maj. &c.

" 7''. 57™ Suddenly it appeared double, in consequence of the production of a very narrow

faint arch above that seen before, and separated from it by a dark band.

" 7''. 58™.—This upper arch rose, so as to include j3 and y Urs» Maj., in its midddle.

" S**. 2™. It had vanished away, after rising still higher."

From Professor Airy's observations at Cambridge.

" 7*". 54™. The upper boundary of the bright cloud was extremely sharp ; it began to the

left of Arcturus, passed a very little above Arcturus, below y Ursse Maj. at exactly half the

elevation of -y UrsK Maj. (which was its highest point) and terminated E. of the N. at about

half the azimuth of /3 Aurigae. &c.

" 7"". 59°'. A black line was discoverable very near the upper boundary and parallel to it.

The upper part rose and the lower fell a little, thus widening the black line. About Arcturus

the upper part rose most.

" 8*'. 2™.—The upper part after rising considerably had wholly disappeared, &c."
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We have here one of the rare cases which fix the identity of the phenomenon seen ; the arch

appearing double at places so distant as Cambridge and York at the same time.

The distance of the projections of York and Cambridge on the magnetic meridian whose

variation is 24°. SO' is 129.97 miles. The altitude of -y Ursse Majoris at York at 7^. 56"°^.

was 22°. 50'; therefore the altitude of the summit of the arch was 19°. 50'.

The altitude of 7 Ursas Majoris at Cambridge at 7*. 54". was 21°. 3'; consequently the altitude

of the highest point of the arch was 10°. 31-^'.

These data give the summit of the arch 199-93 miles distant from York, and its height

above the earth's surface 72.2 miles.

From Mr. W. L. Wharton's observations at Guisborough.
" 8^. 20".—Well defined arch, passing between a and /3 Ursfe Majoris its summit somewhat

above ^ Ursas Majoris, no radiations."

From the Hon. Charles Harris's observations at Heron Court, 4 miles N.W. of Christchurcli,

Hants.

" S*". 22".—Bright, irregular arch, like a luminous bank of fog, about 8° above the horizon."

The distance of the projections of Guisborough and Heron Court on the magnetic meridian

whose variation is 24°. 30' is 225.1 miles.

The altitude of ^ Ursa9 Majoris at Guisborough at 8'\ 20". was 28°. 47'; therefore the summit
of the arch would have an altitude of about 29°. The breadth of the arch passing between

« and /3 Ursae Majoris would be 5° ; therefore the altitude of the lower edge would be 24°.

In the Hon. Mr. Harris's observation we have the altitude of tlie lower edge 8° - refraction

= 7°- 53'.

From these data we find the distance from Guisborough to have been 167.34 miles, and the

height of the under edge to have been 70.9 miles. The breadth being 14.6 miles, the height

of the upper edge was 85.5 miles.

From the observations of Professor Sedgwick at Dent, near Sedbergh, Yorkshire.
" s"". 55".—The upper part of the arch, better defined than before, passed between a and /3

Ursae Maj. and very near ^ Ursae Maj. Its vertex in or near the magnetic meridian. &c."

From my own observation near Manchester.

" 8*'. 53^'".—The arch has its vertex under ^ Ursae Maj. and its upper edge touches y
Ursae Maj., altitude about 19°. 30'."

At 8*'. .'54". Mr. Hadfield found, near Manchester, but on the opposite side, that the altitude

was 20°, and the extent on the horizon 120°.

The distance of the projections of Dent and Manchester on the magnetic meridian with

variation 25°. 30' is 52.56 miles.

The altitude of ^ Ursae Majoris at Dent at s''. 55"'. was 26°. 32', therefore the altitude of the

arch passing near it we may call 26°. 26'. Mr. Hadfield's observation corrected for refraction

gives the altitude at 8\ 54". as 19°. 57'.

With these data we find the arch to have been 183.38 miles from Dent, and the height of

the upper edge to have been 84.97 miles.

The arch, or rather arches, appear to have been stationary from about 8''. 54". to 9''. 10".,

for from Profes.sor Sedgwick's observations we have,

"9''. 10".—Arch nearly as before."

From Mr. Clare's observations at Manchester, who has recorded the arch as double at 8^. 54".,

we have

" 9''. 9".—The two arches remain in the same position."

From Dr. Robinson's observations at Armagh.
"9''. 1".—Three parallel arches, the principal one has its upper edge on Polaris, and midway

between Capella and fi Auriga; ; its lower a little above /3 and y Ursa; Majoris.

X T 2
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" 9^. 6" Arch in the same place place, Sic."

The distance of the projections of Armagh and Manchester on the magnetic meridian with

variation 25°. 30' is 128.76 miles.

By a careful examination of the course of the arch as seen at Armagh on a coelestial globe,

the altitude of the summit must have been about 60°, and the altitude at Manchester as above

was 19°. 57'.

These data give the distance from Armagh 74.25 miles, and the height above the earth's

surface 64.47 miles.

If we took the altitude at Armagh as 59°, and allowed

1°. so' for the point of the arch which appeared the highest at

Armagh, not corresponding with that which appeared the highest

at Manchester, on account of the elevation being so great at

Armagh, as shewn by the figure, we should have the height of the

arch above the earth's surface 66.5 miles, and the distance from

Armagh 78.69 miles.

From Dr. Robinson's observations at Armagh.
4iph

,
jm—Upper edge of arch has risen to Lyra and Capella, and a new arch has risen

beneath it, &c."

From my own observations near Manchester.

"()'>. 14i"".

—

n Ursae Majoris in the upper edge of the arch, the height of which by

measure = 21°. lO'."

The altitude of tj Ursae Majoris at Manchester at 9^ l*^"'- was 21°. 6' confirming the altitude

I obtained by an instrument made purposely for observing the Aurora; as however there is a

discrepancy between the height above the earth's surface deduced from these observations and

the previous ones, I will suppose the extreme upper edge had an altitude of 22°, that we may
be certain the discrepancy does not arise from an under valuing of the altitude at Manchester,

but must be sought in other causes.

From Dr. Robinson's observation, the altitude of the upper edge must have been 71-i°,

from which we may deduct 1^° for parallactic effect.

These data give the distance from Armagh 69.59 miles, and the height above the earth's

surface 65.4 miles.

These results are remarkably in accordance with the others for the same places, but

considerably different from the calculations for other places for nearly the same time ; so that

probably the method of projecting places of which the magnetic meridians are so distant as

Armagh and Manchester upon an intermediate magnetic meridian to obtain a base line, is

only approximately correct, from the course of the arch over the earth's surface, rather than

for geometrical reasons.

Another arch was observed from lO*. 34"°. to lo"". 45"". at Dent, Guisborough, York, Man-
chester, and Heron Court.

From Professor Sedgwick's observations we have,

"lO*". 40™.—The bright space arranges itself into an arch, commencing nearly N., passing

through tj Ursae Major. ; about 25° high near the magnetic meridian (measured only by a

geological clinometer)."

From the Hon. Charles Harris's observation.

" lO**. S"" A low arch again formed, its base scarcely 5° above the horizon, extending to

about 7°, &c."

The distance of the projections of Dent and Heron Court on the magnetic meridian with

variation 25°, is 232.52 miles.
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The altitudes of the summits of tlie arch being observed 25° at Dent and 7° at Heron Court,

correcting these for refraction, we find the distance of the arch from Dent to have been 136.33

miles, and its height above the earth's surface 59.4 miles.

I some years ago shewed, in the Edinburgh Journal of Science, that the locality of an

arch of an Aurora Borealis might be determined from observations at one place, by the help

of the hypothesis that tiie arch is a small circle round the magnetic axis. This hypothesis

cannot be accurate, from the change of the variation on the earth's surface, and we must con-

clude that, strictly, the regular arches are only perpendicular to a series of magnetic meridians;

which for localities exterior to the earth's atmosphere, may be found, when the meteor has

been more accurately observed, to differ from any assignable series on the earth's surface.

As an approximation this method gives the height sufficiently in accordance with the

trigonometrical method, to induce us to attempt more accurate observations, when the theory

of terrestrial magnetism shall be sufficiently advanced to enable us to profit by them.

The required observations are the altitude of the summit of the arch, and its extent on

any given plane perpendicular to the magnetic meridian.

When the given plane is the horizon, the formula takes the following simple form:

where r = earth's radius,

R = distance of the arch from the earth's centre,

e = trig. tang, of altitude of the summit,

m = (secant same angle)^,

/ = (secant -^ extent on horizon)^,

p = 1 + eg, where g = trig. tang, of magnetic polar distance of the place of observation.

In the Aurora of the 17th September, I obtained the following observation with the view

to its being used with the above formula.

" s"". iOl™. Arch 38° or 39° high, and extending about 160° on the horizon."

Taking the altitude 39°, and r = 3954 miles, the formula gives R = 4007.9 miles ; whence

R - r = height above the earth's surface = 53 . 9 miles.

We saw that the height of the under edge was 56 miles, and of the upper edge 71 miles

at 8''.24"'.

From the preceeding results, we must conclude that the meteor occurs immediately beyond

the ordinary limits assigned to the earth's atmosphere, and from that to very great altitudes

;

which is in accordance with the results of many previous calculations.

I shall conclude my paper with expressing my conviction that the Aurora Borealis will,

in some future time, from its connection with the earth's magnetism, be subjected to much
more accurate methods of observation than have hitherto been attempted.

R. POTTER.
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Though it is now about a hundred years since the general equations of fluid motion, expressed

in partial differential coefficients, were first given to the world, I am not aware that any

important case of fluid motion has hitherto been rigorously extracted from them. This however

has not arisen from want of effort, for the subject on account of its importance has successively

occupied the attention of the first mathematicians from the days of D'Alembert to the present

time ; but rather from the peculiarly rebellious character of the equations themselves, which

resist every attack, except it have reference to some case of a very simple and uninteresting nature.

This want of success I am inclined to attribute chiefly to our experimental ignorance of the

peculiar and distinctive characters of different species of fluid motion. In this matter indeed

there was a tendency to ignorance produced by that little success which had attended mathematical

research ; for as it was found that fluid motions of every sort, providing they are continuous,

are all expressible by the same partial differential equations, it was thought that those equations

ought to admit of being integrated in some general forms which should consequently include the

properties of every possible kind of continuous fluid motion. The natural consequence of this

idea has been that much effort has been unsuccessfully expended in attempts to obtain general

integrals. Two ways of approximation however are open to research ;—the one, in which the

approximations are made by neglecting certain terms on account of their supposed smallness in

comparison with the terms retained ; and the other, in which ab initio hypotheses are made

as to the paths or velocities or some other character of the motions of the particles. With
regard to both these methods, it is evident tliat they must first be authorized by experiment,

before they are used in verifying or predicting results. The former however is peculiarly

liable to error, from our being uncertain in many cases, whether with the neglected terms, we

may not have discarded some of the peculiar and essential properties of the motion we are

investigating. And with respect to the latter method, recourse must be had to experiment

to ascertain what are the really distinctive characters of the various kinds of fluid motion.

Hence nothing seemed more likely to conduce to the advancement of the Theory of Hydro-

dynamics than the appointment of a Commission, by the British Association for the Advancement

of Science, the object of which was the discovery of the " Varieties, Phcenomena, and Laws of

Waves :" for if there be varieties of waves differing in their phasnomena and laws, it was too

much to expect the mathematician (considering the exceedingly intractable nature of the

equations with which he has to deal) to discover what are the precise hypotheses which lead to

each variety. He must at least be allowed to know something of the peculiar phasnomena of

each variety, before he proceeds to the integration of his equations ; and there is no way in

which he could gain this knowledge except through the medium of experiments such as the

Commission, just alluded to, were directed to institute. The differential equations of motion

are too comprehensive to admit of general management. An hypothesis is in fact necessary to be
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made before we can advance a single step towards their integration ; and by the aid of it we may
only advance to a certain point, and no farther. If it be asked why we are thus stopped, the

answer seems to be this ; the results obtained up to that point are still of too general a character,

embracing every variety of fluid motion which is compatible with the hypothesis on which we

started. Now among the large class of such motions, there may be some varieties which cannot

be analytically expressed by the same final formulae ; and consequently these require to be sifted

from the others and from one another, by additional hypotheses ; each hypothesis pointing at the

variety or subdivision to which it belongs, and to no one else. Nothing in fact can be more

clear than this, that if there be varieties of fluid motion the laws of which do not admit of being

expressed in the same analytical forms, those varieties must be separately treated by the

mathematician ; and to the oversight of this necessity I attribute the insignificance of the progress

which has hitherto been made in this subject,

I have thought it necessary to introduce these remarks, because some persons, especially

among such as have not made Hydrodynamics a special object of study, ai'e apt to depreciate

investigations which set out upon a set of hypotheses which manifestly limit the range of the

results obtained. They prefer investigations which set out with fewer and broader hypotheses,

because they have the appearance of greater generality ; and this character they continue to

ascribe to such investigations, thougii it is found that in carrying them out it may have been

found necessary to introduce a system of approximations by the neglect of certain terras. I am
persuaded that this view is utterly fallacious in the majority of cases of any importance in nature

:

and that the wiser and better course when possible is, to consult experiment and thence obtain

authority for a set of hypotheses to start with, and to carry out these hypotheses to the end

without the introduction of analytical approximations. Our results will then be as comprehensive

as our hypotheses, and as far as they go may be relied upon with unlimited confidence. This

is the course which has been adopted in the following investigations. The experiments which

I have taken as a guide in framing my hypotheses are those of Mr. Scott Russell which are

printed in his " Report on Waves''' in the " Report of the Fourteenth Meeting of the British

Association^ These experiments were conducted with well-contrived apparatus and great care,

and are as worthy of confidence as experiments on wave motion can be : and there seems to be

but one circumstance in them to be regretted, which is, that Mr. Russell having been led by his

results to adopt a certain empirical formula for the velocity of transmission of a wave, his

expei'iments seem in a great measure to have degenerated into an effort to establish the truth

of that formula, in which he appears to have overlooked or forgotten the probability that after

all it might only be an approximate result, and that the exact mathematical form might contain

elements not recorded in his tables, because not required in his formula. The consequence of

this oversight is that he has not recorded one element, very easy of observation, and of essential

importance ; viz. the distance through which each particle was transferred in space by a wave in

passing it. Had this element been recorded, the experiments would have been much more

complete : and without it they are certainly defective as accurate tests of theory. It is true

Mr. Russell has given a rule for calculating this element ; but he has not furnished us with the

requisite data. These are the volume of the fluid which is elevated above the general level, and

the breadth and depth of his canal. Tiie last two are given, but the first is not given in any

one instance. He has indeed stated the volume of fluid originally put in motion, and seems to

have supposed that this would supply all that was wanted ; entirely overlooking a fact, which

must have forced itself upon his attention in the very first stages of his experimental researches,

viz. that a single wave could never be generated alone, and that consequently all the fluid

originally displaced did not go to form the single wave of observation ; which besides, us the

experiments themselves shewed, and as we siiall prove theoretically, was continually wasting away,

and thereby rendering the data still more inaccurate as the experiment proceeded.
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And in fact Mr. Russell tells us he found it necessary to wait awhile after the completion

of the process of generating a wave till the main wave had separated itself from the residuary

waves, which always accompanied its genesis. To generate a single wave required, as we shall

see, the exertion of a peculiar law of pressure ; and as no attempt was made to secure the

observance of this law in Mr. Russell's experiments, the inevitable consequence was the genesis of

residuary waves. We shall also see from our theory, that the nature of the motions given to the

particles of the fluid in this kind of wave produces a natural tendency in the wave to generate

and cast off irregular disturbances from itself, working its own destruction as it proceeds. While

therefore I look upon these experiments as very valuable additions to our knowledge, I still regard

them as imperfect even to the extent to which they profess to have been carried. It is in)possiblc

indeed to read the Synopsis which Mr. Russell has given in page 343 of his Report without

perceiving that he was too eager to adopt as results of experiments certain geometrical analogies,

of which there seemed to be some faint shadowings indicated in his observations.

In his Report Mr. Russell conceives that his observations authorized him to consider waves

as divisible into four distinct species : the first of which he has denominated " The great

solitary wave." It is found to comprehend two varieties, the positive and the tiegntive wave,

which though agreeing in some general characters differ in others. The object of the present

paper is to furnish the mathematical theory of this species. But how are we to sift this from

the other species.'' I have examined the phaenomena which Mr. Russell has recorded, and fixed

upon such as belonged to this species alone ; and these I have made the basis of my calculations.

But it is obviously desirable that the phaenomena thus selected should be of such a character

as admitted of easy and accurate observation. That the reader may judge in this matter I will

here propound them with Mr. Russell's statement of the method by which he obtained the one on

which there might possibly be a doubt : merely premising that I suppose the wave to be

transmitted in a horizontal canal of uniform breadth and depth, and that the fluid is incompressible.

1st. The velocity of transmission of a wave is uniform.

2nd. The horizontal velocity of all particles, which are situated in a vertical plane,

intersecting the axis of the canal at right angles, is the same.

By a contrivance of peculiar ingenuity Mr. Russell was enabled to obtain the velocity of

transmission with great exactness; and the result at which he arrived, and which we shall assume

to be accurately true is, that abstracting from friction and the cohesion of particles, the velocity

of transmission is uniform and the wave is permanent. We shall in the end shew that this

hypothesis is not strictly accurate.

With respect to the verification of the other principle which I have assumed, Mr. Russell

thus writes:—"The methods I had employed for such observations were the observation of the

motion of small particles visible in the water of the same, or nearly the same specific gravity with

water, or small globules of wax connected to very slender stems, so as to float at required deptlis.

The motions of these were observed, from above on a minutely divided surface on the bottom of

the channel; and from the side, through glass windows, themselves accurately graduated, the

side of the channel opposite the windows being covered with lines at distances precisely equal

to those on the window, and similarly situated. These methods are the only methods of

observation I have found it useful to employ, but I have now increased the number and variety

of the observations sufficiently to enable me to adduce the conclusions hereinafter following, as

representing the pha-nomena as far as their nature will admit of accurate observation." " If the

floating spherules before mentioned be arranged in repose in one vertical plane at right angles to

the direction of transmission of a wave, and carefully observed during transmission, it will be

noticed that the particles remain in the same plane during the transmission, and repose in the

same plane after transmission. It is further found, as might be anticipated from the foregoing
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observations, that a thiti solid plane transverse to the direction of transmission, and so poised

as to jloat in that position does not sensibly interfere with the motion of translation or of
transmission.^''

From this statement it would appear that we may safely assume, as an experimental fact,

the second principle which I have proposed to assume as the basis of calculations. The
observations required to be made in establishing it are such as admitted of very accurate

verification ; and seem also to have been made with care, and therefore the principle must l)e

either accurately true or very nearly so. By reference to the Report itself the reader will find

that this property of the solitary wave is not shared by any of the other three species of waves,

and is therefore very proper to serve as a distinctive assumption to sift this species from the

general equations of fluid motion. The investigations which follow will therefore contain the

Mathematical Theory of Waves of the First Species, i.e. of the Positive and Negative Solitary IVaves.

PROBLEM.

A QUANTITY of incompressible fluid is in a state of repose in a straight horizontal canal, the

sides of which are vertical and parallel, and the bottom horizontal. A single wave is generated

by pushing in one end of the canal in a proper manner : to determine the subsequent motion of

the fluid, on the two hypotheses before mentioned, viz.

1st. That the velocity of transmission of the wave is uniform.

And 2nd. That the horizontal velocity of every particle, in a transversal section of the

canal, is the same.

Let a horizontal line drawn along the bottom of the canal, parallel to the sides, be taken

for the axis of a; ; let the axis of y be vertical.

h = equilibrium depth of the fluid ;

k = the depth from the top of a wave to the bottom of the fluid ;

c = the velocity of transmission of the wave.

As the motion of each particle is manifestly in a vertical plane, it will not be necessary to

take account of the breadth of the canal, nor of the third co-ordinate of any particle ; let

therefore .ry be the co-ordinates and ttv the velocities of any particle at the time t ; and suppose

p the pressure of the fluid at the same point ; the density of the fluid being taken as unity.

Then by our second hypothesis m is a function of .i- and not of y; consequently the equations

of motion are in this case,

d^p = - diU - nd^u (1),

dp=—g-d,v-ud^v-vd^v (2);

and the equation of continuity is,

= d,u + d^v (;;),

and our first hypothesis gives,

= d,u + cdji (4).

From those four equations we are to obtain our results.

Vol.. VIH. Pakt IIL Uu
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Integrating (3) with regard to y, remembering that it and therefore also d^u, is independent

of y, we find

t) = - yd^ii, (5),

no arbitrary function of x being added to this integral, because manifestly u = when y = 0,

whatever be the value of so ; and no function of t is added because from (4) t enters with x only.

By means of this result eliminating v from (2) it becomes

dyP = - g + {didrU + ud^ht - {d^uy\y (6).

Now d .d,p = d^.dyp; and as appears from (1) d,p being independent of y, d^.d^p = 0,

consequently d p must be independent of x ; from which it follows that the coefficient of y in (6)

though a function of u is not a function of x, and therefore not of t by (4) ; and of course it is

not a function of y, consequently it is constant both with respect to x, y, and t ;

.-. constant = d^d^u + udj'ii - {d,uy (7).

Before proceeding farther it is necessary to ascertain whether this constant have a positive

or negative sign. We may ascertain this as follows.

Let us use the letter S as the symbol of differentiation, taking x and y to belong to the same

particle through the time St; then it is well known that instead of the equation (2) we may use

the following which is exactly equivalent to it, viz.

dyP = - g - ^?y,

which being compared with (6) gives,

^i^y = - [dtd^u + udjti - (d^ufly,

= — (constant) y.

Hence the force which urges the vertical motion of any particle varies as the distance of the

particle from the bottom of the canal, and has always the same sign. Consequently when the

original displacement of the fluid is such that any particle attains thereby a higher position than

it had when in equilibrium, the above force must act so as to bring it down to its original level

;

i.e. the force must then be negative. Hence for what Mr. Russell calls the positive wave the

above constant is positive. In a similar way it appears that for the negative wave the constant

has a negative sign. It is therefore now necessary to separate our investigation into two branches,

treating separately of these two varieties of the solitary wave.

OF THE POSITIVE SOLITARY WAVE.

In this case, representing the constant by n^, we have for discussion the equations

n- = dtd^u + ud/u - (d^ti)' ; (8),

^'y= -n'y (9)

which belong only to the variety of wave we are now considering. The latter will furnish us

with the law of the vertical motion of each particle ; and it shews that it is expressible in the

form of a sine or cosine of an angle the variable part of whose argument is nt.
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.-. y = A cos (^nt - a) (10),

and V = S,y = - nA sin (nt - a) (H)-

V
Also d,u = = OT tan (nt - a) (12).

y

If we knew the greatest and least values of y for any particle we should be able to deduce

results from these equations. Now for a particle in the surface, k and h are the greatest and

least values of y. If we call t^, #,, the values of t when the particle has these values for its y ;

then V = 0, when t = t,. and y = k

;

.-. wi'j, - a = from (ll) (l3),

and .-. k = A from (lO) ;

.-. h = k cos {nt,^ - a) from (lO)

= k cos («<,_ - nt,^ from (13);

•• '*~'^ = ;,'^''^"^- ^'*)-

Since u is positive or negative according as a particle is in its ascending or descending phase,

it appears from (II) that nt is less than a as long as the vertex of a wave is behind a particle; and
equal to a when the vertex is passing it ; and greater than a when the vertex has passed it.

Hence the functions on the right-hand side of the equations (10) (ll) (I2) are to be treated

discontinuously, i.e. their variation is to be confined within certain limits; between these limits

however their variation is continuous. Since, from the nature of the case y cannot be zero

for a particle not originally at the bottom of the canal, it appears from (10) that nt ~ a must

always be less than — . Equation (11) shews that the vertical velocity does not begin from

zero ; but that it suddenly has a finite value, which gradually decreases till it is all lost ; at

which moment the particle begins to descend, gradually regaining the lost velocity, which being-

accomplished it is as suddenly lost, as it was suddenly generated. All this agrees exactly

with the recorded observations of Mr. Russell (see Report, p. 342). Equation (14) gives half

the time during which the vertical motion of any particle lasts. Consequently the time a wave
. 2 _ fe

takes to pass a particle is - cos ' - (I5). The quantity n is unknown at the present

stage of our investigation.

We must now proceed to integrate the equation (8). For this purpose we must remember
that (4) gives us

u = (p(ct - ,i),

which being written in (8), using (p for (p {vt — ,v) for brevity, we have

n^ = - cd^(p + (pdj'(j) - (rfj0)-,

rf, (c - (p) _ d,(pd/(p

c - (p n' + {d,<p )-

from which by integration wc find

c -(p = C v/n" + (d.(py ;

U U 2
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C being an arbitrary constant, not containing t because t enters (p with a; only in the form

Ct — «!.

The last equation being again integrated gives

X

c - (p + \/{c - <py - Cn' = De^

D being another arbitrary constant, a function of t such as makes the right-hand member

a function o( ct — v;

D p CnU 7T •-- " -7;

But since ^ is a function of ct - x, this equation by introducing t, and properly assuming

the origin of t, may be written

(et-j: ct-x\

e~c" + e" c
j (16);

(Ct—X Ct-3f\

e^ - e~ ^ ) ('7)-

The last equation enables us to connect x and a ; for comparing it with (12) we have

ct- X _ct—x

2 tan (wi( - a) = e c _e '-' (18).

For a given particle a is constant, and consequently for that particle x so varies with t

as to preserve the truth of this equation.

Eliminating x between (16') and (18), we get

c — 11 = Cn sec (nt — a).

Now for a particle in the surface m = when t = t^\

.-. c = Cn sec {nt^ — a)

= Cn sec (ntf^ — nt,^) ;

Cn h
.'. — = cos {nt,^ — nt/^) = - from (14) ;

C r€

. /- "A
. . Cn = — :

k

1 ch ,

consequently c - it = — sec (nt - a) (I9)j

which gives the law of the horizontal velocity, as (11) gives the law of the vertical velocity of

a particle -. and it is worthy of remark that neither of these is represented by a sine or a

cosine. An assumption therefore that they might be so represented would be improper : and

from this assumption we may date in some degree the erroneousness of the results which have

been obtained by some writers who have adopted methods of analytical approximation. We

have seen also that the argument ?it — a does not vary from to + - as some have supposed.

Equation (19) shews that the horizontal unlike the vertical motion of a particle is wholly in

one direction, and is a maximum when the particle has reached its greatest vertical displacement

;

after which it decreases to zero.
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Let now x,^, co^ be the values of x for a given particle at the times t^, t^.

Then (18) gives
cth ~ xt, eh-xh

2 tan {nt^ - a) = e ^ - e ^~

,

elk -art, ctk - JCk

and = 2 tan {nt,^ - a) = e c _ g c
_

The last line shews that ct^ = x^ ; and the preceding line gives, remembering that n - nt ,

and .-. ct^ - X,, = C \og^ tan ( ^ cos"'-

•
• x^ - X,

But ctj^ — x^ = 0;

ih - Q = Clog, tan
(^^

- loos-'-)

Now 2(,T?j - x,) is the distance through which a particle is horizontally transferred b3' the

transit of a wave ; as this is an observable element we will denote it by /3;

Also the wave has travelled over the space c{f^-ti^ in tiie time t^^-t^.

Now if \ be the length of a wave, the wave in the time 2(/j - t^ has travelled over the

space \ + fi.

.-. X + /3 = 2c{f, - f,),

h

k

ch 2ch , Itt , ,h

and .. \ = 2 C log^ tan I
— + ^ cos

„ ,
ch 2cfi

,
(jT

, ,«\
Consequently 'J = ^^ = y^ l°ge

(^"J
+ i '^"^

j^j (20).

2c h
Also \ + /3 = 2c(<t - 4) = — cos-' -

;

71 K

k h
- cos -

/3 h k
^ ^

•••

X
+

'

= (-'^-
1

/"" 1 ,h
log^ tan - + * cos '-

V4 k

We may consider this equation as giving the value of the length of a wave ; and then

(20) gives the value of n in terms of c.

If we expand the terms of equation (21) we find,

" = cos-'- cos-'- + &c (22),
X h 6h\ kl 12/t \ kl ^ '

which shews that as /( diminishes, /3 diminishes compared with X.

We may now proceed to determine the velocity of transmission ; and the equation of a

wave surface.
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The equations for ihe pressure are,

dj.p = - d,u - ud^u = (c - u)djU,

and dyp = - g + n'y ;

.•. p = - \(c — uY - gy + \n^y^ + constant.

Now for a particle in the surface of the fluid p is constant ; and if z be the value of i/

for such a particle, then

constant = (c - iif + ^gz - n^x' (23).

But the value oi c - u is known in terms of sc from (l6), and consequently,

constant = —r-, (« '•' + e '^
\ +2gz - n/'z^ (24)

is the equation which gives the form of a wave, t is here to be considered constant.

Again, when z = h, u = 0,

.•. constant = c' + 2gh - n^hr from (23).

ch
Also when z = k, c - ti = ~ from ig, and consequently,

constant = -— + Sgk - M-fc' from (23) ;

n

.: = cM 1 - -j + 2g {h - k) - n- {h- - k') ;

and .-. c' + 7i'kP =
^^^
h + k

And if in this equation we write the value of n from (20), we obtain the following final

equation for the velocity of transmission.

/_2^\
U + k)

jlog^ tan
(^^

+ 1 COS-
-^) I

.(25).

It is to be remarked, that if h be very nearly equal to k, the denominator of the fraction

on the right-hand side of this equation becomes equal to 1 ; and tiie numerator equal to gk,
so that c = s/gk in that case; which is the empirical formula used by Mr. Russell. If h be

o Of- 1£^ fc-^-lf\
nuich less than k, then —— ( =gk. ) is greater than gk; but in that case the

h + k \ h + k)

denominator is greater than 1, and consequently there is a tendency to compensation which causes

the value of c to lean sensibly towards the value s/gk ; which accounts for the near agreement
of Mr. Russell's formula with experiment ; and shews that he was mistaken in imagining the

velocity of transmission to be entirely independent of the length of a wave.
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Equation (21) shews that waves which give the ratio between h and k the same, have

their lengths exactly proportional to the spaces through which they respectively transfer a particle

by transit past it.

Equation (25) shews that in waves which have the same values of It and k, those will be

transmitted with the greatest velocity which are the longest ; and those with the least velocity

which are the shortest.

We may conclude this portion of our investigations with the determination of the exact path

of each particle. The materials for this purpose are supplied by equations (10) and (l.O). In

both of them a is constant for our present purpose. The former gives,

y = A cos {lit - a) (26),

in which A is the maximum value of y for that particular particle.

Equation (19) gives

c - ^,ir t= —- sec {nt - a);
k

ch r
.-. X = ct —

/ sec {nt - a)
k J

f

c ch
= - (nt - a) - —- log, 5 tan (nt - a) + sec (nt - a)] + constant;
n nk °

' '

t being eliminated between this and (26), we shall have the equation required ; which is

manifestly not that of an ellipse as has been found by approximate methods ; though as far as the

eye can judge in an experiment, it may not be distinguishable therefrom.

It is very easy to shew from (2+) that the surface of a wave meets the level surface of the

quiescent fluid in a finite angle; and that under certain conditions it may have a point of contrary

flexure. The actual wave surface is only a symmetrical portion of the whole curve represented

by the equation (24). When a wave first reaches a particle d,iP = 0, and d,y = a finite quantity ;

consequently the initial motion of each particle is vertically upwards with a finite velocity. When

it has described half its path diX = c [l —7)5 and d,^ = ; consequently its motion is then

horizontal. At the termination of its motion d,a? = 0, and d,j/ = - (the initial velocity), so that

the final velocity is vertically downwards, and is finite ; which indicates that the motion ceases as

suddenly as it began. This seems to coincide either accurately, or very nearly so, with the

account Mr. Russell has given {Report, p. 342) of the observations he made on the motions of

individual particles in his experiments.

Before we proceed to compare the formula (20) with the results of experiment, it is necessary

to advert again to a circumstance which has been already alluded to. The formula of (20)

involves A. The value of this quantity not having been recorded in Mr. Russell's tables, I have

been under the necessity, as the best substitute for exact measures, of having recourse to the

rule, which he has given in page .S43 of his Report, for computing its approximate value. In

the notation of this paper, that rule may with sufficient accuracy be represented by the equation

X = 8/t — 2/c; for it is not necessary in computing the value of v that X should be known with

extreme accuracy, as the term in (2.';) into which it enters is very small, and has but little effect

upon the value of c. With these premises we give the following table, exhibiting a comparison

of theory and experiment.
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But the pressure in the quiescent part varies with the depth only ; and depends not at all on

the square of the depth ; consequently there is a discontinuity of the law of pressure in passing

from the wave to the quiescent fluid. This is of course an impossibility; and tlierefore our

equations, though they may represent the properties of the wave with as much accuracy as the

experimental observations, cannot be regarded as the exact representatives of a possible wave

motion. But as they are rigidly deduced from the two hypotheses which Mr. Russell considered

to be experimentally justified, it follows as a necessary and indisputable consequence that it

is impossible for the particles of a permanent wave to move in the manner here assumed, viz.,

so that those which are in a vertical plane at right angles to the axis of the canal should always

continue in a vertical plane during the transit of the whole wave. This hypothesis, as we have

seen, leads us to an impossible result; and it is of importance to notice that this impossibility could

not have been affirmed to be a necessary consequence of our hypotheses had methods of approxi-

mation been followed in our investigations, because it obviously depends on quantities which are

small.

It appears then that the pressure at the junction of the moving fluid with the quiescent

fluid cannot practically be such as our two hypotheses require it should be, yet as the hypothesis

respecting the continuance of particles in the same vertical plane is certainly known to be verv

nearly true, as nearly true indeed as observation has been able to discriminate, we may expect

that it is the other hypothesis which deviates more sensibly from experiment. To the want

of permanency of the wave therefore we must look for the experimental confirmation of the

impossibility we have just discovered. We will therefore now turn to Mr. Russell's experiments

for evidence upon this point.

At page 327 of The Report on Waves, we find what the author has designated the History of
a Solitary Wave of the First Order, from observation. A .vave such as we have been

investigating was generated in a canal such as we have supposed. The depth of the level fluid

was 5.1 inches; and k — h or the altitude of the crest of the wave above the general level was at

first 1.31 inches. An inspection of the table shews that the crest of the wave gradually fell, with

so rapid a degree of degradation, that in five minutes it was reduced to -08 inches, the wave

having in that time described ll6o feet. The velocity of the wave in the same time fell from 4.21

feet per second to 3.61 feet per second ; the diff'erence being -6 or one-seventh part of the whole

original velocity. It is evident from this statement that the degradation of the wave was a rapid

process, and that the consequent effect upon the velocity was considerable.

These effects, which are much greater than could have been caused by imperfect fluidity or

friction against the sides and bottom of the canal, I consider are fully accounted for by the

circumstance above-mentioned, viz. the impossibility there is that the pressure should be continuous

and the wave at the same time permanent if the motions of the particles are such as we supposed

them to be, and which experiment shews they very nearly are. We have certainly proved the

trutii of these two alternatives ;—if particles continue in a vertical plane while a wave passes them,

then the wave cannot be permanent;—and, if the wave be permanent then the motions of particles

once in a vertical plane cannot preserve them in a vertical plane while the wave passes them.

In proportion as one of our two hypotheses is more nearly true the other is farther from being

accurately true. Degradation of the wave is therefore the natural consequence of the law which

we have assumed for the motions of the fluid particles; and if that law be an experimental truth,

as we believe it is to a close degree of approximation, then the gradual destruction of the wave
is a necessary conse(|Ucnce, resulting not from friction alone, nor from im])erfect fluidity, but

chiefly from the manner in vvhich motion is initially communicated to the fluid particles.

Strictly speaking, our investigations have been conducted on two hypotheses which arc

incompatible with each other; but experiment shews that, though they may not be accurately

true, they are ap|)roximately correct and comj)atible : and we claim for the results of our
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investigation the same degree of accuracy as belongs to the hypotheses, because we have no where

infringed those hypotheses by analytical approximations. It is easy to shew that we cannot regard

our second hypothesis as being strictly correct. For if it were a possible hypothesis, then as the

first cannot be at the same time true, the quantity denoted by ri'- in equation (9) must be regarded

as a slowly varying function of t. The equation for p then assumes the form f = F{x,t) - gy
+ in'y^; which involves the same impossibility as before, because at any given moment, at the

junction of the wave with the quiescent fluid, the pressure depends on y^ as well as on y, which

cannot be the case. Hence our second hypothesis is certainly not mathematically correct, u must

therefore depend on y as well as on x.

We come now to the consideration

OF THE NEGATIVE SOLITARY WAVE.

Iv this case, we are to represent the constant of equation (7) by - n' ; the equations therefore

which are peculiar to the wave we are now investigating are,

-91^= dfd^u + %i,d^u — {d^u)' (8'),

S,''y = n-y (9').

From the last we obtain

y = ^(e°'-"± 6-"' + °),

and .-. ^,2/ = ^w(e"'-''=F e""'""")-

Now by the nature of the case S,y = when the particle has gained its lowest position

;

but S,y can never become = 0, unless we use the upper sign ; the upper sign must therefore be

used ; and consequently we obtain

y = ^(6"'-" + 6-"' + ") (10'),

V = S,y = n^Ce"'-"- «-'" + ') (Ii').

V
g»(-a_g-„l + a

Also rf."=- — ->^- ,a-.^,-..., 02).

The form of (9') shews that the force which regulates the vertical motion of each particle act.s

upwards, and consequently if the particle oscillate (which it must do if it be part of a wave) its

motion at first inust be downwards ; it then comes to a minimum altitude above the bottom of the

canal and then rises again to its original level. Let h be as before, and k the altitude of the lowest

point of a wave above the bottom of the canal ; then proceeding as in the corresponding part of

the investigation for the positive wave, we obtain

««jt
- a = (13'),

/c = 2 J,

k fh= (i

fit/, ~ nik ntk~nth\
e + e

Tax

) (1*);

1 /tt
and .-. t^- t, = - log„ tan (^- + i cos

"

'

Since v is negative in the fore part of the wave, and positive in the hinder part, nt is less

than a as long the particle is situated in the fore part, greater than a when it is in the hinder part,

and equal to a when the vertex of the wave passes it.
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We must now integrate equation (8'). Proceeding on the same plan as before, we obtain

w'- {d.cpy = {c -(p)di<p.,

.: c -<p = Cs/rii - {d^\
And integrating this equation, and assuming a convenient epoch for the commencement of t,

we find

c - u = Cn cos——— (16') ;

^ (^ f
.-. d,u = n sin (17');

e -"' + '- e"'-" . X - ct
• ' ;

-,— = sin ;

e-"' + '' + e"'-° C

,^ X - ct
and .-. e"'-" + 6""' + ° = 2sec — — (is').

j'4 = ct^, and

Let .r^, A\ be the values of x for a given particle at the times <,,, <^. Then (18') gives

2 sec
'^* ~ " *

• = e"'" - "'' + e"'' "
"''

2/t ,
= — from (14) ;

,
k

.'. Xf^ - ct,^ = C cos -
.

h

Now while a particle is transferred by the wave through the space 2 (x^ - x ) (=3) the wave
itself has travelled its own length (= \) in addition to this space; and the time occupied is

•• t- (f, - t„) = - + a:^ - x^ ;

•• ^k - «'/, = -) because c^ = x^;

.-. X = 2Ccos-' -
.

/(

But when x = x,^ and t = t,,, >i = 0, and consequently from (16')

n cos ~ = Cn . ~\
C h

2cA At

V =

Again, X + /3 = 2 c (<j - i^)

= ?ilog.tan (^ + ^co8-'^);

.-. nX = -cos"'- (20').

X X 2
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effect upon the wave itself, and an indirect effect in keeping the surface of the fJuid in a state

of agitation till the return of the wave after reflection at the end of the canal ; by which the

difficulty of accurately observing the exact time of transit would be greatly increased. Without
the aid of some supposition of this kind, I cannot account for the manifest irregularities

exhibited in Mr. Russell's table of the observed velocities of negative waves. {Eeport, page 349).

k



XXV. Oil the Geometrical Representation of the Roots of Algebraic Equations.

By the Rev. H. Goodwin, late Fellow of Cains College, and Fellow of

the Cambridge Philosophical Society.

[Read April 27, 1846.]

1. It is usual to distinguish t]ie roots of Algebraic Equations into three classes, viz
,
positive,

negative, and imaginary or impossible. Roots of all kinds may Jiowever be included under

one head, by considering them as composed of a modulus and a sign of affection, that sign

of affection being some power of - 1 : thus if a be the modulus, positive roots will be expressed by
« »

(- l)" . a, negative by (- l)'.o, and imaginary by (- l)".*?, and thus we may take (— lY-o
as the general expression for the root of an algebraic equation, and if reasoning could be con-

ducted by means of such a symbol it would not be necessary to distinguish between real and

imaginary roots, but all would come under the same view ; and speaking quite generally we

may say, that the root of an algebraic equation is a quantity with the negative affection developed

in any degree between zero and actual minus.

This mode of considering roots of course coincides with the ordinary mode of representing

the root of an equation by a (cos Q + \/— 1 sin 0), which symbol will be real and positive

if 9 = 0, real and negative if Q = it, and imaginary in other cases ; but what has been said

appears to point out more clearly the true connexion between the different species of roots,

and to remove in some degree the artificial character which at first sight attaches to the

representation of real roots under an imaginary form.

2. We may also bring the roots of an equation under one view geometrically ; for

considering the positive and negative roots only, we should represent them by setting off

distances in opposite directions from a given point along a given line : now instead of a line

passing through the point which we take as origin conceive a plane drawn through it, then

_«

all the roots will be represented by lines in this plane ; for the root (- 1)" . a or a (cos d+^/ - \ sin Q)

will correspond to a line of length a and which is inclined at an angle Q to the line along which

positive roots are measured; the conjugate root a (cos - \/— 1 sin 0) will be a line similarly

.situated on the oppo.site side of the positive line.

This is no new remark, but it has not, so far as I am aware, been followed into any of

its consequences; reflection upon it lias led me to consider whether it might not be developed

into a theory which should throw some light on the nature of Algebraic Equations, that is, whether

it would not be possible so to represent geometrically the changes of value of a function of

V, as to throw light upon the existence of the roots of the equation /(a) = 0.

With this view I have composed the following Memoir, and though I am not aware of

any practical step in the Theory of Equations which can result from my investigations, yet I

think they tend to throw considerable light upon existing knowledge, and to give us as it were

the rationale of some familiar theorems.
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.3. If we wish to represent the changes of value of f{x) taking into account only real values

of .r, the mode adopted would be to construct the curve defined by the equation

^=/(*) (1).

but if we wish to give a general representation of the changes of the function, taking into

account both real and imaginary values of a?, we must construct the locus of the equation

z^f(.v + yx/^) (a),

where x y and z are to be considered as co-ordinates of a point in space as is usual. Now if

we restrict ourselves to values of z which are real, equation (2) will divide itself into two

equations, which will be the equations of a curve of double curvature, and the points in which

this curve meets the plane of wy will determine by their distances from the origin the roots

of the equation f{v) = 0.

I will observe here that f {v) will be considered throughout this paper (unless the contrary

is stated) as the representation of the quantity

x' + p^ ,1."-' + p^x"-- + + p„,

where P\Pi P„ are real and either positive or negative.

4. The two equations to which (2) corresponds may be expressed in several ways, which

I shall here put down together.

By direct expansion, equating real and imaginary parts, and dividing the second equation

by y, we have

z=f{.v) -/"(,.)
j^

+/- Cr) -^ - &c.

=/ (r) -/" (^o j^+r i^) 1^
- &c.

If n be even and = 2 m, these equations become

^=/(*)-,r(*)^+/"w-^- + {-irr"'

and if w be odd and = 2ni + 1, they become

.(3).

(4)

^-f{^^)-f"{^v)j^+f"i-v)jl - + (-l)"'(2m+ \..v + p^)y-'» J

o=f'{^v) -f"'(.v) 1^' +r{x) y~ - + (- lyf
j

The equations also admit of a very neat symbolical expression, thus*:

, (5).

" The method which I have given of representing the locus

of the efjuation z~f{.t) taking into account values of .r not

lying in the real plane, in applicahle mutatis ynutandis to curves

defined by an implicit relation between the co-ordinates. Thus,

let the e<|uation he

f{x.z) = a^ {A),

then pulling for x x +yV-l, thin bccomea which is equivalent to the two following,
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= (cost/—- + \/^ sin y-—) /(«),

which equation divides itself into these two

.(6).

If the symbols in these expressions be expanded it is evident that equations (3) and (6) will

coincide.

There is another mode of expressing the equations in question which will be found very

useful in the sequel, and that is by polar co-ordinates.

Put X = p cos 9, y - p sin 9, then

X =f(p cos 9 + \/~ I p sin 9),

which divides itself into t\vo

^=/(0) +f\0)pcos9+-^~^^^ p'coso0+ ... +-Q^p"coin9
ll [-

= /'(O) sin 9 + -Q-^ p sin 29+ ... + ^-^ p"-' sin ni

.(7);

If \n

(iiny ~\f(x.a:) =

(B),

the dift'etentiation indicated being partial with respect to a-.

Ot' course we might have treated z in equation (^-1; in the sume

manner as .r, and this would have given the following

/(.. ) = o

(sin3,^^)A.,..^) =

((')

The equations (B) and {O may he considered as the complete

representation of the locus of ( ^ ).

For example, suppose

/(j-.«)= -5+rj-l,

then
df(x.x) _ 2x df(i-z) ^ 25

dx ' a^ dz ~ /,'
'

d'f(x.z) 2 d'f{x.z)_2
dx' a- dz' i''

and equations (S) become

and equations
( C ) become

.ry =0'

(B-)

(.C),

and it will be seen that the systems (S') ( C) are equivalent to

these three,

7/ =0 J .1=0' i? =0
'

Or the locus of the ordinary equation of the ellipse, thus

considered, comprehends an ellipse and two hyperbolas, the two

hyperbolas setting oft'in planes perpendicular to that of the ellipse

from the extremities of its axes.

I would refer here to two papers in the Cambridge Mathema-
ticaljouriialjhy Mr. M''alion, of Trinity College, (Vol. 11. p. 103

and p. 155) in the first of which the comple'e representation of the

curve corresponding to a given equation between two variables is

considered, and in the second the real nature of a maximum or

minimum as being in fact a multiple point is noticed.



r

OF THE ROOTS OF ALGEBRAIC EQUATIONS. 345

or wp may write these,

x = p,+ p„_, p cos + p, _.. p cos 9.0 + + p" cos nO
|

= p„_, sin 6 + p„_:. p sin 20 + + p""' sinwOJ

5. I now proceed to discuss these equations, and shall consider first the equation of the

projection of the curve on the plane of a^y.

This equation is in polar co-ordinates,

p"-^ &m lid + p, |o"'- sin (h - \)Q + + p„_i sin 9 = (9).

To find the asymptotes, I observe that p will be infinite when sinw0 = 0, except for =

and = TT ; hence there will be infinite values of p for = — , — ,

11 n n
Again,

sin wd + — sin {n - 1)0 + + ^~ sin = 0;
P P"'

.' n cos n0 — sin {n - 1)0. ^ 73 = f when ^ = Co,
p~ do

dO p, sin (» - 1)0
or, p' -r- =

a
'

dp 11 cos 710

And if we put = k —, k having any value from I up to n — 1,

de . k-ir pi
p^ — = - sin — .

i-.
'dp n n

Hence there will be an asymptote corresponding to each infinite value of p, and these will

lie on the left of the corresponding infinite radius vectors looking from the pole. If however

we suppose the given equation deprived of its second term, that is, if />, = 0, then the polar

subtangent vanisiies and the asymptotes pass through the origin and coincide with the radius

vectors ; and since this condition may always be fulfilled, I shall generally suppose that pi = 0,

and then it may be stated that the projection of the imaginary branches of the curve on the

plane of ay has w - 1 asymptotes, which pass through the origin, are equidistant from each other,

and make the same angle with each other as the first of them makes with the axis of x.

The symmetry of tiiese infinite branches with respect to the origin when p, = seems to me to

point out a kind of geometrical explanation of the great simplicity introduced in the solution of

equations l)y first depriving them of their second terms.

dp
(i. To determine where p is a minimum, we have by differentiating (9) and putting —— = 0,

«p""'cos 710 + (n - i)p,p"''' cos (ti - 1)0 + = (10),

which equation together with (<)) will give the required values of p and 0. Now if we make

= o, which satisfies (9), (10) becomes

np"-' + (n - i)p,p"~' + = 0,

<"•, /(p) = 0,

wliich (if ,r; be written for p) is tl)e equation for determining the maxima and minima of the real

branch of the curve; hence p is a minimum for the j)rojection of such ])oints. Hesides these

there may be other minimum values of p lying between the different pairs of asymptotes.

Vol. VIII. Paut III. Yy
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7. Corresponding to the asymptotes of the curve in the plane of xy there will be infinite

branches in space, and it is easy to shew that these go off alternately to positive and negative

k-TT

infinity. For from equations (8) we have, when 6 = and p is consequently very large,

z = p" cos kv = (- lyp"
;

therefore for odd values of k the limiting form of the curve is given by

Z = - p ,

which represents a parabolic branch going off to negative infinity for positive values of p, and

vice versa if n is odd, and going off to negative infinity on both sides of the origin if n is even.

And for even values of k the form is given by

^ = p",

which represents a branch going off to positive infinity for positive values of p, and negative

infinity for negative values of jo if w be odd, and to positive infinity in both cases if n is even.

This proposition it is easily seen includes the real branch of the curve, and hence if we

indicate by the mark + or - on an asymptote that the corresponding branch of the curve goes off

to positive or negative infinity respectively, the arrangement of the infinite branches will be

represented by the accompanying diagram.

n odd. n even.

8. I shall next prove the following theorem :

At points in the real branch of the curve for which the first p differential coefficients of f(x)
vanish, there are p imaginary branches going off on each side of the real plane or plane of .vz,

and these are curved alternately in opposite senses, the one nearest the real branch being curved

in the opposite sense to that real branch.

Suppose the origin of co-ordinates such that the axis of ss passes through the point in question,

which may be done without in any way affecting the generality of the proof, then we shall have

/(0)=0, /"(0) = /''(0)=0,

and the equations (7) become
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/^ + '(0)fp+Uo)
^ = /(o) +'-1—VV^ ' '^^os (p + i)e +

,

—

—pPsm(p + 1)9 +.=

The form of the curve very near the point in question will be given by taking only the terms
of the series above set down, and therefore we shall have

e
p + I'

sin (p + 1)0 = 0,
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It would not be difficult from this particular case in which only the first differential coefficient

vanishes, to derive the other more general proposition in which the first and any number of

subsequent differential coefficients vanish ; at least we could conclude the existence of imaginary

branches curved in opposite senses though perhaps not their directions. For we may consider a

point for which /(v) f"(x) f'i'^) each =0, as the case of p successive maxima and minima

degenerating into one point, and since these maxima and minima must necessarily occur alternately

there will be p imaginary branches curved alternately in opposite senses.

9. Let us now examine whether the ordinate ^ admits of any maximum or minimum values

besides those which it has in the real branch of the curve.

The general equation of the curve is

and the equation for finding the maxima and minima is

which is equivalent to these two

/'(O) +/"(O)jOCOS0+/'"(O)^COS20 + +/"(0) '^--- cos(w- 1)6=0,

11-2

/"(O) sin 9 +/"(O)|^sin20 + "*/"(") 1^^ '"(" - 1)0 = 0;

and we have also the condition of x being real, which is,

/(O)sin0+/"(O)£-sin2 + +/"(0)^ sinwfl = 0:

or these may be written

Pn-i + '^Pr.-ip cosO + + np'-' cos (n - 1)0 = \

2p„_., sin + + WjO»""sin (w - 1)0 = \ (11).

p„.i sin 6 + p„-ip sin 20 + + /o""' sin w0 =
|

These three equations involving only two unknown quantities cannot be generally satisfied ; I

have not been able to shew directly that they never can be satisfied, though it seems possible that

such may be the case ; I can however give a complete solution of the question so far as the

purpose of this memoir is concerned by proving that a maximum or minimum point is never

unaccompanied by a branch curved in the opposite sense, in fact, by extending to all branches of

the curve the proposition which has been proved above for the real branch.

10. The proof is as follows ;

We have in general

where P

z = f(a; + y y/ - 1)

= P + Qv - 1, suppose,

d

Q=(sin,/j/(..).
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dP
Now it will be easily seen, that if — represent the partial differential coefficients of P

dx
with respect to <r, then

in like manner,

dQ I d\ ^r s

dP _ dQ
dx dy

.(12);

and similarly it may be shewn* that

dP
dy

dQ
dw

.(13).

Ill order that Sx may vanish when <v and y vary, we must have

dP. dP^
dtV dy

-— dx + —- hil = 0.
dx dy '

Multiplying these equations by -— and , and adding, we have, observing the relations

(12) (13),

ldP\-

Hence also.

dP\' [dQY
\l-y) ^[d^] ='-^

dP dQ— =0—^ = 0.
dy dy

dP dQ
_- = -— = 0.
dx dx

If the values of x and y which satisfy these equations also satisfy the equation Q = 0, this

will indicate a singular point in the curve, and we must determine the nature of this point ; to do

this we have for the increment of x, supposing the terms of the first order to vanish,

JS p J2 p J2 p
2^^ = ii:^^^+^2^^^y + ^^v 04);

dar doody dy^

dP
(there is no term involving S^y because its coefficient would be -— which in this case vanishes);

dy

The rootn of ihe equation f{x) = U may be considered as

detennincd by the interseetionn of the curves P~(i and Q=0.
These curves have the property of intersecting each other at

right angles ; for the equations of the tangents to the two curves at

a common point (x, y) are

dP (IQ . dP dQ
which in virtue of the relations j— = -r- a"" -r- =-Tn; ""

present two lines perpendicular to each other.

dx
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and we have also the relation,

o^£3u'+f^^,S.Sy^^Sf (15).
dx' dxdy dy^

Now we have P = (cos y —
j / («) ;

dP f d\^w s
'^P

I '^\ ff ^

dx V dxl dy

d'P I d\ ,,, ^ d'P /_:_.. rf\ .„,.. d'P

dx'

also Q= (sin y -^j /G^) !

Hence, if we call the values assumed by (sin y —J /"(») a"d (cos «/ —j /"(«) at the point

under consideration A and fi respectively, (14.) and (15) may be written thus:

2^'af= BSa^-2ASxSy-BSy' (16),

= J^ii^ + 2BSxSy-ASy' (17).

Let ^x = ^s cos (p, Sy = Ss sin cj), then

2 -— = B COS 2 (p - A s\n 2 (p,
s

= A COS 2 <p + B sin 2(p ;

or 2 s4= C'cos (2^ + a) (I8),

0= sin (2^ + a) (19),

by putting A = B tan a.

Equation (19) determines two values for 2 (p + a, and one of tliese will make ^'« positive, the

other negative; hence at the point in question there will be two branches curved in opposite senses,

one will be a minimum, the other a maximum.

I have proved this proposition for simplicity's sake in the case of a double point, but the same

mode of investigation may be applied to that in which the increments of « all vanish up to any

given order ; this I proceed to do.

It is not difficult to see that if the coefficients of the powers of Sx and Sy in the increments

Sx, Pn §"'-'» all vanish, then the value of S^sf may be written thus,

1.2 mS'"ss={lx— + ^y—] P (20),
\ dx dyj
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with the condition,

0= [^^v — + §y—'^ Q (21).
d

dx ^ dy

And it will easily appear that

d'"P / rf \ . .
rf°' -P / . d\ , d'"P I d\-— = cos y -— /"(jy), -; r-r = - sin y— ) f" (a;), = - cos « — /'" (x)...

dw" \ " dxj ' ^ " dx^-'dy \ ^ daj •' ^ " dx"'-'df \ ^ dw) ' ^^

-— = sin 2/ -;- / Wj -. tt- = cos v — f U), ^^^— = - sin w — f (w)...
dx"" \ ^ dxj •' ^ ' dx^-'dy \ •' dxl ' ^ ' dx"'-'dy^ \ ^ dxj ' ^'

Therefore calling the values assumed by sin iy —J /'" (,r) and cos iy—
)
/'» (*>) at the point

in question A and B respectively, equations (20) (21) may be written,

1.2 ml''^ = Blx' - inA^af-' Sy- "^ ^'" ~ ^^
BSx"'-' Sy' + &c.

= JSx'' + mBSx'^-'Sy - "iilJlA JSaf-'W - &c.'
1.2 "

Let ix = Ss cos (p, Sy = Ss sin cp,

d'"« „ / m (m - I) , , . „ \ . , , .

1.2 ?»n^-W = B Icos"^ ^ cos"'^ (p mn^(p + I - J (m cos'""' <p sm (p - ...)

(p sin^ (p +
J

+ B {m cos'""' <p sin (p - ...)

6"-X „ /

?»-^^-W = B cos^d)
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It may be observed that the preceding investigation applies to multiple points in the

real plane by making A = 0.

12. A less general application of what has preceded presents itself in the case of an equation

of an even degree having its last term positive : in this case it is well known that there is some

difficulty in proving the existence of a root. But I observe that if z = f{x), where /(>r) is of

even dimensions, sr has necessarily a minimum value, and from the minimum point an imaginary

branch starts off on each side of the real plane, which will stretch out to negative infinity and

therefore cut the plane of xy in two points which will correspond to imaginary roots. Hence

we see as it were the rationale of such an equation having at least two roots, for /(*') must admit

of a minimum, and if this be negative the curve cuts the axis of w twice, if positive imaginary

branches go off from the minimum and these take us down to the plane of jcy.

13. The roots which are thus determined by the intersection with the plane of xy of

imaginary branches starting from points of the real curve for which /'(i) = are so related to the

real roots, that it has seemed to me to be desirable to denote them by a distinct name ; I therefore,

for want of a better name, call such roots connected roots, and those which are determined by the

intersection with the plane of xy of other infinite bi-anches which, as I have shewn, never cross the

real plane, I call isolated roots. Thus I should say of an equation of even dimensions, that it must

have two roots either real or connected.

14. But more generally we may distribute the n roots of an equation into real connected

and isolated roots. For suppose the real branch of the curve traced, and suppose that it has. p
points for which f'{v) = and /'{x) does not vanish, then it is easy to see from what has been

said that tiiere will he p + 1 roots either real or connected; from the p maxima and minima there

go off 2p infinite branches which occupy 2p out of the 2m - 2 asymptotes*, leaving 2w - 2p - 2

asymptotes ; between each pair of asymptotes there is an infinite branch which cutting the

plane of xy gives a root, therefore there are n - p - 1 isolated roots; and thus we make up the

whole number of roots n. I will just observe that n - p - I is obviously even, because if n is

even p is necessarily odd, and vice versa. The same proposition may be extended to the case in

which other derived functions besides /'(r) vanish at any point, by the reasoning used in Art. (8) :

for we may consider such a point to be the degeneration of a number of contiguous maxima and

minima, for each of which the proposition is true. It may therefore be stated generally, that if

there are p real values of ,r, whether all unequal or not, which make f'{<v) vanish, then the

equation f(v) = has p + 1 roots either real or connected.

15. It may be observed, that a pair of connected roots may be changed into a pair of real

ones by altering the position of the plane of xy, or speaking algebraically by changing the value

of the last term of the equation ; and this fact points out the propriety of distinguishing between

connected and isolated roots, which latter are necessarily imaginary wherever the plane of xy cuts

tlie axis of z, since they are determined by the intersection of that plane with branches of the

curve, which, as we have seen, never cross the real plane.

16. The number of real and connected roots evidently depends upon the number of real

roots of tiie equation f'(x) = 0, and (as has been already in fact proved) if the number of real

roots of this derived equation be p, then the number of real and connected roots of the original

equation will be p + 1 ; consequently the number of isolated roots of the original equation is equal

to the number of imaginary roots of the derived.

* In Art. (o) I have spoken of h - 1 asymptote?, here of 2h — 2 ; |
asymptote, here for con\enience I have considered the same line as

the dift'erence consists merely in this, that in the former case I have Iwo stretching out to infinity on opposite sides of the origin,

considered the indefinite straight line through the origin as one
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17- Hence also we see the truth of a theorem, of which I shall presently make use, namely,

that an equation has at least as many imaginary roots as any one of its derivatives; for the equation

f(x) = has as many isolated roots as there are imaginary roots in /'(«) = 0, and therefore has at

least as many imaginary roots ; f'(v) — has in like manner at least as many imaginary roots as

fix) = 0, and so on : whence the truth of the proposition is clear.

18. If the plane of xy should happen to pass through a real maximum or minimum, which
is as we have seen properly speaking a multiple point, there will he several equal roots. The
condition of equal roots will he therefore that the plane of xy shall pass through a point for which
one or more of the differential coefficients of /(,r) vanish, or which is the same thing, that /(.i?) =
and/'(.r) = shall have one or more roots in common ; which as is well known is the test of equal

roots. Or we may shew directly that at a point for which there are m equal roots there are m
branches curved in opposite senses ; for let w = for simplicity's sake be the root which occurs m
times, then

f{x) = x" \p„ + p,_x!B + + x"-"],

and the equations to the curve will be

z = j»„//" cos mQ + ,

= p„ sin mQ + ;

therefore near the origin, sin niB = 0,

.• mQ = kir where k may =0, l...(m - 1),

and ss = p„p"' cos feir

= (-i)V«i»'";

therefore there will be m branches curved in alternately opposite senses.

19. It will be seen, that a pair of equal real roots in the equation /'(O) implies a pair of

imaginary roots in the equation /(.r) = 0, since f"{x) will also vanish for the same value of x
as that which makes f'(x) = 0. And generally, if x be even, r equal roots of the equation

f'{x) = imply r imaginary roots in the equation f{x) = ; if r be odd, there will be >• + 1 or

r-1 imaginary roots according as f(x) and f''*'^{x), which is the first derived function which

does not vanish, have the same or different signs.

This theorem requires no demonstration, as its truth will be seen at once on examination.

By means of it I am able to prove the ordinary proposition relative to the number of imaginary
roots belonging to an equation defective in any of its terms ; the proof is as follows :

Suppose,

f(x) = p„ + p„.iX + + Mx^ + Nx^ +
'
+

1 ^ + x",

where v terms are wanting between the terms Mx'^ and Nx'' +
"
+

'

;

differentiating /u times, we have

.f (.r) = /a(/"- 1) 2.1 M + (iui + v + l)(ii. + f) ... {v + 2)Nx'^' +

+ n {n - I) ... (n - fi + 1) a?""" ;

differentiating again,

f''*'(x) = (ji + v + l).(n + v) ... (v + l)Nx" + + w.(w - I) ... (w - iui)x''-''-'.

Hence the equation

/''+'(,r) =

has i; roots equal to 0, and therefore the equation f^x) = has c imaginary roots if v be even,

and if v be odd, it has c + l or i; - 1, according as /''(()) and /'"^"'^'(O) have the same or opposite

fligns, that is, according as M and N have the same or opposite signs. But, by a theorem cited

Vol.. VIII. Paht III. Zz
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and proved in Art. (17), /Or) = has at least as many imaginary roots as any one of its derived

equations; hence it will have at least ,- imaginary roots if v be even, and at least r + 1 or .- - 1,

according as M and JV have the same or opposite signs, if .. be odd.

20. I will now illustrate what precedes by discussing some actual cases and tracing the

corresponding curves.

Let the equation be a quadratic, that is, let

/(,r) = x' - a.v + b = (2+),

••• /' Cr) = 2* - a,

f" {V) = 2,

and the equations of the curve of double curvature are

z = x' - a,v + b - y''
1

= 2 .r - a J

if we eliminate x by means of the second of these equations, we have

a'
S! = b- --f.

(25),

Hence the complete locus of the equation z=f(w) will be in this case two parabolas in planes

perpendicular to each other, with their vertices coincident and their curvatures in opposite senses

:

the height of the vertex above the plane of xy will be 6 - -
, if this be positive the roots of the

given equation are imaginary, if negative they are real, because in the former case the plane of ,vy

cuts the imaginary branch, in the latter the real. We see in this simple instance what has already

been proved generally, namely, that x: does not admit of a maximum or minimum value properly

speaking, because at the minimum point an imaginary branch goes off" along which .j^ still

decreases.

The figure represents the curve corresponding to a quadratic equation,
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AB = —
, BC = h - —, which in the figure is supposed positive: X^ CX^ is the imaginary

blanch cutting the plane of xy in X, and X^, so that AX^, AX^ are the roots of the equation.

I may observe, that the mode of viewing the subject which is explained in this paper, though
rather complicated when considered generally, is of very easy application in the case of a quadratic ;

for the ordinary solution gives us the roots

a /a- a^
.r = - ± V 6, if 6 be less than -,

2 4 4

J ^ /'— / ^'
c-'

and .r = - ± ^/ _ 1 \/ h , if 6 be greater than — .

Now ,r = - corresponds to the minimum value of ,1?'' - aoe + b, and therefore the usual mode of

interpreting the symbol \/- 1 would lead us to consider the preceding expressions as the distance

of the minimum point from the origin ± a distance measured along the axis of x or perpendicular

to it, according as h is less or greater than — .

4

21. Let us take the case of a cubic, which I shall suppose to be deprived of its second term

for reasons heretofore assigned. We have then

f{x) = x^ - qx + r = (26),

f {x) = Sx' - q,

f" (j?) = 6.r,

/'" (v) = 6.

Hence the equations of the curve will be

z = x'* — qx + r - Sxif 1

.,
(27).

= 3x - q - y j

The curve will assume different forms according to the nature of the parameters q and r.

Let us consider the real branch of the curve ; then the condition dz = gives us

Sx' - q = 0, or .r = ± \/ -
;

hence in order that there may be a maximum or minimum point q must be positive ; suppose this

to be the case, then there will be one maximum and one minimum, and for the value of z we

have

.V^;= r =F :

27

r" q'
I shall sup|)()se r to be positive, and — > — , so that both values of z may be positive.

The curve in the plane of asy is evidently an hyperbola, the asymptotes to which are inclined

at an angle of 6o" to the axis of w, and in the case here supposed of q being positive the real

principal axis will be the axis of <r.

z z 2
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These indications ai'e sufficient to siiew the whole course of the curve which is represented

in the annexed figure :

P„ P„, are respectively the mininunii and maximum point ; the real branch of the curve

•necessarily cuts the axis of .v to the left of the origin ; from the minimum point Pj goes off an

imaginary branch which meets the plane of xy in X,, X^, thus giving two imaginary roots. It will

be remembered that the conventions which have been made are that q shall be positive, r positive,

r' q' .

and — > — ; it will be easily seen that the form of the curve will remain essentially the same
4 27

so long as the first condition is fulfilled, and the changes introduced by varying the latter conditions

may be represented by supposing the plane of xy shifted into different positions. Suppose for

instance the plane of aiy to cut the real branch between P, and D (the point of intersection of the

curve with the axis of z) ; this will correspond to r positive, and — < —, then there are three

real roots, two positive and one negative ; if the plane of xy cuts the real branch between

J.- n'
D and P., we have the case of r negative, and — < — , and there are one positive and two

negative roots ; lastly, if the plane of acy cuts the real branch above P„ we have the case of r

negative, and — > — , and we have one positive real root and two imaginary. I may just observe

that all the imaginary roots here spoken of are of the class which I have termed connected.

If we suppose q negative we have an entirely different form of curve, for in this case the real

branch has no maximum or minimum point, and therefore it is clear that one of the roots will be

real and the other two isolated and imaginary. Also the real principal axis of the hyperbola in the

plane of ley will be the axis of y, and not the axis of x as in the preceding instance. It is not

necessary to trace the curve, as its form is easy to imagine and it presents no varieties.

The preceding discussion includes everj^ case of cubic equations.

22. We may discuss in like manner the general biquadratic equation. In this case,

f{x) = a' + qx'' + rx + s = (28),

/'(*•) = ix^ + iqx + r.
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f'i.v) = \ix' + 2q,

f"{x) = 24.r,

and the two equations to the curve are therefore,

ss = x' + qx^ + rx + s - y^(6x'^ + ?) + y^
1

= 4cjr' + 2qx + r — iy^x J

357

(29).

Now the sign of s need not be considered, since (as has been observed before) a change in its

sign will only correspond to a change in position of the plane of xy, the figure of the curve

remaining the same ; the combinations of sign of q and r will be as under,

and these different cases must be considered.

The equation for determining the maxima and minima of the real branch of the curve is

x^ + - X + - = 0,
2 4

which has one real root if q is positive, and if q is negative it has one or three, accordino
)•-'

.
, q^— IS > or < than —

.

8 27

First then, let q be positive and let also r be

positive, then it will be found that the curve will

be such as is represented in the annexed figure.

P is the minimum point of the real branch; the

dotted lines represent the imaginary branches, which

cut the plane of xy in the points A',, A';, and in two

other similarly situated points on the other side of

the plane of xz which are not represented for fear

of complicating the figure.

If r be negative, the figure will be essentially

the same, but must be supposed to revolve through

two ritrht angles about the axis of z.

Secondly, let q be negative; then if — be > —

,

8 27
there will be no difference in the figure but this,

that the curve of ])rojection on the plane of xy
will lie nearer to the axis of x than the asymptotes, instead of lying further away, as in the
last case.
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But if — be < — , the form of the
8 27

curve will be essentially different, and

will be as in the annexed figure. If we

suppose the figure to correspond to the

case of r positive, then the figure for r

negative will be found as before by sup-

posing everything turned through two right

angles about the axis of %.

.(31);

23. The curve corresponding to the equation ai" - 1 = is easily traced, and furnishes a good

illustration of what precedes. I shall trace this curve with polar co-ordinates.

We have, ar = p" (cos w0 + \/- 1 sin w0) - 1 (30),

whicli divides itself into the two equations,

z = p" cos nd - 11

0= sin w0
J

from the latter of these nd = kir where k = 0, 1, 2 (n - 1) ;

.-. a- = (- l)y _ 1.

Hence the complete curve will consist of a series of parabolic curves defined by the equations

•7 = p" - 1 and as = - p'' - \ alternately, and lying in planes

passing through the axis of z and making with each other an

angle —

.

The figure represents the curve; Oa„ Oa.^ are the

branches stretching up to positive infinity, Oa„, Oa^
those to negative infinity : the plane of xy intersects the

former set of branches but not the latter, and gives for the
roots AX.,, AX.^

If we suppose the plane of xy to intersect the branches
Oa^, Oa, we should have the case of the equation

i»" + 1 = 0;

and if the plane were to pass through O, we should have the
curve corresponding to x' = 0, in which case the roots would
be all equal to 0.
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24. The investigations of this paper have been restricted to ordinary algebraic equations,

nevertheless some of the results are of a more general character and need not be so restricted. The

proposition contained in Art. (8) is, I believe, perfectly general, as also is the proposition of

Art. (10) which is an extension of the former. In fact the theorems about maxima and

minima will be true for all such points as do not involve a failure of Taylor's Theorem, which

never occurs in the case of a rational algebraical function. The propositions concerning the number

and position of infinite branches are of course applicable only to algebraic equations. I will just

notice one instance of an equation not algebraic: suppose

f(x) = smx=0 (32),

"{•44^ 1

(33),

then z = ( cos v -—
] sin x

\1 il

e> + e-'-'— sin X

and 0= (sin ?/— j sin a'

(35 J

= cos * [e" - e~"\ (34).

In equation (34-) the variables x and y are entirely separated; the factor e^ - e~^ when equated

to zero gives, as will easily be seen, only one real value of y, namely y = o ; this corresponds to the

real plane, and if we make ^ = in (33), that equation becomes

X = sin X,

and we have the ordinary figure of sines in the real plane.

If we consider the factor cos.r in (34), we have an infinite number of real roots for the equation.

namely .r = ± — , ± — , ± — , &c., and substituting these in (3P>), that equation becomes

e" + e-"
z = ^ ,

which shews that from the maximum and minimum points of the real branch of the curve imaginary

branches set off in planes at right angles to the real plane, which are in fact common catenaries, the

directrices of which are in the plane of xy, and which go off alternately to positive and negative

infinity.

2.5. In concluding this paper I will observe that I am not sufficiently well acf[uainted with the

literature of the subject to he certain as to how far the idea of it lias been anticipated. I will

observe, however, that in the late Mr. Murphy's Treatise on the Theory of Equations, (published

under the direction of tlie Society for the Diffusion of Useful Knowledge,) the existence of the roots

of Algebraic Ecjuations is demonstrated upon principles similar to those which I have adopted ; it
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is there proved, first, that after a rational function of n dimensions has attained a minimum value

corresponding to a real value of x, it is possible to diminish the function still further by assigning

to x an increment of the form h + ky/ - l, and then it is shewn that by assigning to x a value of

like form, it is possible to give to a rational function of x of even dimensions a series of

continually increasing or diminishing values, which propositions are akin to, but far less general

than, those which I have proved in Arts. (8) and (10). Nevertheless the mode of viewing the

subject is the same as that which I have adopted, and indeed suggested to me the possibility

of illustrating the theory of equations by reference to the curve of double curvature, which represents

the succession of real values of a function of x corresponding to values of the form .r + y v— 1 :

apart from which geometrical illustration, the theory of the roots of equations which depends upon
the demonstrated impossibility of a maximum or minimum value of f(x), when the values of x are of

the form x + y\/ - 1, appears to me to be more luminous than any other which I have seen.

H. GOODWIN.



XXVI. Oh a Change in the State of an Eye affected with a Mal-formation.

By G. B. Airy, Esq., Atstronomer Royal.

[Read Jlay 25, 1846.]

Twenty years ago, I had the honour of submitting to this Society a statement of the effects of

a mal-formation in my own left eye. The nature of the effect was this: that the rays of light

coming from a Uimiiious point and falling upon the whole surface of the pupil do not converge

to a point at any position within the eye, but converge in such a manner as to pass through

two lines at right angles to each other, (a geometrical phenomenon, to which the term astigmatism

was very happily affixed by the present Master of Trinity College), and that these lines, in the

ordinary position of the head, are both inclined to the vertical in the manner described in my
paper {Cambridge Pliilosophical Transactions, Vol. II.) The evidence of this astigmatism, and

the measure of it, are given by the simple observation of bringing the luminous point nearer

and nearer to the eye ; the lines of focal convergence, according to the usual rules of focal

position, move in the same direction in the interior of the eye ; and thus one line and the other

line are successively brought Upon the retina ; or the image of the point becomes successively

a line in one direction or in the other direction, these directions being at right angles to each

other. It was found in 182.'i that the distances at which the luminous point must be placed to give

linear images were 3'5 and 6"0 inches ; and the difference of the reciprocals of these numbers, or

O-lig, is a proper measure of the astigmatism. The fault of the eye was corrected, as regards

the production of distinct vision, by the use of a lens of which one surface was spherically

concave, and the other surface cylindrically concave, and the radius of the cylindrical surface

was such as to give a power 0"U9, or, in combination with a plane surface, to give a focal length

1 . , . . . ,
n-\— inch, or it was in inclies .

0119 0119

Some years since, I found, from some unrecorded observations, that the general short-sighted-

ness of the eye had sensibly altered, but that the measure of astigmatism remained nearly the same

as at first.

Lately, having found that the spectacles constructed for me in 1825 do not very well suit the

present condition of the eye, I have made observations in precisely the same manner as in 182.'), by

viewing a very fine hole pricked in a card, and causing that card to slide upon a scale whose end

rests upon the orbital bone of the eye, and measuring the distances at which the card is placed when

the point aj)pcars as a line. I have been careful to hold the body and head in the same general

position as before: the accuracy of the measures being sensibly affected by these circumstances.

As far as I can remember, tlie indication of the focal lines to the horizon, their length, and tiieir

sharpness, are not in the smallest degree changed. But the distances of the luminous point which

produce them are sensibly changed. They were formerly 3-5 and C'O inches : they are now -l-y and

8'9 inches. The eye therefore has become generally less short-sighted than it was formerly.

But the measure of the astigmatism, which was formerly

II .11
= 0-119, 18 now = 0-100.

3-5 6-0 4-7 8-9

Vol.. VIII. Paut III. 3 A
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On examining the slightly discordant observations, I am inclined to think that a distance somewhat

less than 4'7 is the true) one, and this would increase the measure of astigmatism above 0-100, and

would make it approach more nearly to the ancient value. It seems therefore that whilejthe short-

sightedness of the eye has materially diminished, the fault which produces the astigmatism has

undergone very little or no alteration.

Upon examining the right eye in the same manner, I find no perceptible fault. The image of

a fine hole is a luminous point very sharply defined. The distance of accurate definition is as nearly

as possible 4'7 inches, the same as the nearest distance at which the left eye forms a well defined line

for the image of a point. It would seem therefore that the normal formation of the two eyes is the

same, and that the abnormal alteration in the left eye is of the nature of a refraction through a dense

medium cylindrically concave, or through a rare medium cylindrically convex, superadded to the

normal refraction.

G. B. AIRY.

Royal Observatory, Greenwich,

January 14, 1846.



XXVII. A Theory of Luminous Rays on the Hypothesis of Undulations. By the

Rev. J. Challis, M.A., Plumian Professor of Astronomy and Experimental

Philo.wphy in the University of Cainbridge.

[Read May 11, 1846.]

If a beam of Sun-light pass through a narrow aperture, about one-thirtieth of an inch in breadth

and be received on a glass prism the edges of which are parallel to the borders of the aperture,

a spectrum is formed by the transmitted light, which, when magnified and properly looked at,

exhibits, as is well t;nown, a large number of dark lines parallel to the refracting edge of the

prism. If instead of passing through an aperture with parallel borders, the light passed through

a circular aperture, one-thirtieth of an inch in diameter, a spectrum of diminished width would

be seen, but of the same length as before and crossed by the same dark lines. The trans-

mission through the prism has produced no change on the light : it has only brought into view

the parts of which the incident beam is composed. Taking, for instance, a portion of light

immediately contiguous to any one of the dark lines, the prism informs us that the incident

beam contains light of that particular refrangibility, abruptly terminated in a plane passing through

the axis of the beam perpendicular to the edge of the prism. The existence of this abrupt ter-

mination is owing to the cause, whatever it may be, which produces the dark line, and has nothing

whatever to do with the transmission of the light through a small aperture. Let now the prism

be turned about the axis of the beam to any other position. The spectrum will present exactly

the same appearance as before, and light of the same refrangibility (not necessarily the same light)

as in the former case, will still be bounded by a dark line. And so for every position the prism

be made to take by being turned about the axis of the incident beam. This experiment proves

that every beam of white light contains portions of light of a definite refrangibility, the sides

of which are turned in all directions from the axis of the beam. Tiiis fact is at once explained

by supposing light to consist of rays; and it does not appear possible to give any other explanation

of it. Although the experimental evidence applies immediately only to the portions of light con-

tiguous to dark lines, yet a very strong presumption is afforded by it tliat all light is in the

form of rays. The existence of the dark lines themselves is most simply accounted for by

supposing that certain rays of Sun-light are in some manner extinguished.

Admitting it to be a legitimate deduction from the facts of the ijolar Spectrum, that light is

composed of rays, it is clear that no Theory of Light can be complete which does not take account

of this distinctive character. The facts are perfectly consistent with the Theory of Emission,

and the advocates of that theory might justly appeal to them as evidence in its favour. My
object in this communication will be to shew that rays of light are also to be accounted for

on the Undulatory Theory.

It must here be premised that it is not my intention to treat the Undulatory Theory, as

most optical writers of the present day have done, by a particular consideration of the molecular

constitution of the ffither. Not having been able to form the slightest concejjtion how this view of

Undulations can be reconciled with the existence of rays of light, I pro|)oso to regard the a'ther as a

continuous fluid sul)stance, sucli that small increments of its ])rcssure are proportional to small

increments of density, and to apjily to it the usual hydrodynamical equations. The pressure

3 A 2
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being p and density p at the time t at any point whose co-ordinates are <v, y, x, it will be

assumed that p = a'p, a? being a certain constant.

In a former communication which I made to this Society, I gave the proof of a new fun-

damental equation in Hydrodynamics, by the combination of which with the ordinary equation

of continuity, an equation results which is indispensable in the present investigation. The process

for deducing this last equation is given in the Cambridge Philosophical Transactions, (Vol. vii.

Part III. pp. 38,6 and 38(3) : it is also obtained (p. 387) by independent elementary considerations.

Let V be the velocity and p the density at any time t, at a point where the principal radii

of curvature of the surface cutting the directions of motion at right angles are R and R\ and

let ds be the increment of a line coincident with the directions at the time t of the motions of

the particles through which it passes. Then the resulting equation I speak of is,

dp d.pV ,11 l\

the variation with respect to space being from point to point along the line s. Now the new

fundamental equation above mentioned, combined with the two other fundamental equations, gives

the means of obtaining a resulting equation, in which the variables are x//, x, y, x and t, the

principal variable \|/ being such a function of the othei's that \^ = is the equation of a surface

normal to the directions of motion, in whatever way the motion of the fluid may have originated.

It follows that the function \|/, since it is given by a partial differential equation, contains arbitrary

functions of x, y, z and i, and that the normal surface is consequently arbitrary. The partial

differential equations applicable to the Undulatory Theory of Light are linear with constant

coefficients. For our present purpose, we have to enquire how far \|/ is arbitrary when the

equations are of this nature : whether, for instance, the normal surface must necessarily be either

a plane or a spherical surface. The general equation which gives v// by integration is too com-

plicated to be employed in this investigation. We may, however, dispense with the use of it

by combining equation (l) with the following general equation, which is obtained in p. 383 of

the communication already referred to

:

rdV V
o=Nap.logp + J—ds + - = Fit), (2),

the variation with respect to space being, as before, from point to point of the line of motion. By
differentiating this equation with respect to s and t successively we get,

a'dp dV ^dV . a'dp fd'V ^ dV „_^^ .—^ + — +V— = 0, and c + / ^s + V— = F (t).

pds dt ds pdt J df dt ^ '

Also equation (l) may be put under the form,

pdt pds ds \R R'l

Hence substituting for —— and ——- from the preceding equations, and differentiating with respect
pdt pds

to s, the result is,

d'V d'V d'V dV dV „dV /] 1\ , /i in

for dR = dR = ds. Now putting --- for F, and integrating with respect to « after the substitu-

tion, it will be found that
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d-q
I

, dq''\d-q ^ dq^ d'q ^^(}_ J_^ _ p (f)

d?~ V ~ d?) d? "^ ~ Ts' dsdt "" lis \R '^ R' j
~ ^''

Lastly, for q put ((> + x (0^ t''^^ function -^ (jt) being such that F (t) - ^" {f) = 0.

rfd) dq
Then -^- = -r = 't a"d

as as

df V ds'jds' ds dsdt ds\R R'

I

^'

If the surface normal to the directions of motion be a plane, R and R' are each infinitely great, and

the equation strictly applying to this case of motion, is

'^ _ [a^.'^jEY^ + ^~—-'^^ = (4).
dC \ ds- 1 ds" ds dsdt

propagated in a single direction, namely, —t = F| (a + -—) t- si; and that at the same time

It is well known that this equation is exactly satisfied by a particular integral applying to motion

dd) „i/ d(h\
1 , , ,

.
ddj

' — J^ J I rt J- —i_ 1 / o\ • QncI fhat- at the* cnnip flmp —'—

ds

= a. Nap. logo. From these two equations it follows that a given state of density and velocity

is carried through space by the propagation and by the motion of the particles, with the velocity

a ^

—

— . The rate of propagation is therefore strictly a, whatever be the velocity and density
ds

of the particles. Unless this were the case the velocity and arrangement of density in a given wave

would change by propagation, however small the motion of the particles might be. Hence, in order

that equation (3), in which R and R' are not supposed to be indefinitely great, may apply to motion

in which the type of the waves remains altogether unchanged by propagation, it must be of the same

form as equation (4). This will be the case if

'•7Ai*h)-^'"-">'i^ <»"

the resulting equation being the same as (4) with the difference of having a in the place of a. Also

2 =
J.

Nap. log ^.

It is now important to remark that the general partial differential equation having \^ for its

principal variable, to which I have already referred, is of the third order, and consequently its

integral, supposing it could be obtained, would involve three arbitrary functions of the co-ordinates

and the time. Hence the function \^ may be made to satisfy three arbitrary conditions. The first I

shall suppose it to satisfy is, that the propagation of the motion be in a single direction ; the next,

that the motion of the particles situated in a fi.xed straight line, which I shall call the axis o{ x, he

entirely in that line ; the third condition I shall assume is, that for the motion along the axis of x

the equation (j) is satisfied. It will appear from the reasoning that follows, that a form of \|/ may

be found consistent with these conditions.

Let <p^ (x, f) be the condensation at the time / at any point of the axis of « distant by x from the

origin, and let the condensation, for a reason that will appear afterwards, be assumed to be
(f>^

(x, t)

X f (r, y) at any point whose co-ordinates are .r, //, x. For shortness sake I shall write
(f>^

and /' for

these functions, treating <h^ as a function of z and t only, and /' as a function of ,f and y only. Let

p be the density, and v, v, w, the components of the velocity in the directions of the axes of co-

ordinates, at the point wyx, and at the time f. It will be assumed that u, v, and w are always

small velocities, and their first powers only will be taken account of. Tliis being ])remised, we have
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a'dp a'(f> df ldti\

du
St

d f
and to the first approximation, — = - a <h -^-

. Hence^^
dt ^'dx

u = - a'— j(b dt + c,

dai

the arbitrary quantity c being in'general a function of x, y, and z. In the same manner,

df
V = - a' -— f(h dt + c

.

dy ^'

., . d'dp .j.d<b ldw\
, . . . dw

Also since — -' = - a f—~ = (— we have to the same degree of approximation, —
pdn •' pdz \dt I

' ^ *^*^

dt

= - a'f -~
, and w = - a f I —^ dt + c" = - d-f—'-^^— + c". But it is evident from the

dz ' J dz dz
assumed law of the condensation in any plane perpendicular to the axis of z, that the accelerative

force parallel to z at any point of this plane must to the first degree of approximation be equal to

/ X the accelerative force at the point of intersection with the axis, and that the corresponding

velocities must be in the same proportion. Hence, — being the velocity at the point of the axis
dz

of z, we shall have w = f-^ . It follows that (p = - a'J(pdt, and tliat c' = 0.

For reasons which will appear hereafter I shall also suppose that c = 0, and c' = 0. Thus we

shall have,

, df . df d<p
11 = —^ ; V = d)— ; w =f~r- •^ d.v ^ dy -^ dz

It is to be remarked that these equations are the more exact, the smaller the ratios of u and !' to tv.

From the foregoing reasoning it follows that

df df d(h
ud.v + vdy + lodz = d) ^- dx + (h -^ dy + f—^dz = d .fd>.

^ dm dy ' dz

Hence iidw + vdy + wdx is an exact differential; and it is well known that in a case of fluid

motion in which the first power of the velocity is alone retained, this condition must be fulfilled.

The assumed law of the distribution of the density consequently satisfies a necessary analytical

condition, and on this principle is justified. It follows also that dxj/ = d .f(p, and by integration

that \p -ftp + a function of < = 0. Thus the equation of the surface normal to the directions

of motion is to a certain extent determined, and we may now proceed to obtain an expression

for — + —; .

R R'

The known general expression for —h —; is,

,/rf'>// cfy// rf-\/,\ ^d^p d^,- d'^'. (/-«// d^// dr-j^ djr

/dsj/^' dyj,^ d^j,'\-i ^yd.v' dy' dz' I \ da^ df
'^

d«-l dx'
'
dx' dy- ' dy'

j^

[dw' dy' dz-j "
1 rf'v// d^' d'f rfx/, d^

^
d'xj, d\f, d^l, ^ d'\j, d^ dv/, (

'

\ dz' dz" d.rdy' dx' dy ~ dwdz dx' dz dydx dy d«
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also ^=0^ ^=0^ J^ = 0_^,
d<r ^ dx dx- ^ dw^ dwdy ^ d.vdy'

dxj, _ df d?y\, _ d\f d'^ _ d<p df
di/ dy dy' dy'' dxdz dz dx'

dz dz dz^ dz'' dydz dz' dy'

Hence by substituting and reducing, it will be found that

\R R'l \d.v' df*(j)-'dzV dy^'dx" dx^'dy" dxdy' dx' dy (p^' dz' [dw' dfj

f d^(j) "^ ''^^^ "'^- 'ff"^

<t>

d'(t> _^ d£\ idT df\
d? (j)'' dz') [da)' df)

'

For our purpose we require an expression for r= + —, for any point on the axis of z. Now
R R

since by hypothesis u = and d = at all times for all points on the axis of z, it follows from

df , df , df ^df
dy dx dy

foregoing equation gives,

the equations u = <b -^ and v = d) - , that —^ = and -— = o for these points. Hence the
' dx ' dy dx dy

R'^ R') (h' dz dx' dy' ^ '

»

(b dz dx' dy^

But equation (5) becomes for motion along the axis of z,

dz \R^ R') ^ ' ds^

Consequently putting a' (l + k) for a', and substituting from equation (6),

d^(t> 1 Id'f d-f\

d?-rf[d'dp)^-' (^^-

In this equation the coefficient of (p, not containing w and y, is a constant, and we may assume it

equal to — nr. It hence follows that

d^ + '^'^=° f«)-

I shall here take occasion to remark that since —-^ = when the velocity - is a maximum, it

dz^ dz
appears by equation (8) that = in the same case. Hence also ?< = 0, and v = 0. Consequently

the assumption made heretofore that the arbitrary quantities c and c each = 0, was equivalent to

assuming that the transverse velocity vanishes when the velocity is a maximum along the axis of z.

It appears also from the expressions for u, v, and w, that, when the velocity -— = 0, and (p is

consequently a maximum, u and v are each a maximum.
At the same time that the equation (8) is true, we have by equation (3) neglecting the small

terms, and by wiiat has now been proved,

?l---3- <»)
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The equation (8) is satisfied by (p = \l/{t)cos iw^ +xWi ; and the equation (9) by (j) = (p{nx -na't).

Hence \^ (<) = constant — , and -^(t) = - na't. Consequently (p = — cos n {x - a't), and the

velocUy —^ = "' sin n (a t - x) = m sm — (a t - z) suppose.
dz X

It results from the foregoing reasoning that if the small vibrations of the fetlier in the direction

of propagation follow the law expressed by the equation last obtained, the condensation in any plane

perpendicular to an axis of rectilinear propagation may vary at a given time from point to point,

and at the same time the propagation be uniform. A consequence of this result is that a very

slender cylindrical portion of the aether may continue in agitation while the contiguous portions are

at rest ; and since the law above obtained is that which has been found by experience to apply to

the pha?noniena of light, the existence of rays of light, which was proved experimentally at the

commencement of this paper, is accounted for theoretically.

As far as we have hitherto proceeded, the function / has remained indeterminate. The con-

siderations I am now about to enter upon will serve to ascertain its form. Take a plane perpen-

dicular to the axis of x, in which the velocity parallel to the axis of a; is a maximum, and in which

consequently ii = 0, and v = 0. As the motion at any point of this plane is parallel to the direction

of propagation, and as the velocity of propagation is uniform, it follows that an equation like (5),

applicable to this point, is obtained by simply substituting f(j) for <p. Substituting also a" (1 + k)

for a'-, we have,

/l?f-L.i.)-'/S (.»)
dz \R R'l •' dz"

^1 ' •

At the same time the general expression for „ + "S' g'^es,

\R '^
R-J <p' dz da^

"^ df / Uw' dfl

•' \dx^ df
Hence by substitution in equation (10),

dz- k

Consequently, by comparison with equation (8),

1

^ + f.i_4 + _4/d, = o (u).

,(12).

The function / must consequently be such as to satisfy this equation.

Again, as the phaenomena of light shew that a ray of common light has similar relations to space

in all directions perpendicular to its axis, the function /, which is arbitrary, to apply to this kind of

light, must be assumed to be a function of the distance from the axis. That is, if r' = .r" + y ,
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/ is a function of r. And the equation (12) is quite consistent with this assumption. In fact, for

this case it becomes,

f ^ / , , '

ar' r dr f
wliich equation determines the particular form of f applicable to common light. This equation does

not appear to be exactly integrable. By putting it under the form,

d'f df df

dr fdr' rdr

it will be seen that the equation /= cos -^z- satisfies it, when r is very small. By multiplying
-/2

equation (13) by /, and supposing -— = o, we shall have either / = 0, or -j\ + kn-f==0. The
dr dr~

latter equation is satisfied at the axis of the ray : the other by a certain value I of r, which may be

called the radius of the ray. If S equal the condensation at the axis, and s the condensation at a

point distant by r from the axis, by what has been already shewn, s = Sf. Hence where r = I,

(Is
both s = 0, and — = ; that is, at this distance there is neither condensation nor variation of con-

dr

densation. Thus the parts of the fluid more distant from the axis than / may remain at rest, while

those at less distance continue in agitation. As a'^ = o^(l + k), and as it is not probable that a'

differs much from a, k may be considered a very small numerical quantity. Hence the three first

terms of equation (13) will be small, since each would vanish if k vanished. Consequently / the

radius of the ray must be large compared to X the breadth of an undulation. Because —— is very

small for all values of r, and f and -— vanish together where r = l, it follows that the second term

of equation (13) is very small compared to the others at all distances from the axis. By neglect-

ing this term the equation becomes,

--^ + -f + kn'f^O (14),dr rdr

which determines with sufficient approximation the function /.

By neglecting in the general equation (12) the terms containing ~~^ and -r^ , which are

quantities of the same order as the neglected term of equation (13), we obtain,

^.-^^+^«y=0 (.5),

which is a general equation, applying to a ray of light of any kind, and including as a particular

case equation (H). Since by hypothesis s = Sf, we immediately derive from (15),

d- 8 d' s_+__^A„^ = o (ifi),

a linear equation with constant coefficients, in which the principal variable is tlie condensation.

The velocity (u) in the direction of .r we find to be (b — , which, since s = Sf, l)ecomes i .
"^ dx S dx

Vol. VIII. Pabt III. 3B
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(t) ds ^
, .1 . J "'^ 27r ^ .

^ ,^ dfh
, . 'iTT , ,So« = 2l.—

. But we have seen that (^ = cos-— (af-z). Hence -^=-wasin — (o#-^)
S dy Stt \ rf/ \

7HO.' . 2 7r , (h \a'- Stt
= - o'.V. Therefore .V = —r sin —- (o < - x), and i = ^ . cot — (at - x). Call this quan-

a- A A 27r« \
rfs di

titv <!>• Then ?< = <I) -— , and u = t^ —- . Let now s = cr, + ctv. Then
d,v ay

and as « in equation (l6) is arbitrary, we may have separately,

d-CTi dVi , .,

d,v^ dy'

d-(T2 dr<ji „

and -—^ + —— + kn-c, = 0,
d.f- dy'

and consider these equations to apply to two distinct rays. At the same time, since s = tn + u^,

ds ^ d(Ti ^ da-2
, ^ ds ^ do-, ^ das , , .. i , . . . ,

tl)—^^ = <p h <p — , and <P — = (p H <P ; that is, the sums or the velocities in the two
d.r dx div dy dy dy

rays resolved in the directions of the axes of co-ordinates are equal to the resolved parts of the

velocity of the original ray in the same direction. Similar reasoning would have applied if we had

assumed « = o-i + tTa + cr, + &c. The general conclusion we may now draw is, that a ray may be

conceived to be composed of two or more rays in the same phase of vibration, and that if, after a

ray has been separated into distinct rays, the parts be put together in the same phase of vibration,

they will compose the original ray.

The foregoing Theory of Luminous Kays, conducts to a very simple and satisfactory explana-

tion of the pha;nomena of Polarized Light, which I propose to bring before the notice of the

Society at a future opportunity.

Cambridge Ohservaluri/,

Mai/ 11, 18+6.



XXVIII. A Theory of the Polarhai'ion of Light on the Hypothesis of Unchdationft.

By the Rev. J. Challis, M.A., Plumian Professor of Astronomy and Eaperi-

mental Philosophy in the University of Cambridge.

[Read May 2r., 1846.]

The Theory of Polarization contained in this Paper is founded on the Theory of Luminous

Rays, given in my last communication, of which the present may be regarded as a continuation.

I shall, therefore, use the same symbols as in the former Paper, and suppose their signification to he

known, and for the sake of convenience, the reference numbers attached to the equations will be in

continuation of those of the other Paper.

Conceive a ray of common light to be submitted to some action which is not symmetrical with

respect to its axis, and which divides it into rays subsequently pursuing different paths. In general

the arrangement of the condensation in neither of these rays will be symmetrical about its axis: but

each may be supposed to consist of a symmetrical part having the properties of common light, and

a part which has a different arrangenient. The unsynimetrical part is considered to be polarized.

A difference in the arrangement of the condensation in different directions transverse to the axis,

corresponds in this Theory to Polarization. By experiment it appears that a polarized ray has

a certain definite character, which is quite independent of the particular action producing the bifur-

cation of the original ray, being the same under modes of separation of very different kinds. The

explanation of the pha?nomena of polarization is therefore to be sought for in the modifications of

which the vibrations of a ray of common light are susceptible according to Hydrodynamical principles.

In the pha;nomena of common light there is nothing to decide whether the sensation of light is due

to the direct or the transverse vibrations. The phienomena of polarized light shew that it is to be

attributed to the tr/insnerse vibrations, and our attention must therefore be directed to the modifica-

tions which these may undergo. The direct vibrations very probably are productive of heat.

In the Theory of Luminous Rays it was shewn that a ray in which the condensation at any point

is «, may be supposed to be compounded of two rays in the same phase of vibration whose con-

densations are <t, and a-j, if .s = u, -(- a-., independently of any relation between a, and a,. We are

therefore at liberty to assume another condition which these quantities shall satisfy. The assump-

tion I shall make is, that the bifurcation of a ray takes place so that the transverse velocity at each

point is converted into two velocities at right angles to each other, and that these are respectively

the velocities at the corresponding points of the two polarized rays. This law is most probably

deducible from purely Hydrodynamical principles; but in the present state of Hydrodynamics it

must be regarded as an hypothesis. By the reasoning and notation of the former Paper, the com-

ponent velocities in one ray are '1>

—

'-
, and '!> - '; and in the other, <!' —

,
and 't -r '

? a>"J '''^

dx dy dx dy

+ ^^'.^= = (Ui).

dy dy

3 B!2

hypothesis we make is, that
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Let us now consider by itself the polarized ray in which the condensation is tj, . Since

rf(T2 ds dcr, d<7y ds rfcTi „ , . . . .

4 = 0-, + (Ta, we have --— = — — —— , and -— = —— . Substituting these values in (16).

we obtain,

da; dx da; dp dy dy

rf<r,-' ds dff, d<T\ ds da^

d.c' dx' dx dy' dy' dy

Also (ji must satisfy equation (l5). Consequently

cPo-i rf'Vi ,, , ,

-r^ + -T-v + «'A;a, = (18).
dor dy

The equations (17) and (18) determine the function that cr, is of .r and y. For by eliminating

from (18) by means of (17)) an equation results, which, as it contains only partial differential
d.v'

coefficients of a, with respect to y, determines the form in which y enters into this function. The
form in which ,r enters is similarly determined. The function expressing the value of u.^ is deter-

mined by equations exactly the same as (17) and (18), having only cr-, in the place of (t^. In fact,

1 , p '^'''i"
,dij\ „ ,

ds d(ji da,
,puttme equation (17) under the torm — A —— + i» = 0, we have A = —— = —— + —— , and^ dx dx dx dx dx

„ rfcTi ,ds da:\ da-f da. da, da, r^, r < ,.

B = I = — = — . . 1 he two roots oi that equation are therefore
dy ^ dy dy j dy dy dx dx

—
' and —~

, and hence the process indicated above which determines cti determines 0-2 also.
d.v dx

Since the original ray is supposed to be one of common light, « is a function of r, and

d s , X d s . y „ , . . , , . , V 1— = / (r) -
,

-— = f{r) . -
. Substituting these values in equation (17), we have,

dx r dy r

dx' dy' •' ^ ' \dx r dy rl ^
^'

If now the direction of the axes of co-ordinates be changed througli 90° by putting - x' for y and

y' for >r, neither this equation nor equation (18) will be altered in any respect, so that the same solu-

tion of the equations will result as before. Consequently by this transformation the function that

(7, is of X and y is converted into the function that a-^ is of the same variables, and rnce versa. It

follows that the original ray is divided into two equal polarized rays, such that if one be turned

about the axis of z through 90° it becomes identical with the other. Since also equations (18) and

(19) are not altered by changing the axes of co-ordinates through I80", that is, by altering the signs

of ,r and y, it appears that a, and u- are symmetrical about planes passing through the axis of J'.

These planes, from what has just been proved, must be at right angles to each other. Also it is

evident that a plane of symmetry of one ray must coincide with a plane of symmetry of the other.

Hence each ray will have two planes of symmetry at right angles to each other.

The above results would be more properly derived from the functions of ,r and y expressing the

values of ai and (j.., if the integrations could be performed by which these functions would result

from ec|uations (IS) and (19). This it does not appear possible to do generally; but values of a,

and (7, applicable to small distances from the axis of z may be obtained as follows. We have seen

that the solution of equation (13) for small values of r is/= cos }i V - »'. Hence, as s =/'^. we
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/Ic d s Sn \/k . . /k oc d s

have to the same approximation, s = .S' cos « X/ -r ; -r- = ^^ . sin w 'V t »" • - ; and -—
'^^ 2 dx y/2 2 r dy

— sin n sj - r . - . Consequently substituting in (17), and putting the arc for the sine,

v/2 2 r

dcj? da^ Sr^k I da-, dtrA , ^

d,r^ dy^ '3. \ dx dy I

Such a value of ixi is now to be found as will satisfy the equations (18) and (20) for small values

of ,1- and y. The equation <jx
= mcoi,(gx + hy) will be found to answer. For substituting in

(18) we get the equation of condition,

g' + li' - n^k = (21).

and by substituting in (20) we have,

to' (g' + A') sin' {g.v + hy) {gx + hy) sin {gx + hy) = 0.

Hence, putting the arc for the sine,

. . Sn k
m(g' + A') — = (22).

g
Comparing this equation with (21), it follows that m = —

, and consequently that

s s
cr, = — cos (g.v + hy). Similarly we should find that o-j = — cos (g'x + fi'y). But since s = cti + ct;,

we must have.

A A S , , . S
;n\' -S cos n \/ - r = — cos (gx + hy) -\ cos (g'x + h'y).

Expanding to terms involving the squares of the small quantities,

n^kr^ = {gx + hyY + {g'x + h'y)'

= {^ + g") x' + {k' + h'"~) f + 'i{gh^ g'h') xy.

This equation accords with (21) if ^' = A and h' = - g. Thus we have

S S
cr, = - cos {gx + hy), (T2 = - cos {hx - gy).

It hence appears that co becomes identical with cr, by changing the directions of the axes of

co-ordinates through 90". Since ^ + A' = n^k, we may assume that g = n \^k cos G, and

h = n y/k sin 0. Then,

S —
cTj = — cos \n \/k i^x cos Q + y sin 0)},

and (Tj = — cos
j n \/k {x sii\Q - y cos G) \

.

V — S —
As 9 is quite arbitrary, let it equal 90". Then ct, = —co%7i\/ky, and a = — con n\/kx. The

axes of ,r and y are now evidently in the planes of symmetry, and these last values of <t and
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0-2 shew that at small distances from the axis of z the motion in one polarized ray is parallel

to the plane zy, and in the other parallel to the plane z.r. They may be said to be polarized in

these planes.

The foreo-oing reasoning proves that a ray of common light is divisible into two rays polar-

ized in planes at right angles to each other, and that these rays are necessarily equal. We have

next to shew that they are each of half the intensity of the original ray. Since
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mX 2 7r df,
Suppose now that u, = cos

—

(at- x) -^~
,

2 TT X rf<r

m\ 2 TT ^ , df^
V, =-— cos— (at- z)-j- ,

Stt \ dy

m'\ Stt
,

d/,
u., = cos— (at - z + c) -^ ,

m'\ S'jr , rf/,
i> , = cos— (at - z + c) —

.

" 27r X ^ dy

rru ^ ^'^
r '. ^ 'if' . df,\ X . 2-K , , , , . df..

1 hen ?<| + ?<_, = -— cos -- (a < - r) [m ~ + m cos c -^ sin — (at - z) m sin c ^-"
2 7r X \ d.v dxl 2ir X d

x

'

. df.,m sin c—
2 TTP ti X

tan —

and if

X rf/-,
,

(//•,

»» -;— + m COS c -^—
d X d X

X
f

,df,^ , df\ df. ,,df..
C7 or Ml + u, =— W~r¥ + ^wra COS c— . -^ + m -^,

Stt I o;i' dx dx dar

m sin c
27r0 dy

so If tan

I' 2,r ,

} COS— (at — .

J X

df.

X d/,
,

d/,'
m 1- m cos c —

dy dy

X I ,df^ ,
df\ df.. ,^dff\h 2 7r ,

K or U| + J), =— < m" ——„ + 2 m m cos f -^ .
-^

k- m -^> cos— (o < - :^ + f^ ).

Stt \ dy- dy dy dy'] X '

The two velocities U and V are not in this case in the same phase, and consequently the trans-

verse motion of a given particle, instead of being in a straight line, is in an ellipse or a circle.

The effects of the resolved parts of the velocities in the directions of the axes of x and y may be

assumed to be independent of each other, and the intensity of the compound ray will conse-

(|uently be as the sum of the squares of the maximum values of U and F; that is, as

.
[df^ dfS ^ ^,

,
/rf/. df, df dfA ,, idf? djT.

\d.v dy^J \dx dx dy dy! \dx' dy'

J

which on account of the equation (23) is independent of cos c. Hence the intensity is the same
whatever be the difference of phase, and therefore the same as when the two polarized rays have

the same phase. This agrees with experience.

Let us now proceed to consider the bifurcation of a polarized ray ; for instance, the ray whose

condensation is cti . Suppose it separated by any means into two rays whose condensations are t,

and T.,. We shall assume, as in the case of a ray of common light, that the sum of the conden-

sations at corresponding points of the divided rays is equal to the condensation at the corre-

sponding point of the original ray, and that the velocities at these points of the divided rays

are in directions at right angles to each other. We have then, by what has gone before,

0-, = T,+ T, (21.),

dri dT-, dr, dr. , ,

dx dx dy dy



376 PROFESSOR CHALLIS, ON A THEORY OF THE POLARIZATION OF LIGHT

and T,, To must respectively satisfy the equations,

-J-i + -ri + nkr, = (26),

dx^ dy^ + -j^ + n?kT:, = (27).

From the system of equations (24), (25), (26), and (27), it is required to determine the forms of the

functions expressing the values of ti and tj, that expressing the value of ctj being supposed to be

known. It does not appear that this can be done generally; but as before, approximate solutions

may be obtained applicable to parts of the rays contiguous to the axis. The process for this pur-

pose will be analogous to that applied to the ray of common light.

Let Ti = m cos (gw + hy), and t.. = m'cos {g'x + h'y).

Then equations (26) and (27) are satisfied if

g^ + h' -n^k = 0, and g'^ + h'' - n'k = 0.

Also equation (25) is satisfied if gg + hh' = 0. And these three equations of condition are satisfied

if g = n v^k cos 0, h = - n \/k sin Q, g = n \/k sin Q, h' = n \/k cos Q. Hence since we have

S —
shewn that when the approximation is carried to the second powers of ,t and y, cr, = —co%n\/ky, we

shall have by equation (24),

\/ky = m cos (nat \/k cos 6 - ny \/k sin 6) + m'cos {tix \/k sin 6 + ny \/k cos 6) .... (28).— cos n

Hence, expanding to the second powers of x and y,

S f n'ky''\ ,
mn^k

,

^ . ^_, m'n'k , . ^— 1 — 1 = 7K + m (.» cos y -
2/ sm ffy (x smO + y cos 6).

S
Therefore - = m + m ,

2

and -y' = {.in cos^6 + m'sin^O) x^ -2xy sin 6 cos (m - m') + (m sia'O + m' cos' 6) y',

g
or, substituting m + m' for -

,

(m cos'0 + m'sin'''^) (y' - .r^) + 2 ^ry sin cos (m - tn') = (29).

It appears, therefore, that equation (28) is not satisfied to second powers of x and y for gene-

ral values of these variables, and the functions assumed for ti and t^ are consequently true in

general only to first powers of x and y. It is however important to remark that the equation

(29), being put under the following form,

y- 2y sin cos (m - m') , ,

x" X m CO!, 6 + m sin^

shews that for two directions at right angles to each other, the assumed values of t, and Tj are

true to the second powers of x and y. These two directions may be presumed to be the direc-

tions of the planes of polarization of the two rays. But because
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Ti = in cos w \/k {.V cos - y sin 9), and t-, = m cos n \^k (.i: sin 6 + y cos 0),

tliese two planes evidently make angles 9 and j - t) with the plane of polarization of the original

ray. Hence putting cot for - in equation (30), we find

—, = tan^fl,
m

and we also have — = /» + m .

o

Therefore m = — sin'^fy, and to' = — cos'^f?.

2 2

The polarized ray is consequently divided in general into two unequal rays, the values of which

are assigned by these equations. If 9 = iS", the two rays are equal; which accords with

experience.

Suppose a polarized ray to be incident at the angle of complete polarization on a reflecting

surface, and let 9 be the angle which the plane of incidence makes with the plane of polarization

-of the incident ray. Then A being the portion of the ray transmitted without bifurcation, which

we will suppose to' be independent of 9, and / the portion bifurcated, the transmitted ray will be

A + Isuf9, and the reflec'.ed ray Icos'S. If another equal ray, polarized in a plane at right

angles to the plane of polarization of the former be incident in the same direction, the transmitted

portion will be ^ + lcos'0, and the reflected portion Isuv0. These two incident rays make up,

according to our Theory, a ray of common light, the transmitted portion of which is 2A, and the

reflected portion / cos^0 + /sin^6', or /, which is independent of 9, as we know from experience

it should be. Respecting the law above found for the intensities of the two rays into whicii

a polarized ray is separated. Sir John Herschel remarks in his Treatise on Light in the Encydo-

pcedia Metmpolitana, (Ar(. S50), " Wc must receive it as an empirical law at present, for whicli

any good theory of polarization ought to be capable of assigning a reason a priori.^'' Such a reason

is given by the Theory I am advocating.

Two polarized rays formed by the separation into two parts of a polarized ray derived

immediately from common light, possess in some respects the properties of polarized rays of the

latter kind, for instance, the two rays pursuing the same paths will not interfere whatever be the

ilifl"erence of phase. This may be proved by the very same reasoning by which it has been already

jiroved that two rays of first polarization do not interfere, the reasoning being purposely adapted to

the case when m and m' are unequal. At the same time the rays of second polarization difier in

this respect, that if they meet in the same phase they compose a plane polarized ray. When

9 = 4-5", we found that the two rays were equal. Yet their composition would form a polarized ray,

whilst two equal ravs of the first ])olarization meeting in the same phase would compose a ray of

common light.

According to this Theory circularly and elliptically polarized light consists of two oppositely

polarized rays differing in phase, tjie two rays when in the same phase constituting a polarized ray o*

the first kind. The reason Fresnel's Rhomb does not produce elliptically polarized light, when com-

mon light is used, is that common light may be siqiposed to consist of two rays in opposite polariza-

tions, which produce exactly com|)lenniitary effects. For the .same reason common light produces no

coloured rings liy transmission through a thin ])late of a uniaxal or biaxal crystal cut nearly ])er-

l.endicularly to its axis. Each of the polarized rays, of which coninw)M liglit may l)e supi)osed to

Vol., VIII, Paiit III. aC
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be composed, does in fact produce coloured rings, but the two sets being exactly complementary,

the colours disappear.

Circularly and elliptically polarized light is capable of reflexion at the analyzing plate (in the

experiment above alluded to) because it consists of two rays polarized in opposite planes, which

cannot therefore both coincide at the same time with the plane of incidence. The analyzing plate

is necessary for the production of the colours, because the rays come out of the crystal in opposite

polarizations, and therefore not interfering Those that fall on the plate in the same phase consti-

tute a sino-le ray polarized in the plane of original polarization, and are therefore incapable of

reflexion when the plane of incidence on the plate is perpendicular to the plane of original

polarization. The rest of the rays fall on the plate in the form of circularly or elliptically

polarized light, and consequently from what we have already seen, are capable of reflexion.

This explanation does not require the supposition of the loss of half an undulation.

The Theory might be compared with experiment in many other instances ; but perhaps those

I have adduced may suffice to gain for it the favourable consideration of mathematicians. I will

only add, that having applied it in some degree to the pha;nomena of Double Refraction, 1 find

that it leaves the mathematical Theory of Fresnel unaltered, while it off'ers in several respects a

iliff'erent physical explanation of the facts. Before I conclude it may also be proper to remark, that

I have argued on the supposition that the quantity k which enters into this Theory is a constant.

The reasoning would remain the same if k were a function of X, provided it did not vary witli the

intensity of tlie ray.

Cambridge Observatory,

May 25, 1846.



XXIX. On the Structure of the Syllogism, and on the Application of the Theory of
Prohahilities to Questions of Argument and Authority. By Augustus De Morgan.
Sec. R.A.S., of Trinity College, Cambridge, Professor of Mathematics in Uni-

versity College, London.

[Read Nov. 9, 1846.]

Since the time when the Aristotelian syllogism ceased to be regarded as an all-sufficient instru-

ment of inquiry, it has remained precisely in the state in which those who are called the schoo/iiien

left it. I have never heard* of any attempt to ascertain whether the forms which his followers

derived from the writings of the great master were the perfection of system and simplicity which

they were supposed to be. The uninquiring adherence of all writers on logic to the model

of the middle ages, proves one of two things: either that the model is human perfection, or that the

authority of the ancients has been followed as of course in the forms of logic long after it has been

abandoned in every other part. With such an alternative, it is not presumption to venture upon
the examination : and this is the more apparent when we consider that the general impression among
writers seems to be that there cannot exist any other theory of the syllogism except that derived

from Aristotle. If another can be produced, which is but self-consistent, true, and comprehensive,

the tacit assertion of all writers is overthrown, whether that system be or be not judged superior

to the one handed down.

I here venture to propose a derivation and classification of the forms of the syllogism, differing

very widely from that in use.

Section I. Ow the meaninc/ of the sijnple term.

A TEKM, or name, is merely the word which it is lawful to apply to any one of a collection of

objects of thought : and, in the language of Aristotle, that name may be predicated of each of those

objects. He uses this word predicate only as "that which can be said of." When in later times

the negative proposition " A' is not 1'" was said to have }' for \\.s predicate, the word ought to have

been non-predicate, or some equivalent. The proper predicate is not-I', which I .shall call the

rnntrary of Y.

When we use a term, such as " man," we predicate, in Aristotle's sense of the word, of every

Individual which the notirm can .suggest, of John, Thomas, William, &c. If we extend the word,

and allow 1' to be called the predicate of " X is not }'," we must then affirm that the word " man"
|)redicates of every object of thought, either affirmatively or negatively : affirmatively of John or

Thomas, negatively of a certain tree, or quadruped, or book. Every name then, in this .sense,

predicates of every thing: " X is either For not-F" is a proposition of universal identity.

The cx])ress introduction and consideration of contraries ought, I think, to have followed the

extension of the word predicate. Aristotle rejects and then admits: not-man, he says, is not

a name ; and then he calls it an aorint name, which can be predicated both of existent and non-

existent things. I deny the justice of this distinction, for two reasons.

Names in logic are used subjectively ; they are the representations of the notion in the mind.

Now man and not-man are equally the names of things which, objectively speaking, arc non-

existent. Not-man, Aristotle would say, is a name which can be ])redicated of the speaking bird

* Sec the Addition at the end of thia Paper.

3c2



380 PROFESSOR DE MORGAN, ON THE STRUCTURE OF THE SYLLOGISM,

and the sino-ino- tree in the eastern fable: but surely, with as much justice, man may be predicated

of the Shakspeare who wrote Paradise Lost, or the Cassar who conquered Darius.

In the next place, it is not true that the aorist or indefinite character of the mere contrary

actually exists in the use which we make of language. Writers on logic, it is true, do not find

elbow-room enouo'h in anything less than the whole universe of possible conceptions : but the

universe of a particular assertion or argument may be limited in any matter expressed or under-

stood. And this without limitation or alteration of any one rule of logic. Let every one of the

possible points of space have one or more of the names X, Y, &c. : then if we can say, " No X is F,"

of course we can say " No Y is A'." But this is equally true if, by an understanding to that

effect, the universe of our proposition be one square described in a certain plane. Divide the points

of this square into Xs and not-Xs, and the not-X is no more an aorist term than the X.

By not dwelling upon this power of making what we may properly (inventing a new technical

name) call the nniveme of a proposition, or of a name, matter of express definition, all rules

remainintj- the same, writers on logic deprive themselves of much useful illustration. And, more

than this, they give an indefinite negative character to the contrary, as Aristotle did when he said

that not-man was not the name of anything. Let the universe in question be " man f then

Briton and alien are simple contraries; alien has no meaning of definition except not-Briton. But

we cannot say that either term is positive or negative, except correlatively. As to a claim of right

to be considered a prisoner of war, for instance, alien is the positive term, and Briton the negative

one. We separate formal logic from language, if we refuse to admit this. In many cases,

the lano-uao-e has the term which signifies the contrary, and wants the direct term : as in the

word parallels, for example. To this day the word intersectors has not found its way into the

idiom of o-cometry. In one case we give a name to the tiling of course, and define the exception by

means of a contrary : in another we find it more convenient to reverse the process. I hold that the

system of formal logic is not well fitted to our mode of using language, until the rules of direct and

contrary terms are associated : the words direct and contrary being merely correlative. Those who

teach Alo-ebra know how difficult it is to make the student fully aware that a may be the negative

quantity, and - a the positive one. There is a want of the similar perception in regard to direct

and contrary terms.

Throuo-hout this paper, I shall use the small letters .c, ij, z, &c. for names contrary to tho.se

represented by the capitals X, Y, Z, &c. Thus " every thing in the universe is either X or ,r,"

" No X is .r," &c. are identical propositions.

Section II. Ov the simple propositioi/.

Thkre is no need to dwell on the usual matters given as to the distinction of universal and

i)articular, or of positive and negative. But, I think it cannot be denied, that the distinctions may,

for loo-ical ]iurposes, be considered as accidents of language. Any proposition which is either of the

four in one language, may be either of the others in another. Our language has, say the names X and

1', and suppose that " Every A' is y" is true. Another language translates X by X', but has no

term for Y, but only y' for its contrary ; the proposition is then " No X' is y'." In a third

lannuage Xs have no specific name; they appear but as individuals of the name .V": the proposition

is then " Some X"s are F"s." But if the last language had only possessed the name y", it would

have been " Some X"s are not y's."

^'ery often, having established such a proposition as " Some Xs are I's," we, for that reason,

distinguish those Xs by a separate name, Z : and then we have " Every Z is Y." If language

were copious enough, particular propositions would seldom occur : and the idioms of every tongue

are probably infiuenccd by its power of supplying universal terms, or of converting particulars into

the form of universals.
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I shall use, as is usual, the letters A and E to signify positive and negative universals : and

/ and for the corresponding particulars : but with a modification presently noticed. I shall also

use the following notation, without which I should hardly iiave liad patience for the many hundreds

of cases which this paper has required.

P) Q signifies Every P is Q.

P . Q No P is Q.

PQ Some Ps are Qs.

P : Q Some Ps are not Qs.

I have taken for tlie convertible propositions, the symbols P. Q and PQ, whicli the algebraist is

accustomed to consider as identical with Q.P and QP: the same thing is true under these

meanings. But P ) Q and P : Q, which are also used in arithmetic and algebra, convey no idea of

convertibility.

All expressions that have any meaning can of course be reduced to one of these forms.

Aristotle denies tiiis, and divides all expression into significative and enunciative, meaning by tlie

latter that in which there is truth or falsehood. Thus prayer, he says, is speech, but neitlier true

nor false. This is surely not correct ;

—

Deliver jis from evil may be either " To be delivered

from evil is our prayer," or " We are of those who pray to be delivered from evil," or " Evil is a

thing we pray to be delivered from." Or, as the text, it would be " Deliver us from evil, is the

passage on which I mean to comment :" and the sermon would probably give all the enunciations

above. In a request, command, inquiry, or announcement, the tone* of voice predicates.

In classifying all possible predications -by means of two names V and ^V, their contraries must

be included. AVe must therefore consider all the relations that may exist between Y and ^Y,

JT and y, y and x, x and }'. Between each of these there are six modes of enunciation : thus

between P and Q we have

P)Q, Q)P, P.Q^Q.P, PQ = QP, P:Q, Q.P.12 3 4 5 6

But it will be best to arrange these by contradictories, or propositions one of which must be true

and the other false: as P ) Q and"P:Q, Q)P and Q: P, P.Q and PQ. These six modes

applied to each of the four variations of subjects, give twenty-four varieties, which are reducible

to eight, being identical three and three, as follows:

J^)y=X.y = y),v

X:Y=Xy =y:^v.

Y) X = Y ..V = .v)y.

Y:X=Yx =a:y.

Though the use of the great and small letters may suit the eye, these lines should be read tliu.s:

" Every A' is F" is identical with " no X is not-F," and "every not-K is not-A'," and so on. These

eight modes may all be derived from the four Aristotelian modes by changing both terms into

contraries ; which suggests the following notation :

(A) X)Y
;

.v)y=Y)X
(O) X:Y a::y=Y:X

X.Y= X)y= Y)w.

XY=X -.y =^ Y:.v.

a,.y=.l)Y = y) X.

xy = x : Y = y : X.

X. Y
XY

,v .y

wy (i).

• To call H i>LT>von hy hi.s tiiinic \n a propohiiinn, perliapH more.
[
John ; tliertf'orc, you are ihe person I want lo speak to." The

Then- In certainly the full nic.inin^ of a .tylloj^isin in it. \\'hen a leiist tliat can he siiid is, that he states the premisut*, and U-ave-.

pmon calli—John ! no one can Hay that any part of the following
\
John lo draw the conclusion.

ti not implied :
'* John in the pereon I want to speak to ; you arc
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This notation is established with reference to the order A'Y: the inversion of the order interchanges

small and large letters.

The propositions (A) and (O) are the assertion and denial of complete inclusion of the first

name in the second. And («) and {it), the assertion and denial of complete inclusion of contrary in

contrary, are, as appears, equivalent to the assertion and denial of complete inclusion of the second in

the first. Ao-ain, (£) and (/) are the assertion and denial of complete non-interference, or that each

name is wholly contained in the contrary of the other. But (e) and (j), the propositions which I

propose to add to those commonly received, may be explained as follows:

The proposition (/) or .ry, affirming that there are individuals in the universe of the jiroposition

which are neither Xs or Vs, merely affirms that vV and Y are not contraries, and do not between

them contain the universe. The contradiction of this, (e), or w y, affirming that it is false that there

are any individuals which are neither X or Y, might seein at first sight to declare that X and Y are

contraries. But it is not so, since the preceding is perfectly consistent with there being individuals

which are both ..^s and Ks. In fact, to express that X and Fare contraries we must have both

,1' . y and X . Y.

The following tables show the relations of these propositions.

A
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respect to convertible propositions. Thus, as to convertible propositions, i, PC, T, SCT are all of

the same effect: as to inconvertible propositions, T, SCT, SP and SC.
There is a point which developes itself very strongly when we come to consider the transforma-

tions upon instances; namely, the distinction between the assertion of a proposition sul)jectively and

objectively. The former mode is that which is always presumed : but in actual use of logic the

distinction must be drawn.

When we say. Every X is Y, as a proposition with meaning, and with or without truth as the

case may be, we treat neither X nor Y as having any other existence except that which our minds
give them: but we imply that if X have any such other existence, so lias ]'. But the syllogism

"X) Y and Y) Z therefore X) Z" is not valid merely by understanding A' and Z to be taken in

the conclusion as in the premises. The middle term must exist: not necessarily objectively, but it

must have a positive existence. It is no syllogism to say that A" is Y, if there be such a thing, and

Y (if &c.) is Z ; therefore X is Z. And yet there is no offence against any of the ordinary rules of

logic: the middle term is strictly middle; it is " Y, on the condition that F exists" in both. Thus
" Homer was a perfect poet (if ever there were one) ; a perfect poet (if &c.) is faultless in morals

;

therefore Homer was &c." The premises will sometimes be admitted ; but they do not prove the

conclusion : the proper conclusion is a dilemma, " Either Homer was faultless in morals, or there

never was a perfect poet." The existence here spoken of is objective : but the same thing applies to

purely subjective cases. The terms of the conclusion may be conditional : but inference requires

that the middle term should be unconditional. Every X (if ever X existed) is Y ; every Y is Z (if

ever Z existed) : therefore every X (if ever X existed) is Z (if ever Z existed). This is a good

syllogism : but Y is here absolute.

When the syllogism can be converted into another, having for its middle term the contrary of

the first middle term, the same absolute existence must be claimed for the contrary. And here again

I remind the reader that the absolute existence spoken of is existence within the universe of the pro-

positions Thus X ) Y and Y) Z give X) Z, or y ) w and z) y give z) w. A positive existence

is then required both for F and y. There is an extreme case; y may not exist, that is, F may
contain the universe; but then F and Z are identical, and the conclusion X) Z is identical with

X )Y and z)x contains nothing.

Whatever sort of existence is spoken of is tacitly claimed for the terms of a proposition by the

proposition itself: the refusal of this claim, or the denial by assertion of non-existence, being a dis-

tinct thing from denial by contradiction. A certain meadow (the universe of the proposition) is

flooded during the hay-harvest: the proposition "No part of the crop that was not flooded was

not saved" (of the form ,x . y) means logically that all wiiich was not flooded
||
was saved, that all

which was not saved
(|
was flooded, and that part may have been both flooded and saved. Some

reflexion (for want of habit of dealing with triple negatives makes the proposition rather complicated)

will shew that a person who is apt to think objectively of propositions, as all do who are not trained

in logical considerations, is much more likely to require the insertion of tlie words (//" «?(//) in two

places
(jl)

than he would be if the proposition were presented in the more simple form, "All the dry

crop was saved." Probably such a person would not require the conditional words here, merely

because he would take it that the proposition asserts that some was dry: reserving the right to deny

by non-existence if there were none.

I suppose it is hardly necessary to remark that, in propositions, asserted as true, the same sort

of existence is claimed for both terms : for instance, that there is no objective first term with a sub-

jective second one. In such a proposition as "he is good" we may certainly say that "good" by

itself is a purely subjective notion ; a state of tlie mind in regard to an external object. But good

is not the term of the proposition ; it is he (an external object) is one of these external objects to which

the mind attaches the idea of good. I can conceive opposition to this : what I say is that the oppo-

nition is not to me, but to the universal maxims of technical logic. For all writers admit that I'A'

necessarily follows from XY: which caiuiot be if }' he a name of the state of the iiiin<l and A' of an
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external object. Most of the Romans were brave ; therefore some brave [men] were Romans.

No hint is ever given by writers on logic of the necessity, previously to conversion, of attaching the

subjective notion to an object.

Section III. On the quantity of propositions.

The looical use of the word some, as merely "more than none," needs no further explanation.

Exact knowledo-e of the extent of a pi-oposition would consist in knowing, for instance in " some

X% are not Fs", both what proportion of the Xi are spoken of, and what proportion exists between

the whole number of Xi, and of Fs. The want of this information compels us to divide the expo-

nents of our proportions into 0, more than not necessarily 1, and 1. An algebraist learns to

consider the distinction between and quantity as identical, for many purposes, witli that between

one quantity and another : the logician must (all writers imply) keep the distinction between and

a, however small a may be, as sacred as that between and \ - a: there being but the same form

for the two cases. We shall now see that this matter has not been fully examined.

Inference must arise from bringing each two things which are to be compared into comparison

with a tliird. Many comparisons may be made at once, but there must be this process in every

one. When the comparison is that of identity, of is or is not, it can only be, in its ultimate or

individual case, one of the two following;—"This A' is a F, this Z is the very same F, therefore

this X is this Z ; or else " This X is a F, this Z is not the very same F, therefore this X is not

this Z." And collectively, it must be either " Eacli of these X% is a F; each of these Fs is a Z;

therefore each of these A's is a Z ; " or else " Each of these ^s is a F, no one of these Fs is a Z,

tlierefore no one of these .Ys is a Z."

All that is essential then to a svllogism is that its premises shall mention a number of }'s, of

each of which they shall affirm either that it is both A' and Z, or that it is one and is not the other.

The premises may mention more : but it is enough that this much can be picked out ; and it is in

this last process that inference consists.

Aristotle noticed but one way of being sure that tlie same J's are spoken of in both premises:

namely, by speaking of all of them in one at least. But this is only a case of tlie rule; for all that

is necessary is that more Ys in number than tliere exist separate Ys sliati be spolten of in bot/i pre-

mises togettier. Having to make m + n greater than unity, when neither m nor n is so, he admitted

only that case in which one of the two m or n, is unity and the other is anything except 0. Here

then are two syllogisms which ought to have appeared, but do not; and there are others;

—

Most of the ]'s are Xs Most of the I's are Xs

Most of the Fs are Zs Most of tlie Fs are not Zs

.•. Some Xs are Zs .. Some of the Xs are not Zs.

And instead of most, or ^ + o, of the I's, may be substituted any two fractions which have a sum

o-reater than unity. If these fractions be m and n, then the real middle term is at least the fraction

m + « - 1 of the I's. It is not really even necessary tliat each V should enter in one premiss or

tlie other : for more than the fraction m + « - 1 of the whole may be found in each.

And in truth it is this mode of syllogizing that we are frequently obliged to have recourse to;

perhaps more often than not in our universal syllogisms. "Jll men are capable of some instruction ;

all who are capable of any instruction can learn to distinguish their right and left hands by name;

therefore all men can learn to do so." Let the word all in these two cases mean only all but one,

and the books on logic tell us with one voice that the syllogism has particular premises, and no con-

rlusion can be drawn. But in fact, idiots are capable of no instruction, many are deaf and dumb,

some are without hands : and yet a conclusion is admissible. Here m and n are each very near to

unity, and m + n -\ is therefore near to unity. Some will say that this is a probable conclusion:

that in the case of any one person it means there is the chance m that he can receive instruction, and
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n that one so gifted can be niatle to name his right and left hand : therefore m x ii (very near unity)

is the chance that this man can learn so much.

But I cannot see how in this instance the probability is anything but another sort of inference

from the demonstrable conclusion of the syllogism, which must exist, under the premises given.

Besides which, even if we admit the syllogism as only probable with regard to any one man, it is

absolute and demonstrative in regard to the whole number of men with which it concludes.

This is not the only case in which the middle term need not enter universally : this however

is matter for the next Section : see also the Addition at the end. I now go on to another point.

Mathematicians, as such, are supposed to have a tendency to admit nothing but demonstration,

and to become insensible to ordinary evidence. Instances of this there may be, though whether the

temperament led them to mathematics, or mathematics brought on the temperament, has certainly

not been inquired into by those who make the charge. But to me it seems very clear, that if

ordinary logic do not produce this temperament in those who study it, there must be correctives else-

where. It is the only science I ever came in contact with, in which the want of demonstration is

formally made to amount to absolute rejection without further consideration. The mathematician,

having a given formula on hand, can and does satisfy himself not onlv that it is true, if it be true,

but that it is false, if it be false. But the young logician, when his premises do not yield their

inference legitimately, drops that inference as a fallacy : and few indeed are the books which speak

of the distinction between an invalid inference and a false conclusion in terms which shew that the

same distinction is a well recognized topic of the subject. It is, I think, for the mathematician to

try to correct the habit arising out of this omission, namely, the confusion between paralogism and

falsehood : and also to introduce his notions of probability, so as to establish some little power of

discriminating between the various degrees of fallacy which are all called by one name, whether that

name be falsehood or not.

If some Vs be ^s and some Fs be Zs we have no right to draw any inference: at least so says

many a one who thinks that mathematics would render him insensible to the evidence of high pro-

bability.

It will become of importance to reflect what the difference may be between the habit of not

looking for high probaijility when it exists, and that of not acknowledging it when it ought to be

seen—as soon as the following case is considered.

Let the whole number of I'^s be s, the numbers which are A's and Zs being severally m and n.

Nothing is known or suspected as to whether a V being X is favourable or unfavourable to its being

also Z. It is required to ascertain what chance there is that there are Vs which are both JCs and

Zs, m + n not being so great as s. That is, when from " some Vs are ^s and .some I's are Zs"
we decline to admit that some ^s are Zs, what is the chance that we reject a truth .''

Let p signify the number of combinations of p out of q. If we pick out any m }^s to be J^a,

there are n,_„, ways in which the Zs may be found among the rest. Conisequently m, x ?;,_„ is the

whole number of ways in which " Some JCf, are Zs" is false. But the whole number of possible

cases is m, x n, ; whence the chance of the falsehood is

«i_m r* - "^i r* - wi—: or ^ ^^—^ =-

n,
'

[s] [* - TO - n]

where [p] means 1 .2.3 ... p. If s - m - n be not inconsiderable the substitution of

-^^K .p''*- e''' for
I
;j] gives

/{s-m){s-n) {s-m)-"{8-nY-
^__ / (I - m) (1 - /) Kl - m)''" (i - ./)' T

* »(«- TO -n) '»'(«- TO - w)'-"-" ' "' V ,_^_„ \ (, _ ^, _ y)i-M-.
I'

if /I and v be the fractions which to and n are of »•. For the calculation of this we have

Vol.. VIII. Paut III. 3D
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(1 - u)' ''(1 - v)'

"

Uix+ v)' - n' - V- (ix+vf-^'-v' \— i°g 'jrh^)^-'- = - ''''"'''
[

—
^72- *—v.— ^ - 1

'

with which series we are to proceed until the term last obtained gives a sufficiently small product

after multiplication by s.

Now first observe, that since the base of tlie s"" power is less than unity, s may, for any given

values of n and v, be made great enough to make the probability that " Some ^s are Zs" is false

as small as we please. Hence we have a right to assert the following :

—

If, to our knowledge, a perceptible fraction of the I's be Xs, and a perceptible fraction be Zs,

and if the number of Fs be great beyond perception ; and if moreover we know nothing, except

what has just been stated, for or against a V which is X being or not being Z,— we ought to treat it

as a moral certainty that some one or more of those Jls which are Ys are also Zs.

I do not say that the above case is a fair statement of the usual conditions under which

the syllogism with particular premises appears : nor does it matter to my argument whether it be

or not. What I say is, that it is a fair statement of the circumstances under which the rejection of

the conclusion " some Xs are Zs" is ordered to be made in books of logic.

If n atid v be small, the number of places offigures in a\ .r to 1 being the odds in favour of one

43
or more Xs being Zs, may be stated as the integer next above — nvs at least. If « were 1000, and

u and V each — , this would be five; or the odds 10,000 to 1. Calculate more strictly, and it will
10

come out nearly 70,000 to 1. If a person then should distribute 100 sovereigns and 100 shillings

at hazard among a crowd of 1000 persons, not giving any one more than one coin of either sort, it is

about 70,000 to 1 that lie gives one or more of them a guinea.

But to shew how wide the cases may be, which are equally rejected, let us take the following

supposition, which perhaps more nearly represents, in many cases, the rationale of the argument.

Representing all the Ys by aliquot parts of a certain line, it may be supposed that the .^s have

some connexion of contiguity in time, place, or other circumstance : let it then be a collection

of successivelv contiguous }^s which are Xs : and the same of the Zs. The state of the case

is now as follows.

There is a line of given length, which we shall take for our unit. Two given lines, each

less than the first line, are laid down in it at hazard, any one position of either being as likely

as any other. Let the lengths of the lines be ul and // : it is required to find the probability that n

and It! shall not have a part exceeding v in common.

First, let ul + ix be less than 1, so that the lesser lines can be quite clear of one another. We
are to investigate the probability that they shall be so. Let ^ be on the left and /j.' on the right ;

and let x and ./ be the distances of their left and right extremities from the corresponding ends of

the unit. We must then have x + x + fj. -t «' less than unity, in order that the lines may be clear

of one another. Now since .r may be anything less than 1 - ix, and x anything less than 1 - ju',

and all possible positions are equally likely, it will follow that the chances of the lines called as and

m lying between x and x + dx, and x and x' + dx', will be d.t'H- (1 - lu) and d.r'-j- (1 - ^'), and the

chance of the joint event is

dx . dx

(1 - ^t) (1 - /.')

If we integrate this over all positive values of x and x' in which x + x is less than I - m - ^ >

we shall have the probability in favour of the two lesser lines having no point in common when \x. is

on the left, and fx on the right. The result is easily shown to be the half of

^'-'^-^')'
(1).
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Consequently, since there is the same probability that they shall have nothing in common when

IJL is on the right and /j.' on the left, the expression just written is tiie probability that /x and ju' shall

be quite clear of one another.

The condition that a; and i' shall not have so much as i- in common, is expressed by saying

that ,r + x' less than I - /u - /i.' + v : v being less than /x and than /jl'. Hence, by similar reasoning

(I -M -j/ + vY

(1 -mXi-m)

is the chance that ju and /m' have not so much as v in common.

Under these new circumstances, if u and u! be each = — , the chance that thev are clear of one

64

'^
10

•

another is — , or it is 6-t to 17 in favour of it. That is, if a thousand persons were placed in a
81

row, and two being selected at hazard, 100 sovereigns were given successively, beginning with the

first, and ion shillings successively, beginning with the second, it would now be about 6i to 17 that

no one received a guinea.

Section IV. Oti the Syllogisw.

There is much that is elegant and instructive about the theory of the four figures of the syllo-

gism, three of which belong to .Aristotle. And the magic words Barbara, Camestres, ^-c. are models

of notation, almost every letter of the moods in the three latter figures being a rule of direction. The
following old epitaph on a schoolman selects, I think, one of the best parts of the system for ridicule

:

Hie jacet raagister noster

Qui dispiitavit bis aut ter

In Barbara et Celarent

Ita ut omnes admirarent

In Fapesmo et Frisesoinorum

Orate pro animis eorum

!

In proposing another system of classification, in connexion with the use of contraries, I

remark, first, that the ordinary method has two points of redundancy. The distinct use of the

two forms of a convertible proposition, X. Y and Y . X, ^F and YX, is made for the system

of figures, rather than the figures for it. It is desirable I think to confound them as much as pos-

sible ; so that each may never fail to suggest the other. In the next place, if the use of contraries

be introduced, every one of the twenty-four modes of predicating would claim admission into a

system of figures, and their number would be increased to thirty-two.

Again, the first followers of Aristotle, in adopting the rule that no syllogism should be admitted

in which the conclusion was not the strongest the premises would allow—in rejecting for instance

"A') }' and Y)Z therefore XZ,"^ because X)Z also follows— did not adopt the equally

obvious rule of admitting no syllogism in which a weaker premiss would lead to as strong a con-

clusion. They retained, for instance, " T ) A' and Y ) Z therefore XZ ", though 1' ) X and YZ would

produce the same conclusion. Now 1 think it desirable to adopt the rule of producing the strongest

conclusion with the weakest premises, not only because it will turn out that by so doing the number
of forms is diminished, even when contraries are considered, but also because a better and clearer

diHtinctii>n is drawn lietween the necessary and the contingent.

I also drop the distinction of minor and major terms and premises. Aristotle meant them to

ap|)ly only to affirmative propositions, in which the predicate includes the subject. But the use of

iheni wa- extended, to the utter destruction of the meaning in negative propositions, or worse, to the

.io 2
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danger of carrying a false meaning to the last named. The consequence of the distinction is that

these four syllogisms,

X)Y Z.Y
Z.Y X)Y

Figure

Name

z.x x.z
2 2

Camestres Cesare

X)Y
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stand for X)Y, A". r(= V.X), Xl'{=yX) and X.V. And a, e, i, o stand for the same propo-

sitions when both subject and predicate are changed into contraries : that is, they stand for a? ) y,

.V .y {= y . x), .vy(=yiv), w.y. In these last, system is sacrificed to simplicity in using Y)X
and 1' : X for ,r ) y and se : y. The following table shows what transformation takes place when the

terms and orders are successively XY, Xy, wy, a;Y, YX, yX, yx, Yx.

XY
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If we wish to have a notation which neglects the premises, we may call these J, I, E, O,, O^,

O3, which may be separated into two connected sets, thus. The contradiction of a conclusion

coupled with either premiss must give the contradiction of the other premiss. It will be found that

if we call A, O.,, and O3 opponents, and also E, I, and O, , each syllogism can be produced from

either of its two opponents, by coupling the denial of their conclusions with the affirmations of

their premises.

The six new syllogisms, reduced to the same order, will be

»fie

Ua

Kb

0„

X.V+ z.y =X)Z
icy + Z ) V = XX

X:Y + z.y = XZ
Y:X+Z.Y= .vx

X . y + Y ) Z = ,v . z

X .y + zy = X : Z.

The correlation of these two sets is by no means simple. Before examining it, observe that an

interchange of X and Z, though it alters A into a and O into o, does not alter E and /, nor e and i.

The counterpart of a syllogism, made by this interchange, is represented by simply inverting the

letters of the premises, and interchanging A and n, O and o, in the letters of the conclusion. Thus
the counterpart of i^g is i^„: that of A^^ is a,^. Now if we take the six Aristotelian syllo-

gisms, and make all the changes, and tabulate the results, we shall have as follows

:

XYZ
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But we have not yet closed our invesligation ; for we have to examine the remaining syllogism

of universal premises, or Y)X + Y) Z= XZ. If we go through the cases, in the last order of

headings, we shall find as follows.

First Form, Transformation. Description. Remarks.

Y^X+Y)Z = XZ Y)X+Y)Z^XZ I^a Derived from /,„

Y^w + Y)Z= ccZ Y.X +Y)Z= Z:X Ob„ o„„

y).v + y)Z = xZ X) Y + y . ss = Z: X o^, o,.,

y).v + y)z = xx X)Y+Z)Y=xz i.f4 Not yet obtained

Y) X + Y)z = XZ Y . X + Y . Z = ,vz i^E Derived from oB

Y)X + Y)z = Xz Y)X+ Y.Z = X:Z O^b 0,g,

y)X ^ y)z = Xz y . .v + Z) Y= X : Z O,^ 0„.

y)X + y) Z = XZ y.w + y . « = XZ /„ Not yet obtained.

The derivation here mentioned is merely strengthening a premiss. We thus obtain the only two

remaining forms

ijj X)Y+Z)Y = .vz
I

/„ y..v + y.z=_XZ.

These cannot be derived from the twelve previously established by strengthening a premiss,

though their equivalents (the other six) can. These two last syllogisms differ from all the rest in

having no counterparts, and may therefore be called single syllogisms.

The old rules are of course true as to the old syllogisms: but most of them are inapplicable to

the new ones. Particular premises, indeed, never gave a conclusion, as yet : but premises both nega-

tive may, and in the case of j^^, the middle terra is universal in neither premiss. Again, both premises

may be negative, and may give a positive form of conclusion. The following rules, however, will be

found to hold good.

From premises both particular, nothing follows. The middle term cannot be particular in both,

except in j^,,,: nor can its contrary be universal in both, except in /^^. One negative premiss

always yields a negative conclusion, and two negative premises an affirmative. When one

premiss is particular, the conclusion is particular. When e is in the premises the conclusion is

never in i.

I now take the two cases in which particular premises may give a conclusion: namely

Ijj XY + ZY= XZ XY ^ Y.Z^ X.Z 0,,

on the suppositions that the Ys mentioned in both premises are in number more than all the Ys.

If }', and Y-i stand for the fractions of the whole number of I's mentioned or implied in the two

premises, and j/, and y., for the fractions of the ys implied or mentioned, we shall by a repetition of

the process on YX + YZ = XZ (the other being obtained in the course of the process) arrive at the

following results or their counterparts: remembering that Y^ + K, is greater or less than 1, accord-

ing as y, + j/u is less or greater. (See the Addition at the end of this paper.)

Designation. Syllogism. Condition of its validity.

Iij YX + YZ = XZ r, + r., greater than 1

0,„ YX^Y.Z^X.Z
»:„„ Y:X^Y.Z= .vz

0„( X: Y+ yz = X Z F, 4- Y, less than 1

iji y'" + ysr = XZ

Ooi X:Y+ yz =X:Z
loo X:Y+Z:Y=XZ
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There are many remarks to be made on the demonstrative connexion of the parts of this system

with one another, and on the explanations in general language of the new varieties of syllogism.

The length of this paper, however, is a sufficient reason for stopping here with the formal part of

the subject, and proceeding to the consideration of the probabilities of argument and authority.

Section V. Ow the Application of the theory of Probabilities to questions of Argument
and Authority.

Writers on logic have made no effort to apply the mathematical theory of probabilities to the

balance of arguments; for we can hardly call by that name the simple statement that the pro-

bability of the conclusion of a syllogism is the product of the probabilities of the premises. How
far this is correct will appear in the course of the present section, which is intended to investigate the

manner in which the probability of a conclusion is to be inferred from opposing arguments and

authorities, of which the several probabilities are given.

Conclusions which are not absolutely demonstrated are established in our minds on two distinct

bases, argument and authority. Even if there be appeal to authority in establishing the

premises of an argument, the distinction is in no degree lost. This we shall see as soon as the

terms are defined.

Argument is an offer of proof, and its failure is only a failure of proof: the conclusion may yet

be true. Authority is an offer of testimony, and its failure is a failure of truth : nothing can

furnish absolute reason for distrusting the authority on future occasions except the proof that the

conclusion asserted is false. A person who had made a hundred assertions, all supported by

inconclusive arguments, but all of which turned out to be true, would give a very high authority

to his hundred and first assertion.

We have an unfortunate use of language in the mathematical application of the word pro-

bahility. We say that small probability and great improbability are identical terms ; which is not

true in their common meaning. In fact, a being what we call the probability of an event, a — ^ is

what we ought to call by that name : and if a — i be negative, we ought to call A — a the

improhahility of the event. It would not be wise to introduce the same inaccuracy in the use of the

word authority : accordingly, fi being the chance that an assertion of an individual, made on the

best of his knowledge and belief, is true, I shall call fx the value of his testimony. When n
exceeds i, I shall say that he is authority for the conclusion. And, measuring absolute authority

by unity, I shall take 2^-1 as the measure of his authority, which is against the conclusion, if

2u- I be negative. Again, if p be the number of times his testimony is given to a truth for once

which it is given to a falsehood (which we may call his relative testimony), and if a denote his

authority, we shall have the following equations, which will all be useful

:

p - 1

p+\

M \ + a

I - IX 1 - a

1 + <i n
II =

2 p + \

In forming our opinions upon argument, we are told to leave authority altogether out of .sight,

and to consider only what is said, not who says it. It was Bacon, I believe, who first said that

assertion is like the shot from the long bow, the force of which depends upon the arm which draws

it ; while argimient is like the shot from a cross bow, wliich a child can discharge as well

Vol.. VIII. Part. III. SE
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as a man. But the simile is as inapt as the recommendation it contains is unwise; for the endeavour

is to hit the mark, not merely to fire a shot : and the bow which most often succeeds in doing that

is the best. Closely examined, this direction to dispense with authority amounts to requiring

us to suppose that the proposer of an argument is as often right as wrong, and wrong as right, in

his conclusions. But what can be the wisdom of making believe that a person tells us ten truths to

ten falsehoods, if we know it for a fact that he tells us nineteen truths to one falsehood ? If

absolute demonstration be given, no rule is necessary, for we cannot attend to authority- If some-

thing very near to demonstration be given, no rule is practically necessary, for we have what is called

moral certainty.

But, it may be said, why not throw away authority altogether .' I answer that it is impossible :

and that any one who forms an undenionstrated conclusion independent of the authority of others,

can only do it by assuming some value for his own. All arguments, and all balance of arguments,

will leave three possible cases. Either one or more of the arguments for the conclusion will prove

it, or one or more of the arguments against will refute it, or all the arguments are inconclusive.

The conclusion is proved, disproved, or left neither proved nor dis])roved. But it is not one of the

three, true, false, or neither true nor false: it must be either true or false. And the mind must

come to some conclusion upon this point : it must, so to speak, distribute the inconclusivene.ss of

the arguments, in some way or other, between belief and disbelief. In whatever way this is done, it

amounts, as we shall see, to some assumption as to the authority either of the proposer or of

the receiver, or of some third person, or of all together.

There is but one way in which we can really deprive the proposer of an argument of any

authority ; and that is, by depriving him of any peculiar authority. If Newton propose an

argument, to the conclusion of which Halley assents without knowledge of the argument, we have a

right to allow it to be reasonable that the argument should lend the same force to the conclusion as if

Halley had proposed it, and Newton had assented, also without knowledge. Admit this, so far

as the premises do not depend on the authority of the proposer, and we admit all the separation of

argument and authority which is practicable.

A conclusion is usually opposed, in argument, to what logicians call the contradictory, which

must be true if the conclusion be false, and vice versa. It is not often that it is opposed to

the contrary, which must be false when it is true, but not vice versa. I shall first consider the

proposition and its contradictory, as to authority, as to argument, and then as to the two in

combination.

Prob. 1. Required the joint value of authorities the separate values of which are given.

Let the first authority be one of the testimony /u, or of m truths to n errors, yu being

TO -;- (m + «). Let //, m\ n, take the place of m> in, n in the second authority : and so on. Now
since the conclusion asserted cannot be true on one authority and false on another, our position with

respect to the conclusion is as follows : We have an urn of m white and n black balls, another of

m white and «' black, &c. from each of which we have to draw. The balls however are not free,

but are connected by such mechanism that no ball will leave its urn unless a simultaneous effort be

made upon one of the same colour in every urn. Now the number of ways of choosing one white ball

out of each urn is hi ni m" ... ; and of choosing one black ball n n' n" ... . Hence the united testi-

mony for the conclusion is

and against it

and

vim' m" ...
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(1 + g) (1 + g') (1 -t- u") ... -(!-»)(! - u') (l --^a^')„.

(I + a) (1 + a) (1 +O ... + (1 - a) (1 - g) (l - a).,.
'

If fi
=(!-;- (1 - m) &c., we find that the joint relative testimony is the product of the separate

relative testimonies ; which is the easiest way of expressing the result. Thus two authorities

of 3 and 4 truths to one error, amount to one authority of 12 truths to one error.

I need hardly say that the preceding conclusions are verified by their giving such results as the

following;—that if one of the authorities be absolute, the joint authority is the same; that any
number of testimonies, each without authority either way, gives no authority either way ; that

inauthoritative testimonies do not afl'ect the authority of the rest ; and so on.

Problems of the preceding character are usually solved by the inverse method ; or by the

determination of the probabilities of precedent states from an observed event. Others have noted,

I suppose, what has often struck me, namely, that the arrangement of conditions into an observed

event and its precedents, is sometimes made in a very indirect and unnatural manner. There
are however two classes of problems which give the .same results : each inverse problem has a direct

problem of the other class connected with it. For instance, there are m and m white balls, and

n and n black balls, in two urns. A white ball has been drawn ; what is the probability that the

first urn was that which held it ? The answer is well known to be

m{m' + n) divided by iri{ni' + n) + m' (m + n).

Now take the following problem. The black balls are absolutely fixed in the urns ; and the white

balls are so connected that one will come out of neither, except when a white ball is touched in both,

which will only set free one, say the one which was touched first. With one hand in each urn, not

knowing one from the other, ttie chance of bringing out a white ball from the first urn (if we
try until a ball comes from one or the other) is the same as that above, namely, that a ball drawn
white was in the first urn. These two problems are really the same; the first says that a white ball

has been drawn, the second that a white ball must be drawn. And precisely the same sort and
amount of reflexion which must be employed to make this sameness apparent, must also be employed
before the problems above alluded to will lose that indirect and unnatural appearance to which

I have referred. It should also be noticed, that any problem on an event to come may, by supposino-

the event to have happened, not being vet known, be made a problem of inverse probabilities.

Prob. 2. Supposing the authorities to bias one another, required the method of allowing

for the bias.

When one authority expressly cites and defers to another, he does not thereby diminish his

own authority. For what we want to know of him is simply the value of his assent, which, unless

we have some specific reason, we have no more right to suppose less than his average when he judges

of another, than we have to suppose it greater. And, in fact, there are men who are better authori-

ties as to their judgment of others, than as to what tiiey propose themselves. Neither, for a siniilar

reason, does it diminish the value of the second authority, that the conclusion asserted never would

have been known to him had it not been for the first. What we want to account for here is

undue bias, which I define to exist when there is a proportion of the conclusions of the second

authority which are no better for his testimony than they would have been if the first alone had

asserted them. The case of a number of autliorities would lead to a complicated result. Suppose

three, the values of whose testimonies arc /i, /x, /i" \ and let X' and A" be the probabilities that the

second and third are unduly biassed by the first. Then the value of the joint testimony is

A'x'V + (i -x')\"—^-y, -^'Vrr- ^ +
^'<' '"'

''''

mi + (I - fi){i - It.)

+ (I -\')(I -\ )-^„—^-!^
.3E 2
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If there be only two authorities, the formula is reduced to

Xfi + (1 - X) —r—r, ^Ti '\ '

for the joint testimony, and the joint authority is

a + a - 2Xa' (l - a)

1 + aa

Had it not been for the bias asserted, the authority would have been (a + a') -h(i + aa). When
u - a' is positive and a' negative, the joint authority is the greater for the correction of the bias.

This is as it should be ; for the bias is then that of contradiction, and tends, until corrected,

to lessen the joint authority. I have only entered thus much into this part of the subject, merely

to show that the results of the preceding mode of treating the problem are confirmed by those

of common sense.

Peob. 3. To determine the joint effect of a number of arguments, the validities of which

are given, some for a conclusion, and some for its contradictory.

By the validity of an argument, I mean the probability that it proves its conclusion. The
argument being of a conclusion which is legitimately inferred from the premises, it is absolutely

valid, if all the premises be true: and what is here called its validity therefore means the product of

the probabilities of all the premises. Let a, a', a", &c. be the validities of the several arguments

for the conclusion, and b, b', b", &c. those of the arguments for the contradiction. If one argument

on either side be valid the conclusion of that argument is established. Hence the joint validity

of the arguments for is that of an argument whose validity is

1 - (1 - a) (l -a') (1 - «")... or "20 -
'S.aa'

+
'S.aa'a" - ...

which is the probability that one or more of the arguments for proves its conclusion. Sinnlarly the

arguments against amount to an argument the validity of which is

1 - (1 - ft)(i - 6') (1 - ft")... or 2'6-2'66'+ 2'66'6"- ...

And having thus shown how to reduce several arguments of the same kind to one, we may now

proceed as with one of each sort. If the process now coming be applied to several arguments

of each kind, the result obtained will, as we might predict, verify the correctness of the preceding

compositions.

Let there be then one argument of the validity a for, and one of the validity 6 for the contra-

diction, or against. Let the argument for, be as a drawing from an urn in which there are M valid

and N invalid cases : let that against, be as from another in which there are P valid and Q invalid

cases. Of course M : N :: a : \ — a and P : Q v. b : \ - b. If either argument be valid the

other must be invalid. Now it does not follow that if the argument for be valid, and be the case

marked, say 1, the invalid argument against may be any one of the cases 1, 2, 3 ... up to y. For

it may liappen that each particular mode of succeeding in one argument must be necessarily connected

with some particular mode or modes of failing in the other. To represent this, let us separate the

three cases, and assume as follows

:

1. When the argument for is valid and that against invalid, let it be that M = ?n, + m., + ...,

y = 7, + 9j+ ..., and that when the first succeeds in one of the m, ways, the second must fail in one

of the g, ways; and the same of m^ and g^, m^ and q^, &c.

2. When the argument against is valid, and that for invalid, let iV = «, + w.j + ...,

P = /), + Pi + ... with the same connexion.
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3. When both arguments are invalid, let iV = «,' + n/ + ... , Q = 9,' + 9/ + ... witli the same
connexion.

It is now clear that the number of compatible cases, in which the argument for is valid, must be

m,qi + m.,q,+ ... or "S-mq. Similarly, "^np and 'En q' are the numbers of cases in which the

argument against is valid, and in which both arguments are invalid. Hence we have for the

probabilities of the three cases, namely, that the conclusion is established, that the contradictory is

established, and that the arguments are inconclusive, the following expressions:

'S.mq 'S.np 'S.n'q'

2,mq + '2np + 2'«V

'

'S.mq + 'S.np + 2w'g'' Sw? + 2wp + 'S.n'q''

To solve the question in the most general manner, would require that we should combine
the preceding results in all cases, that is, for all values, and all subdivisions, of M, JV, P, Q.

Without attempting such generality, I may make the following observations. From what takes

place in other similar questions, it is highly probable we should find the result of this combination

either to agree with that in which any of the M cases mav occur with any one of the Q cases, &c.

or to approximate to such an agreement as M, &c. are increased without limit. Next, that this

agreement actually takes place, when all the subdivisions are the same aliquot parts of their wholes.

With these presumptions, I content myself with their result, which amounts to supposing that any

one of the M cases may enter with any one of the Q cases, and so on. The probabilities then are,

for the three cases above-mentioned,

MQ NP NQ
MQ + NP+ NQ ' MQ + NP + NQ ' MQ + NP + NQ"

a(l - b) 6(1 - a) (1 - a) (1 - 6)

1 — ab
'

1 - ab '
1 - ab

The third term is the chance of inconclusiveness, which necessarily renders this case indefinite : and
all we can say is, that the chance of the truth of the conclusion is

where the value of \ cannot be determined from argument (for all the arguments are used in

determining a and b).

When the arguments are of equal force, or a = b, we have

a a I — a

\ + a \ + a \ + a

Hence o-7-(l + a), which represents the probability that a verified conclusion was derived from

an argument of the validity a rather than from demonstration (when it must have been one

or the other), also represents the success of an argument of the validity a against an argument
of equal force on the other side.

So far as an argument is not demonstrative, it must rest on authority, including under that word
the authority of the recipient himself. Now a is in fact the testimony to the validity of the argu-

ment on one side, and 6 to that on the other. If these were testimonies to the truth or falsehood

of the conclusion, the joint testimonies to the truth and falsehood of the conclusion would then be

0(1 - b) 6(1 - a)

a{\ - b) + 6(1 - a)
'

a(l - 6) + 6(1 - a)
'

which, since a + b - ab must be less than unity, are necessarily greater than the two first of

the three expressions. Or, if we attempt to consider argument entirely without reference to any

authority except that for the premises, the absolute testimony to llie triitii or falsehood of the
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conclusion thus obtained is not so great as would be obtained from testimonies to the conclusion as

strong as those to the validities of the arguments.

Prob. 4. Given a number of arguments for a conclusion and for its contradictory, and

also a number of authorities, all of given probabilities ; required the resultitig probabilities for the

conclusion and for its contradictory.

Let a and b have the meaning of the last prol)lem, and let /i be the testimony which the joint

authorities give for the conclusion and against its contradictory. Let a and b be represented by

urns of tn and p valid cases, and n and q invalid ones; and let n be represented by an urn of

V truths and w falsehoods. Then there are mqv cases in which the argument for is valid and the

conclusion true; npw cases in which the argument against is valid and the conclusion false; nqv

cases in which both arguments are invalid and the conclusion true ; nqw in which both arguments

are invalid and the conclusion false. And these are all the possible combinations. Hence the

probability that the conclusion is true must be

(m + n)qv (1 - 6)/i— or —
,

(m + n)qv + {p + q)nw (1 - V)ix + (1 - o) (1 - *i)

and the probability that the conclusion is false must be

(p + q)nw (I - a) (I - n)— '
or .

(m + n)qv + (/) + q)nw (1 - 6)/u+ (1 - a) (1 - m)

To show the accordance of these formulae with common notions, observe that they give the first

four of the following results :

1. In an impossible conclusion (or when ix = 0) the first expression vanishes : or no argument,

however strong, can give any probability to an impossibility.

If /ui = and (7 = 1, we have incompatible hypotheses, and the expressions take the form - .

2. If a = 1, the conclusion is certain; or absolute demonstration establishes its result, in

spite of any amount of authority against it.

.3. If there be no authority, or if ji = ^, then the probability of the conclusion is

1 - 6 + 1 - a'

and hence counter-arguments of equal strength, applied with no authority, give no authority to the

conclusion.

4. If « = b, the probability of the conclusion is («; or counter-arguments of equal strength

leave previous authority unaffected.

5. If o + 6 = 1, the effect of the arguments is simply that of one more authority: and that

independently of their inconclusiveness, which still remains.

6. If there be no argument against, or if 6 = 0, the probability of the conclusion is not n

(as stated by writers on logic*, who confound it with the conclusion made valid by the argument)

but •or ) when there is no authority.

M + (1 - a) (1 - /u) 2 - o

7. When there is no opposition, and no previous authority, any unopposed argument, however

weak, gives some authority to the conclusion ; and every argument, however weak, increases the

probability derived from previous authority.

Myself among the rest.
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Authority apart, the odds for the conclusion are 1—6 to 1 — a. When both arguments are of

great force, or b and a both near to unity, the ratio of the small quantities 1—6 and 1 — a, which

determines the probability for the conclusion, cannot be distinctly apprehended. When, then, there

is something as near to demonstration on both sides as can be found in a subject which does

not admit of absolute demonstration, the mind ought not to arrive at any conclusion more favour-

able to one side than the other. We constantly see the refusal of human nature to acquiesce in this

reasonable rule, and always with a determination to find out weakness in the argument on one side or

the other. It must be sometimes true that false conclusions shall be the exceptional cases, in which

arguments of the highest probability fail.

It also appears that moral demonstration on one side is not enough, if there be anything

resembling it on the other. All controversialists admit this in fact, by the stress which they lay on

answering the arguments of the opposite side. But they frequently do this as if it were a kind of

surplusage, a charitable (but not in any other sense necessary) allowance for the weakness of those

who do not see the force brought forward on their side of the question. Whereas it appears that it

may be perfectly necessary to answer an opponent who admits all they say to the full extent which

is demanded for it, supposing that to be anything short of absolute demonstration.

PuoB. 5. To ascertain the manner in which the inconclusiveness of the arguments is divided

by the authorities between the probabilities of the truth and falsehood of the conclusion.

If we find X from the equation,

„.(1_6)(1 -«)(!_ 6) (!-/')/.

\ - ab I - ab (l - 6),^ + (1 - a) (l - m)
'

(1 + a)iu - o
we find \ =

I - \ =

(1 - 5)m + (1 - a)(l -/x)

(1 + 6) (1 - m) - 6

(1 -6),. + (!-«) (I -,>.)

From this it appears that \ is negative only when ft. is less than , and I — \ when n is greater

than . In the former case we see that unless the testimony of authority to the conclusion be
1 + 6

'

greater than the success of the argument for the conclusion against a counter-argument of equal

strength, the probability of the conclusion is less than that of the validity of the joint arguments.

If there be no authority, or if /i = 1, we have

I - a
^

I -ft
A =

, 1 - \ = 7 ,1-6 + 1— « l-h + l-fl

a result which demonstrates the unmeaning character of the result of Problem ."!. For the incon-

clusiveness is divided between the truth and falsehood of ihe conclusion in the proportion of the final

probability of its falsehood to that of its truth. Or the more likely the conclusion is to he false,

the larger proportion of the inconclusiveness does its truth get.

But we find

(1 - b),i 1-6 _(!-«) (1-6) 2,1 - 1

(1 - 6) ju + (1 -a) (1 -m)
~

1 - 6 + 1 - a ~
1 - 6 + f- a '

(1 - 6) ,u + (1 - o) (1 - n)'

which shews the addition made to the probability of the conclusion in passing from the case of argu-

ments without authority to that of arguments backed by the authority i/m - I. In the case of

arguments of equal strength, this is /ii - ^, as it ought to be. When ~^ = » <» when the
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im-alidities of the arguments for and against are in the proportion of the testimonies of authority

for and against, the same thing occurs; or the alteration of testimony in the above transition is

exactly transferred to the probability of the conclusion. When lies between 1 and ,

1 — O /I

more than the alteration of testimony is transferred ; in other cases less. The greatest transference

is when ,r = V/ ( ]> 'i which case the amount of probability transferred is

2

It appears from what precedes that in the formulae, the invalidity of the argument against,

1 - 6, enters for the conclusion, and the invalidity of the argument for, 1 — a, enters against the

conclusion, precisely in the same manner as the testimony for it, fi, and that against it, 1 - «. If

then we call the testimony of ateument fur the conclusion, and that
I_6+l-a V J 6 J l_fc+l_„

against it, just as we call /j. and 1 — /i the testimonies of authority for and against : and if also we call

the relative testimony of the arguments : then we may express the result of Problem 4 by

saying that the joint relative testimony of the combined arguments and authorities is the product of

all the separate relative testimonies, both of arguments and authorities.

It must be observed that the mode of entrance of the testimonies of argument makes it follow

that if, after obtaining a result from certain arguments and authorities, we use the probability

obtained as a new authority, in combination with additional data,—the final result will be the same

as if we had collected all the arguments separately and all the authorities, and then proceeded as in

Problem 4. This follows from the property of the functions p-~(,p + p) and p'-i-{p + p), which

contain a mode of composition in which the order of the processes is indifferent, and their partial

collection allowable. If we denote the preceding functions by [p] and [p'], we have

[ [P]M J
= [P9]> [ [P?]"-] = [??'] &c.

When there are any number of arguments for, of validities a, a', a", &c., the chance that one or

more are valid is 1 - (1 - a) (1 - a) (1 - n") ..., and the testimony of argument against the conclu-

sion is (1 - a) (l - a') (1 - a") divided by (1 - a) (1 - a') ... + (l - b) (I - 6') + ... Hence, the

arguments against having the validities 6, h', &c., and the authorities for and against being n,

ft', &c., and 1 — /I, 1 — iM, &c., and J being the probability for the conclusion derived from the

whole of the data, the principle of relative testimonies may be expressed thus :

A 1 - b J - b' \ - b" M /u' m"

1 — A I — a 1 — a' I — a" I — /i 1 - ft 1 — im"

or as follows ;—let the probabilities of the conclusion, derived from the several arguments backed

by no authority, be considered as testimonies of authority to the conclusion, and used as in Pro-

blem 1.

It may happen that, besides the validity a, obtained directly from the premises, there is sepa-

rate testimony of authority to the validity of an argument. Let it be ^ : then instead of a must be

used —3 ;r- TT r^ •

of + (1 -")(l -0
I now return to the question of the dismissal of authority, which was partially entered on at the

beginning of this paper. I assume that the mind will form an opinion upon any proposition which

is laid before it. Even if the assertion were in a scaled packet, with no reason whatever to suppose

it one rather than another of all that could possibly be made, an opinion would be formed as to its

truth namely, that it is an even chance whether it be true or false. And this opinion is a just one

;
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for, since every assertion has its contradictory, and one of these two must be true and one false,

it follows that tile numbers of possible truths and falsehoods must be equal. When the packet is

opened, this opinion will probably change: duly, in a manner depending upon previous associations

of knowledge, or unduly, from what are then properly called prejudices. That every mind must
form some opinion, may almost be concluded from the notorious fact that most minds, indeed nearly

all uneducated ones, have little power except of absolute belief, or absolute unbelief. Their reason-

ing power is a spirit-level in awkward hands; the bulb is always at one end of the instrument or

at the other. Now when it is recommended to dismiss authority, or to allow no authority, I appre-

hend that the advisers are not aware that they are promoting the specific plan of assuming that the

proposer of the argument is a person of ten truths to ten errors. They rather wish to dismiss testi-

mony, which it is clear, if it be that a conclusion must be formed, cannot be done.

Nor is it by any means true that the proper way of doing without authority is to assume the

measure of authority = 0. If we wish to find the value of an argument, be the authority what it

may, or as if the authority be unknown, we must allow for the effect of any possible authority, put-

ting every value on equal terms with the rest. Let d/j. be the chance that the testimony of authority

ties between n and fi + d /a, then the chance of the conclusion being true concomitantly with the

authority lying between /u and n + d/n is

(1
- h)nd^

(l-fc)M-H (l-o)(r-M)'

wiiich, integrated from ,u = to m = 1, gives for the probable truth of the conclusion

t{'-,^|
r f log )•

1
1-6

where r = .

1 - a

If we assume that the chance of the testimony lying between n and fx + d/a is Mcp/xdn,

where M is the reciprocal of Q(piJ.dfx, we have for the probable truth of the conclusion

J., ru + I - u

aud some other supposition except (p/i = 1, is absolutely necessary: it is absurd to suppose equal

chances for all values of the authority ; to take the unknown proposer for instance, to be just as

likely to be infallible as to be of no authority at all. What form should be assumed for (p/u must

be matter of opinion. If it be desired to try it on the supposition that /u is most likely near to some

specific value A, then, m and n being two integers in the proportion of X and 1 — X, the assumption

(bfi - n'" (] - yu)" will represent the hypothesis, if m and ti be considerable. And the greater to

and n are taken, the smaller the chance that the testimony differs from X by so much as a given

(|uantity.

To give a case somewhat more like the proper notion of human authority than that in which all

values of the testimony are equally probable, let us take (pn = m (' - m); ^^ = ^- The above

integral then becomes (after multiplication by M),

T
ifirlogr + 2 + :ir - (rr' + ?•'{.

(r - ])' '
'^ '

If ?• = 1 this becomes ^, as we might expect.

In the above conclusions, r is the relative testimony of the argument, on the supposition of no

authority. If /j be that of the authority, the joint relative testimony to the conclusion is rp: let

us now sec how far this is affected in the case of amoral certaintyhy the supposition that the chance

of the testimimy of authority lying between ,i and fi + d/i is ,x"' {t - m)"''/*. where m-i-(m + ti) is the

previous fixed value of yu. Now we have

r/xf,. _ „, _ , _ ,r-' (I - M^' m"'-'(' - m)'^-' _ I r,r -'(i - ^y*'

Vol.. VIII. Pakt III. SF
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And M is [m + n + l]^W • W' "'here [to] means 1.2.3 ... m. If the probability required

be denoted by P„,, „, we have, multiplying by Mdfi and integrating from ^ = to « = 1,

1 (n + 2)(n + l) 1 (n + 3) (n + 2)(w + 1) 2 p
r TO(m-l)r^ to (to - 1)(to-2) j*^ "-3, ..+

Now P,„_3,
,, + 3 is less than unity, so that if r be considerable, any degree of approximation may

be obtained by this method, carried to more terms if necessary, and if the value of m will permit.

Take the first three terms : then if the testimony of authority were given = j«-i- (to + n), instead of

being most likely to have something near that value, the approximation to P,„_ „ would then be

n 1 n'^ I

1 + — -.
m r m' r-

Subtract the second from the first, and we have

1 3 TO M + 2 TO + n? 1

mr m^ (m — 1) r^

Write (to + n) ix and (to + «)(!- m) for to andw, and we have, supposing to and m + n con-

siderable numbers,

-^-U-(^^U^ nearly,
m + « [jxr fx r

\

Except then when fx is very small, the principle of relative testimonies is sufficiently accurate,

in the case above supposed, taking for the testimony of authority the most probable value of that

testimony.

PitOB. 6. Given arguments and authorities for a proposition atid for its contrary, required

the probability for the truth of each proposition, and for the falsehood of both.

The contrary is thus distinguished from the contradictory : both the proposition and the con-

trary may be false, though both cannot be true : while either the proposition or its contradictory

must be true. As far as the arguments alone are concerned, the problem is that of Problem 3 : for

either one of the arguments is valid and the other invalid, or else both are invalid. But there is a

difference in the meaning of authorities ; for, fx being the testimony to a proposition, 1 - |U is not

necessarily the testimony to its contradictory. Let fx and v be the testimonies of authority to the

conclusion and its contradictory, and a and 6 the probable validities of the arguments. There are

then five cases, two favourable to the truth of the proposition, two to that of the contrary, and one

to that of the falsehood of both ; 1. The argument for may be valid, in which case the proposition is

true, the contrary false, and the argument against invalid. 2. The argument against mav be valid,

in which case the contrary is true, the proposition false, and the argument for invalid. 3. Both

arguments may be invalid, and the proposition true. 4. Both arguments may be invalid and the

contrary true. 5. Both arguments may be invalid and the proposition and contrary both false.

Treating these in the manner in which the preceding problems have been solved, and which it is now

unnecessary to repeat, we have the following expressions for the probability of the proposition, of

its contrary, and of both being false,

(l-6)(l-'-)M (l-a) (I-M).. (l-a)U-6)(l-'^Kl-i')

(l-6)(l-«)M+(l-a)(l->i)"'+(l-a)(l-6)(I-M)(l-i') (l-W(l->')M+(l-a)(i-i')-+a-a)(l-*)(l-/')a-'') (l-6)(l-'')M+(l-a)(l-/<)''+(l-a)(l-6)(l-,<)(l->')

If there be no authorities, or if /» = 1; = 1, these become

1-6 I - a (1 - a) (1 -6)

1 - 6 + 1 - a + (1 - o) (1 - 6) 1 - 6 + 1 - a + (1 - a) (1 — 6) 1 - 6 + 1 - a + (l - a) (1 - fc)

'

If the arguments be of equal strength these become

1 1 \ - a

3 — a 3 — a 3 - a
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except when » = 1 (an absurdity in this case), in which they taive the form -. But we get this

result, that if (1 — 6)h-(I - «) = p-, 'hen the more nearly the arguments become demonstration, the

more nearly is it certain that either the proposition or its contrary must be true, the probabilities

for one and the other being as ^ (1 - i/) /u and (1 — ju) v. This is a singular result : for, since of

two exceedingly strong arguments, one on each side, one must be invalid, it is not easy to explain

from a priori notions why there is so great a probability that one or the other must be valid.

That it is so appears from the probabilities of the validities* of the two arguments, and of the

invalidity of both, namely,

a(l -b) 6(1 - a) (1 - n) (1 -h)

n(\-h)+b{l-a) + {\-a){l-b) a{\-b) + h{\- a) + (l- a){l-b) a(l- 6) +fc(l-a) + (l-a)(l- 6)

'

in which n t 1 is the limiting ratio for the probabilities of the two validities. The same remark

mav be made with reference to the authorities : when two very high authorities affirm contraries, the

higher the authorities the more likely is it that one or the other is right.

When there is no argument for the contrary, or 6 = 0, the three expressions become

(l--)/. (l-a)(l-^> (l-a)(l-M)(]--)

(\..)^^^,l-a){l-l^)|'+{l-a){\-^)i^-'') (l-.')M+(l-a)(l-/")i'+(l-a)(l-f.)(l-./) (l-.')/.+(l-aXl-/')''+(l-a)(l-''Xl-'')

'

when there are no authorities these become

1 \ — a I — a

3 - 2a 3 - 2ffl 3 - 2n

or when an argument is proposed, simply, the chance thereby given to the contrary is the same as

that of neither being true.

It will seem strange at first, that the probability for the conclusion is not : for it will be

said, an argument and none for the contrary, is precisely the same position as an argument and none

for the contradictory. But the suppositions as to authority are different. Looking to authorities

only the chances of the three cases are

m(J-i/) 1^(1 -m) ('-^')(1-»')

m(I-^) + ^(1-/«) + (1-m)(1-i/)' /a(l-p) + ./(I-M) + (l-^')(l->')' ti^(\-v)+v{l-,x) + {l-p){\-vy

and in the case of no authorities, there is the chance ^ for each of the cases. Now in treating the

contradictory the testimony of no authority is J.

Let us now suppose that there is authority for each of the three cases, and also argument, or

generally, let us take the following problem :

PnoB. 7' Let there be a dilemma of any number of horns, one or other of which, but

only one, must be true ; required the probabilities of the several horns, arguments and autho-

rities being given for each.

Let a, b, c, &c. be the probable validities of the several arguments, /i, v, ^, &c. the testimonies of

authority. This problem, treated as before, gives the following result. Let

v = (, _/,)(, _o)...,.(i -0(1 -D + (1 -")(' -«)...( -m) 1/(1 -0 •
+ (1 -«)(1-6)...(1 -,.)(! -v)l...

then the probabilities of the several horns containing the truth are

' I nhnulil have made thi« remark before, in regard to the contradictories, but lor luiving wriitcii tlu' iltnnminaior in the iran»fornic

ihape I — af>. I have always found the best lule to be, never perform operations in (lcnoniinator>.

3 F 2
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(l- 6)(l-c)...M (l-»')(l-a .-. (l-a)(l-c). . .(l-/x);-(l-0... (l-a)(l-6)...(l-;u)(l-.>)^...

This problem contains all that have gone before, except the second. But this may not be appa-

rent at first. In fact, if I had commenced this paper with the general case now in hand, and had

then descended to the particular cases, the method of descending might have appeared exceptionable,

requiring tlie authority of an independent consideration of the particular results arrived at. Suppose

a dilemma of two horns, such as a proposition and its contradiction. If the testimony of authority

for the proposition be ju, there is in this case the testimony 1 - /x implied for the contradiction. But

this does not enter the formula : it is only the form belonging to the case of what is virtually repre-

sented in the general formula above, namely, that there is the testimony I — n implied in favour of

one or other of the horns following the first, because there is the testimony fi given for the first.

No express testimony is given to the contradiction : so that it enters with the testimony i. And if

there be only two horns, and the testimonies be fx and ^, it will be found that the preceding expres-

sions agree with the answer to Problem 4. There was no need in that case to suppose testimonies ^

and 1/, because, as the testimony to each liorn is a definite testimony to the other, they would but

have amounted to a joint testimony for the proposition.

If we want the case of the last problem, we have to take three horns, making c = and ^ = ^
Or we may if we like suppose argument and testimony offered for the third case, namely, that both

the proposition and its contrary are false.

If we wish to construct the general case upon the supposition that no one need be true, all we

have to do is to add one more horn with an argument and a testimony i.

The easiest way of representing the result of the general case is as follows. Let A„ represent

the probability of the m"' horn from argument only, and M,„ the same from authority only. We
have then (using Oj a„ he. and /u, ix^ S:c.),

I

M„ =

1 - a,n

A M
and the probability of the to"" horn is „ ,

"' "'

,
.

2 (A^ M,„)

The term A,„M„, or
"' may be called the exponent of probability of the ;»"' case :

1 - Cm 1 - M,„

and the probability of that case is its exponent divided by the sum of all the exponents. This

exponent is proportional to the number of balls in the urn the exits of which are favourable to the

case. It is the product of two relative testimonies, that of the authority, and that of the argument

alone, to establish the conclusion against its contradictory, that is against everything opposed to it.

Now suppose a complex dilemma of this kind, namely, that to of the horns, neither more nor less,

must be true, and the rest false. An examination of this problem leads to the following result.

The product of the exponents of any m cases, divided by the sum of the products of all the

exponents, m and m together, is the probability that the to cases chosen are the true ones. Hence

can be readily found the probability that any one case is among the true ones. If there be four

cases, for instance, of which two must be true, and if ei, e.~, e^, e,, be the exponents, the probability

that the first case is true is

61(^2 + 6;, + ej

e,e2 + 6163 + 6,64 -I- 6263 + 6264 + 636,

If it should be that m cases or fewer, but not more, may be true, then the probability that any

m - p cases and no others, shall be true, is the product of the exponents of those m — p cases, divided
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by 1 + 2e, + SeiBa + 2e,e2 + ... + 2e,ea ...e,„, the I being omitted if all cannot be false. The
various restrictions which might be imposed, as that only an even number can be true, that no two,

three, or any number of contiguous cases can be true together, &c. &c. may be easily contained under

this one rule. In every set of cases that can be true together, multiply together the exponents of

those cases ; the product is the numerator of the probability that those cases only are true, and

the sum of all the products is the denominator.

This rule applies to one case which we have not yet considered. When several arguments were

proposed together, all for, or all against, a conclusion, it was supposed that they were perfectly

independent. But it may hap[)en that two or more arguments are so connected that some must be

valid together and invalid togetlier, or that some are valid when others are invalid, and vice versa,

or that the validity of one makes another valid, but the invalidity of the first has no influence on the

validity of the second. All these cases, and a great number of otiiers, including in fact, under one

view or another, any question that may be proposed, mav all be solved by the following Rule.
There is any number of events, each of which may happen in any nun)ber of ways, the separate

probabilities of which are given, but so connected tiiat there are specific necessary coincidences,

or failures of coincidence. Take all the combinations which can happen, and compute the

probability of each combination, as if its events were entirely unconnected. The resulting products

are proportional to the probabilities of the several cases arising.

Thus, if there were three urns, the first giving white, black, or red (with chances tv, b, r) ;

the second white or black (with chances w',//) ; the third while or black (with chances w'', b"), but so

connected that black cannot be drawn from tiie first, nor white from all three, nor red from the first

excejJt when different colours come frou) the second and third, and it be required to find the chance

of having a red ball, we proceed thus. Enumerate the pos.sible cases, which are WWB, WBW,
WBB, RBW, RWB, and the probability of a red ball is

)• (b' w" + w' b')

w(w'b" + b'w" + b'b") + r{b'w" + w'b")'

I have taken such an example, because it seems as if the condition that a black ball cannot be

drawn from the first is equivalent to taking away those black balls, in which case the chances

of the others cannot be w and r. But if the black balls be previously removed, then for w and r

w r
we must write and , which will not affect the formula. In the same way any addition1-61-6 •'

•^

of other coloured balls, with the condition that they cannot be drawn, though it will affect the

probabilities of the independent events made use of in the solution of the problem, will not affect

the ratio which expresses the final result.

I have given so many proofs of particular eases of this principle that it is not necessary

to say any thing on the general proof. But I shall observe that the circumstance noticed in

combining argument and testimony, namely, that instead of the validity of an argument entering _/«)•

the conclusion, the invalidity enters against,—is an immediate application of the preceding rule.

For it is not the validity of an argument which is necessary to the truth of a conclusion, but the

invalidity of it which is necessary to its falsehood. Thus, in Problem 4, the necessary cases are, cither

1. Argument against invalid, and testimony for true, giving (1 - 6)/i; or 2. Argument for invalid,

and testimony against true, giving (1 - a) (l -/u).

The application of the principles on which the preceding rule is established, would, I suspect,

give much clearer views of many problems than the ordinary method of employing inverse con-

Kiderations.

A. DE MORGAN.
llniversily College, London,

October 3, 1846.
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<- ADDITION.

Sixcii this paper was written, I found that the whole theory of the syllogism might be deduced

from the consideration of propositions in a form in which definite quantity of assertion is given

both to the subject and the predicate of a proposition. I had committed this view to paper, when I

learned from Sir William Hamilton of Edinburgh, that he had for some time past publickly taught

a theory of the syllogism differing in detail and extent from that of Aristotle. From the prospectus

of an intended work on logic, which Sir William Hamilton has recently issued, at the end of his

edition of Reid, as well as from information conveyed to me by himself in general terms, I should

suppose it will be found that I have been more or less anticipated in the view just alluded to. To
what extent this has been the case, I cannot now ascertain : but the book of which the prospectus just

named is an announcement, will settle that question. From the extraordinary extent of its author's

learning in the history of philosophy, and the acuteness of his written articles on the subject, all who

are interested in logic will look for its appearance with more than common interest.

The footing upon which we should be glad to put propositions, if our knowledge were minute

enouo-h, is the following. We should state how many individuals there are under the names which

are the subject, and predicate, and of how many of each we mean to speak. Thus, instead of "Some

Xs are Fs," it would be, " Every one of a specified .^s is one or other of 6 specified Fs." And tlie

negative form would be as in " No one of a specified ^s is any one of b specified J's." If propo-

sitions be stated in this way, the conditions of inference are as follows. Let the effective mimber

of a proposition be the number of mentioned cases of the subject, if it be an affirmative proposition,

or of the middle term, if it be a negative proposition. Thus, in " Each one of 50 X?, is one or other

of 70 Fs," is a proposition, the effective number of which is always 50. But " No one of 50 Xs is

any one of 70 Fs" is a proposition, the effective number of which is 50 or 70, according as X or F is

the middle term of the syllogism in which it is to be used. Then two propositions, each of two

terms, and having one term in common, admit an inference when 1. They are not both negative.

2. The sum of the effective numbers of the two premises is greater than the whole number of exist-

ing cases of the middle term. And the excess of that sum above the number of cases of the middle

term is the number of the cases in the affirmative premiss which are the subjects of inference. Thus,

if there be 100 Fs, and we can say that each of 50 ^s is one or other of SO Fs, and that no one of

ao Zs is any one of 6o Fs;—the effective numbers are 50 and 60. And 50 -i- 60 exceeding 100 by

10, there are 10 A's of which we may affirm that no one of them is any one of the 20 Zs mentioned.

The following brief summary will enable the reader to observe the complete deduction of all the

Aristotelian forms, and the various modes of inference from specific particulars, of wliich a short

account has already been given.

Let a be the whole number of A's; and t the number specified in the premiss. Let c be the

whole number of Zs; and w the number specified in the premiss. Let b be the whole number of

Fs ; and u and v the numbers specified in the premises of x and z. Let X,Yn denote that each of

/ As is affirmed to be one out of u I's : and A, : F„ that each of t As is denied to be any one out

of u Ys. Let X„ „ signify m As taken out of a larger specified number n : and so on. Then the

five possible syllogisms, on the condition that no contraries are to enter either premises or conclusion,

are as follows :

—

1.
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The condition of inference expresses itself; in the X^^ , of the conclusion, m must neither be

nor negative. The first case gives no Aristotelian syllogism; the middle term never entering

universally (of necessity) into any of its forms, under any degree of specification which the usual

modes of speaking allow. The other cases divide the old syllogisms among themselves in the fol-

lowing manner: they are written so as to show that there is sometimes a little difference of amount

of specification between the results of different figures, which amount may change in the reduction

from one figure to another. The Roman numerals mark the figures.

2. t = a, V = b

t = a, V = b

t < a, V = b

t < a, V = b

3. u = b, V = b

u < b, V = h

u = b, e < b

4. t = a, V = b, w = c

t = a, V = b, w = c

t = a, V = b, w = c

t = a, V = b, w = c

V = b, w = c

V = b, w = c

t — a, V = b,

5. u = b, V = b, w = c

u = b, V = b, w = c

V = b, w = c

V = b, w = c

u = h, w = c

Y)Z„,+ ^)r. = A')Z„,„.

^)F„+ Y)Z,„= Z,,.„^

V)Z,^.+ X,Y, = X,Z,„„,

.r,F„ + Y)Z,,.= z, „,^,

Y)X,+ Y)Z,= Z,„,„X,„,

Y„x, +r)z,„ = z,„„,x,„,

Y)x,+ r„z,„=z,,„.Ar,,,

Y. Z + X)Y„= X. Z

Z.Y + X)Y,^= X.Z
X)Y„+ Z . Y = Z . X
X)Y^+ Y.Z = Z.X
Y. Z + XtY„ = Xr- Z

Z.Y + XtY^ = Xr- Z

X)Y^ + Z,^.:Y= Z,„:X

Y.Z + Y)Xt= X,^,-Z

Z.Y+Y)X,= X,^,:Z

Y.Z + Y^X, = X„^,:Z

Z.Y + Y^X, = X„_,:Z

Y,:Z + r) A-, = X. ,:Z

Barbara I.

Bramantip IV.

Darii I.

Dimaris IV.

Darapti III.

Disamis III.

Datisi III.

Celarent I.

Cenare II.

Camestres II.

Camenes IV.

Ferio I.

Festitio II.

Baroko II.

Felapton III.

Fesapo IV.

Feriso III.

Fresison IV.

Bokardo III.

This system is complete in itself, if contraries be excluded. That in the body of this paper is

also complete, if all specification be excluded, except which is contained in the usual words some and

alt. An attempt to combine the two systems would be useless, because its forms of expression

would not be those of common language. For instance, the following must be one form of an

affirmative proposition in the combined system " Of t Xs and t' .rs every one is one or other

of u Fs and u' y s." It would be useless to investigate the conditions of inference as to forms

which are not those of speech in any language.

But at the same time there is a certain approach to the preceding forms, if we take in not

merely the logical force of our common propositions, but also wiiat is usually implied. He who

nays, " Some Afs are I's," is generally held to mean that tlic other Xs are not Ks. The complex

syllogisms, in which the alternatives left by the common forms are supposed to be definitely settled,

are worthy of attention : and their theory is as follows.

With respect to the name Y, the name X may be of seven different kinds, distinguishable with-

out numerical specification. These arc as follows : neither term containing the whole universe.
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(1.) The two terms may be identical, or F ) y¥ and X)V. Let this be denoted by D.

Taking the order XV, we have, to constitute D, the proposition J, a. And denoting coexistence by

+ , as before, we may write D = A + a.

(2.) A' may be entirely contained in, but not repletive of, Y, or we may have X) l' and Y : X.
Let X be now called a subidentiual of }', and let D^ denote this form. We have then D^= A + o.

(3.) X may entirely contain 1', and more; or Y ) X and X : Y. Let A' be now called a

superidentical of 1', and let D' denote this form. We have then D' = a + O.

(4.) X may be the contrary of Y, both together tilling up the universe of the proposition witli-

<iut anything in common ; or X .Y and j- . y. Let this form be called C : we have then C = E + e.

(5.) X and Y may have nothing incommon, but may not together fill up the universe of the

proposition; or X. F and .xy. Let them be called subcontraries, and let C^ denote this form.

We have then C^ = E + i.

(6.) A'and F may have something in common, and may together fill up the universe; or XY
and X . y. Let these be called supercontraries, and let C' denote the form. We have then C' = e + I.

(7.) Each of the two may have something in common with the other and something not in

common, both together not filling up the universe; or XY, xy, X : Y, Y : X. I cannot propose

any name for this case with whicli I am in any degree satisfied : but as all the particular forms

are here concerned, I will for the present call X and F in this case complete particulars each of the

other. Let P represent this form ; we have tlien P=I+0+i + o.

In arranging for a syllogism, let the order be XY, ZY, XZ, the conclusion being described by

what .V is as related to Z, X coming from the first premiss ; and both terms of the conclusion being

described with respect to the middle term, F. On examining the cases in which complete premises

give a complete conclusion, I find as follows.

1. If one of the concluding terms be a complete particular of the middle term, there is no

complete conclusion except when the other concluding terra is either identical with or contrary to

the middle term. And then each concluding term is a complete particular of the other.

2. The following table shows tlie result of all the other cases.

X



XXX. Supplement to a Memoir On some Cases of Fluid Motion. By
George G. Stokes, M.A., Fellow of Pembroke College.

[Read Nov. 3, 1846.]

In a memoir which the Society did me the honour to publish in their Transactions*, I showed that

when a box whose interior is of the form of a rectangular parallelepiped is filled with fluid and made

to perform small oscillations the motion of the box will be the same as if the fluid were replaced by a

solid having the same mass, centre of gravity, and principal axes as the solidified fluid, but different

moments of inertia about those axes. The box is supposed to be closed on all sides, and it is also

supposed that the box itself and the fluid within it were both at rest at the beginning of the motion.

The investigation was founded upon the ordinary equations of Hydrodynamics, which depend upon

the hypothesis of the absence of any tangential force exerted between two adjacent portions of a fluid

in motion, an hypothesis which entails as a necessary consequence the equality of pressure in all

directions. The particular case of motion under consideration appears to be of some importance,

because it affords an accurate means of comparing with experiment the common theory of fluid

motion, which depends upon the hypothesis just mentioned. In my former paper, I gave a series

by means of which the numerical values of the principal moments of the solid which may be substi-

tuted for the fluid might be calculated with facility. The present supplement contains a different

series for the same purpose, which is more easy of numerical calculation than the former. The com-

parison of the two scries may also be of some interest in an analytical point of view, since they appear

under very different forms. I have taken the present opportunity of mentioning the results of some

experiments which I have performed on the oscillations of a box, such as that under consideration.

The experiments were not performed with sufficient accuracy to entitle them to be described in

detail.

The calculation of the motion of fluid in a rectangular box is given in the 13th article of my
former paper. I shall not however in the first instance restrict myself to a rectangular parallelepiped,

since the simplification which I am about to give applies more generally. Suppose then the problem

to be solved to be the following. A vessel whose interior surface is composed of any cylindrical

surface and of two planes perpendicular to the generating lines of the cylinder is filled with a homo-

geneous, incompressible fluid ; the vessel and the fluid within it having been at first at rest, the

former is then moved in any manner ; required to determine the motion of the fluid at any instant,

supposing that at that instant the vessel has no motion of rotation about an axis parallel to the gene-

rating lines of the cylinder.

I shall adopt the notation of my former paper, ti, v, w are the resolved parts of the velocity at

any point along the rectangular axes of x, y, z. Since the motion begins from rest we shall have

udx + i^dy + wdz an exact differential d(p. Let the rectangular axes to which the fluid is referred

• Vol. VIII., Pari I., p. lU.'i.

Vol.. VIII. Pakt III. AG
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be fixed relatively to the vessel, and let the axis of x be parallel to the generating lines of tlie cylin-

drical surface. The instantaneous motion of the vessel may be decomposed into a motion of transla-

tion, and two motions of rotation about the axes of y and z respectively; for by hypothesis there is

no motion of rotation about the axis of .v. According to the principles of my former papei', the

instantaneous motion of the fluid will be the same as if it had been produced directly by impact, the

impact being such as to give the vessel the velocity which it has at the instant considered. We may
also consider separately the motion of translation of the vessel, and each of the motions of rotation ;

the actual motion of the fluid will be compounded of those which correspond to each of the separate

motions of the vessel. For my present purpose it will be sufficient to consider one of the motions of

rotation, that which takes place round the axis of z for instance. Let w be the angular velocity

about the axis of z, a> being considered positive when the vessel turns from the axis of x to that of

y. It is easy to see that the instantaneous motion of the cylindrical surface is such as not to alter

the volume of the interior of the vessel, supposing the plane ends fixed, and that the same is true of

the instantaneous motion of the ends. Consequently we may consider separately the motion of the

fluid due to the motion of the cylindrical surface, and to that of the ends. Let (p^ be the part of

(p due to the motion of the cylindrical surface, (p,. the part due to the motion of the ends. Then we

shall have

<}>=<S>,+ <Pe (»)•

Consider now the motion corresponding to a value of rf), way. It will be observed that wxy
satisfies the equation, ( (36) of my former paper,) which <p is to satisfy. Corresponding to this

value of (p we have

u = wy, V = fti.r, w = 0.

Hence the velocity, corresponding to this motion, of a particle of fluid in contact with the cylindrical

surface of the vessel, resolved in a direction perpendicular to the surface, is the same as the velocity

of the surface itself resolved in the same direction, and therefore the fluid does not penetrate into,

nor separate from the cylindrical surface. The velocity of a particle in contact with either of the

plane ends, resolved in a direction perpendicular to the surface, is equal and opposite to the velocity

of the surface itself resolved in the same direction. Hence we shall get the complete value of (p by

adding the part already found, namely wxy, to fwice the part due to the motion of the plane

ends. We iiave therefore,

^ = wxy + 20, = 2^^ -toxy, by (1) (2),

and (p^ - <p^= uxy (3).

Hence whenever either (p^ or <p^ can be found, the complete solution of the problem will be

given by (2). And even when both these functions can be obtained independently, (2) will enable

us to dispense with the use of one of them, and (3) will give a relation between them. In this case

(3) will express a theorem in pure anah'sis, a tiieorem which will sometimes be very curious, since

the analytical expressions for <p^ and (p^ will generally be totally different in form. The problem

admits of solution in the case of a circular cylinder terminated by planes perpendicular to its axis,

and in the case of a rectangular parallelepiped. In the former case, the numerical calculation of the

moments of inertia of the solid by which the fluid may be replaced would probably be troublesome,

in the latter it is extremely easy. I proceed to consider this case in particular.

Let the rectangular axes to which the fluid is referred coincide with three adjacent edges of the

parallelepiped, and let a, b, c be the lengths of the edges. The motion which it is proposed to cal-



ON SOME CASES OF FLUID MOTION. 411

culate is that which arises from a motion of rotation of the box about an axis parallel to that of z

and passing through the centre of the parallelepiped. Consequently in applying (2) we must for a

moment conceive the axis of z to pass through the centre of the parallelepiped, and then transfer the

origin to the corner, and we must therefore write w l.i; -
-J

ly ] for wxy. In the present case

the cylindrical surface consists of the four faces which are parallel to the axis of a', and the remain-

ing faces form the plane ends. The motion of the face wy and the opposite face has evidently no

effect on the fluid, so that ^_, will be the part of (p due to the motion of the face xz and the opposite

face. The value of this quantity is given near the top of page 133 in my former paper. We have
then by the second of the formulae (2)

njrb _ "jrw nirf' nny

e " — e "

the sign 2o denoting the sum corresponding to all odd integral values of n from 1 to co . This
value of <p expresses completely the motion of the fluid due to a motion of rotation of the box about
an axis parallel to that of z, and passing through the centre of its interior.

Suppose now the motion to be very small, so that the square of the velocity may be neglected.

It

in finding — we may suppose the axes to be fixed in space, since by takimr account of their
at J a

motion we should only introduce terms depending on the square of the velocity. In fact, if for

the sake of distinction we denote the co-ordinates of a fluid particle referred to the moveable axes by
x, y\ while ,r', y denote its co-ordinates referred to axes fixed in space, which after differentiation with
respect to t we may suppose to coincide with the moveable axes at the instant considered, and if we

denote the differential coefficient of <p with respect to / by I—
J

when go, y, t are the independent

variables, and by —-^ when .r', y , t are the independent variables, we shall have
dt

ld<p\ d<p d(p dx d(p dy' d(h dai dy' ''^

\dfl^'di"*'d^''dJ'^d^'7~t'^dt'*'^'dt'^^'di
'"

dd> d(t>
, , , ,

deb dd)
,

'or —
, ,
—L mean absolutely tlie same as —^ ,

—c , and are therefore equal to u, v respectively.

dx dy'
Now — ,

—- , depending on the motion of the axes, are small quantities of the order w ; their

values are in fact uiy, - wx; so that, omitting small quantities of the order w', we have

Then, p denoting the part of the pressure due to the motion, we shall have p = - n -i Also

(S)
=

(d(j)\ d(f)
~ If

'

We shall therefore find the value of j) from that of (h by merely writing - p — for w. In order

* Ft may be very easily proved by means of this equation, i eW'ccl on tiic motion of llic box as the solid of wliitli tin.' moment
combined with tbe general cijualion which determines ;;, that of inertia is determined in this paper on the supposition that the

whether the velocity be great or small the Hviid will have the same nmtion is small.

.3 2
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to determine the motion of the box it will be necessary to find the resultant of the fluid pressures on

its several faces. As shown in my former paper, these pressures will have no resultant force, but

only a resultant couple, of which the axis will evidently be parallel to that of x. In calculating

this couple, it is immaterial whether we take the moments about the axis of x, or about a line

parallel to it passing through the centre of the parallelepiped : suppose that we adopt the latter

plan. If we reckon the couple positive when it tends to turn the box from the axis of x to that

of y we shall evidently have -
Jo fo P^^o (^ ]d,vdx for the part arising from the pressure on

the face .vx, and f^ /„' p^^„ (y ) dydz for the part arising from the pressure on the face yz.

It is easily seen from (4) that p^^^ = - p^,,, and p^^j = - Py,„, so that the couples due to the pres-

sures on the faces xx, y a are equal to the couples due to the pressures on the opposite faces

respectively. In order, therefore, to find the whole couple we have only got to double the part

already found. As the integrations do not present the slightest difficulty, it will be sufficient to

write down the result. It will be found that the whole couple is equal to —C— , where

_mrfc

1 -t- £ "

This expression has been simplified after integration by putting for 2„ — its value —;

.

It appears then that the effect of the inertia of the fluid is to increase the moment of inertia

of the box about an axis passing through its centre and parallel to the edge c by the quantity C.

In equation (40) of my former paper, there is given an expression for C which is apparently very

different from that given by (5), but the numerical values of the two expressions are necessarily

the same. If we denote the moment of inertia of the fluid supposed to be solidified by C , we

shall have C = {a^ + h') ; and if we put
12

6='-'
C=-^^''^'

and treat (5) as equation (40) of my former paper was treated, we shall find

/(r) = (1 + r-)-' \l -Sr" + 2r'(1.260497 - 1.254821 2o — versin 26,,)} (6),

n
wliere, tab. log tan 9„= 10 - .6821882 - .

r

The equation (6) is true, (except as regards the decimals omitted,) whatever be the value of r;

but for convenience of calculation it will be proper to take r less than 1, that is, to choose for a

the smaller of the two a, b. The value of /(r) given by (6) is apparently very different from

that given at the bottom of page 134 of my former paper, but any one may easily satisfy himself

as to the equivalence of the two expressions by assigning to r a value at random, and calculating

the value of f{r) from the two expressions separately. The expression (6) is however preferable to

the other, especially when we have to calculate the value of f(r) for small values of r. The
infinite series contained in (6) converges with such rapidity that in the most unfavourable case, that

is, when r = 1 nearly, the omission of all terms after the first would only introduce an error

of about .000003 in the value of /(»•).
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For the sake of showing the manner in which f{r) alters with r, I have calculated the following

values of the function. The expression (6) shows that /'('') = "> when r = 0; and /'()•) is

also =0 when r = 1, since / (-) =f(r).

r
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These experiments are sufficient to show that in the case of a vessel of about the size and shape

of the one I used, filled with water, and performing small oscillations of the duration of about

one second, (as was the case in my experiments,) tlie time of oscillation is not much increased by

friction ; at least, if we suppose, as there is reason for supposing, that the effect of friction does

not depend on the nature of the surface of the box. They are not however sufKciently exact to

allow us to place any reliance on the accuracy of the small differences between the results of

experiment, and of the common theory of fluid motion, and consequently they are useless as tests

of any theory of friction.

G. G. STOKES.
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The notation Du . u, the meaning and use of which is explained in the following pages, denotes

a line of a certain length perpendicular to the lines denoted by the symbols u and «'. It is derived

from the consideration of the rotation of a rigid body, in which the line ?< is fixed, about the line u
,

being, in fact, the differential coefficient of u with respect to the directions of the axes of co-ordi-

nates, the line n' being constant, as will be explained.

It will be found, that this notation and a corresponding notation, A2<'.m, have several

important properties, that they express with great simplicity several conditions and equations in

various parts of Mathematics, and especially in Mechanics, and that they simplify in a remarkable

manner several complicated investigations.

The present paper contains an explanation of the meaning of the notation, and its application to

Statics, and to the determination of the Rotation of a rigid body about its centre of gravity.

unit of

(Fig. 1

Of the Notation D u'. ii.

1. Let us assume the symbols a, f^, y to denote the lines OA, OB, OC, each a

length, drawn from an origin O at right angles to each other, so forming a

system of three rectangular axes. Let x, y, ~ denote any three abstract

numbers; then xa, yfi, zy will denote three lines, drawn along (or parallel

to) the three axes, and numerically equal to x, y, z respectively.

Let OP be any line drawn from 0, and let us assume the symbol u to

denote OP in magnitude and direction; then, if xa, yfi, xy be the co-ordinates

of /-", we have, according to well-known principles,

n = Xa + yfi + zy (1).

We shall now suppose that the axes OA, OB, OC are capable of motion

a!)out the point O, always however remaining at right angles to each other.

We shall also suppose that ,r, y, z are not affected by this motion, or, in otiier words, that the

position of P relatively to OA, OB, OC, does not alter. In fact, we assume that the point P and

the axes OA, OB, OC are fixed in a rigid body which is capable of motion about the point O.

Let S denote any indefinitely small displacement arising from a motion of tliis kind ; then from

(I) we have

Su = xtiu + ySj3 + zSy ('.;)•

Now, since a is invariable in length, ^a denotes a displacement of tiie point A at right angles to

OA : for, let OA' he the line drnoted by a + Su ; then, since

OA' = OA + A A', we have a -H ca = a + A A', and therefore

6n = AA'. Dut, since OA' = OA (a being invariable in length),

and since tlie angle O is indefinitely small, AA' is perpendicular to

OA. Hence oa denotes a dis])laeement of A at right angles to OA.
Vol. VIII. Part IV. 3 II

(Fig. 2.)
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(Fig. 3.)

,/

71,

(3).

In like manner ^/3 and ^7 denote displacements of B and C at right angles to OB and OC
respectively.

2. Let the displacement Sa be resolved into two others,

Ac and Jb', of which Jc is parallel to OB, and Ab' to CO.

In like inanner let ^/3 be resolved into Ba parallel to OC, and

Be to ^O; and let ^7 be resolved into Cb parallel to OA, and

Ca to BO.
Also let us denote the numerical magnitudes of these re-

solved displacements by c, b', a, c, b, a', respectively.

Then, since OA, OB, OC always remain at right angles to

each other, it is evident that a = a, b= b', and c = c'. Hence,

giving these displacements their proper signs of direction,

namely ft,
- 7, 7, - «, «> - /3, respectively, we have,

Sa = Ac + Ab'= ftc - yb\

Sft = Ba + Be = ya -ac >

Sy=Cb + Ca = ab - fta.)

The quantities a, b, c here denote any arbitrary numerical differentials.

Making these substitutions in equation (2), we find,

hi = (xb -yc)a+ (.vc - za) ft + (ya - xb)y (4).

3. Now it is evident from the nature of the motion which § denotes, that Su represents an

indefinitely small line at right angles to t( ; therefore, if X be any numerical arbitrary quantity, \Su

will represent any line (not necessarily small) at right angles to 11. The sign \S therefore, written

before u, changes u into the symbol of a line at right angles to m, and therefore has somewhat the

same effect as the sign \/ - 1, or (-)*. Since however there may be an infinite number of

different perpendiculars to u, it remains to put the sign XS in such a form as shall indicate

what particular perpendicular \hi represents. We shall do this in the following manner.

4. Multiplying (4) by X, and putting Xa = .v', X6= y', \c = z, we find

Xhi = {zy - z'y) a + (xx - x'z) ft + (y.v - y'x) y (5).

Now it is evident from this expression, that Xhi vanishes when x = iv', y = y , z = z' ; in other

words, if we assume

u' = x'a + y'ft + ^'7,

it follows, that \^u = 0, when u = u. Therefore \^u denotes a differential* of u taken on the sup-

position that ti is invariable.

On this account we shall replace X^ by the sign 2?„., defining £>,,. to denote a differential taken

on the supposition that ?/ is invariable. We have then,

D^u = {zy- z'y) a + (<tz'- x'z) ft + {y ^v' - y'x) y.

If we interchange ,r, y, z, and x', y , z' respectively, this equation becomes

Dji'= (z'y - zy') a + (x'z - xz) ft + (y'x - yx')y.

Hence we find, that

i»„w'= - D,u.

From this equation we may shew that the operation D„. is distributive with respect to u; that

is to say, that

Meaning by tlie word differential here any quantity proportional to an indetinitely small difference.
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for we have

'D„ + „•(«) = - D„(u'+u"),

- Dj('- Dji"

The operation Z)„. is therefore distributive with respect to u.
To indicate that />„• is distributive with respect to u\ we shall elevate the subscript index u',

and write it in the same line as D, putting a dot between u' and the syuibol on which the operation

is performed ; that is to say, we shall write

Du'.u instead of D^it.

5. Having thus settled the form of the notation, we shall now interpret the meaning of the

expression for Du'. u, namely,

Dii. u = {zy'- z'y) a + {,vx'- w'x) fi + {yaf- y\i) y ( fi),

from which, as we have seen, immediately follow the two equations

Du .u' = — Du . It (7)

D (ii + u") . u = Dii . It + Dit" . It (8).

1st. To determine the direction of the line Dii. u, let

Dii. u = xa + y^(i + z^y,

and therefore, by (6),

a!= zy- z'y I

y = xz'— x'z^ (y).

From these equations we have immediately

x^ X + y^y + z^z = 0,

x^ x'+ y y' + z^z'= 0.

Whence it appears that the line drawn to the point (v^yz^) from O, is at right angles to the line

drawn to (xyz) and the line drawn to {x'y'z) ; in other words, Dii. u is at right angles both to u

and u . This determines the direction of the line Du' . u.

2ndly. To determine the magnitude of Du'.it, let i\, r, and r' denote the magnitudes of Du'. u,

u, and u respectively, and let Q be the angle made by u and zi : then, by the equations (9),

X- + y'f + zf = (.r^ + y-+ z") {x- + y"' + «"') - {xx + yy' + zx'f,

or r^- = rr'' - {rr cos 0)'-,

and therefore r^=rr'i\x\Q (10).

Hence the numerical value of the line Dv! . u is the product of tlie numerical values of the lines

u and 11 multiplied by the sine of the angle they make with each other.

6. Since rr' sin is the area of the parallelogram formed upon the lines u and u' as sides, it

follows, that Du. M is a line numerically equal to tiie area of the parallelogram formed upon u and

7<', and j)erpcndicular to its plane.

It fi)llow.s from (7) that Du .u denotes a line equal in magnitude to Du'.it, but opposite in

direction.

3H 2
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7- If fJ. be any numerical quantity, we have

D/ji u'. u = - Du . fiu' = - ixDti . u' = nDu'. u.

Hence we have

DixU .u = iJ.Du'. u (' I)-

From which it appears that a numerical coefficient of ?«' may always be brought outside the

sign D.

Hence Dii . u = D {x'a + i/'/3 + ^'7) . u,

= D.v'a . u + -Dy'/3 . u + Dx'-^ . u, by (8) ;

and therefore by (11) Dit'. u = x'Da . u + j/'-D/3 . m + z'Dy .it (12)-

8. In the equation ((>) putting all the co-ordinates, except ,r' and y, equal to zero, we find

Dm'a . y/3 = x'yy, and .'. Da . j3 = y: and in the same way we may shew that Dj3 . y = a, and

Dy .a = li. We have therefore

Da.(i = y, DjS.y^a, Dy . a = (3 (13).

From these equations we find by (7),

Dfi.a = -y, Dy.f3=-a, Z>a . 7 = - /3 (14).

Also we evidently have,

Du.u = (15).

And therefore

Z>a.a = 0, Z)^.(3 = 0, X>7.7 = (16).

9. Die . u is a line proportional to, and drawn in the same direction as the small displacement

iiu, which displacement takes place on the supposition that li is invariable : in other words, the dis-

placement iu results from giving a small angular motion, round the axis u\ to the rigid body in

which OA, OB, OC and Pare fixed. Fiom this consideration we may easily see that Du.u is at

right angles to ti! and ?«, and is proportional to )• sin Q*.

It is plain from figure (.S), that the rotation by which the displacement Zu is generated is right-

ha?ided, supposing that we look along the axis of rotation (m') towards the origin. We may say,

therefore, that Du'. u is generated by riglit-handed rotation round the axis it'.

10. Since Da . /3 = 7, and Da. 7 = - /3, it follows that {Da)'.ji = - /3 : and in the same

way we may shew that (Da)'. 7 = — 7 ; but, since Da . a = 0, we have {DaY. a = 0, instead of - a.

Hence {DaY written before /3 or 7 is equivalent to the sign - , and therefore Da . is equivalent

to the sign (-)-, or \/— 1 ; but this is not true of Da . written before a. Similar remarks may

be made respecting Dfi, and Dy.
In general, we may see from what has been said above, that (^Dii)'-. u = — u when the numeri-

cal value of?/ is unity, and u' is perpendicular to u: in this case, therefore, Du'. is equivalent to

(-)i, or \/^.
In this case, therefore, a line numerically equal to u, drawn at an angle 6 to u, and at right

angles to ii', is expressed by the formula

u cos 9 + {Du. u) sin 9, or e
SDi,-.

U.

11. When two ore more of the symbols Da., Dfi., Dy . come together, the order in

which they are written must not be changed : thus Dfi . Da . |3 = «» but Da . D(i . /3 = 0.

• The ratio of D u'. u to r sin 6 is arbitrary ; we may therefore assume it to be r', and then we have D u'. u = r r' sin 0. This

is equivalent to the assumption that, \a = x', Xb=y', \c ~ z', in Article 4.
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Of the Notation A u'. u.

12. In obtaining the notation Did u we supposed the axes a, /3, 7 to be varied in position,

but not in length, always remaining at right angles to each other; we shall now obtain another

notation by supposing the axes to undergo a different kind of variation.

Let S denote anj variation (whether in length or position) of the axes a, ^, -y, my« being sup-

posed invariable : then

^M = .r^a + J/5/3 + sr^y.

Let us assume that

la = x'lh, 5/3 = y'lh, Sy = x'Sh,

where Sh is a small displacement in the direction of the line n', or ,v'a + »//3 + z'y.

Thus we have

Su = (.v.v'+ yy'+ zz')Sh.

xa'+ yy' + xz is therefore the differential coefficient of ?<, when the axes a, /3, y suffei' the vari-

ations x'lh, y'lh, z'hh respectively, i.e. when the points A, B, C (fig 1.) receive displacements

proportional to x', y', z' respectively in the direction of the line u'. We may therefore represent

this differential coefficient by the notation A„7f, since the magnitude and direction of the variation

of u depends upon u, or is, so to speak, a function of ti. We have therefore

A„.M = !i!ai'+ yy'+ zx'.

It is evident from this expression that we may interchange u and u'. Also the operation

A„ is clearly distributive, and we shall therefore, as before, write Au'.u instead of A„-?«. Hence
we have,

Ati- u = wx + yy + zx (17),

or Am. J< = rr cos d (l^)-

A?/, u = i^u .u' (19),

and A (ti'+ u") . !< = A u'. m + A u" . u (20).

13. The following formulae are also evident, namely,

Am . M = 9-^ (21).

If u' be at right angles to u, then

Am'.?< = (22).

Hence it follows that, whatever u' be,

A?/. {Du'.u) = (23).

14. We may express ,vyz and u by the following formulae,

A a . M = *, A^. u = y. Ay .u = z (24),

u = aAa . u + fiAfi . u + 7A7. u (25).

(2.5) may be expressed by saying that

«Aa + /3A/3 + 7A7 = l.
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A7. i>a.= A/3.

Aa.Z> 7'
...(26).

1-5. Hence we may easily shew that

Aa- (Dfi .It) = Ay .K, A^ . (Dy .u) = Aa . u, &c. &c.,

or, omitting ?<,

Aa.Z?/3.= A7., A(i.Dy.= Aa.,

Afi. Da.=- Ay., Ay .Dji.=- Aa.,

Also [or from (23)] it follows, that

Aa.Da.^0, A(i.D(i. = 0. Ay .Dy. = ...(^1).

16. It is easy to see that the displacement which gives rise to the differential coefficient

An'. 11, is caused by a uniform e.vpansimi of the rigid body (in which the axes and the point P are

Hxed) in the direction of the line u, the modulus of expansion being proportional to the numerical

magnitude of u . That plane containing the origin which is perpendicular to u is unaffected by

this expansion.

(Fig. 4.)

Instances of the application of the Notation Dii. u and Au'. u to Statics.

17- The expression v, or

xa + y/3 + ssy,

determines completely the position of the point P ; on this account we

shall call u the symbol of the point P.

In like manner, if X, Y, Z be the three components of any force,

and if

U = Xa + Y(i + Zy,

U is the symbolical expression for the force, representing it com-

pletely in magnitude and direction. We shall therefore call U the

symbol of the force whose components are X, V, and Z.

For brevity we shall generally say, ^^ the force U" instead of, " ttie

force whose symbol is U ;"and, in like manner, " t/ie point u," instead

of, " t/ie point whose symbol is u."

(!)•

18. If the forces U, U', U", &c. keep a rigid body at rest, the six equations of eciuilibriuni

are contained in the following equations, viz.

2^7= (28),

2X>i«. U=0 (29).

For 2fr=a2^ + /32F+ 7SZ,

and therefore (28) is equivalent to the three equations

2X=o, 2r = 0, 2Z = 0.

Again, by equation (6) we have,

Du.U= (Zy - Yz) a + {Xx - Zx) ^ + {Yx - Xy) 7,

and therefore (29) is equivalent to the three equations

2 (Zy - Yz) =0, 2 (^Xz - Zx) =0, 2 (Yx - Xy) = 0.
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(II).

19. To deduce the equations (28) and (29) immediately from the parallelogram of forces.

We must premise the following Lemmas.

20. Lemma 1. If u and u be any two points situated on the line of direction of the force

U, then Du .U= Du'. U.

For the line {u - u)* coincides in direction witli the line U (forces being supposed to be

represented by lines) ; and it is therefore evident from Art. 5, that D{u'- ti) . U = 0, i.e. Du'. U
= Die. U.

21. Lemma 2. If three forces P, Q, B, applied to a rigid body at the points p, q, r respec-

tively, balance each other, then the conditions of equilibrium are

P + Q + .ff = (30).

Dp.P + Dq.Q+ Dr. R = (si).

For /', Q, and R must meet in the same point ; let ?< be that point : also - R must be the

resultant of P and Q, and therefore, expressing the parallelogram of forces symbolically, we have,

- R = P + Q, or,

P+ Q + R = 0.

Now performing the operation Du . on this equation, we have

Du .P+ Du. Q + Du.R = 0,

and therefore, by Lemma 1,

Dp.P+ D(j .Q + Dr.R =: 0.

Hence the conditions (30) and (31) must hold if P, Q, and R balance each other.

And, conversely, if (30) and (31) be true, the forces P, Q, and R will balance each other. For
let u be the point of intersection of P and Q; then, by Lemma 1, we have Du . P = Dp . P, and

Du . Q = Dq . Q; and therefore by (31), we have

Dr.R =^ - Du.{P + Q) = Du.R, by (30).

Hence D (r - u) . R = 0, and therefore the line r - u coincides with R in direction, i.e. u is a

point in the line of direction of R. Hence P, Q, and R meet in the same point n. Also by (30),

- R = P + Q, i.e. - i? is the resultant of P and Q. Hence P, Q, and R balance each other if

the conditions (30) and (31) be satisfied. These conditions therefore are necessary and sufficient for

(.quililjrium.

22. From these Lemmas we may now prove that the equations (28) and (2y) are the neces-

sary and sufficient conditions of equilibrium of a rigid body, acted upon by the forces U, U', U",
8ic. at the points u, h, u", &c.

Choose any three points^, p, q, r, in the rigid body ; resolve U into three forces acting along

the lines u - p, u - q, u - r, (i.e. the lines drawn from p, q, and r to m) ; let P, Q, R denote

these forces respectively ; in like manner resolve U' into P\ Q', R\ acting respectively along tlie

lines u - p, u - q, u'— r: treat IJ" similarly, and so on.

Then the forces U, U , U", &c. are reduced to the three sets of forces,

P, P, P", &.C. acting at the point p,

Q, Q', Q", &C q,

R, R', R", &.C r.

• (u'-u) exprcnnes in inaBniliide and dircclioii the line drawn from the point » to the point u'.

+ ThcHC points are Kuppostd not to lie in the sume right line.
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And, by the parallelogram (or rather, the polygon) of forces, these are equivalent to the three

forces,

2P at p, SQ at q, ^K at r.

Hence the conditions of equilibrium of these three forces are the conditions of equilibrium of the

forces U, U\ U", &c. Therefore, by Lemma 2, the conditions of equilibrium of the forces U, U',

U", &c. are

2P+2Q + 2i? = (32).

£»;> . 2P + Z>g . SQ + Dr . 2ff = (33).

Now, since U is tlie resultant of P, Q, and R, we have

P+Q + R= U,

and therefore (32) becomes, 2 C7 = 0.

Also we have
Du.P + Du.Q + Du. R ^ Du . U,

and therefore, by Lemma 1

,

Dp.P+ Dq.Q + Dr.R = Du .U.

Hence (33) becomes '2Du . U = 0.

It appears therefore that the necessary and sufficient conditions of equilibrium of the forces

U, U\ U", &c. acting at the points ?«, ii, u," &c. of a rigid body, are

2C/ = (28).

*'LDu.U = (29).

(HI.)

23 The equation (29) includes the whole theory of couples.

For, suppose the forces U, U\ U", &c. to constitute a set of couples, in other words, suppose,

that

U'= - U, U"'= - U", &c. &c.

Then the equation (29) evidently becomes

D (11- u) .U + D (?/"- u") . U"+ &c. = (34),

Now, by Art. (5), if r and R be tlie numerical magnitudes of m' — u and U, and 6* the angle

contained by n' — u and U, then the numerical magnitude of D {u - u) . U is Rr sinfl; which is the

moment of the couple consisting of U and If; for r sin t* is evidently the perpendicular distance

between IT and U' . Also D (u'— u) . f/ is a line perpendicular to u'— u and U, and therefore to

the plane of the couple {U, IT"). Hence D {u - u) . U is the a.vis of the couple (U, U').

The equation (34) therefore indicates, that the symbolical sum of the axes of a set of couples wliicii

balance each other must be zero. Which includes all the propositions of the theory of couples*.

(IV.)

24. When the forces U, U', U", &c. do not balance each other, to find the condition of

their having a single resultant.

Suppose that R is the resultant, and r its point of application ; then since — R, U, U', &c.

balance each other, we have, by (28) and (29),

2U-R = 0, 'S.Du.U - Dr.R = 0,

" Respecting this equation, we sliould have remarked, that Du.U is the symbol of the axis of the couple which transfer.-- the

force U from the point « to the origin. See Article 24, page 423.
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or, putting 2f/= F, and IDu.U^ W, for brevity,

R= V, Dr.R = IF,

and therefore, Dr . V = fV (35).

Which equation indicates that F and IF are at right angles.

V is evidently the resultant of all the forces, supposing them transferred to the origin in their

proper directions ; and IF is the axis of the resultant of the couples introduced by transferring the

forces ; for Du . U is evidently the axis of the couple consisting of U acting at u, and - U acting

at the origin ; and therefore 'S.Du . U is the sum of the axes of all such couples, and therefore

the axis of the resultant couple. Hence the condition of the forces having a single resultant is,

that the resultant force { V) shall be at right angles to the axis ( IF) of the resultant couple.

This condition is simply expressed by the equation,

= AF.IF,

which is got immediately by performing the operation AF on (35). See Article (13).

25. If we transfer the forces U, U',-U", &c. to any point v, instead of the origin, the

resultant couple will be 2 Z? (m - u) . f7 instead of^Du.U. Now 'S.D{u - v) . U =^Dii . U
- Dv .^U = IF - Dv . V. Hence, if we assume (F to denote the resultant couple when the forces

are transferred to v, we have

fV = JV - Dv . V.

We may determine the minimum numerical value of IF^ as follows :

Let X F be the projection of the line IF on the line F; then IF- \Fis perpendicular to F, and
is therefore expressed by a symbol of the form Dv' . F, where «' denotes a line which we do not

require to know.

Hence, we have IF = \F+Z)(''. F, and therefore

IF =XF + Z)(«'-t,). F.

Since v is arbitrary, D(v' — v). F denotes any line whatever at right angles to F: hence the

numerical value of IF is least when D{v' — v) . F = 0; and therefore IF = \ F. To determine X,

since IF — X F is at right angles to F, we have

AF. IF
AF.(IF-XF) = 0, and .-. X = ^|^-.

Hence the axis of the couple of minimum moment is

AF. IF

AF. F

We may observe that the equation W^=XV indicates that the axis of the couple of minimum
moment ( TF) is parallel to the resultant force (F).

These instances suffice to shew the application of the notation Du'.u, and Am', m to Statics.

Application of the Notation Du'.u and Au'.u to the Calculation of the Motion oj

a Rigid Body about its Centre of' Gravity.

•la. Let 7/ be the symbol of the position of any particle (^m) of a rigid body at any time (<),

cPu
and U the accelerating force which acts upon ^m: then, since ^»» -j-j is evidently the symbol of

the effective force on cm, the forces U^m, and - - Sm applied to Sm, and similar forces to the

Vol.. VIII. Paut IV. 3 I
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other particles, must satisfy the conditions of equilibrium. We have therefore by equations (28)

and (29),

Let u be the symbol of the centre of gravity of the body, and assume ti = u + u ; then these

equations become (observing that 'S.uSm = 0),

dt- df

Which equations are equivalent to the six equations of motion of a rigid body.

Since u is the symbol of Sm with respect to the centre of gravity as origin, the second of these

equations determines the motion of rotation of the rigid body about its centre of gravity, and, as

far as this equation is concerned, the centre of gravity may be regarded as a fixed point.

d „ du ^du du ^ d'u d'u
Also, since — D u .

-— = D -~ . , + Du . -^, = Ott .

—— ,^
dt dt dt dt dt- dt'

this equation may be written in the following form,

— fs/>«.^^ml = Si?«.C/^>« (.-ifi).

dt \ at )

27. To effect the integration denoted by 2 in the first member of equation (36).

Take the principal axes through the centre of gravity as the co-ordinate axes, and let j-, y, x,

be the co-ordinates of Im : then we have

u = xa + yfi + ^7,

and therefore, since .r, y, x are independent of t.

du
.(37).

da dii rf-y
= X — + V — + z —^

dt dt ^ dt dt

Now, referring to Art. 2, we may see immediately, that, if u), denote the velocity of the

point B parallel to OC, u>: the velocity of C parallel to OA, and w^ the velocity of A parallel to

OB (in other words, oi,, ui-i, 0)3, are the angular velocities about the axes OA, OB, OC, of the

planes BOC, COA, AOB respectively), then we have

a = u>,dt, b = wodt, c = w:,dt,

and therefore the equations (3) become

— =a.3pJ -«.«7*
o t

-—- = a),7 - (U3C

at

d^
d

dy

dt
= coja — <0| /3

.(38).

We may here observe in passing, that, if we assume

(3yj,

• If we put these values in (3?) the coefficients of a, p, y are •«.iz-u,,y, ,.,,.v-m,x, „., j/-,.,a,r ; wliich are the well kiu.un exprev.

sions of the velocities of any point of a rif,'id body moving about a fixed point.
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the equations (38) become

da dfi dy- = 2)..c, -^ = D..(i, ~'=Z)a,.v...(40),

and therefore (37) becomes

du ^~ = Dw.u (4.1).

Now, referring to Art. 5, Dw.u is a line drawn perpendicular to u and w, whose numerical

magnitude is wr sin Q, where n and r are the numerical magnitudes of ui and ?< respectively, and d

du
the angle made by at and u. Hence, the equation (41) indicates that the velocity is due to

dt
the rotation of the rigid body about the axis w with the angular velocity n. In other words, the

symbol a, represents completely the motion of the rigid body ; for w represents, in direction, the

axis of instantaneous rotation, and, in numerical magnitude, the angular velocity of the body about

that axis.

Returning to equation (36), we find by (37), observing the properties of principal axes,

2Z)m .-— ^m = 'S.hnD{xa + y/3 + zy) . f.r -— + « — + ^r —-^

dt \ dt dt dt.

dt dt dt

Now, by Art. 8, and by equations (38), we have

Z)a . -— = (D37 + a)i./3, Z>/3. -— = (D.a + 0)37, Dy .—- = w^Q -^ Wia.
dt at dt

Hence we find,

'S.Du .-^Sm = tola's, (y^ + x^) Sm + a,,/32 («= + *') Sm + (0372 {x'' + y') Sm

— Au>ia + Bw^jj + Cw^y.

Hence the equation (36), cleared of the sign 2, becomes

— \Aw,a + /3e02/3 + Cw^y} = 2Z)m . Uim* ... (42).

28. We shall now apply this equation to the problem of Precession and Nutation.

To effect the integration 2 in the second member of (42) when the force U arises from the

attraction of a very distant body, which may be supposed to be collected into its centre of gravity.

Let u be the symbol of the centre of gravity of the distant body, and let m denote its absolute

attractive force; then since u — u denotes the line drawn from Sm to to', the attraction of m' on

im is

to' {u- u)U =
{A(m'-m).(m'- m)}S'

• If we perform the operation -— in the first member of this, by
dt

means of equations (38), it becomes

Whence it follows that the first three of Eulcr's six equations

follow immediately from (42).

The last three of Euler's equations follow immediately from

the equations (IJH), in the same manner as I have shown in my
Mathematical Tracts.

31 2
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for this represents a line drawn in the same direction as m'- u, and having its numerical magnitude

equal to

where R is the numerical magnitude of ti — ti [observing that A («'- u) . (ti'- u) = R" (Art. 13,

equation 21)].

Now A (?<- m) . (jt — m) = All. II — 2Au . ii'+ Am . ti

: r' - 2Am . u + r^ (Arts. 12 and 13).

Therefore, since - is very small, we have

i» , ,( Am.mS
5 A (m - m) . (2« - m) }

t = r ' I 1 + 3 ;^— I very nearly.

j
(m'-m);

2Z)m . USm = —7^ Du'. (luom +— 2mAm . u'Sm).

ml A M . M
Hence CJ = — 1 +3 7-—

r H '

and therefore, since Du . u = 0, and Du'.u = - Du . u',

m
r'

Now "EuSni = 0, since the origin is centre of gravity : also, by Art. 12, equation (17), we have,

observing the properties of principal axes,

luAu .u'Sm = 2(a?a + y/3 + zy) (xx'+ yy'+ xz')Sm

= a^'aliW'Sm + y'^'^y^Sm + z'y'S.z-Sm

= u'S.r'Sm - (Ax'a + By'j3 + Cx'y),

since 2a'-^»i = 2/'5m - 2(j/°+ s;^)om, &c. &c.

. 3 m' ,

Hence, since Du'. u'= 0, we have 2I>m . Ubm = —^Du . {Ax a + By fi + Cx'y)*.

Thus (42), cleared of the sign 2, becomes,

— (Aw,a + fia),/3 + C(U37) = -^Z)?/. (^x'a + By'^ + t'^'7) ... (44).

29. To find the Solar Precession and Nutation by means of this equation.

Let 7 be the north polar axis of the Earth ; then B = A, and C exceeds A by a small quantity,

X^ suppose, and therefore C = A{\ +\). Hence, observing that (o,a + w^ji + 0137 = <«, ,va + j/'/3

+ ^7 = u, and Du> .w =0, Du. u= 0, (44) becomes

dtti ^ d{m,y) 3m
,

dt dt r" ' (45).

In the parts of this equation multiplied by the small quantity X, we shall suppose that the Earth

revolves about its polar axis with a uniform angular velocity, and that the Earth moves round the

• Performing the operation Du'iK.e. x Da . + y' D^. + x'D~,.)

the second member of (43) becomes

3m'— {{B- Oy'zcL + {C-A)zx'fi+{A- B)x'yy].

The coefficients of o, p, y here are the well-known expressions for

the moments of the attraction of Sim or .Moon about the principal

axes of the Earth. i
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Sun in a circle uniformly ; in other words, we shall suppose that w,*, y and r' are constant. Hence,
observing that x'= i\y . ii\ (45) becomes

rfft) '\m'

^ = 7"5^(^"-7)(/>'"'-7) (*fi)-

Now let u and \i! be two unit axes at right angles to y and to each other, one of which (a')

jioints to the first point of Aries: also let ^" be a unit axis pointing to the north solstice: then,

if we assume tit to denote the obliquity of the ecliptic, and tit the Sun's longitude, we evidently

have

/3"= /3'cos sr + 7 sin -sr, u'= r' (a' cos ?i't + /3"sin n't),

and .-. u'= r {a' cos n't + /3'cos -ar sin n't + 7 sin T<r sin n'tl.

Hence we have

Am', y = /sin sr sin n't,

Du'. 7 = - £>y u = r (rt'cosTj-sin n't - ^'cos n't),

in
and therefore, observing that «'- = -7^, (46) becomes

— = 3 71 ^X sin TcT )« cos-zr i\wnt — p cos ra tsinnt\ (47).

By integrating this equation we find w, i.e., w^a + w.fi + w.^y ; and therefore, by equating the

coefficients of a, f-i, 7, we find (Oi, w^, 013; from which it appears that oi^ is con'stant (as has been

shewn before), and <«, , w^ are small quantities.

Now. if « denote the numerical magnitude of w, we have

tl = \/u)i' + ft)/ + ftlj".

Also the sine of the angle which the axis y makes with the axis ui is

\/w': + ft) ' + ft),'

But, since n't varies but little in one revolution of the Earth, it follows from (47). that we may
regard ftj, , ftij, W3, as invariable for one day in quantities multiplied by \.

Hence it follows, that in a day the axis 7 describes a conical surface round the axis w (i.e. the

instantaneous axis) with a uniform angular velocity n : and therefore the mean daily motion of the

axis 7 must be the same as the motion of the axis uj; or, in other words, observing that the numerical

magnitudes of 7 and w are 1 and n respectively, we have, as far as the mean daily motion of 7 is

concerned.

"© ,dy \nl 1 dw

dt dt n dt
'

Hence by (47) we find

dy an'
, , . ,— = - X SHI TeT ja cos •ar Sin 71 1 - ii sm w t cos re /[ ... (4H).

dt n

Which equation completely determines the motion of 7 the Earth's north pohir axis.

• II in «o cany 10 «ec thai Ihc ciicffic-icnl of y in the firn niumber of ( 4a ) i» ( I + X ) !"" , »">l Ihiit in thi- vccinil njcinhtT ii ii zero
.

therefore w-^ in conKtant, whether A he ^inial) or not.
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It appears from this equation tiiat the north pole has two velocities, namely

\ sin w cos sr sin'nV, parallel to a, i.e. perpendicular to the solstitial colure ;

n

Sn"' . . , , , .

and \ sin ar sin n < cosw <, parallel to ^, i.e. in the plane of the solstitial colure, and paral-

lel to the equatorial plane.

Hence the length of the path described parallel to a in any time t is

Sn
X sin •jsr cos •ar (n't - i cos 2«'<),

2w ^

and the path parallel to /3' is

3n' .— \ sin 73" cos 2n t.

in

Which ai'e the well-known values of the solar precession and nutation of the pole.

The calculation of Lunar Nutation may be effected very simply by the above method; in fact

the equation

dv Sm' , „ , V

-f = -^,X(Am'.7)(Dm'.7);
dt nr"

still iiolds, and we have only to make the proper substitution for u to suit the Moon's motions, and

then integrate as above.

M. O'BRIEN.

Upper Norwood, Surrey,

Nov. 1846.

(Note.) In a series of papers on Symbolical Geometry by Sir W. Hamilton, which are at present being

published in the Cambridge and Dublin Mathematical Journal, a very remarkable interpretation is given

to the product of two symbols. According to this interpretation ^(bu'+ u'u) means the same thing as A?< . w
in the present paper, and ^ {iiii — u'u) means the same thing as Du . u'.



XXXII. On the Priticiple of Continuity , in reference to certain Results of Analysis.

By J. R. Young, Professor ofMathematics in Belfast College.

[Read December 7, 1846.]

The mathematical axiom that " what is true up to the limit is true at the limit," is necessarily

implied in the general principle of Continuity. The recognition of this truth is essential to the very

conception of continuity ; of which indeed a sufficiently clear idea may be conveyed by the simple

enunciation of the axiom itself. In Geometry the continuity here mentioned refers to magnitude

only, irrespective of shape : in Analysis it refers simply to value. And in both, the limit spoken of

is that, whatever it may be, at which the continuous series of individual cases terminates; or. if

the expression be preferred, at which it commences.

It is plain that different continuous series may start from, or terminate in a common boundary :

or the terminal limit of one series may be the commencement of another ; each series being governed

throughout by its own independent law. But there is a liability' to suppose the limit unique when

it is in reality multiple, or ambiguous; and indeed to confound the true limits with some unique

isolated form, having no connexion whatever with either series.

Thus:—the tangent of x, when ,r commences in the first quadrant and continuously increases,

arrives at its limit when ,v reaches 90". In like manner, the tangent of .r, when x commences in the

second quadrant and continuously diminishes, arrives at its limit when .v reaches 90". But the two

limits (which are very liable to be confounded) are perfectly distinct. In the former case the limit is.

tan 90" = + X : in the latter case, tan 90" = - 03 . And, viewing the tangent independently,— that

is, as altogether unconnected with a continuous series, and therefore as uncontrolled by any law of

continuity,—the tangent of 90" is ambiguously ± m : and we cannot select one of these values, to

the exclusion of the other, without destroying the independence here supposed, and subjecting the

tangent to the operation of a law binding it in connexion with a continuous series of tangents.

Again : the limit or extreme case of the continuous series of values of the progression

\ — sc + x^ - ."fi -^ !v* - x^ + &c. ad inf. (1),

furnished by the continuous variation of x from some inferior value up to ,< = 1, or from some

superior value down to a? = I, has been supposed in each case to he properlv represented bv

1 - 1 + 1 - 1 + 1 - 1 + &c. arf itif. (y).

But it has already been shown by the writer of these remarks*, that so far from this being the com-

mon limit, the two limits are totally distinct :—the one having for value A, and the other infinittj

:

whilst the series (2) is not comprehended at all among the continuous cases of (1), hut is entirely

unconnected with, and independent of, those cases: its value is ambiguously I or n.

In order that the influence of the law of continuity, which connects together all the indivi(lu;il

cases of (1), may not be overlooked or evaded in the extreme one of those cases, it will be desirable

to change the notation: writing 1 for a;, when the limit 1 is to l)e reached through continu-

ous ascending values of ./•, and 1 + when it is to be reached through ccniiiuious dencending

values of X.

• fhUonophicut Magazine for November ami December ni4.'i.
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It will then only be necessary to suppose z to approach infinity as its limit; the connexion of

which limit, with the continuous set of values that it terminates, being preserved by the actual

exhibition of it; in its final state, or under the form co ; a symbol which, it will be observed, thus

spontaneoushi presents itself; and is not arbitrarily introduced to effect a purpose.

Hence, when the limit I is reached through continuous ascending values of x, the extreme case

of the series (l) is

and when it is reached through descending values, the extreme case of the series is

I + — 1 + —
j
- (l + —

]
+ he. ad inf. (4).

And the values of these, as shown in the publication referred to, are respectively ^ and infinite.

For any finite number of terms, these series do not differ sensibly from one another, nor from

the neutral or independent series (2). But since we know that (I
j
= -

, and I I + -
J

= e,

it follows that, after a finite number of tern)s, the three series are totally distinct : and we thus see

that in such extreme cases as those we are now considering, it is not allowable,—as generally sup-

posed,—to neglect the terms infinitely remote from the commencement of the series : for it is only

in the infinitely remote region that the distinguishing peculiarities of the series become fully

ileveloped. And it is because of this, that in contemplating these extreme or limiting cases, differ-

ent orders of injinity become unavoidably forced upon our attention. Thus, in the infinitely remote

region of the series (3), it is obvious that there are places for the terms

of which the numerical values are 111 1

-. -, -, —,= 0.
e e- e e="

And all these terms, as far as the zero-term, being significant, necessarily affect tlie numerical

i'X])ression for the sum of the whole ; and cannot be neglected with impunity in a correct estimate

of the value of the altogether boundless series (3).

The theorems proposed by Cauchy, for testing the convergency of infinite series, do not apply

to the limiting cases, such as those here noticed. These theorems have in fact been the occasion of

error in the treatment of those cases; and it is one object of the present communication to invite

attention to this circumstance.

In discussing the series

X .v' .r' .V'

+ — H 1 + &c. ad inf. (5).12 3 4 •'

Cauchv observes* that it will be convergent, or divergent, according as the numerical value of ,i' is

inferior, or superior to unity; but that when the limits .r = 1, w = - \ are actually reached, the

series will be divergent in the first case, and convergent in the second f.
This is not a correct

account of what happens at the limits : if x ascend from an inferior numerical value (that is from

a fractional value, either positive or negative) up to iP = 1, or it = - 1, the limiting cases will he

tnnvergent, like all the preceding cases : but if the same limits be reached through descending

• Cours d'Anatt/se, p. 153. f l>>'d., p. 155.
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values of x, the extreme cases will then, on the contrary, be divergent. The truth of this will

appear by writing these extreme cases with the proper symbol or indkation of continuity, intro-

duced, or rather preserved, as in the instances above. For we thus get the converging series

and the diverging series

That the former of these is convergent is obvious: and that the latter becomes divergent, in its

infinitely remote terms, will be seen from the following considerations :

—

As noticed above, fl + — I =e; so that, in the inlinitcly remote region, there occur the

terms

e e' e" e"' e^"' e^"'

03' 2x ' 3» ' w . es" 2».eo'" 3w .
03"

e . e
which evidently diverge after the term ,, and, in fact, after —

.

cc . ce eo

Similar reasoning applied to

1 + a; + 'Zx' + -l . 3,i' +2.3. 4.** + &c. ad inf. (6),

another of the series considered by Caucliy, and which he affirms to be equal to I when *• becomes
zero, will show, that instead of 1, the value is infinite. For, writing the zero in the allowable

form — , we find among the terms infinitely remote, the following: viz.

2 . 3 .4 ... M 2 .3. 4 ... CO ... cc'

00 ) ^, • &c.
CO 05

in which, as a' may exceed co in any ratio, the numerator may exceed the denominator in any
ratio ; so that the terms at length become infinitely great ; that is to say, the extreme case,

corresponding to a? = 0, is like all the other cases, divergent.

1 he preceding reasonings, in which terms infinitely remote, and infinites of different orders, are

considered, may perhaps be regarded as too vague and subtil to justify an unhesitating recep-

tion of the conclusions to which they lead : and although they do not appear to me to be fairly

chargeable with this objection, yet I wish them to be regarded—less as demonstrations of the truth

of these conclusions, than as confirmations, supplied by the laws of analysis—when these are allowed

to have their full and unrestricted scope—of the general axiom which stands at the head of this

paper; and in virtue of which, if it be demonstrated, that an assigned analytical formula correctly

expresses the sum of an infinite series for all cases short of a cei tain extreme case—however closely

to this case we approach,—then we may safely infer that it equally, and as correctly, expresses

the sum in the extreme case also: a fact which is as necessarily true as any of the axioms of

Euclid ; and which I think can be questioned only by those who overlook the controlling influence

of the law of continuity over these terminal cases. It would be very wrong, in utter neglect of this

law, to confound the series

V - 2' + :i' - 4'' + &c.,

for instance, with wliat

I* - 2',r + :i'a;' - 4-'ci'' + &c.

becomes in the extreme case of .c <= I ; and thence to assert, as indeed has been done, that its sum is

Vol.. VIII. Paut IV. 3K
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zero, when in reality the sum is ± co . The erroneous sums assigned to divergent series, will bt

found in many other instances besides this, to belong, not to the independent series themselves,

but to the extreme cases of certain general forms. Yet the errors adverted to, and which formed

the subject of a communication submitted to the British Association in 18i4*, are not always of this

character: the value •596347..., for instance, assigned by Euler, and many succeeding writers, to the

series

I-I+2-2.3+2.3.4.- &C.,

neither belongs to this series nor yet to the extreme case of the general series (6'), in whicli

«• = 1 — — ; since we have seen that when a; becomes — even, the infinitely remote terms must
CO 00

still diverge.

In the Memoires on Series and Definite Integrals, which Poisson has published in different

Cahiers of the Journal de V Ecole Polytechniqiie, a fault analogous to that above noticed is very

frequently committed-f. It is the common practice of this distinguislied analyst arbitrarily to

introduce the ascending powers of a foreign variable, in connexion with the terms of an isolated and

independent series, and then to employ the extreme case of the general form thus obtained, when 1,

or rather 1 is put for the new variable, instead of the original series. In this way he con-

verts the neutral series 1-1 + 1 1 H- &c. into a convergent series, and thus gets - for the sum :

which is of course erroneous. He applies the same process to periodic series in general ; thus, in

fact, destroying their periodicity—at least in the infinitely remote terms—and tlience obtains sum-

mations that are palpably wrong. Thus, in referring to a particular series of this kind, in his last

great work, he says, " Elle est de I'espece des series periodiques, qui ne sont ni convergents ni

divergents, mais qu'on peut neanmoins employer en les considerant comme les limites de series

convergentes, c'est-a-dire en multipliant leurs termes par les puissances ascendantes d'une quantite

infiniment peu different de runite"! : the inaccuracy of which principle I have, I think, suf-

ficiently discussed elsewhere ||.

It is of importance to observe, however, that thei'e is one class of series in reference to whicli

the adoption of this principle is allowable, as its application will be unattended with error :— I mean

convergent series. For since, as already shown, the foreign multiplier 1
, becomes effective

cc

only in the terms infinitely remote, and as all these in converging series are themselves zero, these

multipliers produce no modification of the character of the series, nor any change in its sum. In

periodic series however error must of necessity arise from replacing them by the limits of converging

series; inasmuch as these latter always tend to some determinate value—either finite or infinite;

whereas an infinite periodic series, from its very nature, tends to indeterminateness. To attribute a

unique value to such a series is therefore absurd.

I have here spoken of the sums of converging series as sometimes tending to injiuity, which

tendency some may suppose to be opposed to convei'gency : a simple reference however to the series

1 -h .r + x' + &c. will I think correct this supposition, since it will be admitted that this continues

convergent for all values of .r from ,v = — up to x = \ : for which extreme value the sum is

OS oo

infinite 6. I have also ventured to call the infinites, to which the extreme cases of certain convergent

• See also Proceedings of the Royal Irish Academy, 1846,

No. 49, where the communication referred to is printed at length.

+ Journal de VEcole Polytechnique^ Cahiers 17, 18, and lli.

+ Tliiorie de la Chaleur^ p. 199.

Philosophical Magazine-, Dec. 184.').

i; The series 1 + -

J 1.2.3
for all real values of .r, and tends to infinity as x does.

&c. also, is convergent
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scries thus tend, determinate : because if we reflect upon the peculiar character of a strictly diverg-

ent infinite series, we shall perceive, that however remotely into the region of infinity its terms be

considered to extend, yet we can never, even in imagination, reach a stage beyond which the series

ceases to be accumulative, and may be rejected as zero: the portion so rejected would, on the

contrary, still be infinite ; and this is a peculiarity which sufficiently distinguishes a divergent

series from a convergent series with an infinite sura. It lias place even in those slowly diverging

series of which the individual terms continually tend to zero, as, for example, in the series

' 1 1 1 „1+- + - + -+- + &c.
2 3 4 5

12 3 4
and h + h h &c.

1.3 3.5 5.7 7.9

for however remote the «"' term may be, n terms more of the first of these series will be

1 1

n + S 2n

and M terms more of the second,

n + I w + 2 2n
+

4(n + 1)^-1 4(w + 2)^-1 4(3n)

and these additional w terms will, in the first case, exceed

1 1

w X —
2n

and in the second case.

1

in

A diverging infinite series therefore tends to no limit, either finite or infinite ; and this

consideration is perhaps sufficient to justify the language of the continental analysts, who say that

such series have no sum.

It would seem desirable however to divide series into other classes besides convergent, divergent,

and periodic ; in order to distinguish those which come under the influence of continuity, from
those which, like the series just considered, are entirely isolated and independent. The latter class

might be called independent or neutral series; and the former dependent series. Hutton* appears

to have called the series 1 - 1 + 1 - 1 + 1 - &c. a neutral series, simply because it is neither

convergent nor divergent. In the sense in which it is here proposed to use the term, no reference

is made either to convergency or divergency : but merely to the fact of the series not being united

to a set of others by the bond of continuity. A neutral series may therefore be either convergent,

divergent, or periodic : the series

1 1 1

1 + 7 + + + &c.11.21.2.3
1 1 1

1 + - + - + - + &c.
2 3 4

l^ - i' + .3- - 4' + &c.

I - 1 + 1 - 1 + &c.

• Mutllcmnticitl Tiacls, Vul. l, p, I7II,

3 K 2
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are all neutral. But, as already remarked, since the first of these is convergent, its sum does not

differ from that of the corresponding dependent series*.

It is not in reference to series only that this distinction between neutrality and dependence has

been overlooked. It has been improperly neglected in the treatment of an extensive class of definite

integrals; all those, namely, that are analogous to periodic series, in respect to the indeterminate-

ness which they involve. It has already been shown what contrivance Poisson resorts to, in order

to get rid of this indeterminateness in the series : he destroys the indeterminateness of the integrals

by a similar artifice. The series were rendered determinate by multiplying their terms by the

ascending powers of a foreign factor ; thus bringing them under a law of continuity from which

originally they were wholly free. The integrals are rendered, in like manner, determinate by

introducing, under the sign of integration, a new variable:—an exponential multiplier, in virtue of

the variation of which, a bond of continuity is, as before, imposed upon the expression, and its

indeterminateness thus overruled. The following definite integrals quoted from Poisson, and those

who have espoused his principles, are all essentially indeterminate :

—

/»
.00 ,00 /-ac

rf.r sin rx, I dx cos rw, / rfa:,r""' sin rx, / drx" ' cos r.r,

„ •'o
•'" "^o

/ dv .r"
''

sin ci-, / dx x" -cos rx, &c., &c.,
•^0 •'0

the exponents of x in the last four being positive. A very little consideration will suffice to

convince us of this : we need only revert to the ordinary ideas involved in the method of quadratures:

for if in any of these forms the expression under the integral sign—omitting the dv—represent the

ordinate of a curve, we at once see that for x = eo—one of the proposed limits—that ordinate, and

therefore the area, or the entire integral, must be indeterminate. By introducing the factor e'"^',

for which there is of course not the slightest warranty, these forms become changed into the follow-

ing :
—

rf.r e""' sin r.r, / dxe~'"cosrx, / dx e''^'x'''' sin rx,

•^it ^0

/ dx e~"' d,"''^ cosrx, \ dx e'"'
x'~'^ svnrx, / dxe''^' x"'- c(\s rx,

•^a •'0
•'ci

in reference to which the ordinates, at the limit x = co, all vanish, irrespective of the value of a.

If the integrations be now executed, each result will be a general expression involving o; and if we

seek what this expression becomes when a, by continuous variation, arrives at zero, we shall truly

obtain the limit of the integral ; that is to say, we shall obtain the last of the continuous series of

values which the integral passes through as a diminishes continuously, from some superior value,

down to zero. These results therefore are all valid, as limits of the changed integrals ; but have,

in strictness, nothing to do with the integrals originally proposed ; these latter being neutral, or

independent ; and therefore not included in the continuous series of values adverted to.

The impossibility of reconciling some of the erroneous, but prevalent conclusions that have been

arrived at respecting the foregoing integrals, with certain known elementary truths, has led one or

two recent writers to pass too sweeping a condemnation on integrals of this kind ; and to reject, as

false, integrations that may easily be proved to be true. I shall advert to some of these presently.

But it may not be altogether out of place previously to remark, that much needless ingenuity seems

of late to have been expended in proving that sin od and cos co cannot be zero; although such

is unhesitatingly affirmed to be the case by the late Mr. Gregory f, and— with misgivings how-

• See Note f B), al the eiul of this Paper.

+ " Both the sine and the cosine of an infinite angle are equal to zero. '' Gregory's Ejamples, p. 477-
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ever—suspected by Mr. De Morgan. But it is proper to state that Poisson nowhere countenances

this notion ; nor is it implied in his principles, though it has been thought to follow from them.

It is true that Poisson makes

/ dx sin .V = 1, and / d,v cos x = 0.

It is also true that these integrals are respectively I — cos cc , and sin e© : but it does not follow

that we have any right to equate Poisson's results with these. Poisson virtually selects a particular

value out of the innumerable values of cos ce ; and a particular value out of the innumerable values

of sin CO ; these selected values are each zero. He does not deny the existence of the other values,

nor say that sin zc and cos eo are zero only, as others have said : he expressly declares that he

takes that particular value of cos co which unites in continuity with the values of

/ d,v e "' sin x ;

and that particular value of sin w which unites in continuity with the values of

d,r e~ "' cos a.;

J

it being understood that a varies from some superior value down to zero ; and his doctrine is that,

by taking the extreme limit thus reached, he gets, in each case, " une valeur unique qu'on pent

employer dans I'analyse." The fault of Poisson consists solely in his bringing indeterminate

expressions under the control of arbitrary conditions, in virtue of which that indeterminatcness

is destroyed, and unique values deduced ; and in consequence of which these unique values—as in

the instance of the series 1 — 1 + 1 — 1 + &c.—are frequently not even among the indeterminate

.set: but this great man must not he charged with the palpable error of making the sine and cosine

of an infinite arc zero*. It should also, in justice to the same illustrious analyst, be observed

further, that some English authors, under the impression that they have been carrying out Poisson's

views, have also, on other points, employed reasonings, and arrived at conclusions, which those views

do not justify. The results which Poisson assigns to the integrations noticed in this paper are all

frtie as far as (hey go. He chooses one out of an infinite variety of equally admissible values, and

disregards all the others :—a fault which appears to me to be analogous to that which would

he committed by arbitrarily selecting one of the n roots of an equation of the w"' degree, to he

employed in physical applications, and rejecting all the others But, from a pretty careful exami-

nation of Poisson's different Memoires on Series and Definite Integrals, I can find no foundation for

the statement recently made, that "Poisson would admit 1° — 2" + 3'- - 4' + = O." He rejects

diverging series : and in applying his principles to cases where divergency might be suspected, he

takes care, in order to justify his mode of proceeding, to remove the suspicion, by showing that the

series must be convergent. (See Thiorie de In Chxileur, p. 188.)

Resuming now the consideration of the definite integrals, I have to remark, that among those

that have been rejected are

Jf"
sin ffl.p fco&ax

dm and / d.r ;

.1' -^ 1 + x'

the grounds of this rejection being that these integrals have not the values hitherto assigned

" I,e« ninui et ciiKinus il'uti arc inlini nonl ividemment <lf» p(!rio(liquc, que s'cicndeiu ii I'inlini : ce» iiiti'KraU n'onl uusm iU»

<)uanlil^« inilelcrmincej." I'oi««on ; Journal de V Ecole I'olytech. valeurn dt'termini-ei., que ([uand on Ic» rcgarde commc Ics liuiiie«

C«h. XIX. p. 407. d'autres inte^'ralcH, dont lc» c'li<men» convergent vern lero, et «oni

"La nianiere dont nous avons cont»iddr(* le« Iii5rie8 p(5riodique
,

nul» a rinlini." /6i(/.
,
p. 41*1.

infiniei, f'appliquc i^galcnicnt aux \nl(gta,\t di<tinies de quantities
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to them, but are, on the contrary, indeterminate—like those already noticed *. That they are not

indeterminate however will be obvious from again adverting to the notion of quadratures: the

ordinatcs of the curves are evidently determinate throughout the whole extent of the integration,

—

tliat at the superior limit CD being zero. The first of these integrals has been proved—by what

appears to me to be perfectly valid reasoning, though it has recently been objected to—to be

altogether independent of the value of the constant a, and to be equal to — , or - — , according as

the sign of this constant is positive or negative. Poisson indeed, following Euler and others, says

tliat the values of the integral are — , 0, or , according as the constant is positive, zero, or

neoativef. But it should be remembered, in obedience to the law of continuity, that if a become

zero, by passing through neighbouring values, and vanish positively, the value of the integral is still

— ; and if it vanish negatively, the value of the integral is still , as in all the continuous series

of cases which these terminate.

The integration of the second of tlie preceding forms has however been effected by methods

which are really objectionable, notwithstanding the accuracy of the results obtained by them : and it

may not be uninstructive briefly to direct attention to this circumstance.

Legendre commences his process by at once destroying the generality of the proposed integral

—

Skvr
takine for the limits, not .v = 0, and ,v = os , but ,r = 0, and ,v = , k being a whole number ; and

° a

then, at a convenient stage of the investigation, making k infinite. By means of this artifice, the

indeterminateness, which the method employed would otherwise have introduced at the limit

.V = CO, is overruled by an arbitrary condition :j:. The true result however necessarily comes out;

because that result is independent of all condition as to how the limit co is reached.

In the other method of integration, the indeterminateness adverted to is not evaded, but is

allowed to enter into the process : it is however wholly disregarded ; and thus, by a sort of com-

pensation of errors, the true result is again obtained. This, I presume, is the metliod to which

Sir. W. R. Hamilton alludes, at page l(i of his profound and remarkable paper on Fluctuating

Functions^, where an accurate investigation of this integral is given
||.

It may be proper to add, that when by applying differentiation to a determinate form, whether

an infinite series or a definite integral, we are led to indeterminateness, the step must be regarded

as inadmissible, and unless corrected, as leading to a false result. It is not difficult to see the reason

of this. In each case a certain constant is considered to be infinite ; for which extreme value

a particular function of the variable, that for all other values of the constant would have entered the

original expression, disappears; but which function if preserved, instead of being obliterated as zero,

would reappear in an indeterminate form, after differentiation. The suppression however of the

evanescent function in the original, precludes this reappearance; and thus leads to a defective

result II. This, I think, is rather an interesting fact : it shows that the differentials of certain forms

of analysis require indeterminate corrections, in a manner somewhat analogous to that by which the

ordinary determinate corrections are introduced into integrals ; and the omission of which indeter-

minate corrections has led to so many erroneous summations of certain trigonometrical series. From

• Tramuclions of the Society, Vol. vill. Part lli. Earn-

shaw's Paper on sin co and cos co. It may be remarked here, in

reference to the two integrals in the text, that the function under

the sign of integration becomes in each case zero at the superior

limit CO : and that therefore, as was before observed of periodic

series, the foreign factor, €'", which Poisson introduces merely to

destroy indeterminateness at this limit, is inoperative, and may

therefore be admitted without incurring error ; and the same remark

applies whenever the subject of integration, in integrals of this

kind, becomes zero for j- = co .

t C/ialeur, p. 288.

X Legendre ; Exercises de Calcul Integral, Tome I. p. 357.

^ Transactions of the Royal Irish Academy, Vol. xix. Pt. ll.

II
For the faulty process, see Gregory's Examples, p. 481.

f See a Paper by the author in the Phil. Mag. Vol. xxviii.

p. 213.
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this omission, too, we further see how it happens that, in enquiries of this kind, we may be led from
premisses absolutely wrong, and that by a train of correct reasoning, to conclusions absolutely

right. We have only to take the results of differentiation here noticed, each with the indeterminate

constant suppressed, and which are thus erroneous, and to apply the reverse process of integration, in

onler to arrive at correct forms. Thus Poisson, starting from the false equation

1 = cos - cos 20 + cos sy - cos 40 + he.*,

in which he supposes Q< -n, multiplies by dO and integrates ; thus obtaining the true equation

6 . ^ sin 2 sin .30 sin 40

2 2 3 4 ^ '

and from a second integration, the other true equation

TT
&'

^ cos 2 cos 30 cos 40= cos + + &c.
12 4 4 9 16

Again : proceeding from the false equation,

= sin - sin 30 + sin .50 - sin 70 + &c.,

he arrives, m a similar manner, at the true results

TT cos 30 cos .5 cos 70- = COS0 - _- + -_ _ + &c. ... (5),

7r0 . , sin 30 sin .50
and — = sin + &c.:

4 9 25

in reference to which however, from neglecting the principle of continuity, he commits the error of

vU))posing {A) to fail when = tt, and (B) to fail when = — ; although, in virtue of that principle,

both must necessarily holdj-.

As supplementary to the foregoing observations on the principle of continuity, I would wish to

add a remark or two in reference to what has been called discontinuity :—a term which, I think, is

sometimes injudiciously employed in analysis. Many expressions called discontinuous, should rather

be considered as composed of different continuous groups united together under one general form.

Distinct continuities, .so to speak, may be comprehended in one and the same function ; and it is

obvious that these may bo separately discussed, and the aggregate of the entire group estimated,

without at all introducing the idea of discontinuity. For instance, certain functions, strbmitted to

integration, become infinite between assigned limits of x

:

—would it not be better, and indeed more-

accurate, to say, of such functions, that each consists of two continuous series of values, within the

proposed limits, both series terminating at the same absolute value of x, than to say that the

function becomes discontinuous for that value .'' To obtain the definite integral in such a case, we

should only have first to integrate over one of the continuous series of values, then to integrate over

the other continuous series, and to unite the results, taking special care that the terminal or initial

value of .X', which unites the two series, obeys the law of continuity impressed upon each. An<l in

this way may the integration be correctly executed, however often infinity may occur betwein
+ «

the proposed limits. The definite integrsil / .v'dx may serve for illustration. The function

• That till* cquution is false, has already been shown by ihe

audior in the I'hil. Mafj. for December, 1114.1. Uut it is sufficient

to observe, both with respect to this ecjuation and that next

quoted, that it is inipoHsiblc, from the character of sin cc and

I suppose Poisson considers the powers of his arbitrary multiplier.

*Mnfiniment peu diderenlc de runittS" to he virtually present in

these series, to destroy their |»criodic character. Mtil (his docs Udt

interfere with tlie principle in the text.

eoi as. that the series.side of either can he a determinate (junntity. + .See Journal fl^ ."A'cn/c /*oh/ferfi. .Vnhicr win. pp. 'M'.i-
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,T~' becomes infinite for x = ; so that we have two continuous series of values, each terminating,

or each commencing at .r = ; which value of x however is united to one series by the sign plus, and

to the other by the sign minus. Hence, integrating over the former series, we have log ?j - log ;

and integrating over the latter, we have log (- m) - log (- 0). Consequently

,+"

/ ,f "'</,( = {log ti - log Oj - jlog (- m) - log (- 0)J
''-in

n m n
— log log; — = log — .

" " ° m

There is of course nothing new in thus dividing a definite integral into portions : but the

treating of these portions, when their boundaries are infinite, as distinct continuities, allowing the

influence of each continuous law to operate throughout the entire range, the limits included :—this

mode, I say, of treating what are called discontinuous functions, is not that generally adopted ;

though the neglect of it has occasioned a difficulty that has appeared to interfere with the clearness of

the idea of a definite integral when considered as the limit of a summation. Moreover, from this

same neglect, Poisson and others have been led to very erroneous values for the definite integrals

included in the form / x'' da. Thus Poisson affirms that

f a'-' dx = - (fin + 1) ir\/- 1*,

.*'

an imaginary quantity, instead of zero as above: and the value of / .t ^ dx he states to be —2,
•'-1

instead of infinite, as it is found to be by the method here proposed, which gives

/ x-"dx = (+ CO - 1) - (- CO + 1) = 2 cc - 2,

and many other such errors might, if necessary, be adduced from his writings.

But tile examples already given of the influence of the principle of continuity in extreme

or limiting cases of general forms, and of the mistakes committed by analysts from disregarding this

influence, will, I think, be considered as sufficient to invite more general attention to this matter:

and I shall rejoice if the brief and imperfect sketch I have here attempted to give of the views and

principles, by conforming to which such mistakes may be avoided, meet with acceptance from the

Cambridge Philosophical Society. I have been induced to submit it to the indulgent consideration of

that distinguished body, chiefly because the topics embraced in it have already furnished matter for

two Papers printed in tlie Cambridge Transactions

:

—one by Professor De Morgan, and the other

bv the Rev. Mr. Earnshaw. I have ventured to entertain the opinion that the views and investi-

gations of these excellent analysts do not preclude the necessity for a further consideration of the

interesting and somewhat delicate points of analysis which they have discussed : an opinion which is

strengthened by the fact, that the Papers referred to are in a considerable degree opposed to each

other, both in principle and in result. It is scarcely necessary to add, that in the present communi-

cation I have contemplated the subject under an aspect more or less different from that in which it

has been considered either by Mr. De Morgan, or by Mr. Earnshaw ; and I think it probable,

from the study of the three Papers, that the truth may be elicited ; and something like consistency

and stability be at length given to a portion of analytical science which has long been affected with

much uncertainty, vagueness, and perplexity.

• Journal de I'Ecole Polytechnique., Cah. xvui. p. 318.
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Of the two Notes which follow, the second has already been referred to, by anticipation, in the

text : the first is intended further to confirm and establish the accuracy of the general theory which

pervades this Paper.

Note (A.)

It appears from the preceding observations that in certain infinite series involving a quantity subject to con-

tinuous variation we are presented in the extreme or limiting cases, with instances of what may be called

insensible convergence and insensible divergenci/ . The peculiarity of such cases consists in this:—that, within

a finite extent ol' a certain infinite range of terms, the convergency or divergency of the series is insensible ; so

that for such a finite extent the series does not sensibly differ from what I have proposed to call a neutral or

independent series. When however we pass beyond this finite range, and in imagination contemplate the terms

infinitely remote, we at once recognize the accumulated effect of these insensible variations ; and the con-

vergency or divergency of the series becomes abundantly apparent. The infinitely remote term at which this

fact discovers itself, is alike the termination of one infinite range of terms and the commencement of another:

the completion of which, if the expression may be allowed, shows the effect of the insensible variations through

a second infinite range, and so on.

We are thus unavoidably led to the contemplation of different orders of infinites and different order^

of zeros—things altogether beyond the reach of actual ocular examination. But those who take that com-
prehensive view of the scope and powers of analysis, which its own well-established results, and the practice of

those most deeply imbued with its spirit so fully justify, will not, I think, found any objection to the reason-

ings in the foregoing Paper on this circumstance. In fact, in the common doctrine of vanishing fractions, the

very same principles are virtually recognized : the symbols - and — , which ought perhaps rather to be

written —, and —; , may each represent any ratio whatever:—even infinity: so that the reasonings adverted

to involve in them nothing repugnant to generally received conclusions. The symbols here noticed, when
really determinate, are so solely in consequence of their being governed by the principle of continuity.

This is pretty generally admitted : but there are certain other results of analysis, which the same principle

equally controls, but over which its influence is little suspected. Every one admits the truth of the equation

«° = 1, whatever be the value of a, without any reference to the law of continuity : yet if we reason from this

equation—still keeping the conditions of continuity out of sight—we shall speedily be led to conclusions of a

very startling character, as follows :

—

1

a" = 1; .-. a = l° = 1*,

that is to say, unity raised to the power infinity is equal to any quantity whatever !

Note (B.)

It was observed at page 432 that every neutral converging series might, without error, be replaced by the

corresponding dependent series. This observation might have been rendered more comprehensive ; for

diverging series, whose terms continually tend to zero, might also have been included, since the dependent
series, corresponding to these, have infinite sums, as well as the independent diverging series themselves.

These infinites however are not .strictly identical in the two cases: and by saying that the one series may
replace the other, nothing more is meant than that the sum in either case will be infinite. I'oisson, Abel, and

others, have shown that

- log ( 1 + 2 a cos ip + a') = a cos rp — - a' cos 2<)> + -a' cos 3<p - &c.

Vol.. VIII. Pakt IV. 3L
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whenever the second member is a converging series. Abel says, " Pour avoir les sommes de ces series

lorsque a = + 1 ou - 1, il faut seulement faire a converger vers cette limite * :" and he then writes

i log (2 + 2 cos (f)
= cos (|) - - cos 2 + ^ cos 3 (/) - &c.

t^^
1 I 11
- log (2 - 2 COS (/>)

= - cos - - COS 2 - - cos 3 (/) - &c.

which he says, "a lieu pour toute valeur de <p excepte pour (/) = (2/-. + 1)t dans la premiere expression, et pour

(^ = 2M7rdanslaseconde." Now the second members of these equations are not the limits of the proposed

general form, any more than 1 - 1 + 1 - &c. is the limit of 1 - 1 + j:" - &c. A limit always implies continuity,

and is never exempt from the control of that principle : putting therefore the condition of continuity in

evidence, the preceding expressions should be written

1 log (2 + 2 cos 0) = (l - ^) cos - i(l - ^y COS20 +
J (' - ^J <:os 30 - &c.

ilog(2-2cos0) = -(l-^)cos0-i(l-^ycos20-i(l-±)cos30-&c.

which are true, whatever be the value of 0, for the series are always convergent. As tends to the values

excepted to by Abel, the series tend to infinity; which they actually attain when these excepted values

are reached, as the first members sufficiently show. We thus see that

is infinite as well as

, 1 1 1 «

2 3 4

\ -\- 71

In like manner, from the development of log —-— , we should infer that

-K'-^)*K'-^)"*K'-^)'-='
is infinite as well as

and thence that

is infinite as well as

. 1 1 1 »

.3 3.5V eo/ 5.7\ 05^1 . 3

12 3.
H + +&C.

1.3 3.5 5.7

so that any of these diverging infinite series may be replaced by the corresponding dependent converging series,

and vice versa, without numerical error. And a priori considerations, in reference to this class of diverging

series, would lead us to the same conclusion. The equations [/if] are thus universally true without any

exception whatever.

• (Euvres Computes. Tome i . p. 89.

Belfast, September, 1846.



XXXIII. On the Theory of Oscillatory Waves. By G. G. Stokes, M.A.,

Fellow of Pembroke College.

[Read March 1, 1847.]

In the Report of the Fourteenth Meeting of the British Association for the Advancement of

Science it is stated by Mr. Russell, as a result of his experiments, that the velocity of propagation

of a series of oscillatory waves does not depend on the height of the waves'". A series of oscillatory

waves, such as that observed by Mr. Russell, does not exactly agree with what it is most convenient,

as regards theory, to take as the type of oscillatory waves. The extreme waves of such a series

partake in some measure of the character of solitary waves, and their height decreases as they

proceed. In fact it will presently appear that it is only an indefinite series of waves which

possesses the property of being propagated with a uniform velocity, and without change of form :

at least this is the case when the waves are such as can be propagated along the surface of a fluid

which was previously at rest. The middle waves, however, of a series such as that observed by

Mr. Russell agree very nearly with oscillatory waves of the standard form. Consequently, the

velocity of propagation determined by the observation of a number of waves, according to Mr.

Russell's method, must be very nearly the same as the velocity of propagation of a series of

oscillatory waves of the standard form, and whose length is equal to the mean length of the waves

observed, which are supposed to differ from each other but slightly in length.

On this account I was induced to investigate the motion of oscillatory waves of the above form

to a second approximation, that is, supposing the height of the waves finite, though small. I find

that the expression for the velocity of propagation is independent of the height of the waves to a

second approximation. With respect to the form of the waves, the elevations are no longer similar

to the depressions, as is the case to a first approximation, but the elevations are narrower than the

hollows, and the height of the former exceeds the depth of the latter. This is in accordance with

Mr. Russell's remarks at page 448 of his first Reportf. I have proceeded to a third approximation

in the particular case in which the depth of the fluid is very great, so as to find in this case the

most important term, depending on the height of the waves, in the expression for the velocity of

propagation. Tiiis term gives an increase in the velocity of propagation depending on the square

of the ratio of the height of the waves to their length.

There is one result of a second approximation which may possibly be of practical importance.

It appears that the forward motion of the particles is not altogether compensated by their backward

motion ; so that, in addition to their motion of oscillation, the particles have a progressive motion in

the direction of propagation of the waves. In the case in which the depth of the fluid is very great,

this progressive motion decreases rapidly as the depth of the particle considered increases. Now
when a ship at sea is overtaken by a storm, and the sky remains overcast, so as to prevent astro-

nomical observations, there is nothing to trust to for finding the ship's place but the dead reckoning.

Hut the estimated velocity and direction of motion of the ship are her velocity and direction of

motion relatively to the water. If then the whole of the water near the surface be moving in the

direction of the waves, it is evident that the ship's estimated place will be erroneous. If, however,

the velocity of the water can be expressed in terms of the lengtli and height of the waves, both

which can be observed approximately from the ship, the motion of the water can be allowed for in

the dead reckoning.

Pa({c 3IHt (nolc), and page M». t /le/mrl.^ nj the llriliKli Associution. Vo\. vi.

a 1,

2
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As connected with this subject, I have also considered the motion of oscillatory waves propagated

alone the common surface of two liquids, of which one rests on the other, or along the upper

surface of the upper liquid. In this investigation there is no object in going beyond a first

approximation. When the specific gravities of the two fluids are nearly equal, the waves at their

common surface are propagated so slowly that there is time to observe the motions of the individual

particles. The second case affords a means of comparing with theory the velocity of propagation of

oscillatory waves in extremely shallow water. For by pouring a little water on the top of the mercury

in a trough we can easily procure a sheet of water of a small, and strictly uniform depth, a depth,

too, which can be measured with great accuracy by means of the area of the surface and the quantity

of water poured in. Of course, the common formula for the velocity of propagation will not apply

to this case, since the motion of the mercury must be taken into account.

1. In the investigations which immediately follow, the fluid is supposed to be homogeneous

and incompressible, and its depth uniform. The inertia of the air, and the pressure due to

a column of air whose height is comparable with that of the waves are also neglected, so that

the pressure at the upper surface of the fluid may be supposed to be zero, provided we afterwards

add the atmospheric pressure to the pressure so determined. The waves which it is proposed to

investigate are those for which the motion is in two dimensions, and which are propagated with

a constant velocity, and without change of form. It will also be supposed that the waves are

such as admit of being excited, independently of friction, in a fluid which was previously at rest.

It is by these characters of the waves that the problem will be rendered determinate, and not by

the initial disturbance of the fluid, supposed to be given. The common theory of fluid motion,

in which the pressure is supposed equal in all directions, will also be employed.

Let the fluid be referred to the rectangular axes of x, y, z, tlie plane xx being horizontal,

and coinciding with the surface of the fluid when in equilibrium, the axis of y being directed

downwards, and that of ,» taken in the direction of propagation of the waves, so that the ex-

pressions for the pressure, &c. do not contain z. Let p be the pressure,
fj

the density, t the

time, M, V the resolved parts of the velocity in the directions of the axes of x, y ; g the force of

gravity h the depth of the fluid when in equilibrium. From the character of the waves which

was mentioned last, it follows by a known theorem that iid.v + vdy is an exact differential dtp.

The equations by which the motion is to be determined are well known. They are

^-^^'-/i-mf^it)'] <"

a^^.o, P);
d.v" dy''

—L. - 0, when y - h, (3);
dy

'^ + ^^+^^ = 0, whenp = 0, (4);
dt d.v dx dy dy

wliere (3) expresses the condition that the particles in contact with the rigid plane on which the

fluid rests remain in contact with it, and (4) expresses the condition that the same surface of

particles continues to be the free surface throughout the motion, or, in other words, that there is

no generation or destruction of fluid at the free surface.



Mr. stokes, on THE THEORY OF OSCILLATORY WAVES. 443

If c be the velocity of propagation, u, v and p will be by hypothesis functions of x - ct and y.

It follows then from the equations m = —^ , y = -J- and (I), that the differential coefficients
da! ay

of (p with respect to x, y and t will be functions of ,r - ct and y ; and therefore (p itself must
be of the form f(x-ct, y) +Ct. The last term will introduce a constant into (l) ; and if

this constant be expressed, we may suppose ^ to be a function of x — ct and y. Denoting x - ct

by .r', we have

dp dp dp dp

dx dx ' dt dx
'

and similar equations hold good for 0. On making these substitutions in (1) and (4), omitting

the accent of a;, and writing — gk for C, we have

'-'(-" -4! -si(sy-0] <".

ld&> \ dp deb dp

(df - '^j i ^
rff rff

= °' ^'''^" ^ = ° "• («)

Substituting in (6) the value of p given by (."j), we have

dy dx'' \dx dx' dy dxdyl

_ /d<pydr^_^dj> d^^ _ fd^yf^^^^
,

\d,vl dx- dx dy dxdy \dy I dy^

when ^(j' + '^)-S-i{(g)^0] = O (S)-

The equations (7) and (8) are exact ; but if we suppose the motion small, and proceed to the

second order only of approximation, we may neglect the last three terms in (7), and we may

easily eliminate y between (7) and (8). For putting <p', (h , &c. for the values of ~ ,
—-£-

, &c.
dx dy

when y = 0, the number of accents above marking the order of the differential coefficient with

respect to x, and the number below its order with respect to y, and observing that A; is a small

quantity of the first order at least, we have from (8)

g (y + /c) + c (0' + (p;y) - 1
((f)''

+ (p;') = 0,

whence y = - k - - (pi + ~
(p^ {k + - <p') + — ((p'' + <p^).* (9).

Substituting the first approximate value of y in the first two terms of (7), putting y = in the

next two, and reducing, we have

g<P,
- c'<p" - (g(p^, - c^(p") (k+- 0') + 2c (cp'<p"+(p^(p') = 0. ... (10).

<p will now have to be determined from the general equation (2) with the particular conditions (3)

and (10). When is known, y, the ordinate of the surface, will be got from (ij), and k will

then be determined by the condition that the mean value of y shall be zero. The value of p, if

required, may then be obtained from (.5).

• The reader will ubHcrve thai the y in this equation is the ordinate ol" the tturlace, whereas the y in {1) and ('2) is the ordinate of

any point in the fluid. The context will always show in which Dense y Is employed.
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2. In proceeding to a first approximation we have the equations (2), (3) and the equation

obtained by omitting the small terms in (10), namely,

s-^ - c^—^ = 0, when « = (ll).

The general integral of (2) is

the sign 2 extending to all values of A, m and »i, real or imaginary, for which m? + n- =0:
tile particular values of <p, Cx + C', Dy + D', corresponding respectively to n = 0, to = 0, must

also be included, but the constants C', D' may be omitted. In the present case, the expression

for must not contain real exponentials in x, since a term containing such an exponential would

become infinite either for x= - 05 , or for x= + eo, as well as its differential coefficients which

would appear in the expressions for u and v ; so that m must be wholly imaginary. Replacing

then the exponentials in w by circular functions, we shall have for the part of (p corresponding

to any one value of to,

(^e""' + A'e-""-') sin nuv + (Be'"!' + B'e-"") cos m.v,

and the complete value of (p will be found by taking the sum of all possible particular values of

the above form and of the particular value Cx + Dy. When the value so formed is substituted

in (3), which has to hold good for all values of x, the coefficients of the several sines and cosines,

and the constant term must be separately equated to zero. We have therefore

D=0, A' = e-'"''A, B' = €'""'B;

so that if we change the constants we shall have

<^ = Ca; + S (e""*-"' + e""'"-") {A sin mx + B cos ma), ... (12),

the sign 2 extending to all real values of w, A and B, of which to may be supposed positive.

3. To the term Cx in (12) corresponds a uniform velocity parallel to x, which may be supposed

to be impressed on the fluid in addition to its other motions. If the velocity of propagation be

defined merely as the velocity with which the wave form is propagated, it is evident that the

velocity of propagation is perfectly arbitrary. For, for a given state of relative motion of the

parts of the fluid, the velocity of propagation, as so defined, can be altered by altering the value

of C. And in proceeding to the higher orders of approximation it becomes a question what

we shall define the velocity of propagation to be. Thus, we might define it to be the velocity

with which the wave form is propagated when the mean horizontal velocity of a j>article in the

upper surface is zero, or the velocity of propagation of the wave form when the mean horizontal

velocity of a particle at the bottom is zero, or in various other ways. The following two definitions

appear chiefly to deserve attention.

First, we may define the velocity of propagation to be the velocity with which the wave form

is propagated in space, when the mean horizontal velocity at each point of space occupied by the

fluid is zero. The term mean here refers to the variation of the time. This is the definition

which it will be most convenient to employ in the investigation. I shall accordingly suppose

C = in (12), and c will represent the velocity of propagation according to the above definition.

Secondly, we may define the velocity of propagation to be the velocity of propagation of the

wave form in space, when the mean horizontal velocity of the mass of fluid comprised between

two very distant planes perpendicular to the axis of x is zero. The mean horizontal velocity of

the mass means here the same thing as the horizontal velocity of its centre of gravity. This

appears to be the most natural definition of the velocity of propagation, since in the case considered

tliere is no current in the mass of fluid, taken as a whole. I shall denote the velocity of propaga-

tion according to this definition by c. In the most important case to consider, namely, that in
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which tlie depth is infinite, it is easy to see that c - c, whatever be the order of approximation.

For when the depth becomes infinite, the velocity of the centre of gravity of the mass comprised

between any two planes parallel to the plane yz vanishes, provided the expression for u contain

no constant term.

4. We must now substitute in (11) the value of 0.

(^ = 2 (e-C-^* + j-'-C'-i/)-) (J sin moo + Bcosmx) (13) ;

but since (11) has to hold good for all values of ,v, the coefficients of the several sines and cosines

must be separately equal to zero: at least this must be true, provided the series contained in (ll)

are convergent. The coefficients will vanish for any one value of m, provided

^e-*-e-*

Putting for shortness 2mh
in
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The general value of (p given by (13), which is derived from (2) and (3), must now be restricted to

satisfy (17). It is evident that no new terras in (p involving sin mw or cos mw need be introduced,

since such terms may be included in the first approximate value, and the only other term which can

enter is one of the form B {e""^'"'''' + f-'"''"'") sin 2 m.r. Substituting this term in (17), and
simplifying by means of (14), we find

=
c (£"* _ £-»"»)'

Moreover since the term in (p containing sin ma; must disappear from (17), the equation (l4) will

give c to a second approximation.

If we denote the coefficient of cos mx in the first approximate value of y, the ordinate of the

surface, by o, we shall have

.
go^ ca

mc{i'^'' + f-"*) €"•* - 6"°^ '

and substituting this value of A in that of (p, we have

<p= -ac
^,„, _ ^_„,

sin m.v + 3ma'c
^^mi. _ ^-mi.y sin 2 m j; ... (18).

1 he ordinate of the surface is given to a second approximation by (g). It will be found that

„ (e™* + e-"*) (e""" + e-''"'' + 4)
y = a cos mx-ma-

2 {e""- - e-'"")'
cos2mx (19),

k

7- The equation to the surface is of the form

y = a cos mw - K a^ cos 2m3! (20),

where K is necessarily positive, and a may be supposed to be positive, since the case in which it is

negative may be reduced to that in which it is positive by altering the origin of a; by the quantity

— or — , \ being the length of the waves. On referring to (20) we see that the waves are sym-

metrical with respect to vertical planes drawn through their ridges, and also with respect to vertical

planes drawn through their lowest lines. The greatest depression of the fluid occurs when a.' =

\ 3\
or = ± \, &c., and is equal to o - a'K: the greatest elevation occurs when ,?• = ± - or = ± — , &c.,

and is equal to a +d^K. Thus the greatest elevation exceeds the greatest depression by 2a'K.

When the surface cuts the plane of mean level, cos mw - aKcos 2mx = 0. Putting in the small

term in this equation the approximate value m.v = -
, we have cos mx = - aK = cos I

—

\- aK\

whence .t = ± ( — + ) , = ± f
— +

1 , &c. We see then that the breadth of each hollow,
V4 2 7r / V 4 2 7r /

x n IT \

measured at the height of the plane of mean level, is - + , while the breadth of each elevated

r u ii J • ^ «-^^
portion 01 the fluid is .

^ 2 TT

It is easy to prove from the expression for K, which is given in (ly), that for a given value

of X or of m, K increases as h decreases. Hence the difference in form of the elevated and

depressed portions of the fluid is more conspicuous in the case in which the fluid is moderately

shallow than in the case in which its depth is very great compared with the length of the waves.
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8. When the depth of the fluid is very great compared with the length of a wave, we may
without sensible error suppose h to be infinite. This supposition greatly simplifies the expressions

already obtained. We have in this case

<l>
= - ace''"" sin ma; (21),

J/ = a cos TO*' — 1 jna" cos 2m.r (22), .

„ TO TT 2 ^X
A; = 0, A = - = -

, c^ = 5—
,

2 \ 2iv

the y in (22) being the ordinate of the surface.

It is hardly necessary to remark that the state of the fluid at any time will be expressed by
merely writing x — ct in place of x in all the preceding expressions.

9. To find the nature of the motion of the individual particles, let x + ^ be written for x, y + ]]

for y, and suppose x and y to be independent of t, so that they alter only in passing from one

particle to another, while ^ and r) are small quantities depending on the motion. Then taking the

case in which the depth is infinite, we have

— = ?/ = - mace"'"'*'*''' cos to (x + ^ - cf) = - mac e'"'" cos m (x - ct) + nv'ac e'""" sin to (x - ct) .P

+ m'ace''"'' cos m (x - ct) . >;, nearly,

— = u = TOace"*"'"'''''' sin m (x + ^ - ct) = mace^*"^ sin to {x - ct) + m^ace'"'" cos to (x - ct) . ^
(if

- ni'ac e'"'" sin to (x - ct) . r), nearly.

To a first approximation

^ = ae'"" sin to {x ~ ct), r) = ae'"" cos to (x - ct),

the arbitrary constants being omitted. Substituting these values in the small terms of the preceding

equations, and integrating again, we have

^ = oe""^ sin TO (ai - cO + M'a'c^e-'"'^

ri = ae"*"* cos m {x - ct).

Hence the motion of the particles is the same as to a first approximation, with one important

difference, which is that in addition to the motion of oscillation the particles are transferred forwards,

that is, in the direction of propagation, with a constant velocity depending on the depth, and

decreasing rapidly as the depth increases. If U be this velocity for a particle whose depth below

the surface in equilibrium is y, we have

/ 2 7r\ i -1 "»
f/=TO=a=ce--'"-^ = aM— g'

e' ~ (23).

The motion of the individual particles may be determined in a similar manner when the deptli

is finite from (18). In this case the values of ^ and >/ contain terms of the second order, involving

respectively sin 2to {x - ct) and cos 2to {x — ct), besides the term in ^ which is multiplied by t.

The most important thing to consider is the value of U, which is

(e"'* _ e-'«'')V
U = m'a'c ,

"^
-,— (24).

Since U is a small quantity of the order a', and in proceeding to a second approximation the

velocity of propagation is given to the order a only, it is immaterial which of the definitions of

velocity of propagation mentioned in Art. .3, we please to adopt.

Vol. VIII. Part IV. 3 M
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10. The waves produced by the action of the wind on the surface of the sea do not probably

differ very widely from those which have just been considered, and which may be regarded as

the typical form of oscillatory waves. On this supposition the particles, in addition to their

motion of oscillation, will have a progressive motion in the direction of propagation of the waves,

and consequently in the direction of the wind, supposing it not to have recently shifted, and this

proo-ressive motion will decrease rapidly as the depth of the particle considered increases. If the

pressure of the air on the posterior parts of the waves is greater than on the anterior parts,

in consequence of the wind, as unquestionably it must be, it is easy to see that some such pro-

o-ressive motion must be produced. If then the waves are not breaking, it is probable that equation

(23), which is applicable to deep water, may give approximately the mean horizontal velocity

of the particles ; but it is difficult to say how far the result may be modified by friction. If

then we regard a ship as a mere particle, in the first instance, for the sake of simplicity, and put

Uo for the value of U when y = 0, it is easy to see that after sailing for a time t, the ship

must be a distance UJ to the lee of her estimated place. It will not however be sufficient to

regard the ship as a mere particle, on account of the variation of the factor e'^"'", as y varies from

to the greatest depth of the ship below the surface of the water. Let ^ be this depth, or rather

a depth something less, in order to allow for the narrowing of the ship towards the keel, and suppose

the effect of the progressive motion of the water on the motion of the ship to be the same as

if the water were moving with a velocity the same at all depths, and equal to the mean value

of the velocity U from y = to y = S. If f/, be this mean velocity,

1 /-s ma"c I

On this supposition, if a ship be steered so as to sail in a direction making an angle with the

direction of the wind, supposing the water to have no current, and if V be the velocity with which

tlie ship moves through tlie water, her actual velocity will be the resultant of a velocity V in

the direction just mentioned, which, for shortness, I shall call the direction of steering, and of

a velocity f/, in the direction of the wind. But the ship's velocity as estimated by the log-line

is her velocity relatively to the water at the surface, and is therefore the resultant of a velocity V in

the direction of steering, and a velocity U„ — f/, in a direction opposite to that in which the wind

is blowing. If then E be the estimated velocity, and if we neglect {/^

E= V - (Uo- U,)cose.

But the ship's velocity is really the resultant of a velocity V + U, cos 6 in the direction of steering,

and a velocity U^ sin 6 in the perpendicular direction, while her estimated velocity is E in the

direction of steering. Hence, after a time t, the ship will be a distance f/,,/ cos 6 ahead of

her estimated place, and a distance t/^, ^sinfl aside of it, the latter distance being measured in a

direction perpendicular to the direction of steering, and on the side towards which the wind is

blowing.

I do not suppose that the preceding formula can be employed in practice ; but I think it

may not be altogether useless to call attention to the importance of having regard to the magnitude

and direction of propagation of the waves, as well as to the wind, in making the allowance for

lee-way.

11. The formul;e of Art. 6 are perfectly general as regards the ratio of the length of tlie waves

to the depth of the fluid, the only restriction being that the height of the waves must be sufficiently

small to allow the series to be rapidly convergent. Consequently, they must apply to the limiting

case, in which the waves are supposed to be extremely long. Hence long waves, of the kind

considered, are propagated without change of form, and the velocity of propagation is independent

of the height of the waves to a second approximation. These conclusions might seem, at first sight,
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at variance with the results obtained by Mr. Airy for the case of long waves*. On proceeding

to a second approximation, Mr. Airy finds that the form of long waves alters as they proceed,

and that the expression for the velocity of propagation contains a term depending on the height

of the waves. But a little attention will remove this apparent discrepancy. If we suppose

mh very small in (19), and expand, retaining only the most important terms, we shall find for

the equation to the surface

3 ot^

y = acosmx- —;—-cos2m*.
im-h

Now, in order that the method of approximation adopted may be legitimate, it is necessary that

the coefficient of cos 9.inx in this equation be small compared with a. Hence , and therefore

—— must be small, and therefore - must be small compared with ( — ] . But the investigation
A

'

h V X /

of Mr. Airy is applicable to the case in which — is very large; so that in that investigation

- is large compared with (-) . Thus the difference in the results obtained corresponds to a

difference in the physical circumstances of the motion.

12. There is no difficulty in proceeding to the higher orders of approximation, except what

arises from the length of the formulae. In the particular case in which the depth is considered

infinite, the formulae are very much simpler than in the general case. I shall proceed to the third

order in the case of an infinite depth, so as to find in that case the most important term, depending

on the height of the waves, in the expression for the velocity of propagation.

For this purpose it will be necessary to retain the terms of the third order in the expansion

of (7). Expanding this equation according to powers of y, and neglecting terms of the fourth, &c.

orders, we have

g(p- c'(p + (g(p,- c-<p, )y + (g-0^ ,
- c=(^,;') ^ + 2c ((p'fp" + (p, (p,')

+ '2ci<p'(p"+<p'(p''+(p^^<p^'+(j)^(p^^')y - <p''(p"-2<p'<p^(p'- (p^'(p^^= (25).

In the small terms of this equation we must put for (p and y their values given by (21) and (22)

re.spectively. Now since the value of to a second approximation is the same as its value to

a first approximation, the equation g(j),- c^(p" = is satisfied to terms of the second order. But

y'
the coefficients of y and —

, in tlie first line of (2.'5), are derived from the left-hand member of

the preceding equation by inserting the factor e'"'", differentiating either once or twice with

respect to y, and then putting y = 0. Consequently these coefficients contain no terms of the

second order, and therefore the terms involving y in the first line of (25) are to be neglected.

d
Tlie next two terms are together equal to c — (0 - + (pf).

But

(p'"- + <p^ = m-d'c',

which does not contain x, so that these two terms disappear. The coefficient of y in the

second line of (25) may be derived from the two terms last considered in the manner already

indicated, and tlicreforc the terms containing y will tlisappear from (25). The only small terms

• Encj/olopadia Melropnlituim, Tiiks niirl ll^avcs, Articles lilD, &c.

3m 2
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remaining are the last three, and it will easily be found that their sum is equal to m^a^c" sin mj;, so
that (25) becomes

g (j>, - c^ 0" + m^d'c'' sin mx = (26).

The value of (p will evidently be of the form ^ «-""." sin w.r. Substituting this value in (2()).
we have

(w^c- - mg) A + m^c?& = 0.

Dividing by mA, and putting for A and c" their approximate values -ac, — respectively in
m

the small term, we have

m& - g -^ nva^g,

"(S)'(-4»-) = (a'(-'-^)'
The equation to the surface may be found without difficulty. It is

y = a coimx - ^ma? cos9.m.v + ^rrv'a' coi 3 m,v*, (27)

:

we have also A; = 0, ^ = - oc (1 - | rn'o') e"*"* sin ma;.

The following figure represents a vertical section of the waves propagated along the surface

of deep water. The figure is drawn for the case in which a = — . The term of the third order
80

in (27) is retained, but it is almost insensible. The straight line represents a section of the plane

of mean level.

13. If we consider the manner in which the terms introduced by each successive approximation
enter into equations (7) and (8), we shall see that, whatever be the order of approximation, the

series expressing the ordinate of the surface will contain only cosines of mo! and its multiples,

while the expression for <j) will contain only sines. The manner in which y enters into the

coefficient of cos rmx in the expression for (p is determined in the case of a finite depth by
equations (2) and (3). Moreover, the principal part of the coefficient of cos rmx or sin rmv will

be of the order a' at least. We may therefore assume

<f>
= 2,' a"-^, (£""(*-*) + 6-™'*-*») sin rmw,

y = acosma; + %,' a''B,cosrma!,

and determine the arbitrary coefl^cients by means of equations (7) and (8), having previously

expanded these equations according to ascending powers of y. The value of c- will be determined

by equating to zero the coeflficient of sin mx in (7).

Since changing the sign of a comes to the same thing as altering the origin of x by ^ \, it is

plain that the expressions for A^, B^ and c^ will contain only even powers of a. Thus the values

of each of these quantities will be of the form C^ + C^ar + C^a* + ...

It appears also that, whatever be the order of approximation, the waves will be symmetrical with

re.spect to vertical planes passing through their ridges, as also with respect to vertical planes

passing through their lowest lines.

• It is remarkable that this equation coincides with that of the

|>rolate cycloid, if the latter equation be expanded according to

ascending powers of the distance of the tracing point from the

centre of the rolling circle, and the terms of the fourth order be
omitted. The prolate cycloid is the form assigned by Mr. Rus.

sell to waves of the kind here considered. Reports of the BritUh

Association, Vol. vi. p. 448. When the depth of the fluid is not

great compared with the length of a wave, the form of the surface

does not agree with the prolate cycloid even to a second approx-

imation .
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14. Let us consider now the case of waves propagated at the common surface of two liquids,

of which one rests on the other. Suppose as before that the motion is in two dimensions, that the

fluids extend indefinitely in all horizontal directions, or else that they are bounded by two vertical

planes parallel to the direction of propagation of the waves, that the waves are propagated with

a constant velocity, and without change of form, and that they are such as can be propagated into,

or excited in the fluids supposed to have been previously at rest. Suppose first that the fluids

are bounded by two horizontal rigid planes. Then taking the common surface of the fluids when
at rest for the plane xz, and employing the same notation as before, we have for the under fluid

^'d?^'' • <^«)'

dd)~ = when y= h, (29),

p = C + gpy + cp-L
,

ax

neglecting the squares of small quantities. Let h^ be the depth of the upper fluid when in equi-

librium, and let p^, p^, (p^, C^ be the quantities referring to the upper fluid which correspond to

p, p, (p, C referring to the under : then we have for the upper fluid

d'(p (P(b

-TT+ r^ = ^ (30),

dd)—— = when y = - h (31),
dy

P,= C, + gp,y + cp^ -J-^
.

We have also, for the condition that the two fluids shall not penetrate intoy nor separate from each

other,

dd) dd)~ = -~, when » = (32).
dy dy "

Lastly, the condition answering to (u) is

-('T:-4:')--(/r?-.3)=» <"'•

when C- C\ + g {p ~ p) y + c (p -f-
- p,-p] =0 (34).

V dx '
' dx

I

Since C - C is evidently a small quantity of the first order at least, the condition is tliat (3,3)

shall be satisfied when y = 0. Equation (34) will then give the ordinate of the common surface of

the two liquids when y is put = in the last two terms.

The general value of (b suitable to the present case, which is derived from (28) subject to the

condition (2f>), is given by (13) if we suppose that the fluid is free from a uniform liorizontal motion

compounded with the oscillatory motion expressed l)y (13). Since the equations of the present

investigation are linear, in consequence of the omission of the squares of small quantities, it will be

sufficient to consider one of the terms in (13)- I-et then

0= ^(e^i'-J' + f-'-i^-y) sin m.v (S.'i).
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The general value of (p^ will be derived from (13) by merely writing — h for h. But in order

that (32) may be satisfied, the value of <j)^ must reduce itself to a single term of the same form a?

the second side of (35). We may take then for the value of (p^

^, = ^, (e""*+'" + 6-'""^''') sin tnx (S6).

Putting for shortness

6 + e =o, 6 — 6 = Lf,

and taking S^, D^ to denote the quantities derived from S, D by writing A for h, we have from (32)

DA + DJ^= (37),

and from (33)

p(gD-mc^S)A +p, {gD, + mc'S;)A^= (38)

Eliminating A and A^ from (37) and (38), we have

g {p-p)DD
mpSD, + p_SD ^^^^•

The equation to the common surface of the liquids will be obtained from {Si). Since the mean
value of y is zero, we have in the first place

C.= C (40).

We have then, for the value of y,

y = a cos mx (^Oi
where

mcpAS-pAS DD pA S - pAS
, ,

a = —

'

^'
' '—^ = '' ' ' '—'- (42).

g p-p, c pSD^+pSD ^ '

Substituting in (35) and (36) the values of A and A^ derived from (37) and (42), we have

ac

D^ = - ^(£""*-;" + e""i*-"i)sin»M.r (43),

0, = ^ (e""* ^•*' +£-"'<*.*-i") sin mx (44).

Equations (39), (40), (41), (43) and (44) contain the solution of the problem. It is evident that

C remains arbitrary. The values of p and p^ may be easily found if required.

If we differentiate the logarithm of c^ with respect to m, and multiply the result by the product

of the denominators, which are necessarily positive, we shall find a quantity of the form Pp + Pjj^,

whei-e P and P^ do not contain p or p. It may be proved in nearly the same manner as in Art. 4,

that each of the quantities P, P^ is necessarily negative. Consequently c will decrease as m increases,

or will increase with X. It follows from this that the value of (p cannot contain more than two

terms, one of the form (3.5), and the other derived from (35) by replacing sin mx by cos mx, and

changing the constant A : but the latter term may be got rid of by altering the origin of x.

The simplest case to consider is that in which both h and h' are regarded as infinite compared

with X. In this case we have

d) = — ace "'" sin mx, m, = ace"'" sm mx, c = -— -' —
, y = a cos mx,

p + pm
the latter being the equation to the surface.
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15. The preceding investigation applies to two incompressible fluids, but the results are

applicable to the case of the waves propagated along the surface of a liquid exposed to the air,

provided that in considering the effect of the air we neglect terms which, in comparison with those

retained, are of the order of the ratio of the length of the waves considered to the length of a wave
of sound of the same period in air. Taking then p for the density of the liquid, p for that of the

air at the time, and supposing A^ = os , we have

c^= - ^^-m'-i'^m--"-
g (p- p,) D gP
m pS

If we had considered the buoyancy only of the air, we should have had to replace g in the

formula (14) by "

—

'-< g. We should have obtained in this manner
P,

^. g ip-p}D ^ffl^fi _P,
m pS mS \ p

Hence, in order to allow for the inertia of the air, the correction for buoyancy must be increased

in the ratio of 1 to 1 + — . The whole correction therefore increases as the ratio of the length of a

wave to the depth of the fluid decreases. For very long waves the correction is that due to

buoyancy alone, while in the case of very short waves the correction for buoyancy is doubled.

Even in this case the velocity of propagation is altered by only the fractional part - of the whole
P

and as this quantity is much less than the unavoidable errors of observation, the effect of the air in

altering the velocity of propagation may be neglected.

16. There is a discontinuity in the density of the fluid mass considered in Art. 14, in passing

from one fluid into the other ; and it is easy to show that there is a corresponding discontinuity in

the velocity. If we consider two fluid particles in contact with each other, and situated on opposite

sides of the surface of junction of the two fluids, we see that the velocities of these particles resolved

in a direction normal to that surface are the same ; but their velocities resolved in a direction tan-

gential to the surface are different. These velocities are, to the order of approximation employed

„ dd) d(b
in the investigation, the values of -i and —£-' when y = Q. We have then from (4.3) and (44), for

a CO dx

the velocity with which the upper fluid slides along the under,

iS S
mac (--- + -

17. When the upper surface of the upper fluid is free, the equations by which the problem

is to be solved are the same as those of Art. 14, except that the condition (."31) is replaced by

dd) , d'd)
, , , ,

^ -^ -'^ T-^' = "' "''"^" y= -'k'- (*-^);
dy d.v'

and to determine the ordinate of the upper surface, we have

C,+gp^y + cp,-^ = 0,

where y is to l)e replaced by - A^ in the last term. Let us consider the motion corresponding to

the value of <^ given by (35). We must evidently have

^ ^ (Ae"-^ + B^e"^) sin mx.
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where A and B have to be determined. The conditions (32), (33) and (45) give

DA + A^- B^= 0,

p (gD - mc'S') A + p^{g+ mc) A^ - p,(.g- mc^) fi, = 0,

(g + mc') (-'""A, -(g- mc") e""'fi, = 0.

Eliminating A, A^ and B^ from these equations, and putting

m
we find

(pSS, + pDD) X^-p {SD^ + Sp) ^ + (jo - p) DD^ = 0. ... (46).

The equilibrium of the fluid being supposed to be stable, we must have p^ < p. This being

the case, it is easy to prove that the two roots of (46) are real and positive. These two roots

correspond to two systems of waves of the same length, which are propagated with the same

velocity.

In the limiting case in which " = eo, (46) becomes

SS'X' - (SD^ + Sp) ^ + DD, = 0,

the roots of which are — and —^ , as they evidently ought to be, since in this case the motion of

the under fluid will not be affected by that of the upper, and the upper fluid can be in motion

by itself.

SD 4- SD
When o — o one root of (46) vanishes, and the other becomes ——-——

^

^' ^ ^ ' SS, + BD^
The former of these roots corresponds to the waves propagated at the common surface of the fluids,

while the latter gives the velocity of propagation belonging to a single fluid having a depth equal

to the sum of the depths of the two considered.

D
When the depth of the upper fluid is considered infinite, we must put —' = 1 in (46). The

two roots of the equation so transformed are I and -^—-—
, the former corresponding to waves

pA + pP
propagated at the upper surface of the upper fluid, and the latter agreeing with Art. 15.

When the depth of the under fluid is considered infinite, and that of the upper finite, we

must put — = 1 in (46). The two roots will then become 1 and -^———=-'
. The value of the

S pS, + pP^
former root shows that whatever be the depth of the upper fluid, one of the two systems of

waves will always be propagated with the same velocity as waves of the same length at the sur-

face of a single fluid of infinite depth. This result is true even when the motion is in three

dimensions, and the form of the waves changes with the time, the waves being still supposed to

be such as could be excited in the fluids, supposed to have been previously at rest, by means of

forces applied at the upper surface. For the most general small motion of the fluids in this case

may be regarded as the resultant of an infinite number of systems of waves of the kind con-

sidered in this paper. It is remarkable that when the depth of the upper fluid is very great, the

root t^
= 1 is that which corresponds to the waves for which the upper fluid is disturbed, while

the under is sensibly at rest ; whereas, when the depth of the upper fluid is very small, it is the

other root which corresponds to those waves which are analogous to the waves which would

be propagated in the upper fluid if it rested on a rigid plane.
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AVhen the depth of the upper fluid is very small compared with the length of a wave, one

of the roots of (t6) will be very small ; and if we neglect square and products of mh and Yi the

equation becomes 2 pD'(^- 2 (p - p) mli^D = 0, whence

^ . P^P'^nh,, c^=P~P' gh, (47).

P P

These formula; will not hold good if mh be very small as well as m/i^, and comparable with it,

since in that case all the terms of (46) will be small quantities of the second order, mh^ being

regarded as a small quantity of the first order. In this case, if we neglect small quantities of the

third order in (l(j), it becomes

4(0^- - -iw/p (A + h) i[+ -iip - p) ni'hh^ = 0,

whence c- = ^
|/, + /(^ ± /sj (]i - hy- + tPj.hh\ (48).

Of these values of c"-, tliat in which the radical has the negative sign belongs to that system of

waves to which the formula; (47) apply when h^ is very small compared with h.

If the two fluids are water and mercury, — is equal to about 13.57. If the depth of the

P.

water be very small compared both with the length of the waves and witli the depth of the

mercury, it appears from (47) that the velocity of propagation will be less than it would have

been, if the water had rested on a rigid plane, in the ratio of .9624 to 1, or 26 to 27 nearly.

G. G. STOKES.

Vol.. VIII. 1'akt IV. 3N



XXXIV. On the Internal Pressure to which Rock Classes may he suhjected, and

its possible Influence in the Production of the Laminated Structure.

By W. Hopkins, Esq., M.A., F.R.S., &c.

[Read May 3, 1847-]

One of the most curious phenomena in the constitution of rock masses, consists in the laminated

structure which pervades so large a portion of the older sedimentary formations, producing what

is called their slatv cleavage. In some cases, this lamination is comparatively coarse and ill-defined,

but in others (as in the roofing slates) it is so fine and regular as to leave no doubt of its being

the result of some kind of molecular action of the constituent particles on each other, analogous to

that of crystallization, and not the direct and immediate mechanical effect of external forces

acting on the mass. But still it would seem very possible, that these external forces may

maintain the mass in a state of internal constraint which may possibly be a condition favourable

to the production of the laminated structure, and observations have lately been made which seem

to afford some confirmation of this notion. Professor Phillips, some years ago, and Mr. Sharpe,

more I'ecently, have recognized some curious and interesting facts respecting the frequent distortion

of fossil shells, and other organic remains, from their original well-known forms ; and these distortions

appear to indicate certain relations between the positions of the cleavage planes and the directions

of the internal pressures which must have produced the distortions in question. These distortions

of determinate organic forms indicate, in fact, corresponding distortions in those elements of the

mass in which they are I'espectively comprized. To explain the nature of the tensions or pressures

acting on any such element and the distortion produced by tliem, let us denote by s a small plane

surface passing through any point P. Generally, there will be an action between the particles

(M) on one side of this small plane, and M', those in contact with them on the opposite side.

If s be sufficiently small, we may represent the whole action of M on M' by ps, a force having

a determinate direction, which we may suppose to make an angle ^ with the normal to s. Then will

pscosS, and pssind,

be the normal and tangential parts of the whole action of M on M', and

— ps cos S, and — ps sin S,

will manifestly be the same parts of the reaction of M' on M. If the normal force be a pressure,

it will only tend to preserve the contact of the particles immediately on opposite sides of s; but if

that force be a tension, then will ps cos S tend to separate these particles by motions normal to s,

and in opposite directions. In all cases there will be likewise forces equal to ps sin S, and

- ps sin ^, tending to separate any one particle immediately on one side of s, from the particle

originally in contact with it on the other side of s, by communicating to these particles, motions in

opposite directions parallel to the plane of s. If this plane assume different positions by moving

about P as a fixed point, the normal and tangential forces acting on it will have different values,

assuming maxima or minima values for certain determinate positions of s, and it is on these

particular positions of s that the distortion of a small portion of the mass about P, and that of any

organic form contained in it, will depend. Generally, The linear dimensions of the element will he
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altered by extension or compression, and it will also be twisted, so that if it were originally a

rectangular parallelopiped it will become an oblique-angled one, and these changes of form will be

indicated by the corresponding distortions of the organic remains. Now, if the directions of the

cleavage planes were originally determined by the state of internal tension and pressure of the mass,

it would seem probable that they would be perpendicular to the directions of greatest, or to those

of least normal pressure, or that they would coincide with the planes of greatest tangential action.

These hypotheses must be tested by the evidence derived from the organic forms, as will be

explained in the sequel, but for that purpose it will be necessary in the first place, to investigate

the relative positions of the lines and planes just mentioned. This investigation will form the first

Section of this memoir.

SECTION I.

Relative positions of the lines of maximum and minimum tension, and planes of
maximum tangential force in the interior of a continuous mass.

1. Taking any point P of the mass, let it be made the origin of co-ordinates wyz. Let the

small plane s be conceived as before to pass through P, and let the forces upon it in the positions

specified be denoted as follows, all being referred to a unit of surface.

(1.) When a perpendicular to the plane coincides with the axis of x, let

iB' parallel to y,

z.

(2.) When a perpendicular to the plane coincides with the axis of y, let

!C" parallel to z,

A' w.

(3.) When a perpendicular to the plane coincides with the axis of z, let

iA" parallel to w,

y-

Between the six accented quantities there are three essential relations, which are easily found.

On the three co-ordinate axes at P, construct an indefinitely small parallelopiped whose edges

are ix, Sy, and Sz. The six equations of equilibrium of this element will express the conditions

that the sums of all the resolved parts of the forces parallel to the co-ordinate axes shaU respectively

be equal to zero ; and that the moments of the forces with reference to three axes, shall also

severally be ccjual to zero. Let us take the three latter conditions, lines through the center of

gravity of the element and parallel to the co-ordinate axes being taken for the axes of the com-

ponent couples. The tangential force parallel to the axis of x on the side Sx . S« being A',

that on the opposite side will be — (A' + Sy) ; and the couple resulting from these forces

about the axis parallel ta z, will be

A'SwSzM + (A' + ~ Sy) SwSz .^ ;

2 dy "' 2

or, omitting small terms of the fourth order,

3 N 2

The normal force = A ; The tangential force = J ,

When a perpendicular to the plane coincides with th(

The normal force = B ; The tangential force = \

When a perpendicular to the plane coincides with tin

{A"
The normal force = C ; The tangential force = < „
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Similarly, the couple arising from the forces B' and B' + -j^ Sx about the same axi.s parallel to z,

will be
— Bcaidydsi.

Also the moment of the normal forces A, B, C, with reference to the above-mentioned axes,

will be zero, always omitting small quantities of tlie fourth order. Consequently the whole moment

of the forces on the parallelopiped with reference to the axis parallel to that of z, will be

{J' -B')S:^v^ySz;

which must = zero by the conditions of equilibrium ; and therefore

J' = B'.

In exactly the same way we find, by taking the moments with reference to the axes parallel

respectively to these of y and oo,

A" = C,

B" = C".

By means of these three relations the six accented quantities are reduced to three independent

quantities.

2. Let us now conceive a plane to meet the three co-ordinate planes so as to form with them

a tetrahedron, whose vertex is at the origin P. Suppose the exterior normals to the three faces

formed by the co-ordinate planes to point respectively towards the positive directions of x y and

z ; and let a ji and 7 be the angles which the normal to the base of the tretrahedron makes

with the co-ordinate axes of .r y and z. Also let s denote the area of the base, and s' s" and s"

the areas of the sides of the tetrahedron perpendicular respectively to the axes of ,r y and z, all

these quantities being indefinitely small.

Again, let ps denote the whole resultant force acting on *, and let \ in and v be the angles

which its direction makes with lines parallel to the co-ordinate axes of w y and z, this direction being

exterior to the tetrahedron. Then, in order that the tetrahedron may be in equilibrium, we nnist

have

ps . cos X = As' + A's" + A"s"',

ps .cos n = Bs" + B's + B"s"',

s + L s + L s \

but

s s s
— = COS a, — = cos fi, — = cos 7 ;

s s s

making these substitutions, and also putting

B" = C" = D,

A" = C = £,

A' = B' = F,

we shall have

p . cos \ = A cos a + F cos (i + E cos 7, \

p . cos fk— B cos fi + F cos a + D cos 7, \ (a),

p . cos v = C cos y + E cos a + D cos /3 ;
|

formulae in which the notation agrees with that of M. Cauchy (Exercises de Mathematiqut,

Vol. 11. p. 48).
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If o denote the angle between the direction of jo and the normal to s, we shall have p cos ^

for the whole tiormal force acting on the area s in a direction exterior to the tetrahedron, and

p sin ^ the whole tangential force acting on the same area. Our first object will be to determine

a /3 and y, or the position of the base (s) of the tetrahedron, so that the normal action upon it,

p cos ^, shall be a maximum. We shall afterwards have a similar investigation with reference to

the tangential force p sin ^.

We iiave cos ^ = cos X cos a + cos /i cos /3 + cos v cos y,

whence we immed ately obtain

p cos I = A cos- a + B cos- /3 + C cos- y + 2D cos fi cos y + 2£ cos a cos y + 2F cos a cos/3, ... (1),

and since cos'' a + cos-/3 + cos'' 'y = 1, (2),

we have {L being an arbitrary multiplier),

(A + L) cos- a + (B + L) cos- (i + {C + L) cos^ y + 2 2) cos /3 cos y + I.E cos a cos y
+ 2F cos a cos /3 = max.

Hence,

\{A -y L) cos a + E cos y + F cos /3| sin a =
J

{ (fi + Z) cos /3 + Z» cos 7 + Z' cos a
I

sin /3 = ! (*)•

{{C + L) cos 7 + i) cos /3 + £ cos a} sin 7 = )

To satisfy these equations together with

cos' a + cos ' /3 + cos^ 7 = ]

,

we must equate the first brackets to zero. We thus have four equations from which L may be

eliminated, and « (i and 7 determined.

If we multiply the first factors on the left-hand sides of equations (6) by cos a, cos /3 and cos 7
respectively, and add them together, we have by virtue of equations (a),

L = — P cos ^,

and substituting for L in equations (6), we have

p cos b cos a - A cos a + F cos (i + E cos 7,

= p cos X ;

cos S cos a = cos X.

Similarly, cos ^ cos /3 = cos /i,

cos c) cos 7 = cos V ;

whence cos"^ = 1,

S = 0,

which shews that when the resultant force p is a maximum or minimum, its direction coincides

with that of the normal to the plane v. Consequently, also, the tangential force p sin S then

becomes = zero.

This value of S gives, I. = — p,

and sub.stituting for /, in equations (6) we have,

(A - p) cos a + F cos fi + E cos 7 = 0)

f cosa + (Z? - p) cos/3 + Z)cos7 = (")•

E cos a + D cos (3 + {C - p) cos 7 =



or tension coinciuiiig wiiu iiie a.^.e^ "i lino ou-i^vv, v^i •.••^ c^^«..v. ».»,.>. . . - j „..., v..„

the three principal pressures or tensions above determined, one will be a maximum and anoth(

minimum, while that of an intermediate value will be neither, though it satisfies the condit
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and eliminating cos a, cos /3, and cos 7 by cross multiplication, we obtain

{A-p)(B-p){C-p)-D°-iA-p)-EHB-p)-r(C-p) + 2DEF=o.

If we take the three values of p de'ducible from this equation and substitute them successively

in equations (c), those equations combined with (2) will give three distinct systems of values for

cos a, cos /3, and cos 7, belonging (as is well-known) to three lines perpendicular to each other.

Hence, it follows, that there is at every point {P) of a continuous solid mass under extension

or compression, a system of three rectangular axes, such, that if the small plane («) at P be so

placed that its normal shall coincide with one of those axes the whole resultant action on s shall be

normal to it, the tangential action upon it being then equal to zero. These three axes are called

the axes of principal pressure or tension with reference to the point P.

3. M. Cauchy, in the Memoir above referred to, converts equation (l) into the equation

to a surface of the second order, by putting

« cos ^ = ± T , )• cos a = iv, r cos /3 = y, r cos y = z.

The inverse of the square of any radius vector will manifestly be a measure of the normal

action on a small plane through P perpendicular to the radius vector, the axes of principal pressure

or tension coinciding with the axes of this surface of the second order. We may remark, that of

other a

itions

d
. p cos d _ ^^ _^^j

-p cos ^ ^ j^ .^^ .^^ ^^^^^ ^^_^^ value of p cos S which is represented by the

da dji

inverse of the square of the mean axis of the surface, and that mean axis, considered as a parti-

cular radius vector, is a maximum with reference to one principal section, and a minimum with

reference to the other to which it belongs, so that though — (— ) =0, and --: (— j = when

r = mean axis, all the conditions of a maximum or minimum are not satisfied.

I make these remarks here because a similar mode of geometrical representation may be found

useful in explaining the results obtained in the succeeding part of the investigation.

4. I shall now proceed to investigate the positions of the plane s passing through P, when the

tangential action upon it is greatest, i. e. when p sin ^ = max.

To simplify our formulas, we may here take the axes of principal pressure or tension as the

co-ordinate axes. In this case there will be no tangential force on the plane s when it is perpendi-

cular to any of these axes, and consequently, we must have

X» = 0, E = 0, F =0,

and, therefore, equations (a) give

p' = A^ cos' a + B^ CDS' li + C cos' 7,

and equation (l) gives,

p cos ^ = A cos' a + B cos' /3 + C cos' 7.

Hence we have

ja' sin' S = A- cos' a + B- cos' ;3 -(- C cos' 7 - {A cos" a + B cos' /3 + C cos' 7)',

the quantity which is to be made a maximum subject to the condition

cos' a + cos' /3 + cos' 7=1.

By virtue of the last equation, we have

/)- sin' d = {cos'a+cos- /3 -I- cos' 7) (J' cos^ a + B^ cos' /3+C cos' 7) - {A cos' a + B cos' /3 + C cos' 7)',



Mr. HOPKINS, ON THE INTERNAL PRESSURE OF ROCK MASSES. ^61

which by reduction gives

// sin- S = (A - Bf cos' a cos' /3 + (^ - Cf cos' a cos' 7 + (£ - C')' cos' /3 cos' y = max ... (3).

Hence, if L be an arbitrary multiplier, we obtain

\{A -5)'cos'/3 + (A - Cfcoiy + Z:| cosasina = \

|(^- fl)-cos'a + (fi- C)'cos'7 + L\ cos/3sin/3 = '.

(^^

\(A - Cf cos' a+ {B- C)'cos'/3 + L] cos 7 sin 7 =

Let us first suppose these equations satisfied by equating, in each case, their first factors to
zero; and for brevity put

P = A- B, Q = A- C, R = B - C;

P= Q- R.

Now, substituting 1 - cos" « - cos'/3 for cos' 7, and eliminating L between the first and third,

and the second and third equations, we obtain

(P2 _ Q2 _ ^2) cos2^ - 2Q2C0S2 a + Q2 = 0,

(P2_ Q2 _ R"-) coi^ a - 2 R- cos' fi + R^ = ;

or since P- = (Q - R)",

P'- Q" - R- = - 2QR;
.-. 2R cos' /3 + 2 Q cos' a- Q = 0,

SQcos'a + 2Rcos° f3-R = 0,

which cannot hold simultaneously unless Q = R, and .-. /* = ; or A = B. This mode, therefore,

of satisfying equations (d) is not admissible.

Again, we may satisfy those equations by

sin a = 0, cos /3 = 0, cos 7 = 0,

a system of equations which also satisfy (2). In this case the normal to the small plane s will

coincide with the axis of .r, i. e. with an axis of principal pressure, and therefore, these values

ought to give the tangential force = zero, as they do. Zero is in fact a minimum value of that force.

Similar conclusions hold with reference to the axes of y and z for the following systems of values.

cos a = 0, sin /3 = 0, cos 7 = 0;

cos a = 0, cos /3 = 0, sin 7 = 0.

Finally, we may satisfy equations (d) by

cos a = 0,

P- cos' a + R' cos" y + L = 0,

Q' cos' a + R^ cos- /3 + Z, = 0.

Eliminating L, we have

cos' /3 = cos' 7 ;

.-. 2 cos' /3 = 1 ;

.-. /3 = 7 = ± 45".

Two other .systems of values may evidently be obtained in a similar manner, and thus equations

((/) and (2) are satisfied by the three following systems of values:

a = 90", /3 = 7 = ± IS", 1

/3 = 90<', 7 = a = ± .1.5", (e).

7 = 90", a = /3 = ± W".
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5. If 7',, 7*2, and T^ be the corresponding values of the tangential force, we have

r,^ = i (5 - cy, T.? = 1 (^ - cf, r/ = \{a- sy.

If J, B, C be taken as they always may be, so that A shall be the greatest and C the least,

T.2 will be the greatest of these values, and I shall shew that it in fact is the only one which

satisfies the conditions of being a maximum. To do this, and to explain the relations of these

particular values of the tangential force to its general values, it will be convenient to have recourse

to a geometrical representation, analogous to that before spoken of with reference to the normal

forces. For this purpose assume

p sin ^ = Tf,—

,

r-

w = r cos a, y = r cos /3, x = r cos y ;

where T„ denotes a constant force, and c a constant line. Then equation (3) becomes

r^V = Pa?y + Q'ai'z^ + R'y'z' (4),

the equation to a surface such that the inverse of the square of the radius vector from the point P,

will be proportional to the tangential force on the plane s when perpendicular to that radius vector.

To find the intersections of the surface and the co-ordinate planes, put x — o, y — 0, and sr = 0,

consecutively ; we thus have

cots = ^ C**,

Q

(Fig. 1.)

^y= ± pC%

as the equations to the intersections, each of which consists of two equal hyperbolas referred to the

asymptotes as axes of co-ordinates, as repre-

sented in the annexed diagram. PA, making

equal angles with the two co-ordinate axes in

the plane of the paper, is the semi-axis major,

and minimum radius vector in the hyperbola

whose vertex is A. Its position and that of

PA' correspond to the first, second, or third of

the systems of values (e) of a /3 and y, ac-

cording as the plane in which the hyperbolas

lie is that of yss, acx, or xy. Also the values

of —-- in these cases respectively are

R }_ Q 1 Pi
2T"„V' iT„'"?' 27^V'

which are proportional to

R, Q, P;

or to B -C, A -C, A-B,
or to the three tangential forces previously

designated by

T„ T,, n.
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111 each case I'A is a minimum value of the radius vector with reference to the hyperbola

of which it is the semi-axis major, and consequently PA is the position of the normal to the plane s,

when the tangential force upon it is, in the same relative sense, a maximum. It still remains

to be determined whether PA is also a mitiimiim value of the radius vector in a section of the

surface made by a jjlane tlirough PA and the co-ordinate axis perpendicular to the plane of

the paper. For this purpose, let this last-mentioned axis be first taken as that of ,r, and let

w = r cos 0, y = f sin Q sin d), z = r sin Q . cos (p,

r 9 and (p being the ordinary polar co-ordinates. Substituting these values in the equation (4.)

to tile surface, and putting (p = id" , we obtain

P'+ Q'
. , ^ (P- + Q' if-

sin- 9 —)Mn'e (5),

the polar equation to the section through the axis of x and the axis of either hyperbola in the

plane of yz.

Similarly, putting

y = r cos 9, z = rsm9 sin (p, ,v = r sin 9 . cos (p,

we obtain

-^^.i»--(^-!)-» <«).

the polar equation to the section of the surface by a plane through the axis of y and the axis of

either hyperbola in the plane of <vz.

Again, putting

sr = ?• cos 9, y = rsin 9 sin (p, .r = »• sin cos (p,

we iiave

^^n-'-«-(-T^*-T)-« «
the e(iuation to the section through the axis of z^ and the axis of either hyperbola in the plane of .vy.

cIt
Differentiating (.5), ((>), and (7), and putting -- = 0, we obtain in the several cases,

du

\(P' + Q-) - {2 (P- + Or) - R'\ sm'9} sin 9 cos 9 = 0,
j

{(i^-H R')- {siP"- + R') - Q'] sin' 9} sine cos 0=0, [
(/)

{{Q' + R') - l2(Q- + R') - P} s\n-9\ sin cos 0= 0, I

Each of these equations may be satisfied by

sin = 0, cos 9 = 0.

The first corresponds to r = es , the axis from which 9 is measured being an asymptote to the

curve. The second gives 9 = 90", and therefore r = AP, which is consequently either a maxiimini

or a minimum value of r with respect to the curve in which r and 9 are the variai)le co-

ordinates. Now since r = oo when 9 = 0, or 180", and r = AP wiien 9= !K)", it is manifest that

dr
AP must be a minimum value of r, provided — is not rendered zero by any value of 9

iiO

dr
between and ^O"; but if, on the contrary, -—- become zero for some value of 9 l)ctween those

d9
limits, the corresponding value of r must bo a minitintrti, in which c.ise PA will be a maximum

Vol.. VIII. I'aht IV. .( O
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value, since maxima and minima occur alternately. To ascertain whether any value of 6 between

dr
and 90° does render — = 0, we must see whether such value can be derived in anv of the

(19

three cases above, by equating to zero the expressions within the brackets in equations (/).

Taking the first of those equations, we have

sin=e =
P'+ Q=

which

unity.

2 (P- + Q) - R'
'

vill give a value of 9 between and 90°, provided the fraction be positive and less than

Now the difference between the numerator and denominator

= P'+ Q' - R\
and A, B, and C being taken in order of magnitude, and A the greatest, Q (= A - C) is greater tlian

R {— B - C). Consequently P^ + Q' — R^ is positive, and the denominator of the above fraction

is positive and greater than the numerator, and sin 9 is possible. The value of r corresponding to

the value of 9 thus obtained, will be a minimum, and therefore PA will in this case be a maximtim

Hence it appears that PA is a maximtim value of the radius vector witli reference to the section of

the surface by a plane through the axis of .r-, while it is a minimum with reference to the section,

perpendicular to the former, made by the plane of yz. In this case then PA is neither a maximum
nor minimum value of the radius vector of the surface.

Exactly the same conclusion may be drawn from the third of equations (/), in which case the

two sections to which PA is common, and one through the axis of x, and that made by the

plane of n-y.

The annexed figure (2) represents the curve in each of the above cases referred to r and 0,

CPC' being in the first case, the axis of x, and in the

second the axis of z. PB and PB' represent the two

minima radii vectores in these sections.

It remains to consider the second of equations (/),
which gives

... P' + R"
?,\n 9 = =

s .

2 {P' + R') - Q'

Here, the denominator - the numei-ator = P^ + R' - (^.

Now P=Q- R, (Art. 4) ;

.-. P" + R' - Q' = 2R' - 2RQ
= -2R{Q-R),

which, since Q is greater than R, shews that the deno-

minator is less than the numerator. Consequently there

is no value of d between and 90', in this case, which

dr
renders -73 = 0, and PA is here a minimum value of

the radius vector, i.e. in the section made by a plane through the axis of y. PA is also a minimum
for the section made by the plane of arz. Consequently if figure (1) represent the plane of xz, each

of the four equal lines PA is an absolute minimum value of the radius vector of the surface,

and ——J represents the absolute maximum value of the tangential force. The positions of these

lines correspond to the following system of values of a ^ and y,

/3 = 90", y = a = ± 45",
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tile- second of tlie systems (i ), (Art. 4), and the corresponding value of the tangential force is

r, = i (J - C),

the absolute maxiniuni value of the tangential force acting on a plane of indefinitely small and

constant area (s), passing through any assigned point P of the solid body, and capable of assuming

any angular position about that point. For this maximum value, the normal to the small plane,

maylie in two positions, both in the plane of wx, and bisecting the angleb etween the axes of

,r and z, the one above and the other below the axis of .i', those axes being so taken as to coincide,

the former with the direction of the greatest principal tension at P, and tiie latter with that of the

least. If one of the principal tensions be changed into a pressure, it must be regarded as a

tiegative tetisiun, and therefore as the least principal tension, and its direction taken as the

axis of X. In this case we shall have T2 = \{A + C). If there be two pressures, the greatest

will = — a. If all the principal forces be pressures, the least pressure will be - A, and the

greatest pressure - C, and therefoi-e ^2 = ^ (C - A). Thus T^ will in all cases be the algebraical

difference of the greatest and least principal tensions, considering pressures as negative tensions.*

G. .\s an elucidation of the subject, I shall consider a few particular cases.

(1) Suppose B = C ; the normal tensions will be the same for all positions of the plane s, in

which its normal lies in the plane yz, and there will be an infinite number of positions of the

plane s corresponding to the maximum tangential action, such that the locus to the normals of *

will be a conical surface whose axis is that of x, the semi-vertical angle of the cone being 45".

(2) If the mass at any proposed point (P) be acted upon only by two tensions acting as principal

ten.sions, these must be considered as the axes of * and y, the axis of z, that of least principal

tension (supposed here = zero) being perpendicular to the plane of the two tensions.

(.3) If there be only two principal tensions, as in the last case, but one of them become a

pressure, the direction of this latter must be taken as the axis of z, that of least tension.

(4) If both these principal tensions become pressures, the line perpendicular to the plane in

which they act, must be taken for the axis of x, (the axis of greatest principal tension), and the

direction of the greatest pressure for the axis o{ z.

The axes of x and z, those of greatest and least principal tensions being known, the two positions

of the plane of maximum tangential action are immediately known.

(j) Let PQRS represent a plane section of an elementary parallelopiped of the body parallel

to two opposite sides, and suppose PQRS a square. Let the forces on the

element be entirely tangential and parallel to the plane of the paper, there

being no force perpendicular to that plane Then (Art. 1) the tangential

force on each side of the element will be the same; let it = f and act on each

side in the directions inilicated by the arrows. Also let Pr/rS be the section

of the same clement, sujiposing the forces / not to act; then it is manifest tliat

tliese forces produce an evtension = SQ — Sq in the direction SQ, and a com-

presnion = Pr - PR in the direction RP perpendicular to SQ. In fact the

forces/ may be resolved into/, cos 4.')" ])arallel to SQ, extending each jiarticle in that direction,

and an equal force compressing the ])articles perpendicular to SQ. Tiie former will act as a

principal tcn.sion, the latter as a principal pressure. If A and - C be their values referred to a

unit of surface, we must iiave

A . QR sin 4.V' =/. QR cos 4.0",

.-..kI C . QR cos 45" =/ . QR sill 1.V'

;

.-. A=f, and C=/;
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and therefore the greatest tangential force

= ^{A + C)=f,

and it acts in the planes FQ and FS ; i. e. it is the impressed tangential force, as it is sufficiently

manifest it ought to be.

(6) It is of some importance with reference to the particular application of these investigations

which is here contemplated, to remark that when the general mass is so acted on by external forces

that its different elementary portions are subjected in very different degrees to the kind of distortion

represented in fig. 3., there may be a great extension or compression at particular points without

a correspondent increase or decrease on the same scale in the general dimensions of the mass.

Indications of such local extension and compression seem to be frequently indicated by the distortion

of organic remains.

SECTION II.

7. Organic remains, more especially shells, are usually found in greatest abundance along

those surfaces within a fossiliferous mass, which we recognize as planes or surfaces of separation

between contiguous beds. These shells, especially the flatter ones, will generally be found with

their flatter surfaces parallel to the surface of the bed on which they lie, and such may also be

expected to be the case as a general rule, with respect to shells contained within a bed instead of

beinn- between two contiguous beds. The first pressure to which these shells was subjected must

have been that due to the weight of the superincumbent beds deposited upon them, while the whole

remained undisturbed. If the shell yielded to this pressure it would become flattened, and fre-

quently also extended in length or breadth, or in all directions according to the nature of the shell.

It would seem probable that the proportions of the linear horizontal dimensions would not be

mucli altered by this vertical compression, but the possibility of its being otherwise should not be

forgotten by the observer. It may also be remarked, that should any horizontal elongation take

place from this cause in one direction more than another, that direction can only have reference to

the shell itself, and not to any fixed lines in space, unless it can be shown that the position in which

the shell was originally imbedded bore some relation to such lines, as for instance, that the median

lines from the beak to the margin in different shells should have been parallel to some common direction.

Any such law, however, would seem to carry with it the highest degree of a priori improbability.

When the mass became elevated and dislocated, especially in the degree in which such has been

the case in most of the ancient fossiliferous rocks, it would generally be subjected to great

pressures and tensions; but it is of the first importance to remark, that none but comparatively

small pressures or tensions could be called into action in the direction of the strike of the beds,

by their elevation into straight, or approximately straight anticlinal ridges; and that, consequently,

two of the directions of principal tension or pressure must lie in a vertical plane perpendicular to

the direction of the anticlinal line and strike of the beds, with which the third axis of principal

tension must coincide. Now in this elevation, it is highly probable that the mass will generally

be extended in some directions, and I consider it almost certain that it must, in most cases, be

compressed in other directions, these compressions and extensions taking place in the above

mentioned vertical plane perpendicular to the strike of the beds. Hence, we may conclude that

generally the mininnim tension will be a pressure, as in (.3) of last Article. The axes of greatest

and least tension through any point will lie in a vertical plane perpendicular to the strike of the

beds, and consequently the intersections of the planes of greatest tangential action with the planes

of the beds will be horizontal lines. Through every point there will be two planes of maximum

tanirential action perpendicular to each other, and therefore, dipping one of them in the same

direction as the beds, and the other in exactly the opposite direction, the strike of all these planes

being the same.
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8. Let us now consider how the distorted forms of organic remains may indicate the

directions which must have been

those of maximum and niininium C^'S- *)

tension or pressure, and the po-

sition of the planes of maximum
tangential action at some former

epoch, posterior to the elevation

which raised the general mass

into anticlinal ridges. In the

first place, suppose the planes of

maximum tangential action to

coincide, at least approximately,

with those of stratification. Let

MN represent one of these planes

on which, between two beds, the

fossil shell ^B is found, the un-

distorted form of the shell being

known. MN is supposed to co-

incide with the dip of the beds,

and the median line of the shell to lie in the direction of their strike, the plane of the paper

being vertical. Also, let CT and CP be the directions of maximum and mimimura tension

<Fig. 5.)
respectively, each inclined at an angle of 45" to MN.
Then the continuous line will represent the distorted

form of the shell, of which the original form is indicated

by the dotted line. Fig. 5, in which the plane of the

paper represents the plane of a bed, will represent the

distorted form of the upper valve of the same shell. It

is important to remark, that this angular distortion will

take place in the direction of the dip {MN) of the beds,

and perpendicular to their strike {SCS).

Again, let the planes of stratification be perpendicular

to one of the directions of principal tension, then will

MN the direction of the dip, be a direction of maximum
tension or of maximum pressure In the former case an

imbedded fossil will be elongated, and in the latter case

compressed, in the direction MN, but without any of

that angular distortion represented in the previous case

(Fig. 4), unless it should be accidentally produced by

direct compression, in which case, however, it will have

no such necessary reference to the directions of dip and

Btrike as above mentioned.

Conversely, if it be observed that the organic forms

lying between two contiguous beds, have undergone

great angular distortion, we may conclude that the

planes of stratification must have coincided more or less,

approximately, with those of maximum tangential action

produced; but if the observed distortions indicate only direct compression or extension, unac-

companied liy angular distortion, we may conclude, that the planes of stratification, at the lime

juRt mentioned, must have coincided at least approximately, with the directions of maximum or

of minimum pressure.

at the time when the distortions were
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9. The application of these conclusions to the leading object of this communication, the possible

influence of internal pressure in producing cleavage structure, may be made very briefly. If we

recotrnize the probability of this influence, if not as a primary cause, yet as effective in determining

the positions of the planes of cleavage, we must, I think, almost necessarily suppose, as I have

before remarked, that those planes must coincide more or less accurately either with planes

perpendicular to the directions of maximum pressure, or with those perpendicular to the direc-

tions' of minimum pressure, or with the planes of greatest tangential action. Now, let us sup-

pose the organic forms lying on the surface of a bed to have suffered great angular distortion,

and therefore the planes of stratification and of greatest tangential action to have been at least

approximately coincident ; then, if the planes of cleavage nearly coincide with those of stratification,

we may conclude that the tangential action and not the direct pressure or tension has been the effective

agency in determining the position of the cleavage planes ; and the conclusion will be strengthened

if we find that, as a general rule, the angular distortion is greater the more nearly the planes of

stratification and of cleavage are coincident. Again, suppose the observed distortions to consist in

direct compression or extension, without considerable angular distortion, and therefore the planes of

stratification to have been perpendicular either to the directions of greatest pressure or to those of

greatest ten.sion, and consequently inclined at an angle of 45° to the planes of greatest tangential

action ; then, if the cleavage planes be also inclined at an angle of nearly 45° to the planes of stratifi-

cation, we shall be again led to the same conclusion as above. If, on the contrary, it shoulil be found

that wlien the cleavage planes and the planes of stratification are nearly coincident, the distortion con-

sists only in direct compression ; or if, with great angular distortion, the cleavage planes should be

inclined at about 45° to those of stratification (cases exactly opposite to those previously supposed,)

we must conclude that direct pressure has been the influential cause in determining the position of

the planes of cleavage.

In the memoir already referred to, Mr. Siiarpe has collected, I believe, nearly all the evidence

which has hitherto been obtained on this subject, consisting principally of observations made by

himself and Professor Phillips, and has given drawings of several characteristic distortions, principally

of spirifer clisjiinctus, a frequent and well-known shell in some of the older formations in which the

cleavage structure is very distinctly developed. In the most remarkable specimens of Mr.

Sharpe's collection (for the inspection of which I am indebted to him) the distortions are very striking^,

and, for the most part, of that kind which I have termed angular 'distortion. Now all the most

remarkable instances of this kind, as Mr. Sharpe has stated in his memoir, are those in which the

planes of stratification and those of cleavage are approximately coincident, the angles between

them varying from one or two to ten or fifteen degrees; whence 1 should conclude that the

cleavage planes must have approximately coincideil with ihe planes of greatest tangential actixm,

and consequently that it is to this kind of mechanical action, and not to direct pressure, that

the influence in the production of the cleavage structure must be attributed. Mr. Siiarpe has

al.so described and figured other specimens taken from beds in which the planes of stratification

are inclined to those of cleavage at angles varying from forty to sixty degrees, and in these cases

the distortions (as described in his memoir) consist in a shortening of the axes of the shells in

directions perpendicular to the intersections of the planes of stratification with those of cleavage,

such as would result from direct pressure in that direction. So far this evidence is perfectly in

accordance with that ))reviously cited, for it indicates that the direction of maximum pressure must

have approximately coincided with the planes of stratification, and therefore that these planes must

have been inclined approximately at an angle of forty-five degrees to those of maximum tangential

action. Consequently these latter planes must have approximately coincided with the cleavage

planes in this case as well as in the former one. This latter evidence, however, furnished by Mr.

Sharpe's specimens is not, probably, nearly so complete with respect either to the number of dis-

torted shells or the distinctness of their distortions, as that furnished by the shells first men-

tioned as so curiously and distinctly characterized by great angular distortion. Still, the
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evidence hitherto adcliiGed appears to be, on tlie whole, consistent with itself and strongly in favour

of the conclusion that whatever may have been the influence of pressure in producing a laniinatiil

structure, that influence must have been due to the tangential action parallel to those planes, and

not to direct pressure perpendicular to them. In fact, I regard the specimens above mentioned,

in which there is great angular distortion combined with an approximate coincidence of the planes

of cleavage and of stratification, as almost decisive against the latter conclusion.

In the search of further evidence, the observer should direct his attention especially to those cases

in which the inclination of tlie cleavage planes to the bedding is either small or nearly 45°. In

the former case, according to the above inferences, he may e.xpect to find great angular distortion

of the fossils lying (as they will very generally be found to lie,) with the plane of separation

of the two valves parallel to the surfaces of the beds ; and in the latter case he may expect to

find the shells characterized more especially by direct compression or extension (more probably the

former,) in the plane of the bed, and in directions perpendicular to tiie intersections of that plane

with the planes of cleavage. At the same time it should be remarked that the angular distortion

may be accompanied by a lengthening or shortening of the .shell, (more probably the former.) in the

direction of the dip, and also that a considerable direct compression is not likely to be produced

without some degree of angular distortion; but still, if the above conclusions be true, angular dis-

tortion in the one case, and direct compression or extension in the other, ought e.specially to

characterize the actual forms of the organic remains.

It might be objected against the theory to which the preceding conclusions tend to lead us, that

if tangential action has been an effective cause in the production of the laminated structure, there

ought to be two systems of cleavage planes at right angles to each other, since there are two such

systems of parallel planes in which the tangential action is a maximum ; and this might, I think, be

regarded as a valid objection to a theory which should assign the mechanical action here considered

as the primary cause of the laminated structure ; but the objection may probably be obviated in a

great degree, if we regard this kind of mechanical action only as a secondary cause, for it is very

conceivable that it might have greater effect in aiding the development of the structure in question

along one of the systems of planes of greatest tangential action than along the other. AVhatever

may be the apparent force of this objection, however, the discussion of it may be regarded, perhaps,

somewhat premature till further observation shall have ascertained more distinctly what indications

may be found of the existence of a second set of cleavage planes less developed than those which

more immediately attract our notice. The point is deserving of the attention of the geologist.

The adoption of the opinion, that the mechanical agency above described has been one efficient

cause of the laminated structure, necessarily involves the conclusion of that structure having origi-

nated at some epoch posterior to the great movements which have determined the general configura-

tion of the external surface, and the geological structure of large portions of the eartii's crust, which

are observed to possess this laminated character. It is also a necessary inference tliat the line

of strike of the planes of lamination must coincide with that of the planes of stratification (Art. 7).

The results of observation undoubtedly corroborate this latter inference, for it would appear that

we may state as a general fact, that the strike of the planes of cleavage is jjarallcl to the directions

of the anticlinal lines of the district. The amount and character of the local deviations from this

law are not yet in any case, I believe, accurately determined. Observed facts appear, also, to

corroborate the above conclusion respecting the epoch at which the laminatcil structure was super-

induced ; for the persistency with which the strike and dip of the cleavage planes are frequently

maintained through disrupted and contorted strata, distinctly imy)lies that the lamination must have

lieen produced after the elevation and disruption of the general mass. These general facts are in

harmony with the theoretical view of the subject which has been here presented ; how far the more

detailed results of observation will be found so remains to be determined.

Geologists are well aware that currents of electricity have been assigned as a probable cause of

the laminated structure, and that this hypothesis has received great support from the results of
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experiments made in the fiist instance by Mr. Fox, and afterwards repeated by Mr. Hunt, as

described by the latter gentleman in an interesting memoir, contained in the Memoirs of the Geo-

logical Survey of Great Britain, Vol. i., on the influence of magnetism on crystallization. It

would be foreign to my object to enter into any discussion of a theory founded on these experi-

mental results ; and indeed detailed discussion of any theory on the subject would be, I conceive,

at present entirely premature ; but I would remark that views of the subject founded on these

results, and those founded on the observed facts respecting the distortion of organic forms, are

by no means to be considered as opposed to each other. On the contrary, it is very possible

tion we may hereafter be better able to account for the phenomena of lamination by the joint opera-

that of the causes to which they would be referred respectively according to these two views of

the subject, than by the independent operation of one of those causes only.

In concluding this communication, I would especially remark that the advocacy of any parti-

cular theory on the subject of cleavage structure has formed no part of my object. Our ignorance

of the physical causes of crystallization, or the manner in which such supposed causes may ope-

rate, is too great to admit of our forming at present any theory on the subject which might not be

deemed altogether premature. All I would here insist upon is this—that the facts observed by

Professor Phillips and Mr. Sharpe indicate certain determinate relations between the distortions of

organic forms and the positions of the planes of lamination of the beds in which those forms are

discovered, relations which seem to imply that the forces which produced the distortion had also

their influence in determining the planes of lamination. My object has been to point out the

accurate mechanical conditions of the problem, and thus to indicate the points to which the

attention of future observers should be especially directed in order that their observations may
afford conclusive tests of the truth of any theory which may hereafter recognize the efficiency of

the mechanical agency explained in this paper, as one of the causes of the laminated structure.

W. HOPKINS.
C-AMBRiDQE, Moy S, 1847.
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[Read March 1, 1847-]

Introduction.

The researches of which an account is here presented, had their origin in tlie following

manner. In the Autumn of 1846, having communicated a Theorem (which will be found in the

sequel) on the Partition of Numbers to Professor A. De Morgan, I received from him an oblio-infj

reply, wherein he intimated a wish that I would turn my attention to Combination.s, as a depart-

ment in Mathematics, which, he thought, much needed cultivation. I acted upon this suo-o-estion

and shortly afterwards sent to Mr. De M. results, and subsequently from time to time further

results, which he wished me to render public. These I placed at his disposal ; and, with my
concurrence, he drew up an account of my Researches, in a Paper which was read before the

Society on the 1st of March, 1S47.

After the reading of this Paper, further suggestions presented themselves to me, of which I

drew up an account, and this was laid before the Society by way of Supplement to the former Paper
of Professor De Morgan. Still further in)provements again occurred to me ; and it then seemed to

me desirable that both Papers should be withdrawn, to give me an opportunity of revising my own
researches, and of incorporating the revision in one Paper to be communicated to the Society.

Many important original observations on the same heads of inquiry, proceeding from Professor

De Morgan himself, were contained in the Paper which he drew up ; and I should much regret

if, in consequence of the course which I have suggested of withdrawing that communication, those

observations were to be lost to the Society and the public.

It was as impossible for me, as for any other person, to hold communication with tliat gentle-

man on Mathematical questions, and avoid deriving great advantage from his sagacity and erudition

in Mathematics. I have not, I trust, abused those advantages by appropriating to myself anything
which belongs to him ; but I have endeavoured, while possessing those advantages, to carry on my
researches with originality and independence.

SECTION I.

On the Partitions of Numbers.

1. Fkom a recollection of the inipcjrtant application made by Waring of tlie Partitions of

Numbers to the developcment of tlie power of a Polynonip, I was leil to investigate their ])ro[)erties,

in the hope of discovering some ready method of determining in how many different ways u given

Number can l)e resolved into a given number of parts.

Assuming the Unit to be the lower limit of the magnitude of tlie ])arts, 1 I'omikI that it the

Number to be partitioned, A'^, were expressid in terms of a certain Modulus, m, so that N was

Vol.. Viii. Paut IV. ,T P
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= mt + r, the number of the ways of resolving N into p parts could be expressed in the form of a

rational and integral function of the factor, t. Thus, in the case of Bi-partition, 2 being the

Modulus, and the Number being 21, or 2<+ I, < is the number of the partitions. In the case of

Tri-partition, 6 being the Modulus,

For N = 6t, the number of the partitions is Sf,

= 6< ± 1 <[3i!±l],

= 6<±2 <[3i!±2],

^ 6t + 3 3f + 3f + I,

and in the case of Quadri-partition, when the Modulus is 12, and t becomes of 3 dimensions, I also

ascertained the formula;. But perceiving that, since the modulus and the dimensions would increase

with the number of the parts, the functions obtained would be so many, and of such complexity as

to be of little or no practical utility, I abandoned that method, and sought for some other. Having

at last discovered the method here proposed, (Arts. 7 and 8, Sect. 1,) I communicated the same to

Professor A. De Morgan, trusting to his known Mathematical erudition for obtaining the information

I required—whether the method was novel. By his reply, I was made aware that the Partitions

of Numbers had received a share of his attention, and that he had written a paper on the subject,

which was publislied anonymously in the -ith Volume of the Cambridge Mathematical Journal. He
further stated that, after the date of that publication, he had also discovered the Theorem which I

communicated to him ; though he had not announced it ; and since I iiave no doubt of the entire

accuracy of that statement, he must participate fully in any credit that may attach to the discovery

of the formula in question.

In this Section of my present Paper, I have limited myself, as regards these partitions, to

what I considered necessary for the proof and illustration of the Theorem in question. Other

matters bearing on the question of Partitions occur in the Section on Combinations.

2. The number of the different ways in which a Number, N, can be resolved into p parts,

when no number is admitted as a part, but such as is either equal to, or greater than, the arbitrary

number, rj, may be denoted by \_N, p^']. We may term j; the lower limit of the parts, or parti-

tion, or, for brevity, the lower limit. By a, p — partition of N, I mean any set of p numbers,

having N for their sum.

A partition included among those, the number of which is denoted by [_N, p ], may consist of

parts exclusively equal to, or exclusively greater than >; ; or it may contain some parts equal to,

and some parts greater than tj.

\_N, p^'\ includes the whole of \_N, jo, + i] ;

\_N, p,+i] includes the whole of [A^, p,+s] ;

and, generally, the partitions which have t) for their lower limit, include all those partitions in

which the lower limit is greater than »;.

3. If to or from eacli part in every partition of N whose lower limit is »;, a given number

be added or subtracted, N will be increased or diminished by the amount p9; but the number of

the partitions, and the number of the parts in every partition, will remain unchanged: i.e.

\_N, pj = [_N^pe, p,^,] (I).

This involves the conclusion, that we recognize 0, and negative numbers also, among the

admissible parts; unless we expressly assume that they are to be excluded. It also involves the

recognition of negative numbers, as the subjects of partition, unless their exclusion be expressly

stipulated.
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4. Since N = rj + (iV — tf), therefore take all such (p — 1) — partitions of A'^ - tj, as have »;

for their lower limit ; and with every such set of parts let rj be conjoined as an additional, or p"'

part. We shall thus obtain all such p — partitions of A^, as, besides having r; for their lower limit,

agree also in containing at least one part equal to ?;. From these partitions, therefore, are excluded

all those p - partitions of N whicii have for their lower limit >; + 1. Hence,

[N, p,]-[N, ;,,^,] = [N-r,, p-t^] (H);

.-. also IN+ V, P+ I,] - [.V+^, p+ 1,,,] = [A^ joj (ii*).

5. In [A'^, p^], let N <prj. If negatives be admitted, then let A'^ be the greater negative;

and by the addition to »; of a positive quantity greater than r/, and to A^ of a positive quantity

greater than prj, let the lower limit and the number to be partitioned be rendered positive. Since

no positive integer less than prj can be resolved into p parts liaving a positive integer, rj, for their

lower limit, no partition of the kind indicated by the notation can be effected. Therefore,

when N<py], \_N, p^'\ = (m).

Then if i; be positive, and p is also a positive integer, [o, yj^] = 0.

The two following extreme cases, [A'^, 0^], and [o, 0,^] require explanation.

By (II.) IN+n, 1,] - [A^+ „, J,+,] = [A^ oj.

But, when A'' and ») are positive integers, [A'^ + ri, I^] = 1,

and [A^ + >;, 1, + ,] = 1;

.-. \_N, oJ = 1 - 1 = (,v).

Also, by (ii.) [A^, 1^^] - [N, Ij,^.,] = [0, 0^].

But [A'', 1.,] = !; and, by (ill.) [A'', 1^^.,]=0;

.-. [0, 0;^] = 1 -0= 1 (v).

Hence also, if A^ = p>j, \_N, pj = [p,;, ;jj = [o, pj] = [/>, ;j,] = I.

6. Professor De Morgan (as he informs me) has, in the Cambridge Mathematical Journal,

traced Equation (ii.) to its consequences, in the case where the number of parts is preserved

constant, and the variation is thrown on the number to be partitioned.

In this ease, [A^, ;j,] - [A^, ;j,^,] = = ^N - t,, p -
1,],

[N, p,+,] - [A^, p,+,] = lN-r,-i, p- 1,+ ,] = [AT - ,, - P, P - 1 J.

[N, p,,,] - [A^, ?.,,,„] = [N-rj-e, p- 1,,J = [A^ - ,; - j,e, p - 1,]

;

.-. [iV, p,] - [A^, p,,,^,] = S'l [A^ - „ - P^, P - I,].

Here >/ is the lower limit of the parts admitted, and r] + 9 + \ is tiie lower limit of tiie parts

excluded ; that is to say, all those partitions are excluded which have every part greater than t^ + O.

Write Y' for r) + Q. Then let N = pY + r, r being a remainder less than p, and Y the integer

A'
nearest to, but not exceeding — . When Y becomes Y, [_N, 7^r+i] = ^^

.: [N, ;.,] = [A^, py,,] + Sj-^ [N -r,-pz, p- i J

S^-^lN-n-pz, p-i^-]

= [A^ y>r+,] + .Vr-''[A^-(1 +plr,-l-\)-pz, p - I] (VI.)

X 1

S^--" [N-0 +p[,i- 1]) - P^, P- 1] (v>>.)

s I

.-J I'

2
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Thus, [31, 5j = .S".' [20 - 5z, 4,],
z

= [20, 4,] + [15, 4,] + [10, 4j] + [5, 4,] ;

i.e. 101 = 64 + 27 + 9 + 1.

7. By a different transformation of the equation of differences, (11), we arrive at a different

summation ; in which the number remains constant, while the parts vary. In that equation, if we

write q for p, we have,

[iV + »;, 9 + 1] - [N, 9,] = [iv + v, 9 + 1] = [N-q>h 9+1];
1 1+1 '

[iV + 2 V, 9 + 2] - [A'' + »7, 9 + 1 ] = [JV + 2 ,;, 9 + 2] = [iV - 9 >,, 9+2].
>i 1 1+1 '

[N + pri, q +p'] -lN+(p - 1)11, 9+ (p - 1)] = \_N+prj, 9 + p] = [N - q>i, 9 + p] ;

.-. [N + p,,, q+p] - [N, 9j =S^\_N-q,,, q+z].
n ^ 1

Now [N, 9 ] vanishes, either when A^ < qtj, or when q = 0; the exception to the latter case

being \rhen N = qtj. \i N < qt); then, since

\_N + pv,, 9 + p] = [iV - 9 V + 9 + ;J> 9 + ?J] = 0>

and [iV, ^rj = [iV-9^ + 9, 9,] =0,

it follows that 6*^' \_N - 9»;, 9 + «] =0.
^ 1

And we have only + = 0.

But if 9 = 0,

[AT + p, p,] - [A^, 0,] = ^f [A^, z,-\ ;

z

.: IN + p, p,] =.S':[A^, s;,] (vm),
z

or [A^, p.] =^;[Ar-p, .-,] (vui*);

.-. also [N, P,]^S^lN-p,,, z,-] (IX).
z

Thus [31, 53] = [16, 0] + [16, 1] + [16, 2] + [16, 3] + [16, 4] + [16, 5].

Or, 101 = + 1 + 8 + 21 + 34 + 37.

The following very elementary proof of this proposition has also suggested itself to me.

We shall exhaust all the ways of resolving A'' into p parts, having 1 for their lower limit,

if we take

1st, p - 1 units, and the remainder N - (p - 1) entire, not less than 2.

2d, p - 2 units, and the Bi-partitions of the remainder N - p + 2, not less than 2.

7«thly, p - m units, and the m - partitions o{ N - p + m, not less than 2.

Lastly, p - p = units, and the p - partitions of A'' - p + p = A'', not less than 2*.

When ?)> — , the greatest value of m is N—p; and the

partition of N, corresponding to that value, is [(2^ - JV) units,

and ( A^-p)tepetitions of the number 2]. As regards \\\e number

of the partitions, the two

comprehended in formula (viii*)

N N
cases of p not >-^. and P> ^) are both
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From each of the parts, in every one of these partitions, deduct 1.

Then we shall have

L^, P^l = [^ ~P, hi + [N-p, a,] + [N-p, m,] +

Also, iN + p, p,-\ = [JV, 1,] + [N, 2,] + [N, p,];

[A'-jB,]:

A" =
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on the (n + l)"" line of the same diagonal may be found; and so in succession, to any required

extent, until they become constant : (vide § 9).

The consequence of the preceding equation is, that any term in the table, say that on the p""

line, in column N, is equal to the sum of all the terms from line to line p inclusive in column

N — p ; which is the column at the same distance backwards from column N, that the line o is

from the line p.

y. If in the table we draw a zig-zag line from [o, O] to [12, 6], it will be seen that all the terms

below that line are of constant recurrence, and are identical with the numbers 1, 1, 2, 3, 5, 7, 11,

15, &c., which arise from the summation respectively of all the terms in the columns 0, 1, 2,

3, i, 5, 6, 7, &c. 1 proceed to explain this. Let any diagonal line proceed from the head, say

of column J, advancing simultaneously one column and one line. AVhen that diagonal cuts the line

p, N will be equal to A + p.

Now [A + p, p'] = S^\_A, Z-],

and whenp = A, or > A, its value becomes constant, and is [_2A, A] = [A, o] + [A, l] + ... [A, A],

that is, it becomes equal to the sum of all the terms in column A. Thus one-half of the whole

table is occupied by terms = ; and an additional fourth of it by these constants ; and were it

thouo-ht requisite to compute a table of the partitions of numbers, it is only the terms that occupy

the reraainino- fourth of the whole space of the table, that would actually require computation by

the method of differences : and of this fourth the three first lines are so obvious, as merely to

require being transcribed.

SECTION II.

0?i Comhinations.

1. The well-known Theorem in Combinations enables us to determine in how many different

ways u elements can be taken at a time out of s elements, all dissimilar. It is the coefficient

of .r" in the developed power of the binome, [l -i- a?]', which, in this case, affords the solution of

the problem.

2. In the first case of combinations which I now propose to investigate, the combining elements

are also of s different kinds ; but there may be more than one element of the same kind : for instance,

a of the elements A, (3 of the elements B, and so on ; and the question proposed is,—In how many

different ways u of the said \_a + j3 + &c.] = cr elements can be taken at a time, on condition that

those which are plural in their respective kinds, may be repeated in the same combination ?

3. Combining elements of the form proposed are found in the s geometrically progressing

polynomes,

[l + Ax + A'x- + ^"j;"] X [l X Bsc + fi'**^] X &c.,

and all the possible combinations of these elements, taken 0, 1, 2, , m, cr, at a time,

are respectively found aggregated, each with a positive sign, in the coefficients we obtain of

y, a?', .x^ x", , x",

when the product of the said polynomes is developed according to the powers of x. That develope-

ment, supposing all the coefficients to be complete, is of the form

\ + S\_A']x + S{A'' + AB']x'+ SIA'^ A'B + ABC^x^+

+ S lA" + A"-' B + A"-- (.B-' + BC) + &c.] .r" -i-
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If 1 be now substituted for each of the elements A, B, C, &c., the polynomes will respectively,

become [l + w + or + ,i"], [l + j? + x^ + .r^], &c., and the coefficient of x" in the de-

veloped product, now that 1 has become the value also of each term of the form A^B^C in that

product, will represent, not only tlie sum, but also the number of all such terms : that is to say,

of the different combinations which can be formed with the a elements, taken u at a time.

•1. That coefficient is an explicit function of u, which I now proceed to determine.

The product of these geometrical polynomes, is

1 - ^''+'
1 - .v^*'

.
. &c.

:

\ — X \ — X

that is, (1 -.r)-' [l ->?;''+'] [l -.r^ + '] .&c (xi.)

But [l - ,r]-'= 1 +«a;+ -^ ^v" + 7^''^" +

= r^ [!'-
'

I

' + 2«-'
I

'
* + [m + l]'-'

I

' w" +].

For the sake of brevity,

Let u+l be represented by u/-,

a + I by "/

'

/3+ 1 by/3,; &c.

1st. When each of the s kinds of elements. A, B, C, Sec. admits of unlimited repetition, the

required coefficient of x", will be

I
and in this case, of plural elements, all kinds admitting of unlimited repetition, a solution of the

comljination problem, to the same effect as the preceding, has, as Mr. De Morgan informs me,

been given by Hirsch.

adly. When the elements of one kind, A, are limited in number to a, but the elements of

the other (s - 1) kinds may be repeated without limit, the required coefficient, (which is that of

(1 -.r)-'[l -a;"]), will manifestly be

P^[";-r-K-«J-T]' (''"),

from which expression however, the second term is to be excluded, in case [m, - aj should be

negative.

.3dly. When the elements of two kinds, A and B, are limited in number to a and fi re-

spectively, but the elements of the other s - 2 kinds may be repeated without limit, the required

coefficient, (which is that of .r " in the developement of (1 - .r)"' [l - .r"] [l - .t"]), will be obtained

by performing on formula (xn) with fi the same operation that was before performed on formula

(xi*) with a . Tile result will manifestly be

,
(«;-'!'- [«--«J"T+[",-«.-/3,l-r I

-II
(xm).

• I line the facloriiil notatidii, in which

»"|
' rcprcpicnm « («H- I) (s +2) U + ("~^)i'

and «"|-i «(»-l)(»-2) f«-(u-l)].
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from which expression, however, every factorial expression is to be excluded which has a negative

quantity for its first factor.

4thly. By operating on formula (xiii), with y^ in a similar manner, and on the result of that

operation with 5^, and so on in succession, until there remain no factors undisposed of, we shall

obtain for the coefficient of the developement of [l - a;]"' x [l - .r"] [l - aP'\, &c. the following

expression, subject to the same rule as before, of omitting every factorial which has a negative

quantity for its first factor

:

I"?//-'!'
-[m -aj'-i|'+ [,«^-a, -/3J-'|' -&c.-

- K - 7,rt + [«. - /3, - xrT - &<=•

- &c. + &c.

1,-1 1 . »

.5. Now if a, fi, 7, &c., are all equal, that is to say, if the required coefficient is that of ,r"

(XIV).

in the developement of I

J*,
formula (xiv) will become

<"T -«[w -«,]'"'
I' + 4TrK-2a,]'"'|'-&.c.

(XV);

+ (-0'r^-K-e«j-T+8 &̂C.1

where, for any determinate value of u, the maximum of Q is the integer nearest to, and not

exceeding — ; but if u attain its maximum (which is sa), then the maximum of is thea+l '

«a + 1

integer nearest to, and not exceeding .

a + l

Example of formula (xiv).

How many different combinations can be formed by taking 2, or 8, at a time, of the 10 elements,

of 4. different kinds,

A, BB, CCC, DDDDi

Answer, for u = Z; fS . 4 . 5 - 1 . 2 . sl = Q.
1.2.3'- -

Answer for m = 8.

f9.10.11- 7.8.9 + 4.5.6,

-6.7.8 + 3.4.5

-5.6.7 + 2.3.4, = ().

-4.5.6+2.3.4

+1.2.3

Example of formula (xv).

How many different combinations can be formed by taking 2, or 8, at a time, of the 10 elements,

belonging to 5 different kinds,

A A, BB, CC, DD, EE?

1.2.3
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Answer for 2 ;
— .3.4.5.6= 15.
1.2.3.4

1.2.3.4
[9. 10 . 11 . 12 - 5 .6. 7 .8 .9 + 10. 3 .4.5 .6] = 15.

6. In cases of Combination, such as those to which formulas (xiv.) and (xv.) apply, when it is

required to determine the number of Combinations corresponding, not merely to one or two powers

of ,r, but to the entire range of the values of u, from to [a -i- /3 + 7, Sec] = o- in the former case,

and from to sa = a in the latter, the expression (xi.) for the product of the s Polynomes suggests

the following method for determining arithmetically the entire series of the Coefficients. The

method will be best explained by an example.

How many Combinations can be formed from the Six Elements A, BB, CCC, taking 0, 1, 2i

3, 4, 5, 6 of them at a time.

I

Different Values of u
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conjoined; that is, by cr elements, of s different kinds, which combine u at a time; assuming the /

kinds to be different from the s — t kinds.

Let the Combinations which can be formed by

taking u* at a time of the <j elements, be [ii, a\.

V T {«, tJ.

... u-v or - T \it ~ V, ct-t}.

Imagine some determinate values given to the variables u and «. Every Combination
J?«

- u,

T - t} may be paired with every Combination [v, t] ; and thence will arise ]it — v, <r — t\

X {v, t} different pairs, each containing u elements of the s kinds. If u remains constant, while

v varies, there will be a pair for every value of v from to u, if m < t ; and from to x, if u > t.

Thus we have, for u < t,

{?/, o-} = {u, a - t} {o, t} + \u - 1, a- - t\ x {l, r] +

+ {l, (T-t\ {u- i, t\ + {o, a -t\ \u, t} (xvi).

For M > T,

{u, <t} = {u, o--t} {o, t\ + \u- 1, ct-t} {l, TJ + (xvn).

+ {u - T + }, o--t}{t-I, t\ + \u - t, a- - t\ \t, TJf.

Now in each of these expressions write {a - u) for u ; and we shall have in the former

a - u>(T - T ; therefore some of the terms at the commencement of this formula fail ; in the second

expression we shall have cr — u < a — t.

For cr - u > cr - T,

I
<T - u, cr] = [cr - T, <T ~ t\ \t - u, t} + {ct - t - «., ct-t} \t, t} (xviii).

For a- - ti< (T - T,

{<T - II, (T \
= {cr - u, or - t} {O, t\ + \a - t - u, cr - t| {t, t} (xix).

I shall apply this method to the two examples before given, where we have for the Combinations

"f A, BB, CCC, taken 0, 1, 2, 3, 4, 5, 6 at a time,

I, 3, 5, 6, 5, 3, 1 Combinations;

and for the Combinations of

DD, EE, taken 0, I, 2, 3, 4 at a time,

1, 2, 3, 2, 1 Combinations.

From these numbers, we have to determine the number of the Combinations of all the Elements

A, BB, CCC, DD, EE, taken together o, i, 2, 3, i, 5, 6, 7, 8, 9, 10 at a time.

• 1 write {«, <r} to tleiiote the number of Combinations formed I 1 "> « I
- ^ef 1

^'"^
I ^ {

M-v. ff — t
} J ;

by ^elements, plural or singular, of any kind or numbers of lands,
|

^„j ,^6 terms of the table itself are given by the equation
when those elements are taken u at a time

: ( 1 is "sed instead of . [„,„]= [„, „][„_„, OJ ; which means that the term on line u.

I J,
in order not to confound Combinations with Partitions. column i>, is equal to the product of the term on line v, column

+ Tile formula is perhaps better given in the condensed form, ! v, by the term on line (w— v), column 0.
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V =
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number of the kinds from which the ^< Elements are taken, shall he z ; or this additional limitation,

that „j of the x kinds shall each contain v elements

;

m' v' ;

m" V ;

and so on ; and the Elements from which such Combinations are to be formed, may admit either of

limited, or unlimited repetition.

10. If the given Elements are of s kinds, and may be repeated in each kind without limit, the

Coefficient of x", in the product of the geometrically progressing Polynomes, will consist of terms

in which there are u elements of one kind, ... of 2 kinds, ... of » kinds, ... z never exceeding u,

and finally, when ti becomes equal to, or greater than s, becoming equal to s. Consequently, the

models or types, after which these several terms in the Coefficient of x" are formed, will depend

altogether on the partitions of the number u into 1, 2, 3, ... z parts. If u < s, the number of

these terms will depend on the number of the partitions of u enumerated in the expression,

[m, li] + [ti, 2,] + [m, Ml] = [-2 M, M,].

When u becomes equal to s, the number of these partitions will be [2 s, s]. When u > s, the

number of the partitions will be

[m, 1,] + [m +2i] + [?«, «,] = [u + s, s,].

See Article 7, Section I., of the present Paper.

Thus, if the Elements are of 6 kinds, and they are to be combined together 7 at a time, there

will be in all [ 13, 6] =14 types, in accordance with which all the Combinations, containing

7 Elements each, will have to be constructed ; and these types are the following partitions of the

number 7.

Number of

kinds.
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Since the s kinds of Elements can be combined sr at a time in —L— different ways, and siiire

the different s parts of the above partition admit of being permuted, and in that way differently

distributed among the z kinds of Elements, in —-, —r,—zrTT-r; different ways, the number of theo
1 M 1 " 1

different Combinations of the proposed form, in case of unlimited repetition, will be

s'\-' r'l' _ s']-'

js 11
l'"|' l"'!' J'""U ~

2'"
I'

|m'l I j""'! 1 V'^"/'

and if corresponding to every different ss — partition of u, we construct a similar expression, the sum
of these will give the total number of the Combinations which can be formed from the s kinds of

Elements, when in each Combination there are u Elements of :i kinds.

11. In the case of unlimited repetition, the aggregate of all the terms, containing u Elements of

z kinds, admits of Summation. For, if in each of the z — partitions of the number ?<, the parts be

permuted one with another, the number of all these permutations will be

equivalent terms in the developement of the Binomial [l + l]"~'. This will appear from the

following consideration. In the case of > partition, the parts can be permuted in one way.

In the case of > partition, the parts can be permuted in {u — l) ways. Integrate the

factorial successively up to 2'"' [l], or 2'"" [u - l] ; and the formula (xxi.) will be the Integral.

Consequently, the number of the different Combinations, containing u Elements of sr kinds,

will be

-jVp- X ^.-IM (''Xll).

Example. How many Combinations, containing eight Elements of three kinds each, can be

4.3.2 7.6
formed from four kinds of Elements, unlimited in number. Answer ——'-— x —^ = 84.1.2.31.2

Now the sum of all the terms of the form (xxii.), from z - 1 to z = u, ought to be equal to the

g"
1

1

Coefficient of w'\ or to -;7|, : and accordingly, if we give to the product (xxii.) the form \«, a}

X 1^ - 1, ?/ - 1 1 , it will appear to be a particular case of the general theorem, Article 7 of the present

Section, last demonstrated ; so that S"
[f;?, «} x {» - I, ?< - 1 1] = {u, s + u - t\ =-V|;' '''^ ''•'*'

r ^
I

term in the developement being 0.

12. Suppose the Elements in the s given kinds to be limited in point of number. Let it be

required to form, from these elements, Combinations, each containing (u) elements of » kinds, with

this further limitation, that

m of the z kinds shall contain v elements, each :

rn' V :

m" ,. v" : and so on.

1st. If none of tiie given kinds contain as many elements as are denoted by any one of the

numbers v, n', v", ... , no such Combinations as are required, can be forinud from the given

elements.
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2ndly. If any of the given kinds contain fewer elements than are denoted by the least of the

numbers v, v\ v" ... , such kinds, it is manifest, may be wholly omitted from consideration.

Srdly. If any of the given kinds contain more elements than are denoted by the greatest of the

numbers v, v', v" ... , the excess above such greatest number may be wholly omitted from con-

sideration ; and, in the same manner, if any of the given kinds contain a number of elements

intermediate between two of the numbers v, v', v", ... , the excess above the least of these two

numbers may, in the course of the operation hereinafter directed, be wholly omitted from con-

sideration.

Thus the given set of elements admits of reduction to t kinds, containing at least v elements

each :

-I- T' kinds, none of which contain v elements, but each of which contains at least v' elements :

-I- T' kinds, none of which contain v' elements, but each of which contain at least t>" elements, &c.

Thus there will be t kinds to supply m kinds in each Combination with v elements each :

/ ^ m + T' = t' kinds, to supply m' kinds in each Combination with v' elements, each : t' - m'

+ T' = t" kinds, to supply m" kinds in each combination with v" elements each : and so on.

Therefore since m kinds have been chosen out of t kinds;

m out of t' ... ;

m' out of t" ... ; &c.

the number of the Combinations of kinds that will be formed, in which the several kinds will

contain the requisite number of elements, will be

—
^,-r X -—7rT X -—.. - X &EC (xxiu).

1'"

I

' 1"'
I

' 1'"
I

'

Example.—From the elements F\ E", D\ (7, JS", A, how many Combinations of the form

or type,

s " 1 1.5, .., i, 1

can be constructed ?

Since 3 is the highest number in the type, reduce the given elements from

6, 5, 4, 3, 2, 1,

to
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How many Combinations can be formed in accordance with that type ?

Here s = 4 ; z = 3; m = \ ; m' = 2.

4.3.2
And the number of Combinations = —-t- ,- = 12.

I'I'.l'l'

Given the same elements.—How many Combinations can be formed in accordance with the type

6, 1, 1 ?

Since 6 is greater than the given limit 5, the Answer is 0.

14. Before closing this Section on Combinations, I shall beg to notice that all of the theorems

it contains, admit of an important application, and that is, to the properties of Composite Numbers.

It is known, for instance, that, if the elements J, B, C, &c. represent primes, a composite

number, of the form A". B^. C. &c., will liave the total number of its divisors represented by (a + 1)

(/3 + 1) (7 + 1) &c.; but if the question be, how many divisors such a number has that are of u

dimensions, the answer to that question will be obtained by means of formula (xiv). But it will

suffice to have hinted at these analogies.

k

SECTION III.

On Permutations.

1. When there are s different kinds, each containing only a single element, these elements

iken M at a time, will form «°
|

"' different Permutations ; where s°
|

"' = 1"
|

' x the coefficient of .r"

n [1 + ,i]~ developed. But when any of the « kinds contain more than one element, and the

plurality of the elements is short of infinity, it is only in the particular case where u is equal to the

united number of all the elements belonging to the s kinds, that the number of the permutations

has hitlierto been determined. In this case, if there be a elements of one kind, |8 of a second kind,

7 of a third kind, &c., and a + /?{ + 7 + &c. = o-, the number of the permutations formed by the a

things taken all at a time, is —7-—s-rr n , according to the well-known theorem.° 1" '
. 1**!

'

.

i^l'.&c.
"

2. The latter formula denotes the number of permutations which the a elements of the kind A,

the /3. elements of the kind B, the 7 elements of the kind C, &c. are capable of forming, when,

instead of being permuted indiscriminately, the .^'s, the fi's, the Cs, &c. change their order of

sequence in resjiect of one another, but in respect of the elements of their own several kinds, preserve

an immutable order of sequence. If the a elements A, not to the full extent of 1"| ', but to some

limited extent, undergo the permutations P{a) ; and in like manner the /3 elements B to the limited

extent P(fi)-, and the 7 elements C to the limited extent ^(7), &c. the number of the permutations

which the cr things will then together form, will be

i'iM^i'Tv|',&c .

^ ^^"^' ^^^^' ^^y^' ^' ^"''"^-

3. To determine generally the number of permutations which can be formed from any given

set of elements, taken u at a time.

Let any partition of u be p + q + r + &c. = v.

It has been shewn, in Articles 12 and 13 of the preceding Section, how to determine the number of

I

all the Comljinations which can be formed from a given set of elements, when each Com1>ination is ti>

I

consist of u elements of ;:; kinds, and i.s to accord with any particular partition of u, or type. If
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that partition be p, q, r, then, in the number of combinations so determined, are included, not

only those of the form J''B'C\ VET, &c. (in which the kinds of elements are changed), but

also those of the form A'BfO, D'E'Ff, &c. (in which the kinds remaining the same, the order of

sequence in the numbers p, q, r is altered). Let the total number of the combinations correspondmg

to one such partition of u be denoted by Q. Then since every such combination wiU give rise to

'''^'^'^
= ! different permutations, if we denote -r „ , i ,,. .r.i ^y -P'

iPp I'l'.rl'. l''|'.l'l'.l'l'
f] .I'l .1 1

every different partition of u, or type, will give rise to Q x P permutations. We must therefore

determine by Articles 13 and 14, the number of the combinations corresponding to all the different

partitions of u, and also the corresponding permutation factors, and take the product
;
and the sum

of all these particular products, or ^•[Q x P], will give the total of the permutations which can be

formed from the elements taken u at a time.

1st Example. Given the set of Elements^*, B', C°. Required the number of all the Com-

binations and Permutations of those Elements, when 7 are taken at a time.

Here i< = 7 ; « = 3 ; and, since all parts are to be excluded which exceed 4, s: in this case

aries only from 2 to 3.

(riven

Elements.
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time, had not the formulee xiv and xv, or the metliod described in Article (6) of the former Section,
afforded a readier method of attaining the same object. In the case of Permutations, I have not
succeeded, except in certain cases, in readily determining by means of an explicit function of u
the number of the permutations formed by m elements of s kinds.

5. It is a known formula, that when the elements in all the s kinds admit of unlimited repe-

tition, the number of the permutations which can be formed by taking m elements at a time, is

expressed by «°.

If we take the form I have assumed, in Articles (10) and (12) of the former Section, for the

resolution of u into z parts, where these parts are represented by

v, V, V, ... (tn) v', v', v', ... (m) v", v", v", ... (m"),

and m + m' + m" + = a,

and mv + in v + iri'
v" + = m;

we shall, in the case of unlimited repetition, have the combination factor,

1--|'

^' ~ ym ll im'
I

1 \^"\ 1
'

and the permutation factor,

•^'
r I'l'i'" rr'i n*"' ri""|n'n"

^xxv;.

the partitions being those in which the lower limit of the parts is 1 ; and % extending from 1 to m
when u < s\ and from 1 to «; when ?/ = or > s.

But, by Art. 7, Sect. I, p. 5, [«, 1,] + [m, 2i] + [m, x;\ = [?<, s-J ;

and the product Q ^ P therefore coincides with the expression given by Lagrange, in his demon-
stration of the Polynome theorem, for the terminus generalis of the expansion of

^[i+i+i...i.)> or £- X ^^^ ^.
(j)^

when multiplied by the factor l"|'. The terminus generalis, so multiplied, is

/ 1''. 1' 1' \

[1 + 1 + 1 + ...(«)]" = !" '.y -n

—

,

,;•• 1,
\i^ . r' .

1'
. .../

where p, q, r, &c., are all the different parts obtained by s - partitioning u, the lower limit of the

parts being ; and for every determinate set of values assigned to p, q, r, &c., these letters

receiving every different order of sequence possible.

In the case, therefore, of unlimited repetition, the number of permutations which can be formed

by taking u elements of s kinds at a time, is the coefficient of a;" in the product of the s infinite

series,

\_l + X + + &c.] [l + a? 4- + &c.] (s) ; multiplied by l"|'.

6. It is manifest, therefore, that if with respect to the elements of any one kind, A, we restrict

the number of elements to a ; and in another kind, B,tofi; and so on, we must make a correspond-

ing restriction in the terms of 1, 2, or more, of the above Polynomes. And this leads to the followiiifj

theorem : viz. that the number of the permutations which can be formed by the elements of s kinds,

whose respective limits are a, /3, 7, &c., when those elements are taken u at a time, is the

coefficient of «" in the product of the s Polynomes,

(^1 + 3? +— —Tinj ('+^ + 772
* — Fpj'^'^-'

">">"?'"-'• ^y '
I

(""^'O'

Vol. VIII. Part IV. 3 II
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This theorem, I fear, is not likely to facilitate much the practical computation of the permutations of

plural elements, though perhaps it may lead to curious Algebraic results. Professor De Morgan, since

I made known to him this Theorem, has done much to remove the difficulties which beset the com-

puting of permutations by means of it. But I doubt whether the method will be rendered more simple

than that derived from a direct consideration of the problem of permutations, given in Article 2 of

the present Section. Thoroughly examined, the two methods must in the end prove identical.

I had some expectation that by giving to the Polynomes the form

(e' - a) (e' - b) (e' - c), &c. = e'' - ae""' + abe''-^ - &c.

- b + ac

— c + be,

some facilities might be afforded to the computing of permutations in certain cases ; but I do not

at present believe that any such results are to be anticipated.

7. The theorem, xxvi, has led me to the determination, in one particular case, of an

explicit function of u, for expressing the number of the permutations formed by « kinds of elements

taken u at a time: the case is that where, in all the kinds, the elements are dual. If we develope

«

l_Ao + AiW + Aiio^ + &c.]',

by Arbogast's method, we obtain for the coefficient of x",

where D* (^1)""'' is the coefficient of x'' in

and a second developement leads to a double series, in which, if A„ and Ai are made equal to 1,

and A., to 1, and all the other terms A^, A^, &c., are made equal to 0, we obtain terms

expressing the coefficient of a;" in
j

1 + ,r? h ] ; and that series multiplied by l"|' gives the

number of the permutations in the case stated*.

I here transcribe the coefficient of j:", in [1 + x +.-l.^x' + A^x'+u^]' obtained by Arbogast's method, slightly moditied.

0.
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The series may be expressed by

„/M=«|-'.s"-«|-'\

n
the limits of 0, when n is even, being and — ;

,1*- \

odd and
2

This gives the number of permutations formed by « dual sets of elements, when taken u at

a time.

Thus when m = 6, we have

6'|-'s'|-i eM-'.s"!-' 6" -1 C.3 -I

+ ' „ ' + —

!

1 +
2 2.4 2.4.6

And when u —
7,

rye
I

- 1 „4
I

- 1

+ „ — + — L_ +
7"

s"-'
2.4 2.4.6

When u = 6, let s = 3.

6.5.4.3.2.1 X 3.2.1
The number of the permutations

2.4.6

= 5x3x3x2
= 90.

When u = 7, let s = 4.

7.6,5.4.3,2,4,3.2.1
The number of permutations is then = ——'-—'-—'-—'-—'-—'—'-—'— = 7.6.5.4.3 = 2520,^ 2.4.6

It is not improbable that a further developement of the series obtained by Arbogast's method,

and a subsequent equating of particular terms to 0, might lead to other symmetrical and curious

results.

8. In Art. 7 of Section II., I have given a method, from the known combinations of two

independent and separate sets of elements, differing from one another in kind, to determine the

combinations of the two sets, when united. I proceed to apply a precisely similar method to Per-

mutations.

If « of T elements form \v, t\ combinations, and (m — v) of (cr — x) elements form [u — v,

a — t\ combinations, they will together form

ju, t] X ^u — V, cr - t] combinations.

Take some one of the {v, t] and some one of the [u —v, a — t] combinations. If it be a

condition that the elements belonging to these two sets, separately considered, shall preserve their

original order of sequence, but that those of one set of elements, as compared with those of the other,

may change their places, the permutations formed by the two sets of this particular combination

united, will be

1"|'

i"|! i"-"|i'

But, if the V elements, and the u - v elements, considered separately, may change their places,

and the former may undergo P{v) changes, and the latter P(_u - o) changes, and if the same may

be predicated of the elements contained in each different pair of combinations, \v, t\ and {u - i»,

<T - t},

3 n2
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then the number of the permutations, corresponding to every pair of determinate values given to v

and u — V, will be

*P{u, (t] = \v, t] {u -V, o- - t] Piv)P{u - v),

,w
I

1 |U-ii
I

J *

And for the line ti of the table, u remaining constant, and v only varying, we have

1"
I

'

P{u, ^\=Sl\^P\v, r}P\u-v, cr-r} ^„., _]„_ ]

And the equation of the terras of the table of double entry, in which u is the index of the line,

and V of the column, is

[m, «] = [«, v]y.[u-v, 0]L
^,|,

' (xxviii.),

I give an example of such a table, applied to the case of the two sets of elements,

A, BB, CCC; and DDDD, EEEEE.

Permutations of ^, B^, C^ ; whose Combinations are I, 3, 5, 6, 5, 3, 1

and of Z)*, E^ 1, 2, 3, 4, 5, 5, 4, 3, 2, 1.

V =
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9. The following corollary results from the preceding Article.
j<r| 1

The formula
^„ p ^^ ,, ^^ ,

, ^^
expresses the number of the permutations, not only of the

a + /3 + 7 + &c. elements, when they are all permuted together, but also of [a + /3 + 7 + &c.] - 1

elements, when permuted together : of which the following is the demonstration.

Since, by xxviii, P{<t-1, a} =P{t-1, t\ P\a-T, a - t] —p,

!"'
^

'

1,
,•^ ^ ' ' )-|T— ll-j(7—TJl"

+ P[t, t\P\g-t-\, a-T\ ,f
'I',,,

;

assume, for a moment, that

P{t, r} = P{t - 1, t}; and let each =7,

and that P\<j - t, a - t] = P\a - t - \, a - t\ ; and let each = K.

The p{<r-i, c\ =j'.iir.r-')'^-^^-^
1 ,ir-T

= J .K
T I 1 i<T~T I 1

^

, 1

But, P\<T, a] =P{t, T}P\a-T, a-T}

= J.K

'1
1 ,(r-i

I
1

r 1 itr-r 1.1
'

Hence the law enunciated will be true of the two sets of elements conjoined, if it be ever true

of each of the two sets separately. But it is true of two separate sets, when each consists of elements

of only one kind ; for then, whatever may be the number of the elements permuted at a time, the

number of the permutations is constantly one. Consequently, the law holds true when there are two

kinds of elements conjoined ; consequently, when there are three kinds ; and therefore universally.

Hence, in the product of the Polynomes,

the penultimate coefficient = o- x ultimate coefficient.

HENRY WARBURTON.
Mai/, 1847.

ADDENDUM.

Since this Paper was corrected for publication, a member of the Society, distinguished for his mathematical

erudition, has caused the Author's attention to be drawn to the work of Bczout* on Elimination, as containing

a formula similar in structure to the Author's formula xiv.

In the Author's researches in Combinations, his concern has been exclusively with such of the terms of a

polynome function of the s quantities, //, B, C, &c., as were of some one, say, the «"', dimension. liy such

modeB of investigation as occurred to him, he obtained an expression representing the number of such terms.

• Thiorie GhUrale ilea Equations Algibriques, par M. B(!zoul. 4to, 471 pp. Purls, 1779.
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with the special object of applying it to denote the number of the combinations which can be formed with

plural elements.

Bezout's object, at least the sole use to which he applies his formulae throughout his work, is elimination.

His concern is with all the terms, in the aggregate, of how many dimensions soever, belonging to such a

polynome function as is above described. By a mode of investigation, entirely different from that of the

Author, he obtains a formula expressing the number of the terms which, in a polynome, complete in all its

terms of every dimension from o to ii, are not divisible by any of the factors, A'^,B^, C-, &c.* He finds that,

iu the complete polynome, the number of all the terms is represented by ~—TTli — > ^"'^ '•'^^ number of

the terms not divisible by any of the said factors, by

/[!( + 1]'
I

' - [k + 1 - a]'
I

' + [« + 1 - a - /jj
I

' - &c.\

-[« + l-/3]-|'+&c. I (1.)

-&c. /

and this is the formula to which the Author's attention has been directed. It agrees in its general structure

with the Author's formula xiv : the points in which it differs will presently come under notice.

In his 4th problem, Bezout considers a particular case of an incomplete polynome, meaning thereby a

polynome in which the highest dimension of one of the s quantities, A, is a, of another B, is /3, and so on;

a, ft, &'c., being less than ?/, the highest dimension of the polynome itself: and he here makes the observation,

that there are as many terms in such a polynome as there would be of terms not divisible by any of the factors

^ " +
', B ^ * ', &c., in the polynome, supposing it to be complete ; but he gives no formula coextensive with

the generality of that observation. By following out that observation, we may, by two steps, deduce the

Author's formula xiv. from that of Bezout,

The first step is the following. The terms which in the polynome, if complete, would be non-divisible

by any of the factors ^ » +
', S ^ + ', &c., amount in point of number to

.[„ + 1J|'_|^„+1_(„ + 1)]<| ' + [« + ! -(a +l)-(/3+])]-|'-&c.\
1/ _|:„+]_(^ + l)J|.&c. 1 (2.)

V -&c. . /

and such, therefore, is the number of the terms in the incomplete polynome function of s quantities, where

a, 13, 7, &c., are the limits of the dimensions of A, B, C, &c., respectively ; the highest dimension of the

polynome itself being ;/.

The second step is the following. If from a polynome whose highest dimension is «, all the terms of the

dimensions not exceeding (u- I) be deducted, the remainder will be the terms which the polynome contains

of the k"" dimension. Hence the number of the terms of the «"" dimension in the incomplete polynome

will be obtained, if in (2) we substitute n for (« + 1), and deduct the result from (2). That is to say, the

required number of terms will be A (2), meaning, by A (2), [[1 - £"'] (2) ; i. e.,

/[« + 1]-'
I

' - [m + 1 - (a + 1)]'-'
1 1 + [!( + 1 - (n + 1) - (/3 + 1)]-' 1 1 - &c. \

l^J -[« + l-(/3+l)]-|' + &c. ) (3.)

which agrees with the Author's formula xiv.

Considering that Bezout's work has now been published nearly seventy years, it will no doubt excite the

surprise of many members of the Society, that a deduction from Bezout's formula so easy as the foregoing,

should not have been made long ago, and applied to the solution of the problem of the combinations of

plural elements.

" The complexity of Bezout's notation rendered it inexpedient to retain it in its original form. To facilitate comparison, the letters

have been assimilated to those used by the Author.



XXXVI. On a Peculiar Defect of Vision. By Henry Goode, M.B.,

of Pembroke College.

[Read November 9, 1846, and May 17, 184?.]

The following details of a case of defective vision may not be uninteresting.

About ten years ago I first perceived a defect of vision in the right eye, the extent of which,

before that period, I believe to have been inconsiderable : the defect being that small objects,

when viewed at the distance of greatest distinctness, appear as two. My attention havinn- been

called to Professor Airy's Paper on his own eye, I find that my eye, tested in the manner he

proposes, exhibits a similar defect. This method is to view with the defective eye a pinhole in

a card, which slides along a graduated scale, one extremity of the scale being applied to the cheek-

bone, and the other directed towards an illuminated sheet of paper.

The following are the appearances observed :

1. When the card is quite close to the eye, the image of the pinhole is perfectly circular.

2. As the card is removed to a greater distance, the image becomes gradually elongated

in the form of an ellipse, with a sharp dark line in the long diameter, most distinct at the distance

of -1.5 inches, and best visible in a minute hole.

3. At 6.13 inches the image has become extended into a bright well-defined line, of the breadth

of the pinhole as estimated by the sound eye, and crossed in the centre by a dark line perpendicular

to the former dark line which has disappeared : if several pinholes be pricked near one another, the

dark band holds the same relative position in all of them.

4. As the card is removed to a further distance, the bright line becomes gradually shortened,

and at the distance of more than a foot appears as two bright spots only, situated one on each side

of the dark band ; but, at the same time, in the direction of, and as it were overlying the dark band,

a bright line gradually appears, short at first, and becoming elongated with the removal of the card,

so that at about 10 inches or more the appearance is that of a cross, most strongly illuminated in

the position of the two bright spots before described. At 12.2 inches this cross appears as a regular

quadrangular figure with concave sides, the two spots being most strongly illuminated. If a dark

spot on a sheet of white paper be viewed in the same manner, the appearance is necessarily the

same; but owing to the greater distinctness of the two spots, the remainder of the figure is easily

overlooked, and the appearance is that of a double spot ; consequently, if a page of small type be

viewed at this' distance, the print appears double.

.5. When the card is at 25 inches, and all greater distances, the image is a bright line perpen-

dicular to that seen at 6.1,'J inches, the two spots representing that line having almost coalesced into

one, causing the bright line to be brightest in the centre.

Distant luminous objects with clear defined outlines, such as the Moon, apj)enr as a succession of

well-defined images overlying one another with their centres in this line.

6. The more distant line is inclined to the mesial plane of tlic body at an angle of 21", and the

upper part falls inwards towards this ])lane.

It appears in the above, that a short distance within tiie nearer focus a dark line occupies the

position of the bright line seen at that focus, while beyond the focus at all distances tiie line continues

illuminated. The same holds with regard to the second focus.
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7. On viewing two dark or two bright lines drawn in the form of a cross, and held in the

position of the lines above indicated, the vertical line appears broad and very faint at the distance

of 6.13 inches, the horizontal line appearing clear and well defined ; while the reverse is the case

beyond 25 inches.

There is no apparent defect in the left eye. If several holes be pricked near one another, and

viewed by this eye at the distance of 5 inches, which is somewhat within the range of distinct vision,

a dark central spot is observable in the centre of each ; also a narrow luminous slit appears traversed

in the direction of its length by two central parallel dark lines.

It is probable that the defect of the eye is inherited, as my mother has a defect of a similar

nature in both eyes. A circular pinhole viewed with either eye at the distance of 7-5 inches appears

as an ellipse with the major axis parallel to the mesial plane of the body, while at the distance

of 5 inches the image is an ellipse with the major axis perpendicular to the former.

Since the period when the above measurements were taken, I have made frequent use of the

eye; owing, most probably, to this circumstance, a very considerable amelioration has taken place in

it ; the first focus, which in the month of June last was at 6.13 inches, in the month of December

was at about 10: the second focus was readily ascertained in the month of June to be at between

2-1 and 25 inches ; but in December it was impossible to determine the exact position of it by the

simple observation of a pinhole ; because, instead of appearing as a sharp distinct line, as before, the

image was always confused by the presence of the luminous square above described. The image

was, in fact, a rhomb, with the longer diagonal, distinguished by its brightness, in the direction

of the further line, while the line seen at the nearer focus never disappeared, but became shortened,

remaining always the brightest part of the image, and forming the shorter axis of the rhomb. How-
ever, by means of the instrument described below, the second focus was ascertained to be at a

distance of between 27 and 28 inches. Since December, up to the month of March of this year,

no change whatever has taken place in the eye, notwithstanding the constant use of it.

The length of the line, as observed at either focus, is, of course, dependent on the aperture of

the pupil, and the distance from the retina, before or behind it, of the line of convergence of the rays

refracted from the other focus.

The differences in the eye observed in June and December, are exactly such as occur, when

similar observations are made on a sound eye, to which is applied, in one case, a cylindrical convex

lens of short focal length, and in the other a lens of weaker power.

The instrument above alluded to as serving to determine the distance of the foci is simply that

of Scheiner. Let a tube which slides within another in the manner of a telescope be closed at

its extremity by a card pierced by a single pinhole, while the other extremity of the apparatus

is closed by a card pierced by two holes, the distance of which from one another is less than the

diameter of the pupil of the eye of the observer. When the extremity pierced by the single hole is

presented towards a luminous surface, and the other is applied close to a sound eye, if the distance

of the single hole is equal to the most convenient distance of distinct vision, free from any exertion,

the hole will appear single ; but if the distance be greater or less than this, the hole will appear

as two ; as is well known. This instrument may be applied to the determination of the two foci of

a defective eye, by observing that, in order to ascertain the distance of either focus, the line passing

through the two pinholes must be perpendicular to the direction of the line, which forms the image

of tlie point at that focus.

There are, however, two inconveniences attending the use of this instrument ; namely, firstly,

that if the eye, on which the observation is made, be at all long-sighted, so that the pinhole requires

to be placed at a considerable distance, the two pencils of light falling on the two pinholes are nearly

parallel, and thei'efore the pinhole may be moved through a considerable space backwards and for-
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wards, without much affecting the position of the resulting images. The other inconvenience is, that

the eye is naturally endowed with a power of adapting itself to different distances, and that this

power is very little under command in an eye which is not habitually used, a circumstance, perhaps,

frequent with those who have one eye defective : such an eye, when tested by any instrument, will

at one instant appear to have one focal length, and at another instant another. When a cross drawn

on paper is held at a distance between the two foci, I find that I can at will discern either the

horizontal line, or the perpendicular, without altering the position of the paper.

There are, therefore, no means of attaining the requisite measurements beyond an approximation,

and the rest must be ascertained by direct experiment with a series of cylindrical lenses.

Having calculated an approximation of the glass I required, I applied to M. Chamblant,

a working optician at Paris, who occupies himself solely with the construction of lenses and

spectacle glasses with cylindrical surfaces, and after several trials I succeeded in obtaining a glass,

which gives me distinct vision of objects both far and near alike, thus shewing that the error of

malformation is independent of the state of adaptation of the eye. The glass I use is piano-

cylindrical, the cylindrical surface concave, with a radius of curvature of nine French inches. The
axis of the cylinder when presented to the eye, coincides of course with the direction of the line at

the nearer focus.

A plano-convex glass also, with the axis perpendicular to the direction of the line at the first

focus, and the curvature of which is the same, gives distinct vision, provided that the object

is placed sufficiently near to the eye; or even a glass tnuch stronger, when the object is very

close to the eve.

Considering that the inclination of the lines at the foci might have a physiological importance,

I devised the following method of determining it accurately. If a number of pinholes be pricked

in a card, in a straight line, and the card be fixed in such a manner that it may be made to revolve,

and have an illuminated surface behind it, when a defective eye is placed at the proper distance, it

readily recognizes the position of the card in which all the lines representing the images of the

pinholes lie in one straight line, being the line in which the holes are pricked : care must be

taken that the body is held perpendicularly. It is easy now to determine the inclination of this

line to a hair stretched vertically by a weight.

Within the last few months I have met with three or four cases of defective vision similar

ito my own ; only two of which are of sufficient magnitude to be worthy of mention.

One is that of Mr. Parry, wlio has served many years as a medical officer in the army. This

I
gentleman's left eye is perfect, except in being somewhat presbyopic, but from the time of his

1 earliest recollection he has never had distinct vision with his right eye ; he has never been able

I

to read with it, though he has an indistinct vision of objects at all distances.

Ilis eye, tested by a pinhole in a card, perceived the hole as a horizontal line at the distance

of .S? centimetres (about 14l inches); tiie line is inclined at an angle of 87 degrees to the

mesial plane of the body, and meets this plane produced inwards and upwards. At some distance

beyond this the hole appeared enlarged, and of a rhomboidal figure, but never as a line.

Wlien he viewed two lines drawn in the form of a cross, he saw well enough the horizontal

jline at 1 4-| inches, and for some distance beyond, but at no distance could he discern the vertical

lline. The error therefore seemed to consist in an exceedingly feeble refractive power in liorizontal

planes: I therefore tested his eye with piano-cylindrical convex glasses, in order to obtain data

per calculating the forms of glasses to be used for viewing objects at different distances ; and

jwe found that with a glass of 2^ French inches radius, the two lines of the cross, at 12 or 14 inches

Idistance, appeared of nearly equal brightness. This glass was rather too strong, while 3 inches

Igave a glass rather too weak. To view distant objects, therefore, I caused to be nuule a glass

Icylindrical concave on one side, with a radius of 7^ French inches, cylindrical convex on the

[other, with a radius of 4^; the axes of the cylinders of course crossing at right angles, and

Vol.. VIII. Pabt IV. :s S
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the axis of the convex surface being in the vertical direction. This glass appears to fulfil the

required conditions : it enables Mr. Parry to read inscriptions at a few yards distance, and also

to have a distinct perception of very distant and minute objects, such as are presented in an exten-

sive landscape.

In order to ascertain if it were possible to detect any error of curvature on the surface of the

cornea, I observed the appearance of the reflection of a small luminous square held a few inches

from the eye ; but in the central part of this structure the reflected image was perfectly square,

while the distortions produced at the circumference were equally produced in the sound eye ; and

there was no reason to conclude that the defect of vision arises from any defect in the cornea.

Mr. Parry finds his sight considerably improved by looking through a small hole in a card, so

as to admit pencils only to fall on the central parts of the cornea ; or, still better, by looking

through a narrow vertical slit, provided that the illumination of the object be sufficient to

compensate for the smallness of the pencils admitted. He finds that a very slight pressure

on the eyeball, applied at the outer angle of the eye, improves the vision. I also find the same

when gentle pressure is made at the upper and outer part of the ball. It is to be observed, that

the application of a narrow slit to a sound eye produces an effect nearly analogous to that produced

by a piano-cylindrical lens.

The second case is that of a student, who stated, that in observing small objects at 20 or 30 yards

distance, he saw a second image of the objects, one image, however, being much fainter than the

other. He considered that his sight had become impaired by too intense application to books, having

only observed that his eyes were defective after several years close study.

On testing his eyes by a pinhole in a card, he saw the hole as a horizontal line most distinct

at about 35 centimetres distance ; beyond this the hole appeared indistinct. Also when he viewed

two lines in the form of a cross, when they were held at 35 centimetres distance, he perceived most

distinctly the horizontal line, and at some distance beyond this the vertical line. The line seen

at the nearer focus was exactly perpendicular to the mesial plane of the body. I ascertained that

the distinctness of his vision was considerably improved by applying to the eye a piano-cylindrical

concave glass, of about l6 French inches radius.

Since the above paper was read, I have met with three gentlemen in the University, all of whom

have one of their eyes affected with a malformation similar to ray own ; or with " astigmatism," as it

has been called. The amount of the " astigmatism " in all of them appears to be corrected

by a piano-cylindrical glass, the curvature of which is 12 inches radius.

In one of these gentlemen it is the more perfect eye that is thus affected. This eye, as observed

in some other cases, gives diplopic vision of objects at a certain distance. Another stated that

the vision of his eye was perfect until a few years since.

HENRY GOODE.



XXXVII. Contributions towards a System of Symbolical Geometry and Mechanics.

By the Rev. M. O'Brien, Professor of Natural Philosophy and Astronomy

in King's College, London, and late Fellow of Caius College, Cambridge.

[Read March 15, 1847.]

1. The important distinction which has been made by an eminent Authority in Mathematics

between Arithmetical and Symbolical Algebra, may be extended to most of the Sciences which

call in the aid of Algebra. Thus we may distinguish between Symbolical Geometry and Arith-

metical Geometry, Symbolical Mechanics and Arithmetical Mechanics. This distinction does not

imply, that in one division numbers only are used, and in the other symbols, for symbols are

equally used in both, but it relates to the degree of generality of the symbolization. In the

Arithmetical Science the symbols have a purely numerical signification, but in the Symbolical they

represent, not only abstract quantity, but all the circumstances which, as it is usually expressed,

aject quantity. The Arithmetical Science is, in fact, the first step of generalization, and the

Symbolical the complete generalization.

In this view of the case, I have ventured to entitle the following Paper "Contributions towards

a System o{ Symbolical Geometry and Mechanics." The Geometrical System about to be proposed

consists, first, in representing curves and surfaces by symbolical formulas, and secondly, in using

the Differential Notation to denote Perpendicularity, according to the principles explained in a Paper

read a few months since at a Meeting of the Society. The proposed Mechanical System is analogous in

many respects to the Geometrical : examples of it have already been given in the Paper just quoted.

2. The following well-known principles are those upon which the

Geometrical System is based.

1st. If ABCD be any polygon, then AD = AB + BC + CD.

This may be regarded as the definition of +.

2ndly. Giving the usual definition of - it follows, that, in the triangle °

ABC,
AC - AB = BC.

*

.3rdly. Where it follows that, if a denote any right line, - a denotes an o(iual right line

mea.sured in an opposite direction.

ithly. If m denote any number, ma denotes a line m times the length of a drawn in the same

direction as a. This follows immediately from the first principle.

These principles, with some others which we need not specify here, form the basis of llie

Geometrical System about to be proposed.

3. It will be convenient to consider that every line is traced by the tiiolion of a point, .ind

this will lead us to distinguish between the beginning and end of a line, the beginning being the

extremity from which the tracing point starts, and the end the otiier extremity.

.'i s -Z

A
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4. When we say that a symbol, o for instance, represents a straight line, we mean that a

defines the magnitude and direction of the line, but not its beginning; in other words, the line is

supposed to be drawn of a given length and in a given direction, but not from a given point.

However, if the contrary be not specified or implied, we shall always suppose the line to begin

at the origin, i. e. at a certain point chosen for the purpose of reference.

5. We shall use the term Direction Unit to denote a straight line of a unity of length drawn

in any particular direction. We shall always use the letters a, ft, y to denote direction units, and,

unless the contrary be stated, we shall also suppose these three directions to be at right angles to

each other : in other words, we shall assume a, ft, y to represent three straight lines drawn at right

angles to each other, and each a unity of length.

6. We shall divide symbols into two classes, Number Symbols and Line Symbols, the former

representing numerical quantities positive or negative, the latter straight lines in magnitude and

direction.

7- We shall define the jiosition of a point in space by the Line Symbol representing its

distance from the origin : thus, whenever we speak of the point a, we mean the point whose

distance from the origin is represented in magnitude and direction by the symbol a.

In our idea of distance here we suppose direction, as well as magnitude, to be included.

8. If a, b, c be any line symbols, it follows, from the first principle above stated, that

a + h + c represents the distance of the end of the line c from the begitining of the line a ; the end

of a being supposed to coincide with the beginning of b, and the end of ft with the beginning of c.

In like manner a — b denotes the distance of the end of a from the end of ft, a and 6 being sup-

posed to have the same beginning.

Hence, if a and 6 be the symbols of any two points A and B, a - ft is the symbol of the

right line drawn from B to A, and ft - a the symbol of the line drawn from A to B.

9. If X be any number symbol, and a any direction unit, xa represents a straight line of the

length a: drawn in the direction a.

Hence, if r be the length of a right line drawn from the origin, a; y z the lengths of the

co-ordinates of the end of that line, and a ft y the direction units of the three co-ordinate axes, the

three co-ordinates will be represented by the symbols xu, yft, ssy, and the line by the symbol

ma + yft + zy.

This symbol also defines the position of the point whose co-ordinates are oc y z.

If a ft c be the direction cosines of the line, its symbol becomes

r (aa + hft + cy).

The coefficient of r is evidently the direction unit of the line.

10. Let r and r' be the lengths of any two lines AP and AP" drawn p

from a point A, and let e and e represent their direction units; then the symbols ^^___- j

of these lines will be re and r e, and therefore the symbol of the line PP' will be * •"

re — 1 e-

If r = r and e' - e is indefinitely small, this expression becomes

rde.

Now in this case PP' is at right angles to AP, and therefore it follows that rde is the symbol

of an indefinitely small line perpendicular to the line re.
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The length of this small line is rd9, assuming d9 = angle PAF ; but the direction unit of a
line is expressed by dividing the symbol of the line by the symbol of its length ; hence the direction

unit of the small line is

rde de

'rid
°' W

de
Hence the direction unit of a perpendicular to a line re is —

.

du
In the Paper already referred to, which was read before the Society some months since, the

reader will find this method of representing perpendicularity by the differential notation fully

developed, and the notation Du.u, thence derived, explained, together with an auxiliary notation,

Au . ii' ; both of which we shall have occasion to make use of hereafter.

11. The following is the method we shall adopt of representing curves and surfaces sym-
bolically.

To represent a curve or line we shall suppose a variable parameter to be involved in the symbol

of a point, in which qase it is clear, that the point will be indeterminate in position, but restricted

so far, that it will always be found upon some curve or line. The symbol of a point therefore,

when it involves a variable parameter and is thereby made indeterminate, becomes a symbolical

formula defining some line or curve, and may be called the formula of that line or curve.

In like manner the symbol of a point, when it involves two variable parameters, becomes a

symbolical formula defining some surface, and may be called the form?ila of that surface. This

virtually amounts to defining lines and surfaces by symbolical polar equations.

It is important, however, to observe that we suppose the variable parameters here spoken of to

be number symbols. If the variable parameter be a direction unit, it must be regarded as equi-

valent to two number symbols.

12. The following are examples of this method of representing curves and surfaces.

The general symbolical formula of a straight line in space is

u + re,

where u is the symbol of a given point, r a numerical variable parameter, and e a given direction

unit.

For take OA = u (O being the origin) OB = e, draw a line through A
parallel to OB, taking upon it AP equal in length to r. Then AP is repre-

sented by the symbol re, and therefore m -t- re is the symbol of the point P,

which, since r is indeterminate, niay be any point of the line drawn through A
parallel to OB.

It appears, therefore, that u + re is the formula a straight line drawn through the point whose

symbol is u, in the direction represented by e.

1.3. In like manner the general symbolical formula of a plane is

u + re + r'e'

r and r being numerical variable parameters.

For take OA = u, OB = c, OC = e, draw AP parallel to OB and equal in

length to r, PQ. parallel to OC and equal in length to r'. Then, it is evident,

that M + re + r'e' is the symbol of the point Q; and that, since r and r are

indeterminate, Q is any point of the plane which contains the point A and is

parallel to OB and OC.

Hence n + re + r'e' is the formula of a plane which is parallel to the directions represented by

t and e', and contains the point whose symbol is u.
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14. The following is an example of the case where the variable parameter is a direction unit.

The formula of a sphere is

u + re,

where e is the variable parameter, and r determinate.

For u + re represents a point whose distance from the point u is indeterminate in direction but

determinate in length, being always equal to r. Therefore the formula u + re defines a sphere

whose centre is u and radius r.

We shall now illustrate this method of Symbolical Geometry by the following propositions,

without attempting any systematic arrangement, as our only object is to shew the nature and use

of the method.

15. To deduce the equation of the plane from the formula of the plane, namely, u + re + r'e.

Let w y z he the co-ordinates of the point represented by u + re + r'e', a^ y^ z^ of the point

represented by u, let a /3 7 be the direction units of the three co-ordinate axes, and let

e = aa + b^ + cy, e = a' a + 6'/3 + c'y.

Then we have

va + y(i + xy = tt + re + r'e'

= ,r a + y^/3 + z^y + r{aa + 6/3 + cy) + r {an + !>'
fi + c'y) ;

and .-., equating coefficients of a, /3, y, w = x^ + ra + r a'

,

y = y+ rb + r'b',

z = ss^ + re + r'e,

whence eliminating r and r' we find an equation of the form

Jw + By + C« = D.

16. To express the formtda of the plane by means of the symbol D.

If V be an indeterminate line symbol, and e a determinate direction unit, Dv . e denotes a line

of any length drawn at right angles to e in any direction. Hence it is evident that the formula

re + Dv.e, or (r + Dv.)e,

represents the plane whose perpendicular distance from the origin is re.

17. The formula of the right line drawn through the two points represented by u and u' is

evidently

u + m(u' - u)

where m is a numerical variable parameter.

18. Hence if u be the formula of any curve the formula of the tangent at the point u is

u + mdu.

19. To shew that the formtda of the osculating plane of the same curve, at the point n, is

u + mdu + ncfu.

Let PP' and P'P" be two consecutive chords of the curve; produce PP' to any point Q, and

draw QQ' of any length parallel to PP" : then Q' is any point of the

plane containing the two chords, which plane, when the chords are

indefinitely small, becomes the osculating plane.

Let u u u" be respectively the symbols of the points P P' P"; then

the symbols of PP' and PP' are respectively u — u and u" — u, and

therefore the symbols of PQ and QQ' are m{7i' — u) and n{u" - u),

m and n being arbitrary numbers. Hence the symbol of the point Q',

and therefore the formula of the plane containing the two chords, is

u + m{u' — m) J- n(ji" — u).
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Now in the limit we may put

u — M = dw, ?/" — 11 = du + d-%1.

Hence the formula of the osculating plane is of the form

u + mdn + nd^u,

putting m in place of m + n.

20. From \\\\s, formula to deduce the ordinary equation of the osculating plane.

Let X y ss he the co-ordinates of P, then

u = xa + yfi + zy,

and therefore the formula of the osculating plane is

(x + mdx + nd^x)a + (y + mdy + iid'y)fi + (a + mdx + nd?z)y,

whence, if x^ y^ z^ be the co-ordinates of any point of the osculating plane, we find

x^ = X + mdx + nd^x, y, = y + mdy + nd^y, ss^ = z + mdz + nd z,

from these equations, eliminating the variable parameters m and n, we find the common equation

of the osculating plane.

21. Respecting the geometrical meaning of the symbols dti and d'u it is worth observing,

that du represents in magnitude and direction the element (ds) of the arc of

the curve defined by the formula u, and d^u represents what is called a

double sngitta, as we may prove very easily ; for, let P P" P" be three conse-

cutive points of the curve indefinitely near each other ; complete the parallel-

ogram PP' and draw the diagonal P' Q. Let ?< ?/ id' be the symbols of the

points P P P', then tt" - u' represents the line P' P'\ and therefore the line

PQ,, and ?/ — u represents the line PP' ; hence, it follows, that the line P'Q
is represented in magnitude and direction by (m" — u) — {u — u), or, passing

to differentials, by d'U. P'Q is a double sagitta of the arc PP" *.

22. From this we may derive the following remarkable theorem.

If ii be the formula of any curve in space, « the numerical length of the arc of the curve

measured from any fixed point to the point u, v the numerical magnitude of d'u, and e the

ds-
direction unit of d'u, so that d^u = ve; then 2— expresses the numerical length of the chord of

V

curvature drawn in the direction e.

The direction e is perfectly arbitrary, depending on what the independent variable in the

differential d'u is supposed to be. If we consider s to be the independent variable, it is evident

that PP' and PP" are equal in magnitude, and therefore the chord of curvature becomes the

diameter of curvature.

23. Another remarkable theorem is the following

:

The symbol d (— ) represents a line drawn from the point of contact towards the centre of

curvature, and numerically equal to the angle of contingence.

This may be proved as follows, du represents a line whose length is ds drawn in the direction

of the tangent at the point u, therefore -— represents the direction unit of the tangent. Hence,
ds

if we draw two direction units from the same 'point parallel to two consecutive tangents, the symbol

• If we take « as the indepcntlcnt variable, in which case rP'= P'P", P'Q will he perpenilicular to PP", and iP u will reprcHenl

the double augitta pointinj^ tuwards the centre of curvature.
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(du\
of the elementary line joining the ends of these two direction units will be di—j . Now this

elementary line is evidently parallel to the normal drawn to the centre of curvature, and numerically

equal to the angle of contingence (as the angle made by two consecutive tangents is commonly

called).

24. Let V be the numerical magnitude of rff— J , e its direction unit, and p the radius of

curvature ; then, according to a well-known theorem,

ds

Hence, we may immediately deduce the well-known expressions for p.

We have u = xa + y^ + xy.

Hence
ds

which is the well-known expression for p, the independent variable being arbitrary.

25. If TO be any number, it is clear that m,dl— \ represents in magnitude and direction

any line drawn from the point of contact through the centre of curvature. Hence, the formula of

that normal which lies in the osculating plane is

u + md [^) ,

m being the variable parameter.

26. The symbol of the centre of curvature is evidently,

ds
ti + — 6,

(du\
£ being the direction unit, and v the numerical value of d ("p I

•

27. If S denote any arbitrary variation (as in the Calculus of Variations), then S i—j denotes

any small line at right angles to the direction unit — , i.e. to the tangent. Hence, the formula

of any normal at the point u is

It is obvious that this is also the formula of the normal plane, for it is the symbol of any point

in the normal plane.
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To deduce from this expression the common equation of the normal plane.

Let x^y^z^ be any point in the normal plane; then

„ ldu\
,Ta + 2/, p + x^y = u + md\— \

Hence we have

.dx dy .dss

ds •'' ^ ds ' ds

- dw , dy dz m
r,
Udsf]

and .-. (.r -*)_+(« _ „) -^ + (« _ sr)— = — ^ <f^> = 0,
^ ' ds ^'' "' ds ^ ' ' ds 2 \{dsf)

which is the common equation.

28. It is however much more convenient to use the symbol D in expressing perpendicularity.

Dv.du denotes a line of any length perpendicular to du, supposing v to be any arbitrary line

symbol. Hence the formula of the normal plane is

u + Dv . du.

29. The formula of the normal perpendicular to the osculating plane is

ti + niDd'u . du,

because du and d?u both respresent lines lying in the osculating plane.

30. We shall now give a few examples of the application of this method to surfaces and to

some common geometrical problems.

If u be the formula of a surface, the formula of the tangent plane at the point m, is

. u + mdu,
m being a numerical variable parameter.

For du represents the elementary line joining any two contiguous points of the surface, and

therefore mdu represents a line of any length touching the surface at the point u.

.31 . The formula of any normal plane (i. e. any plane containing the normal at the point zi) is

evidently

u + Dv . du,

I! being any arbitrary line symbol.

u, being the formula of a surface, must involve two variable parameters: let them be m and n

(both numerical), and let d,„u and d„u represent the respective partial differential coefficients of m

with respect to m and n : then the formula of the normal at tlie point m, is

u + pDd,„u. d„u,

p being a numerical variable parameter.

.32. The formula of a plane containing tlic three points u, u, u' , is

u ¥ m (u - u) + n (u" - m),

or what is the same thing,

mu + m'u + m"u".

Where m, in', m" arc numerical parameters subject to the condition m + m' + m" = 1.

Vol,. VIII. Taut IV. 3 T
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33. If u be the formula of a right line (involving of course one variable parameter), the

formula of a plane containing that line is evidently

ti + mv,

m being a numerical variable parameter, and v any determinate line symbol.

If the plane be also restricted to contain a given point u, its formula is

u + m (u — ?«), or m u + m'u ,

where m + m = 1

.

34. Let the symbols of the angular points of a triangle be u, n , u" ; then the symbol of the

point mid-way between u and u" is 1 {u + u"), and the formula of the line drawn through

this point and u is

(u + u
u + ni u\ ,

3m\ m , , „
1 - — M H (u + u + u ).

Now if we put m = 1^, this formula becomes symmetrical with respect to u, u, tt':, which shews

that the point whose symbol is i {u + u' + u") is common to the three bisectors of the sides of a

triangle drawn from the opposite angles.

35. We shall now give o few examples of this method applied to Mechanics. We have

already (in the Paper read a few months since) shewn how the fundamental principles of Statics

inay be proved and expi'essed with great simplicity by means of the symbol D. We have also

shewn bow the motion of a rigid body about its centre of gravity may be investigated by means

of this notation, and exemplified its use in the problem of Precession and Nutation.

36. We may investigate the equations for finding the motion of a planet in the plane of its

orbit, and the motion of that plane, as follows.

Let u be the symbol of the position of the planet at any time t, then the symbol of the force

acting on the planet will be

Let r be the radius vector of the planet, a, /3, 7, three direction units at right angles to each

other, a being the direction unit of m (and .•. u - ra), and -y being perpendicular to the plane of

the orbit : let tu, denote the angular velocity of ji and y about a, wg that of y and a about fi,

(0,1 that of a and /3 about y ; then w., is the angular velocity of the planet in its orbit, ai, is the

angular velocity of the plane of the orbit about the radius vector, and w-i is evidently zero. Hence,

(see Equations 38, former Paper,) we have

da d(i dy

dt at at

da f//3 dy
Now u = ra\ wherefore differentiating and substituting for — , — , and — we have,

dt dt dt

du dr da
^- = -;- a + r —

-

at dt dt

dr
= -rr" +»'"'3P;

dt

d'u d'r dr da ^(rajs) d/3
'

rf?"
" d? " "^

d< Tt'^ dt ^ ^^'"'li
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This is the general symbolical expression for the force acting on the planet, and it consists

of three parts whose direction units are a, /3, 7, that is, which act, along the radius vector,

perpendicular to it, and perpendicular to the plane of the orbit. Hence, if P, Q, S be the

forces which act on the planet in these three directions respectively, we have,

d'r

d?
P= ^- '•W,

dr d{r io-i) 1 d{r^w^)

^ dt dt r dt '

S = r 0)30)1 J

which are the general equations for determining the motion of the planet, and of the plane of the

orbit.

37. To determine the motion of a particle acted on by a central force varying inversely as the

square of the distance.

Using the same notation as in the preceding Article, it is clear that the symbol of the force is

~~? '

and therefore we have

d?u /la

dF=^--r- ^')-

Performing the operation Du on each member of this equation, and observincr that

Du.a = rDa.a = 0, we have

^ d-ti
Du. -— = 0;

rib-

and therefore D u— = constant (2) ;

dt
'

du du
for the former equation is evidently the differential of the latter, observing that D — . — = 0*.

Q/v at

Now u = ra, — = — a + rwli (writing w instead of 0)3), and therefore, since Da -a - 0, and
dt dt

Da . (i ^ y, the equation (2) becomes

rcoy = constant.

Hence, y is an invariable direction (i. e., the motion is in one plane) and r"w is constant, equal

to // suppose.

d/3
Now -!- = - wa, and therefore (1) becomes

dt

d-u n d/3 fi d/3

dt' r-fo dt h dt

It in obvious that iHDu.v) = Ddu .a+Du. dv.

•j T 2
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and therefore

du u. ,— = — j3 + constant (3),
dt h

and therefore putting for — its value, observing that rw = -, and assuming e to be the direction

unit of the constant, and e its numerical magnitude, we have

dr h - IX ^ , ^— a + -fi = j(i + ee (4),
dt r h

performing on this the operation A/B, observing that A/3, a =0, il/3./3= 1, we find

— = ^ + eA/3.6 (5),
r n

which is the polar equation of a conic section, the origin being focus, e being the eccentricity,

and e perpendicular to the axis major ; for AjS . e is the cosine of the angle which /3 makes with c.

i. e. the cosine of the angle which the radius vector makes with a perpendicular to e.

If we perform the operation A a upon (4), we obtain

dr— = eAa . e ;

dt

Aa.e denoting the cosine of the angle which the radius vector makes with a perpendicular to the

axis major.

38. To determine the motion of the particle when it is acted upon by any disturbing force

U in addition to the central force.

In this case instead of the equation (1), we have

S=-^+f/ (fi).

dr r
Treating this equation as we did (1), we find

Du.—— = Du. U;
dt'

and .-. ^^^^ = Du.U (7),
dt

for Du. -— =r^aiy = hy, using h to denote r'cy.

By integrating equation (7), we find h and y, and thus by integrating one equation we d

termine three elements of the orbit, for -y, being perpendicular to the plane of the orbit, determim

both the inclination and the position of the node.

If we integrate (7), after having performed the operation A 7 on each side, we find

h = fAy.(Du. U)dt.

Now A 7 . {Da . f/) = AjS . f/*,

hence, since ti = ra, we have

h = fr/Sli.Udt (8),

le-

nes

• For V = a{^a.U) + |3^l^|3.U) + y(^y. U),

and therefore perfonning successively the operations Da and Ay, we find
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and from (7), we have

y=^fDu.U.dt (9).

(8) and (9) give h and y separately.

We may observe respecting these formulEe for h and 7, that iS(i. (J expresses the resolved

part of the disturbing force U in the direction /3, i. e. perpendicular to the radius vector and in

the plane of the orbit; and Du . U is the .symbol representing in magnitude and direction the

moment of the Couple which transfers the force U from the point ji to the origin. (See former

Paper.)

39. To integrate the equation (6) directly as we did the equation (1), we have only to tai<e

the same steps, (observing that h is now variable,) as follows, (6) becomes

d^u IX dS— = - — + ^7,
dt- h dt

hence, (integratnig 7 -p by parts), we have
n, dt

dt h^ J ft' dt^ '

and therefore by (8),

^^ = l^+ f'^(Afi.U)^dt + fUdt (10).

This is the symbolical expression for the velocity of the disturbed body. To find the parallax,

put in (10),

du dr h

dt
~
Ift"

"^ r^'

and then, performing the operation A/3 on both sides, we find

which determines the parallax.

40. To determine the eccentricity and position of the axis major.

We have seen, that when there is no disturbance,

du ,j.

assuming this equation to be still true, e and e being now variables, and comparing it with (10),

we find

ee= |fe(A/3.f7)/3 + u\dt (11);

or^) = g:(A/3.^7)/3+f7 (.'.).

Now e is the eccentricity, and e is the direction unit of a line at right angles to tiie axi.s

major in the plane of the orbit: hence, (12) or (11) determines at the same time the eccentricity

and the position of the axis major.

The Dynamical investigations just given are good instances of the naUni- of the Symbolical

method here proposed.

M. O'BIIIEN.
UppKR Noiiwooji, Sukukv.

January, 1047.
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Preliminary Observations.

The object of the following Paper is twofold ; Jirst, to shew that the equations of vibratory

motion of a crystallized or uncrystallized medium may be obtained in their most general form,

and very simply, without making any assumption as to the nature of the molecular forces ; and,

secondly, to exemplify the use of the symbolical method and notation explained in two Papers read

before the Society during the present academical year.

First, with regard to the Method of obtaining the Equations of Vibratory Motion.

This method consists, first, in representing the disarrangement (or state of relative displacement)

of the medium in the vicinity of any point xyz by the equation

„ dv dv dv .

dv = --- dx + -~ dy + —- COS +
ax dy dz •^ dn?

drv

dwdy
Sx^y + &c..

(where v =^a + ti(i + ^y, ^ t] ^ denoting, as usual, the displacements at the point wyx, and

a (i y the direction units* of the three co-ordinate axes), and, secondly, in finding the whole force

brought into play at the point wyz (in consequence of this disarrangement) by the symbolical

addition of the different forces brought into play by the several terms of Sv, eacfi considered

separately. It is easy to see that these different forces may be found with great facility, without

assuming anything respecting the constitution of the medium more than this, that it possesses direct

and lateral elasticity. By direct elasticity we mean that elasticity in virtue of which direct or

normal vibrations take place, and by lateral that in virtue of which lateral or transverse vibrations

take place.

The forces due to the several terms of ^v are obtained by means of the following simple

considerations :

—

Let AB be any line in a perfectly uniform medium, and conceive the medium to be divided

into elementary slices by planes perpendicular to AB ;

let OM (= «:) be the distance of any slice PP' from

any particular point O of AB, and suppose this slice to

suffer a displacement equal to \ca)' (c being a constant)

in the direction AB, and the other slices to be similarly

displaced. Then it is evident that the medium suffers

by these displacements a uniformly increasing expansion

in the direction OB, and a uniformly increasing con-

densation in the direction OA, the rate of increase both of

the expansion and condensation being c. Now in all known substances, whether solid, fluid, or
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gaseous, a disarrangement of this kind would bring into play on the slice O a force along the

line AB proportional to the rate of increase c, i.e. a force Ac, A being a constant depending upon

what we may call the direct elasticity of the substance.

Again, suppose that the slice PP receives a displacement i cw' in the direction OC perpen-

dicular to AB, and the other slices similar displacements. Then the line AB will become curved

into a parabola A'OB', and all the lines of the medium parallel to AB will be similarly curved, the

radius of curvature being equal to -, and perpendicular to AB. Now in all known substances* a
c

disarrangement of this kind would bring into play upon the slice O a force in the direction OC
proportional to the curvature c, i. e. a force Be, B being a constant depending upon what we may
call the lateral elasticity of the substance.

Lastly, suppose that MP = y, and that the point P of the medium receives a displacement cxy
parallel to AB, and the other points similar displacements. Then the slice PP' will, in consequence

of this kind of displacement, turn through an angle tan"' (esc) into the dotted position, and the

other slices will suffer similar rotations, those on the other side of O, such as QQ', turning the

opposite way. Now it is easy to see that a disarrangement of this kind produces a uniformly

ncreasing expansion in the direction OC, and a uniformly increasing condensation in the direction

OC', the rate of increase both of the expansion and condensation being c. But the expansion and

condensation here described are quite different from those previously noticed, since they are pro-

duced, not by displacements parallel to C'C, but by lateral displacements, i.e. perpendicular to C'C.

On this account all that we can assert without further investigation is, that the force brought into play

upon an element at O by this disarrangement acts along the line C'C, and is proportional to c, i. e.

equal to Co, where C is a constant evidently depending in some way both upon the direct and

lateral elasticity of the medium.

There is, however, a very simple way of finding the precise value of the force brought into

play by a disarrangement of this kind ; for, if we turn the axes of ,v and y in the plane of the paper

through an angle of 45", it will be found, that this disarrangement is nothing but a combination of

the two kinds of disarrangement previously noticed, and from this it immediately follows, in the

case of an uncrystallized medium, that the force brought into play at O is (A - B)c ; in other

words, the coefficient C, which must be multiplied into c in order to give the force brought into

play by the disarrangement cwy, is equal to the coefficient of direct elasticity (A) minus the

coefficient of lateral elasticity (B).

In the case of a crystallized medium it may be shewn that six relations, corresponding to

the relation C = A - B, are most probably true, and are essential to Fresnel's Theory of Transverse

Vibrations; that is to say, the medium is capable of propagating waves of transverse vibrations, if

these six conditions hold, but otherwise it is not.

In employing the above considerations to determine the equations of vibratory motion, the

directions AB and C'C are always taken so as to coincide with some two of the three co-ordinate

axes, and it is this circumstance that makes the method peculiarly applicable to crystallized

media. Indeed, if it were necessary to take the lines AB and CC in any directions but those of

the axes of symmetry, the above considerations would not apply without considerable modification.

The equations of vibratory motion obtained by this method for an uncrystallized medium are

the well-known equations involving the two constants A and B. The equations obtained for a

crystallized medium are perfectly free from any restriction of any kind, are .ipplicahle to all kinds

of substance, whether we suppose its structure to be analogous to that of a solid, fluid, or gas, and

hold for all kinds of disarrangement, whether con.sisting of normal, or transverse displacements,

or both.

• Fluidii and KMes pomtess lateral cltiKticiiy ns well as solidH, only in a foniiianitivi-lv tVtblt di-grce.



510 Mr. O'BRIEN, ON THE SYMBOLICAL EQUATION OF

When we introduce the six relations between the constants above alluded to, and moreover

assume that the vibrations constituting a polarized ray are in the plane of polarization, we arrive at

Professor Mac CuUagh's equations *. If, on the contrary, we suppose the vibrations to be perpen-

dicular to the plane of polarization, we arrive at equations which agree exactly with Fresncl's

Theory in every particular f

.

If we introduce these six relations into the equations for crystallized media deduced from

M. Cauchy's hypothesis, that the molecular forces act along the lines joining the different particles

of the medium, it will be found that these equations are immediately reduced to the equations for

an uncrystallized medium. From this it follows that M. Cauchy's hypothesis cannot be applied to

any but uncrystallized media. In fact, it may be easily proved, that, if the equations derived from

M. Cauchy's hypothesis be true, a crystallized medium is incapable of propagating transverse

vibrations.

Secondly, respecting the use of the Symbolical Method and Notation above alhided to-

The application of the Symbolical Method and Notation to the subject of vibratory motion

is very remarkable, and leads to equations of great simplicity. In the case of an uncrystallized

medium, the three ordinary equations of motion are included in the single symbolical equation.

dH „ (d- d' d-] ,. J,, f
d d d\ jd^ d,i rf(\

d¥-^{j?^dy'^^r'-^''-''^r^^'-^Ty^yd-J[r.-dy^^)-

If we employ the notation A u . u, and assume the symbol 5B to represent the operation

d d d

d,v ay dz

the equation of motion becomes

dr

or, by using the notation Du . u also, it may be put in the form

^= {JBAID - B(Dm.y]v.

The symbol i3 written before any quantity U, which is a function of ayz, has a very

remarkable signification ; the direction unit of the symbol 59 C7 is that direction perpendicular to

which there is no variation of U at the point xyz, and the numerical magnitude of 19C7 is the

rate of variation of U when we pass from point to point in that direction.

The symbols AlS-v and DlB.v have also remarkable significations. Al9.t' is a numerical

quantity, representing the degree of expansion, or, what is called the rarefiiction of the medium

at the point wyss. D'^.v represents, in magnitude, the degree of lateral disarrangement of the

medium at the point aiyx, and, in direction, the axis about which that displacement takes place.

These two symbols may be found separately by the integration of an equation of the form

dW „ fd'U d'U <PU_ Id' U d'U d" U\

\aJ'
"^

~df
"^

~d^^)

'

dt^ Vrf.i" dy

* Given in a Paper read to the Royal Irish Academy, December 9, 1839, p. 14.

+ On this subject see a Paper by the late Mr. Greene in the seventh Volume of the Ctnnbridge Transactions, p. 121.
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When the six conditions above alluded to are introduced, the equation of motion for a crys-

tallized medium becomes

drv I d ^ d , d \ _-

i

Where .4, A.;, A, are the three coefficients of direct elasticity with reference to the three axes

of symmetry, and 5, Bi B^ B^ B^ BJ the six coefficients of lateral elasticity with reference to

the same axes.

If the vibrations be transverse, this equation is reducible to the form

^ = - {D-D.y{a'^a + b'r,^ + c'^y)

or — = -{2>i3.)=(a'*aA« + 6-/3A/3 + c'7A7)«, (A),
dt

assuming the vibrations of a polarized ray to be perpendicular to the plane of polarization.

The well-known condition that a plane polarized ray may be transmissible without subdivision,

and the expression for the velocity of propagation, may be immediately deduced from this equation.

If we assume the vibrations of a polarized ray to be in the plane of polarization, the equation

becomes

^ = - Z?5B.(a^aAa-i-ft'/3A/3 + 0=7^7)2)19.1' (5).

The equation {A) agrees in all respects with Fresnel's Theory, and the equation {B) includes

Professor Mac Cullagh's three equations. It is curious that {A) and (B) should differ from each

other only in the order of the operations performed on v in the second member.

Investigation of the Symbolical Equation of Vibratory Motion of an UncrystaUized

Medium.

1. Let ii( = aw -(- ^y + yz)* be the symbol of any particle (P) of an elastic medium in n

state of equilibrium, v(^ = al^ + (irj + yX.) the symbol of the displacement of the particle at any

time t, u + cu (du — a^x + (iSy + ySx) the symbol of the equilibrium position of a contiguous

particle (P), and v + Sv (Sv = aS^ + (i^rj + ySi^) the symbol of the displacement of P' at the

time t ; then we have

, dv . dv 5 dv . tf

«

d'v
ov = -— d.v + -J-

dy + —- 6x + -L -— o,v + -—

-

d.r ay dz dou daidy

This equation expresses the disarrangement, or state of dis[)latenienl, of the n)edium in the

immediate vicinity of P, for cu is the relative displacement of P' with reference to P, and by

giving different values to o.v oy Iz in (1), corresponding to the different particles near P, we (ind

the dih])lacements of those particles relatively to P.

2. In consequence of the disarrangement of the medium in tlie vicinity of /', repre.senteii by (1),

a force will be brought into ))lay upon /•"; our oliject in tojind this force.

Vol.. VIII. I'akt IV. 3U

av . aw
5

«u „ a V ^ o u . „

;j-^ d.r -t-
— riy -I- -j-da; H- ^ —^ o,v + -^^3- hmdy + &c (1).
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Now, by a well-known principle, the force on P resulting from the disarrangement

iv =-- CIV + —- 6y + &c.,
dx ay

is the resultant (or symbolical sum) of the forces due to the separate disarrangements

^« = — Iw, 6v=--~6y, 6v = --dx, &c.
dx dy dz

Hence, if we find the forces due to the several terms of the expression (1), and add them

together, the resulting sura will express, in magnitude and direction, the whole force brought into

play upon P by the disarrangement (l). This we now proceed to do.

3. To find the force brought into play on P by the disarrangement,

Sv = — Sx = a-r^ Sa; + ^ — dx + y -f- da:.

dm dx dx dx

a —Sx represents a small line, proportional to Sx, drawn in the direction a ; therefore the

dx

disarrangement indicated by

Sv = a —— Sx
ax

is a uniform expansion of the medium in the direction a. This brings no force into play upon P.

Q JL^x represents a small line, proportional to Lv, drawn in the direction /3 ; therefore the

dx
disarrangement indicated by

dx

takes place as follows: Suppose the medium when at

rest to be divided into physical lines parallel to the
,

direction „, let MN be any one of these lines, M being the point when it meets the plane per-

pendicular to a containing >, and let MN' be a line parallel to the plane of xy, makmg an

angle tan ->
(^) with MiV. Then the disarrangement consists in the displacement of the line

MN into the position MN\ and a similar displacement of all the other physical lines. This

disarrangement evidently brings no force into play upon P.

The same reasoning applies to the remammg term 7^''''''

4. Reasoning therefore in this way it is clear, that the disarrangement represented by the

first three terms of the expression (l) brings no force into play upon P.

5. To find the force brought into play on P by the disarrangement represented by

a„ = X j!^J,.= = 1 ^4 (a e + /B. + 7D ^^=-
•^ dx- dx''

la^Sw- represents a small line, proportional to ^x\ drawn in the direction a ;
therefore

^ dx-

the disarrangements indicated by

Sv = :^a^Jx'
^ dx'
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is a uniformly increasing expansion of the medium in the direction a, the rate of increase of the

expansion being —
. Hence, according to well-known principles, this disarrangement brings

into play on P, a force proportional to -— in the direction a, that is, a force whose symbol is

Aa —- , A being some constant.

Again, 1 /3 -—; So," represents a small line, proportional to Sx", drawn in the direction /3 ;

therefore the disarrangement indicated by

is a ciirvdture of the physical line MJV (see Art. 3.), and a similar curvature of all the other

physical lines, the symbol of the index of curvature

{i.e. a line equal to the reciprocal of the radius of curva-

ture drawn towards the centre of curvature) being

Hence, according to well-known principles, this disarrangement brings into play upon P a
d^r]

force proportional to -— in the direction /3, that is, a force whose symbol is

fi/3 -r-T, , B being some constant.
ax-

In the same manner we may shew that the force brought into play by the disarrangement

dx^
^" = ^7 3^.-^

is represented by the symbol

Hence the whole force brought into play by the disarrangement

is represented in magnitude and direction by the symbol

d \
-

,

(5. To find the force brought into play by the disarrangement represented by

Sua
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Let x'y be co-ordinates referred to two new axes (a'/3') in the plane of xy, making respectively

angles 45" and 90' + 45" with the axis of x ; then

Sx = —7- (Sx - By), Sy = —7= {Sx + ^y'),

\/2 \/2

a = 4= («' - (3'), /3 = 4= («' + ^')-

Making these substitutions, we find

^" = * d^y ^«'7i (? - ") - /3'

Ti^"
- ?) - ^n (^^''^ - ^y')-

Hence, by what has been already proved, the force brought into play will be

7. We may now write down the symbol of the whole force brought into play by the dis-

arrano-ement represented by the expression (l), neglecting terms beyond tliose of the second order.

It will be as follows,

'-"UhigH^)]'

+ (A-B)
dx' dy dz^

d- _„ , d" . „„ rf-

+ d^y^^^^'-^^^d^Jy^^f'O^j^Mt^y^)]

The coefficients of a, /3, 7 in this expression are the well-known differential formulae for

the three forces (parallel to the three axes) brought into play by the displacements ^, rj, ^.

The part of F which is multiplied by J - B, may be put in the form

( d d d\ id^ dti d^\

\ dx dy dxl \dx dy dzl

Hence, the equation of motion of the medium (which includes the three ordinary equations)

assumes the following form,

dt- \\dwl \dyl \dzl j
^ ' \ dx ^ dy ^ dzJ [dx dy dz)

8. This equation may be put in a remarkably simple form by the use of the notation I\u'.u.

Let us assume the symbol 3B to represent the operation

d d d
"T- + P:7- + 7T-.dx dy dz

then, since u = a^ + /3f) + 7^, we have

dx dy dz
._ d? d,, dX
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Also AB.B =(-)-.(-).(-

Hence the equation of motion becomes

d-v

dir
= B(A'B.lB)v + (A - B)'mATB.v (3).

We may also put it in somewhat a different form by using the notation Du'.u; for

(AlZ9.i9)u - 19 AB.u = - (Dmy-v*,

therefore (3) becomes

d-v

df
= fJBAB. -B(Dm.y-}v (4).

9. The symbol J3 has a very remarkable meaning which we shall now proceed to explain.

denotes the rate of variation when <v alone is varied, that is, the rate of variation in the
die

direction a. To indicate this, we shall employ the notation d instead of -— ; i. e., if U be any
dx

quantity which is a function of w y x, and which therefore varies when we pass from one point

to another of the medium, then d^U denotes the rate of variation of U, when we pass from point

to point in the direction a-

Now this rate of variation may be affected, like an ordinary velocity, with a sign of direction ;

and it may be resolved or compounded in the same manner, and by the same rules, as an ordinary

velocity.

Hence, we may see immediately the meaning of the expression

mU, or ad,U + (id^U +yd^U;

for ad^U is the rate of variation of U in the direction «, affected with its proper sign of direction a,

fid^U is the rate of variation in the direction /3, and yd^U in the direction y, each affected

with its proper sign of direction. Hence, compounding these rates of variation as if they were

ordinary velocities, it follows, that the symbolical sum

ad^U + fidf^U + yd^U

expresses, in magnitude and direction, the complete rate of variation of the quantity U.

10.. We may shew this differently as follows.

Let a^ (i^ 7, be any three direction units at right angles to each other ; then it is easy to

prove, that

",<l'a,+ f^A.+ '^Ay. = "''a + ^'^» + 7«^y' - (•')•

Let us now choose a^ /3^ y^ so that a^ shall be in the direction of the normal to the surface

dU =0,

at the point .v y z ; in other words, supposing U to denote some disturbance or displacement of

the medium, a^ is chosen so as to be perpendicular to the surface called the /)«?«< of the wave, for

dU = is evidently the differential ecjuation of that surface.

• For let u and u' be any two linen, and let u rcprcHcnt the

direction unit of t*'; then, if u'-r'a, and « = aa + 4^J + c-, , we have

Du'.u=r'{liy-cll), and.'. /)«'. (flu'.u) = r'" (-i/i- fy).

Now Au'.u' =r'^,auA n'Aii' u~r'''(in; thcrcforu

Du'. ( Du'. u) or (Du')' . u = m'Au'. u - ( An'. u')u.
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a, being thus assumed, we have d^U = 0, d^ U = 0, and therefore by (5),

a,d^U = ad,U + fid^U + yd^U=WU.

Now a, is the direction of propagation of the disturbance U, therefore d^ U is the rate of

variation of U in the direction of propagation, and ad^U is that rate affected with its proper

sign of direction.

Hence, the symbol 'W U expresses, in magnitude and direction, the complete rate of variation

of the quantity T7, that is to say, the direction of 39 (7 is that direction perpendicular to which there

is wo variation of U at the point xyz, and the magnitude of 13 t/' is the rate of variation of U in

that direction.

It is manifest, therefore, that the symbol 33 has a very important signification, especially in

investigations relating to the propagation of waves.

1 1 . Returning now to the equation (4) we shall, in the first place, interpret the meaning of

the symbols AH) . v, and Z>19 . n.

Let ^^ >;^ ^, be the resolved parts of the displacement w in the directions a, (i^ y^ respectively;

then, choosing (as we may do)* the direction y^ so that ^^ = 0, we have

V = ^,a, + >;,j8,,

and therefore, since W = ad^, we find

Let OX and OY be the directions a, and /3,, y^ being perpendicular to the plane of the

paper ; let be the point {xyz) of the medium, POQ, the

line of particles which, in a state of equilibrium, lie in the

direction a^, and OT the tangent to POQ at O. Then since

OX is the direction of propagation, and since the disturbance

(w) consists of two parts, namely
f,

in the direction OX, and

t]^ in the direction OY, it is evident, that rf„f^ is the expansion

(i.e. the degree of expansion, or, what is called the rarefaction)

of the medium at the point O ; also d^ri^ is the tangent of the

angle TOX, and therefore measures the degree of lateral displacement of the medium at the

point O.

This lateral displacement consists in the rotation of the line OT about the axis -y , and a

corresponding rotation of all the other lines of particles which constitute the medium in the im-

mediate vicinity of the point O, these lines being supposed to be parallel to OX in a state of

equilibrium. Hence it follows that the symbol Z)39 . v represents, in direction, the axis round

which the lateral displacement takes place, and in magnitude, the degree of lateral displacement.

Thus it appears tjiat the symbols AiB.w and aJOjE).« have a very important signification in

investigations relating to the propagation of waves, the former expressing the degree of expansion

of the medium at the point xyx, and the latter representing, in magnitude, the degree of lateral

displacement at the point xyz, and, in direction, the axis about which that displacement takes

place.

12. Hence it is evident that the symbol A39 . v defines the kind of disturbance which constitutes

normal waves, and DlB . v that which constitutes transverse waves.

• a, is the direction of propagation, as in the preceding article, and y, is chosen at right angles, not only to o, , but also to the

direction of viliralion at the point xyx. In this case 5, is clearly zero.



VIBRATORY MOTION OF AN ELASTIC MEDIUM. 517

13. Al^-v, and Di^.v may be found separately by the integration of a differential equation

of the form

d'U f(PU d'U d'U\

-d¥ = ^[d^-'lf^^) ^'^-

For performing the operation A?3 . on both sides of (3), and putting i\?3 .v- U, we find

— (AS .v) = B (AS . S) AS .V + (J -B) (AS . S) AS . v ;

(12 rj

or, ^ = ^(AS.S)f7;

and performing the operation i)S . , and putting Z)S . « = U, we find (observing that DS . S = 0),

^=fi(Al9.3B) U:

hence, AiB.i) and D'^.v may be found separately by the integration of an equation of the

form (()), C being equal to A in one case, and to B in the other.

Investigation of the Equation of Vibratory Motion of a Crystnlli%ed Medium.

14. When the constitution of the vibrating medium is crystalline, we may obtain a differential

equation similar to that we have found for an uncrystallized medium, and by exactly the same

method ; the only difference will be in the constants introduced, in regard to which we must bear

in mind, that the elasticity of the medium is no longer the same in all directions, and therefore the

constants A and B, which we may call the coefficients of direct and lateral elasticity respectively,

will be different with respect to different directions. The method we have employed to find the

force brought into play by a disarrangement of the medium requires us to consider this difference

of elasticity only with respect to the three directions a, /3, 7, assuming that the medium is still

symmetrical with respect to these three axes, i.e. supposing them to be the axes of elasticity.

15. Hence, reasoning as in article (5), the force brought into play by the disarrangement,

^« = ii„g3.^./3^V.7B^^^dy-

-'"^^
^-S-^^^^g-^^^-^S' ^^)'

A^, A-^, A3, being the coefficients of direct elasticity for the three directions a, /3, 7.

Again, reasoning as in the same article, the force brought into play by the disarrangement,

will be

^
•(-^^-S) ^^i^-s*"-^ *^(--s**-i--

<">•

B„ Bi', B.i, J5/, &c., denoting the coefficients of lateral elasticity for the three directions u, /3, 7.

We make a difference here between 5. and 5,', because the disarrangements.
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1
rf'^

5 . 11 '^'^ S •

and -k a -r-r oxr~,
^ ax-

are of a different nature, though they consist of displacements in the same direction a ; for the

former disarrangement consists in the rotation (i. e the curvature) of physical lines parallel to (i

about the axis 7, and the latter of physical lines parallel to 7 about the axis j3. The same re-

marks apply to B., and jB..', ^3 and 5/. Fresnel virtually assumed that B^ = B', B. = J?,', Bj = B3'.

16. By reasoning as in article (6), we might easily shew, that the force brought into play by

the disarrangement,

dxdy dwdy

d'r

dxdy ' dudy

But we shall shew this somewhat differently, in order to find out what relation subsists (if any)

between C C and the constants already introduced.

The disarrangement a —
, ^x^y, is of the following nature.

dxdy

Let OX and OY represent the directions a and /3, and O the point (ryji); take OM = ^x,

draw SMS' parallel to J'F', and PMP' making the tangent of the

angle PMS equal to
^

5.f. Then it is clear that the dis-

Qiiij ay

d'P
arrangement a ^- Sx^y causes the physical line SMS to

° dxdy
assume the position PMP'. In like manner, if ON = - Sx, and

TNT' is parallel to YY', the physical line TNT' will, in con-

sequence of the disarrangement, assume the position QNQ', the

angles QNT and PMS being equal. The physical lines (taken

parallel to YY') between SS' and TT' will suffer similar deviations, the tangent of the angle of

deviation being proportional to Sx.

17- The effect of a disarrangement of this kind is obvious ; for it produces a uniformly

increasing expansion of the medium as we go along the line OY, and a uniformly increasing con-

densation as we go along the line OY , the rate of increase both of the expansion and condensation

being, as it is easy to see,

dxdy

The effect of this will be to bring into play upon the particle O a force in the direction Oi'

proportional to this rate of increase, i.e. a force whose symbol is,

d'^

r

x' N
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18. We may easily shew that the disarrangement y -^y^ SxSy brings no force into play

upon O ; for it is perpendicular to the plane of the paper, and its nature

is as follows. Draw two physical lines QQ' and PP through O equally

inclined to JlJ^'; then in consequence of the disarrangement the lines OP
and OP will become bent upwards (i. e. upwards considering the plane

of the paper to be horizontal), and the lines OQ and OQ' will be bent -

downwards; also the curvature of POP will be exactly the same as

that of QOQ', only opposite in directions. Hence the two forces

brought into play on O by the curvature of the two physical lines PP'
and QQ' will be equal and opposite ; and the same may be said of every

other pair of physical lines drawn through equally inclined to JCJ^'. It is therefore manifest

that no force will be brought into play on O by this disarrangement.

19. Thus it appears that the force brought into play by tiie disarrangement,

d-v

dwdy
SxSy

,

ill be

dxdy
{a^ + fir, + y^)S^vSy,

dxdy dxdy

Hence the force brought into play by the disarrangement,

d-v
^v = dxcy +——— dydx +

dxdy ^ dyd

will be expressed by a symbol of the form

dzdx
IzLv

^'
(C„7 + C,'^/3) +

'^'

dydx dz dee
iC,^a + C/^7) +

d'

dxdy

(U")-

20. Hence, collecting these three results, the general equation of vibratory motion will be

+ U" (8).

d-v

21. We have seen that, in the case of an uncrystallizcd medium, the constant C (i.e. the

constant to which the different C's in U" become equal when the medium becomes uncrystallizcd)

is equal io J - B ; in other words, C is the difference between the coefficients of direct and lateral

elasticity ; and it is easy to explain how this is on simple mechanical principles, which appear to

apply to a crystallized medium as well as to an uncrystallizcd, and which therefore will furnish us

with certain probable relations between the coefficients involved in equation (S). These relations,

as we shall presently shew, have a very important [jhysical signification.

22. Referring to the figure in p. Jl, we may explain tiie jiliysical meaning of the relation,

C == A - B as follows :

—

The disarrangement represented in this figure consists of an increasing expansion of the

medium as we go along the line YY', caused, not by direct displacements (;. e. displacements

parallel to VY), but by /a<er«/ displacements (i.e. displacements perpendicular to 1"]'). C'onse-

quently the fierce brought into play u|)on by this increase of ex])ansion will be modified by the

lateral elasticity of the medium, which tends to restore the piiysital lines PP', QQ', &c. to their

equilibrium |)ositioiis .S'.S'', '/'T', &c. In fact the uneijual expansion cau^e(l by the disarrangement

Vol.. VIII. I'AKT IV. 3 X
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is resisted, and, to a certain extent, balanced (so to speak) by the lateral elasticity, and therefore

the unequal expansion has not its full effect in producing force upon O, but a certain part is spent

upon the lateral elasticity.

If there was no lateral elasticity the force on O would be the same as if the displacements were

direct (i.e. parallel to Y'Y), for then the unequal expansion would produce its full effect ; in other

words the force brought into play on O would be

dxdy

observing that the rate of increase of the expansion of the medium as we go along Wis
dccdy

To find the force actually brought into play upon 0, allowing for the lateral elasticity, we

must diminish this force by a certain quantity depending upon the lateral elasticity, which quantity

d'P
must of course be proportional to —\- . It is clear therefore that the force actually brought into

dx'dy

play upon O is expressed by a symbol of the form

dxdy

P being a certain constant depending upon the lateral elasticity. Art. 6 shows that P = B.

This evidently explains the physical meaning of the relation, C = A — B, for this I'elation

indicates that the force brought into play by the disarrangement a -——SxSy is, not the force

d'f
A — &, which is the force due to the full effect of the unequal expansion, but the force
dxdy

d-p
(A — B) -—^ /3, which is equal to the former force diminished by a quantity depending on the

UiL G/'tJ

lateral elasticity, and proportional to the rate of increase of the expansion.

23. From this explanation of the meaning of the relation C = A — B, it is very probable,

I think, that a similar relation holds wlien the medium is crystallized ; for it does not seem essential

to this explanation that the medium shall be perfectly uniform in all directions; all that seems

really necessary is, that the medium shall be symmetrically arranged with reference to the two axes

XX' and W. We must take care, however, in applying this explanation to a crystallized medium,

to give A and B their proper values, namely A-i and B^ ; for by A is to be understood the coefficient

of direct elasticity in the direction OY, that is A,, and by B the coefficient of lateral elasticity

brought into action by the unequal rotation of physical lines parallel to OY about the axis of z,

that is S, (for B, is the coefficient of lateral elasticity for the curvature of such lines about the axis

of 2^). Hence the relation, C = A — B, transferred to a crystallized medium, is Cj = A.^ - B^, and

therefore, writing down this relation for the six CTs in the expression U", we have the following six

relations, viz. :

—

C3 — A2
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If we substitute in (8) the values of the Cs given in (9), we find the following value of U", viz.,

A,

dydss

and therefore (8) becomes

d (dr, dr\ d Idt d^\ d tdl dr,\

dx \dy dzj dy \dz dxi d« \dw dyl

d«dx dxdy

d-« / d d d\ (d^ dr, d^

dt^ \ dx dy dmi \dx dy dx

^ I d ^ d \df „, I d d \dP

\ dy dxj dy \ dz dx/ dz

^ I ^ d d\ dri „ , I „ d d\ dri
+ 5J/3 — -7— --' + S.' /3- -a-]-r^

V dz ' dy) dz V dx dyl dx

d

.(10).

+ BAy—-a— ]-f + B, U,— -/3— -f
\ dx dzj dx \ dy dx) dy ,

d n d r.—, d d
By using the notation in Art. 8, &c., and observing that « "t - p-r—=Dm.y, a— - 7^

= — DlB • (3, &c. &c. the equation (lO) becomes

d ^ d d \ ^
df- r'"Xr ^^'^'dy ---

dzl-

+ DW {{"''£-'>?,)'* {''?^-''r:)'* {"''4 -'•i^)-']

,(11).

For transverse vibrations we have AI3 . « = O, and therefore,

df
= Z)D

Now Du ,u is the symbol of a line perpendicular to u and m; hence (12) indicates that the

cPv
force -— is perpendicular to the direction of W, and that direction, as we have seen, is the direc-

tion of propagation. It follows, therefore, that if the relations (9) hold, the forces brought into

play by transverse vibrations are always perpendicular to the direction of propagation.

25. AVe shall now shew that this cannot be the case except the conditions (9) hold.

If the conditions (9) do not hold we must add to the second member of (12) an expression of

the form

^(Z:,,7 H- E^m + rf^(^^r« -^ El^y) + ^(^»e/3 -»- E.;.,.) = V, suppose

E, El Ei EJ E-i Ej being the unknown corrections to be made in the second members of the

relations (.9).

Performing on V the operation AH)., we find,

dydz\ dz dy) dxdw\ dx dzl dxdy\ dy dx)

Now, if the second member of (12) + V is perpendicular to the direction of TB, the same must

S \2
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be true of V, and therefore Ai3 • V must be always zero. Consequently AID . V must be zero in

tbe particular case where ^ = 0, and ^ and tj are functions of .c and y only, in which case we have

d.vdy \ ^dy ' dx

.
d,^ dv dr,

observme that ^ h a—^ ( = ol = 0.^
d.v dy dz^ '

That this expression should be always zero evidently requires E^ and E^ to be each zero ; and

in the same way we may shew that the other E''s are each zero.

Hence, it appears, that the forces brought into play by transverse vibrations are not perpen-

dicular to the direction of propagation, except the conditions (g) hold.

These conditions are therefore essential to the truth of Fresnel's Theory of Transverse Vibrations.

26. Hence it follows that (12) is the most general form of the equation of vibratory motion,

when the transmission of a wave of transverse vibrations through the medium in every direction is

possible.

27. Experiment shews that the six constants involved in (12) are reducible to three in the case

of ordinary Biaxal Crystals ; for it appears, that, when the plane of polarization of a ray coincides

with the plane a/3, the velocity of transmission in the direction a is the same as that in the direction

/3. Now, first, let us assume with Fresnel, that the vibrations are perpendicular to the plane of

'

polarization (a^) ; then, for the directions a and /3 the equation (12) becomes, in each case

respectively,

dt' dy ^ dy ' df ' df
Hence, if c denote the common velocity of transmission in the two directions, we have

B, = b; = c\

In exactly the same way we may shew, that

fi, = 5,' = a-,

s, = 5; = b\

where a is the velocity of transmission in the directions /3 and 7 of a ray polarized in the plane

(iy, and b the velocity in the directions y and a of a ray polarized in the plane ya.

Hence the equation (12) becomes

(Pv ^ , f d ^ d\ ^ / d d\ t^d d\„,-.Dl^M[y -^£)l.b^[a--y£),.c'[fi--.-^-^K\,
dy dzl V dz d.v) \ d.v dyl

...(13).

or ^ = - {Dm . y(a'^a + fe%/3 + c'^y),
air

or ^= - (Z>B.)-(a=aAa + 6^/3 A/3 + c=7A7)w,
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If, however, we suppose that the vibrations of a polarized ray are in the plane of polarization,

we may shew as above, that

B, = 5; = «%

B, = B! = b\

B, = BJ = c",

and therefore (12) becomes,

or -^= -Z)B.(a'aAa+6'^ A/3 + d'y 1^^)01^ .v (14).

28. Taking the equation (l.'S), we shall now find under wliat circumstances the force -—

is in the direction of vibration.

Let us choose a^ /3, y^ as in Art. 10, a^ being the direction of propagation, and 3, that of

vibration ; and let « = >7,/3^. Then, as in the article just referred to, we have 19 = a^rf„.

d^v . . . „ cf'J rf'f
Now, the condition that the force —- may be in the direction B, is Ai/ .

—

-„ = (for —- is

de •' ^' ^- df df
already perpendicular to a^, and this condition makes it perpendicular to y^ likewise), or by (1.3),

A7,.(Z>a/.(o'aAa + b^(iA(i+ c^yAy)(3^ = 0.

But, by the general proportions of the notation D and A, we have A7 .Da = A/3,., and

therefore A 7, . (Z>a, .
)° = A/:}, . Da, = - A7, . . Hence this condition becomes

«-(Aa . 7,) (Aa . Si) + 6-(A/3
. 7,) (A/3 . /3,) + c^(A7

. 7,) (A7 . /3,) = 0.

This is the well-known condition of Fresnel that the force brought into play by a transverse

vibration may be in the direction of that vibration; for

Aa.7, = cos {ay) Aa./3, = cos (a/3,) &c. &c.

To find the velocity of propagation in this case, we have, performing the operation A/3, on

both sides of (13),

^' = {a^(Aa
.
/3/ + &^(A/3 . /3,)= + c= (A7

. /3,)=} <v,

,

and therefore the square of the velocity of propagation is

a'(Aa. /3,)= + 6=(A/3. /3,)^ + c'(A7./3,)^

which is FresnePs expression.

29. We may treat the equation (14) in exactly the same way.

M. O'BRIEN.

L'ppEU NoHwooD, April, 1847.



XXXIX. A Theory of the Transmission of Light through Transparent Media,

and of Double Refraction, on the Hypothesis of XJndulations. By the

Rev. J. Challis, I\I.A., Plumian Professor of Astronomy and Experimental

Philosophy in the University of Cambridge.

[Read May 17, 1847-]

In a former communication to this Society, I ventured to advance a new Theory of the

Polarization of Light, founded on a Mathematical Theory of Luminous Rays. (^Cambridge

Philosophical Transactio7is. Vol. viii. Part in. pp. 36l, and 371.) As the Theory was not then

applied to the phfenomena of Double Refraction, I propose in this Paper to attempt to give it

that extension. The course of the reasoning will require a general consideration of the transmission

of light through transparent media. I shall therefore commence with this part of the subject.

1. It will be assumed that the sether is of the same uniform density and elasticity within

any transparent medium as it is without ; and that the diminished rate of propagation in the

medium is owing to the obstacle which its atoms oppose to the free motion of the aetherial particles.

Considering the proximity of the atoms to each other, and that the retarding effect of each atom

at a given instant, extends through many multiples of its linear dimensions, it is presumed that

the mean retardation, though resulting from the presence of discrete atoms, may be regarded as

continuous. It will also be supposed that the mean effect of the presence of the atoms is to

produce an apparent diminution of the elasticity of the fether, the motion in all other respects

being the same as in free space. Let a = the velocity of propagation without the medium,

and — = that within. Then, p being the density in a line of rectilinear propagation, at a point

2 1

distant by x from the origin, the effective accelerative force =
; .
—'—

. If there were no
fi' pdat

a^dp
retarding effect of the atoms, the accelerative force would be -S-

. Hence, the accelerative° pdai

force of the retardation (/?) is equal to a" I 1
;

J

—j- . For this force another expression may

be obtained by the following considerations. If u be the velocity of the sether at the time t at

the point whose co-ordinate is .», we have by known equations,

V = — Nap. log. p = (j> i — t — aA

Now the accelerative force of the retardation at a given point must vary conjointly as the

number of atoms in a given space, that is, as the density of the medium, and as the effective

accelerative force of the aether at that point. Hence, K being a certain constant, and h the density

of the medium,

R = - Kl [-^\ = — Kh— very nearly.
\dtj dt ^

•'



PROFESSOR CHALLIS, ON THE TRANSMISSION OF LIGHT, ETC. 525

Consequently by the foregoing equations,

Comparing this expression for R with tlie former, we have

iiiV pdw li- pcLv

2. Hitherto we have supposed the atoms of the medium to be absohitely fixed. If, as it is

reasonable to suppose, they are moveable by the mechanical action of the aetiierial vibrations, the

retardation produced by them will differ from that obtained above. Assuming the mean effect of

the presence of the atoms in this case also to be an apparent diminution of the elasticity of tiie

sether, the accclerative force of the retardation will vary as the density of the medium and the

difference of the effective accclerative forces of the tether and the atoms at a given position. That
is, if v be the velocity of an atom, where the velocity of the vibrating .-Bther is v, we shall have

dv dv \ I \ \ da dvR = - Kd {—- , very nearly. And, as before, R = aM 1
I
—i- = - (n? - i)

\dt df I
'

V 1^1 pdx dt

Hence, putting q for the ratio of -— to — , it follows that ^/ - 1 = KS{1 — r/).

3. Since the retardation will be less and the velocity of propagation greater when the atoms

are moved than when they are fixed, /x will be less in the former case than in the latter, and

consequently (jr is a positive quantity. As it is known from experience that the rate of propagation

of light in a given direction in a medium, is uniform and independent of the intensity of the light,

dv dv
the ratio of to — must be the same at different points of the same wave, and the same also

dt df '

for vibrations of different magnitudes, if the breadths of the waves be given. But to account for

the pha;nomenon of dispersion, q must be a function of \ the breadth of the wave. For our

present enquiry it is not necessary to ascertain the form of this function. It is only necessary to

assume that in crystallized media q is different for different directions. The theoretical reason for

this probably is, that the retardation depends on the elasticity of the medium, and that the elasticity

of crystallized media, and consequently the mobility of their particles, depends on the direction.

4. What has been said above respecting the transmission of light through transparent media,

will suffice for the consideration of the theory of Double Refraction, on which I am now about to

enter. It will be assumed that in any medium which does not retard the progression of the

luminous rays equally in all directions, there are at least three directions at right angle-;

to each other, in which the retardation will take place in the manner hitherto supposed. Let

n', h^, c'' be the constants of elasticity for plane waves in these three directions, and let a be the

velocity of the waves in free space. Then, (/,, q^, q^, being the values of g- for the same directions,

the time of vibration being given, we have,

4=1+^5(1-7.)- ^., = \ +Ki(l-q,), 4 = I + ^<U' - 7:.)-

a I)' c

"

a. When an atom of tlie medium is displaced in one of tlic three rectangular directions above

mentioned, the direction of (lisplaceiiient coincides by hypothesis with the line of jjropagation of the

waves. Although in general tills will not l)c the case, waves may still be |)n)pagated in all tlireetions

in the medium. For supposing plane waves of given breadth to be jiropagated simultaneously in

the three rectangular directions, (which may be called the axes of elasticity,) the resulting ell'oet on a
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o-iven particle of the sether, according to the principle of the coexistence of small vibrations, may be

a vibration in a certain resulting direction, of the same period as that of the component vibrations.

Consequently waves which would produce the same vibration of the aetherial particle may be pro-

nao-ated in that direction. But the displacement of the atotns of the medium does not necessarily

take place in the same direction. If this displacement be resolved in two directions, one coinciding

with the direction of vibration of the aetherial particles, and the other perpendicular to this, the

resolved part of the displacement in the latter direction, will give rise to aetherial vibrations which

will be propau-ated laterally and produce no sensation of light. With reference to phsenoraena

of licht the other part alone requires to be taken account of. The above considerations will

enable us to determine the effective elasticity in any direction in the medium, in terms of the

elasticities in the directions of the axes.

6. Let V be the velocity of a particle of the a^ther, the vibrations of which are due to waves

propagated in a direction making angles a, /3, 7, with the axes of elasticity ; and let v' be the

resolved part in that direction of the velocity of an atom of the medium situated where the

velocity of the aether is v. Then by Art. 2, the accelerative force of the retardation is equal to

. (dv dv'\ „j,

,

^ dv

If now the velocity v be resolved in the directions of the axes, the accelerative forces of retardation

corresponding to the resolved parts of the velocity will be,

- .fiT^ (1 -
<?,) cos a^ , -A'^(l -«?2)cos^— , - KSO -<Iz)cosy~.

And by the considerations in Art. 5, the accelerative force of the retardation in the given direction

of propagation, is equal to the resultant of these forces. Hence

-KH^-q)'jZ = -^^ir- {(l -9.)':os'a + (l - q,) cos' (i + (l -q,)coi'y}.
at at

Let now ?-2 be the constant of elasticity in the direction of propagation. Then by the equations in

Art. 4, we have,

--l=A'^(l-9), ^-1=^-^1-9,), ^-i = A'^(l-<7,),
f,

-1=^^(1-9,),

Hence, by substitution in the foregoing equation,

^ _ 1 = (^
- 1) cos'^a +

(^,
- 1) cos'^/3 +

(

J - 1) cos^7.

Consequently,

I cos^ a cos' i3 cos' y— = \ — + .

r' a/ 6; c/

The surface of which this is the equation in polar co-ordinates, may be called the surface of

elasticity. It is evidently that of an ellipsoid. The radius vector r, represents the velocity of

propagation of plane waves in any direction coinciding with that of r

7. We have now to find the velocity of propagation in Slfilament of the asther corresponding

to a ray of light. In considering the motion in a filament of a medium the elasticity of which

varies with the direction, I shall proceed in a method analogous to that employed in my Paper

on Luminous Rays. {Camh. Phil. Trans. Vol. viii. Part 111. p. 365). It will be supposed that

in the filament there is an axis of no transverse velocity. This is taken for the axis of z. The
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condensation at any point of the filament is assumed to be (p^ (z, i) xf(.v, y), which for shortness

sake, will be written (p^f, (p^ being treated as a function of z and t only, and / as a function of

.V and y only. Let p be the density, and ii, v, w the components of the velocity in the directions

of the axes of co-ordinates, at the point a;yz, and at the time f. Also let a'-, b'^, c' be the co-

efficients of elasticity in the directions of the axes of x, y, ss respectively. First powers only of the

velocities u, v, w, and of the condensation p — 1 will be taken account of. This being premised,

we have,

ldu\ a'^dp "''(p, df
\dt) pd.v p ' dx'

and to the first approximation.
du

rf7
- «>. dx

' He

,., df ,u = - a'--/- f(pdt + C,
dx '^

'

the arbitrary quantity c being in general a function of x, y, and z. So also

V = - 6'-^ f(pdt + C.
dy

Again, since

dw

div

~di

c"-d

odz
-

, we have to the same degree of approximation,

dt
= - c'^f-

dtp,

dz
and

fd(p^.eyf^dt^c"=.cy'-q^^c".
J dz dz

df(pdt

But from the supposed law of condensation in any plane perpendicular to the axis of z, it follows,

that the accelerative force parallel to this axis at any point of the plane, must to the first degree

of approximation, be equal to / x the accelerative force at the point of intersection with the axis,

and the corresponding velocities must be in the same proportion. Hence, — being the velocity
dz

at the point of intersection with the axis, we shall have

w =/
d(p

dz
Consequently - c" f(p^dt = (p, and C" = 0.

Assuming now that C and C' arc each equal to zero when <p = 0, we obtain,

-" df .......
^" ^df

, , and V = ~r,.(t)~. Hence,C • dx c^ ^ dy

a' df b'' df d(p
,n dx + vdy + wdz = -^. <p-~- dx + -r <p -^ dy + f~ dz.

c ^ dx c' ^ dy ' dz

a" h"'

In this case udx + vdy + wdz is not an exact differential. Let -^^ = /(, and — = ', imd suppose

ithat/= Fi'.FJ, the function Fi containing x only, and the function F., containing y only. By

this supposition, a factor which will render the above quantity an exact differential may be found,

which, though not the mo.st general, will suffice for our present purpose. By differentiating,
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, , , 0/ ''-'^1
, ^/ dF^

,
„dd)

,Hence, uda- + vdy + ivdx •= -~. —— da; + ^.--

—

- dv + f —T-dz^
F, d!tj F. dy ^ ' dz

= Fr' f)" \{F. ^' d^ + F, '^-p dy)
<P
+ F,f/-^ dz]

' dx dy ^ dz '

i-i 1-1
= /^/ F,' .d.F^F,(p.

Consequently the required factor is Z',
''

F-^ '
; and the differential equation of the surface

cutting at right angles the directions of the motion, is d-F^F^cp = 0. If \^ = 0, be the equation

of this surface, we have -^ = F^F.;,<p + a function of/. We may now proceed to find a value

of -r + r^ , the sum of the reciprocals of the principal radii of curvature of the surfiice at any

point, by substituting in the general expression fo"" "h + ^> '^'^•'

' fd'^ d"\|/ d-y\,\ ld\\r' d\l/ d^'\ d\j/ d\\,- rf'x/, rfx//'

\dx'' dy' dz' j Kdar dy' dx^ I d,v' dx' dy dy'

d'yj/ d\\r" d''-^ d\j/ d\|/ d^'^ d\j/ d\l/ d'\jy d\p d\j/

dz- dz'' dwdy doe dy dxdz dx dz dydz dy dz

j
df dx//' dv//l

Now '^^f!'" .F.!'' .u, and -^ = f'' ''
. F,'' ' .v; and therefore -^^ = o if u = o, and

dx
'

dy dx

r = if u = 0. As we shall require the value oi — + -p only for points where u = and
dy K K

d^ d\|/

V = 0, we shall suppose in the general expression that ^ = " and — = 0. Hence

1 1 dx-' dy' ^ - dx' ^
R'*' R' d^l, F F.'^

dm ' ' dz

dy'

Taking now the equation (3) obtained in page 365 of the Paper on Luminous Rays, and sup-

posing it to apply to any point of the plane perpendicular to the axis of sr in which («= and « = 0,

we shall have, neglecting small terms.

~dt-if-
' dz- ' dz ' \R R'J

That this equation may be of the form --^ - c"". -^- = 0, which, for the reasons given

in the Paper just cited, it is required to be, we must have

' • ~d^ U «'/ ^ ' dz^

^c'-^k^f, \i c'" = c'"- (\ + k).
dz"
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cl<p 11 I \ d'<b 1 1

Hence, ^^ • „ + „, = A^ "77 • and by substituting the value of - + -
, obtained above,

(is: \si Jx ! ass Jt H

,
d-d) / d'Fi d-F,

dz' ^ KF^dw- F.,dy-

For a point on the axis of x: this equation becomes —^ + tvcp = 0, the constant n' being

such that if \ be the breadth of the waves, w = — . Hence, substituting - n'd) for ? in

the foregoing equation, the result is

if-F, <fF,.

F,dx- F.,df

X
' ^ ^ d^

+ kn^ = 0.

By taking account of the equality f = F,'' . F.^' , we obtain by substitution in the above
equation,

. d\f d\f h . (A - 1) df /.(/-I) df

If now for tiie same reasons as those given in p. 369 of the Paper on Luminous Rays, the

(// J df ^ , ^ ,

terms involving -r^^, and —Y~; "^ neglected, we have, finally,
fdx- Jdy-

^ • ^4 + ^ • ^ + /"»7 = 0.
dor dy~ •

The general result fi-ora this course of reasoning is, that a ray of which the condensation in the

transverse direction is defined by a function of x and y, which satisfies this equation, may be
propagated in a medium whose elasticity varies with the direction of propagation. The reasoning,

iiowever, only applies to a function of ac and y, which is the product of a function of w and
a function of y. It is evident that / cannot be a function of x^ + y^, and, consequently, that the

ray cannot be one of common light.

8. It is found by experience that a po/nrized ray may be transmitted in certain transparent

crystallized media. I shall assume that in these media the retardation of the propagation produced

by the presence and inertia of the atoms, is such as corresponds to an apparent diminution of the

elasticity of the a;ther, different in degree in different directions. I shall assume also that there

are three rectangular axes of elasticity, and tliat, in accordance with the result contained in

Art. 8. of this Paper, the surface of elasticity is an ellipsoid. On these suppositions the ray

cannot be one of common light, because the eft'ective elasticity is different in different directions

transverse to the axis of the ray. But the suppositions are consistent with the transmission

of a polarized ray. For according to the Theory of Polarization contained in my Paper in the

Cfimh. Phil. Tranaactions, (Vol. vui. Part in. p. 372), the condensations for a polarized ray must

be disposed symmetrically witli reference to two planes at riglit angles to each other ])assing

through the a.\is of the ray. Consequently the force of retardation and tiic effective elasticity

must act symmetrically with reference to two such planes. And this will evidently be the case :

for any section through the centre of the surface of elasticity is an ellipse, the radii of which

drawn from its centre, are symmetrically disposed with reference to its axes. It is possible that

the function / for a polarized ray may ho sue!) as that sup])osed in the preceding Article,

namely, the product of a function of .v and a function of y. All, however, that can be alllinu-d

respecting this function from the reasoning in the Paper above referred to is, that for small

distances from the axis of the ray, it is a function of one co-ordinate only, the axis of .r and //

.'i y 2
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being supposed to be in the planes of symmetry. Let, therefore, in the last obtained equation,

/be a function of w only. Then,

d'f k7i

Now in the Paper on the Polarization of Light, (p. 37.S), the particular value of/ for a polarized

ray was found to be cos n\/ka:. By substituting this value in the equation above, we obtain

the equation of condition h = \, or a' = c'K It would appear therefore that a polarized ray

cannot be transmitted in the medium, the transverse elasticity being different from that in the

direction of propagation, if the velocity of propagation really be c", or c y/l + k. For the

transmission of the polarized ray it is necessary to suppose an alteration of the rate of propagation.

This may be conceived to take place as follows: First, suppose h = \, and a polarized ray in which

2 7r

the breadth of the waves is X, or — , to be transmitted with the velocity c'\/l + k. Then

suppose the elasticity in the direction of the plane of polarization to be altered from c"" to a"-, and a

polarized ray to be still propagated. By hypothesis the nature of the medium is such as to allow

of this taking place. Now as/, and consequently the transverse section of the ray, do not alter

by the supposed change of elasticity, the only way in which the condensation can be altered is

by a change of \. The time of vibration of a given aetherial particle remaining constant, the rate

of propagation will be altered in the same ratio. Let therefore / = cos n \/k,v, and let \' be

the new value of \. By substitution in the foregoing equation, we obtain the equation of

condition

« n'c^ ^, M X c'

T = —77- Hence — , or - = -

;

fi a- n K a

and the velocity of propagation

X , / r a!
= c'\/i + k X -=c'\/l+kx— = a' \/l + k.

\ c

The foregoing reasoning involves the inference that the rate of propagation of a ray in a medium
is not solely due to the effective elasticity in the direction of its axis, but is affected also by the

circumstance that the medium is incapable of transmitting any but a polarized ray, and that
for such a ray A; is a constant.

9- We are now prepared to find the equation of a surface, the radius-vector of which
drawn in any direction from a fixed point, shall represent the velocity of propagation of a ray
in that direction. As we found the velocity of propagation to be that due to the elasticity in the
direction of a line drawn perpendicular to the axis of the ray in the plane of polarization, the
process will evidently be the following. Cut the surface of the ellipsoid of elasticity by a plane
perpendicular to the direction of propagation. The semi-axes of the section will be the radius-

vectors in that direction of the surface required. Let a, b, c be the semi-axes of the ellipsoid.

Its equation in rectangular co-ordinates referred to the axes and the centre will be

or' y" s^

-i + h + -i = ^-
a' o" cr

Let the directions of the rectangular axes be changed by substituting for x, y, and z the

following values :

» = aw' + fiy + yz',

y = ax + p,'y' + y'z,

z = a" CO + /3"y' + y"z'.
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I

and in the result make z = 0, in order to obtain the equation of the section. This equation

will thus become

{ax' + fiy-y jcL^v' + (j'y'f {a\v+(i"yy _

Supposing in this equation x' and y' to be referred to the axes of the section, and r, )', to

be the two semi-axes, we shall have

1 a a a

^ "? "^ ¥''"? '

r'-
"

a'
•"

6^
*

c^ '

a/3 a'P' a"/3"
and = -t: + -^ + -^ .

or b- &

The equation of the surface, the radius-vectors of which in a given direction are r and /, is

consequently the following :

c" I Vr» a' b^ c- I

1 l/a-'+/3' a"+(i" a"^ + /3"^ a'/3^ a' (i" a'fi'" a' (i" + a" ^'

)•' r* V "•' )^'J

"^

a'c' h-c'
= 0.

By combining with this the equations

a' +(i' +y' = 1,

a'' + /3'^> + -y'^ = 1,

iaii a'/3' a"/3'

(?-^^°-f)=»'
we obtain,

, i/i-y 1-7'^ \-il\ ("/3' - «'/3)' («/3"-a"/3f («'/3" - «"/3y

Again, from tiie equations

a'' +a" +a"' = 1,

(i' +(i" +i3"= = I,

2 . '2 , "2 17+7 +7 = ',

a/3 + a'/3' + a"/3" = 0,

|we have,

a'(¥ + u'lr + 2«/3«'/3' = a"*/3"= = (I - a^ - a'^) (1 - /3^ - /3'')

= ,_„=_ /3^ _„'» - /3" + a'fi* + a"li" + a'/3" + a"^'.

Hence, o = y' - u" - fi" + (a/3' - (ia'f ;

or, («/3' - /3a')^ = «'^ + /3'' - 7^ = I - y" -y- y'"
;

so («/3" - a"/3)= = 7'^ and (a'/3" - a"/3'f = y'-
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The equation consequently becomes

Transforming it into rectangular co-ordinates by putting ,rr for r^y°, y' for J'^y, x^ for r^-y"

and x^ + v^ + 2^ for r^ there results

a^ 6^ c^ Vfl! ft a'c' he'

or, (c/ + / + «;') (o^r^ + b^y' + cV) - «'6'^ (ai' + y') - «'*•' {«'' + 2^) - ft'<.'' (y' + x") + a'^fc^'^ = 0.

This is the equation of the wave surface in FresneFs Theory of Double Refraction. It is very

remarkable that principles and reasoning so widely different from those of that Theory should have

led to the same result. It is needless to go farther in the investigation, as all subsequent deductions

may be made in the same manner as in the received Theory.

10. In conclusion, I beg leave to refer to an objection which may be raised against the

Theory of Polarization which I have brought forward. It may be urged, that as a wave is

conceived in this Theory to be composed of a vast number of rays in the same phase of vibration,

the transverse vibrations of the different rays will mutually destroy each other, leaving only the

direct vibrations, which by hypothesis do not produce the sensation of light. To this it may be

replied, that it is only the axis of a ray which can be considered as subject to the law of

refraction; for the motion of the aetherial particles along the axis is rectilinear, and coincident in

direction with the line of propagation, while at every other part of the ray the direction of the

motion of a given particle is continually varying, and is generally not coincident with the line of

propagation. Admitting the independent motion of each ray, it is possible that by refraction

through the eye, the directions of the axes of different rays may be brouglit to pass nearly through

the same point of the retina, in obedience to the common law of refraction, while the separate rays,

not being subject in other parts to this law, may not be altered as to the diameters of their trans-

verse sections. The constancy of the transverse section is, in fact, a necessary consequence of

a supposition already made in the course of this Theory, namely, that the quantity k is a fixed

numerical quantity, the same for rays propagated in media as for rays propagated in free space.

As, however, I am not at pi-esent provided with the means of ascertaining the nature and value

of that quantity, this part of the subject must be considered as open to further inquiry.

Cambridge Obsebvatory,

May 17, 1847.

J. CHALLIS.
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XL. On the Critical Values ofthe Sums of Periodic Series. Bij G. G. Stokes, M.A.,

Felloiv of Pemhrohe College, Cambridge.

[Read December 6, 1847.]

There are a great many problems in Heat, Electricity, Fluid Motion, &c., the solution of

which is effected by developing an arbitrary function, either in a series or in an integral, by

means of functions of known form. The first example of the systematic employment of this

method is to be found in Fourier's Theory of Heat. The theory of such developements has

since become an important branch of pure mathematics.

Among the various series by which an arbitrary function /(.r) can be expressed within

certain limits, as and a, of the variable ,v, may particularly be mentioned the series which

proceeds according to sines of — and its multiples, and that which proceeds according to

cosines of the same angles. It has been rigorously demonstrated that an arbitrary, but finite

function of x, /(r), may be expanded in either of these series. The function is not restricted

to be continuous in the interval, that is to say, it may pass abruptly from one finite value to

another ; nor is either the function or its derivative restricted to vanish at the limits and a.

Although however the yossihility of the expansion of an arbitrary function in a series of sines,

for instance, when the function does not vanish at the limits and a, cannot but have been

contemplated, the utility of this form of expansion has hitherto, so far as I am aware, been

considered to depend on the actual evanescence of the function at those limits. In fact, if the

conditions of the problem require that /(O) and f(a) be equal to zero, it has been considered

that these conditions were satisfied by selecting the form of expansion referred to. The chief

object of the following paper is to develope the principles according to which the expansion of

an arbitrary function is to be treated when the conditions at the limits which determine the

particular form of the expansion are apparently violated ; and to shew, by examples, the advantage

that frequently results from the employment of the series in such cases.

In Section I. I have begun by proving the possibility of the expansion of an arbitrary

function in a series of sines. Two methods have been principally employed, at least in the simpler

cases, in demonstrating the possibility of such expansions. One, which is that employed bv

Poisson, consists in considering the series as the limit of another formed from it by multiplying

its terms by the ascending powers of a quantity infinitely little less than I ; the other consists in

summing the series to « terms, that is, ex])ressing the sum by a definite integral, and then con-

sidering the limit to which the sum tends when n becomes infinite. The latter method certainly

appears the more direct, whenever the summation to n terms can be effected, which however is

not always the case ; but the former has this in its favour, that it is thus that the series present

themselves in physical problems. Tlie former is the method which I have followed, as being that

which I employed when I first began the following investigations, ,uid aicordinglv that which iiest

harmonizes with the rest of the paper. I should hardly have ventured to bring a somewhat

modified proof of a well-known theorem before the notice of this Society, were it not for the

doubts which some mathematicians seem to feel on this subject, and because there are some ])i)inls

which Poisson does not seem to have treated with sufficient detail.

Vol.. VIII. Part V. 3Z
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I have next shewn how the existence and nature of the discontinuity of /'(a') and its derivatives

may be ascertained merely from the series, whether of sines or cosines, in which f{x) is developed,

even though the summation of the series cannot be effected. I have also given formulas for

obtaining the developenients of the derivatives of /(.r) from that of /(«) itself. These develope-

ments cannot in general be obtained by the immediate differentiation of the several terms of the

developement of f(v), or in other words by differentiating under the sign of summation.

It is usual to restrict the expanded function to be finite. This restriction however is not

necesssarv, as is shewn towards the end of the section. It is sufficient that the integral of the

function be finite.

Section II. contains formula? applicable to the integrals which replace the series considered

in Section I. when the extent a of the variable throughout which the function is considered is

supposed to become infinite.

Section III. contains some general considerations respecting series and integrals, with reference

especially to the discontinuity of the functions which they express. Some of the results obtained

in this section are referred to by anticipation in Sections I. and II. They could not well be

introduced in their place without too much interrupting the continuity of the subject.

Section IV. consists of examples of the application of the preceding results. These examples

are all taken from physical problems, which in fact afford the best illustrations of the application

of periodic series and integrals. Some of the problems considered are interesting on their own

account, others, only as applications of mathematical processes. It would be unnecessary here to

enumerate these problems, which will be found in their proper place. It will be sufficient to

make one or two reiiiarks.

The problem considered in Art. 52., which is that of determining the potential due to an

electrical point in the interior of a hollow conducting rectangular parallelepiped, and to the elec-

tricity induced on the surface, is given more for the sake of the artifice by which it is solved than

as illustrating the methods of this paper. The more obvious mode of solving this problem would

lead to a very complicated result.

The problem solved in Art. 54. affords perhaps the best example of the utility of the

methods given in this paper. The problem consists in determining the motion of a fluid within

the sector of a cylinder, which is made to oscillate about its axis, or a line parallel to its axis.

The expression for the moment of inertia of the fluid which would be obtained by the methods

generally employed in the solution of such problems is a definite integral, the numerical calculation

of which would be very laborious ; whereas the expression obtained by the method of this paper

is an infinite series, which may be summed, to a sufficient degree of approximation, without much

trouble.

The series for the developement of an arbitrary function considered in this paper are two, a

series of sines and a series of cosines, together with the corresponding integrals ; but similar

methods may be applied in other cases. I believe that the following statement will be found to

embrace the cases to which the method will apply.

Let w be a continuous function of any number of independent variables, which is considered

for values of the variables lying within certain limits. For facility of explanation, suppose u a

function of the rectangular co-ordinates x, y, z, or of x, y, z and t, where t is the time, and

suppose that ii is considered for values of ,r, y, x, t lying between and a, and b, and c,

and T, respectively. For such values suppose that u satisfies a linear partial differential equation,

and suppose it to satisfy certain linear equations of condition for the limiting values of the

variables. Let f7 = 0, f/' = be two of the equations of condition, corresponding to the two

limiting values of one of the variables, as x. Then the expansion of « to which these equations

lead may be applied to the more general problem which leads to the corresponding equations of

condition U = F, U' = F', where F and F' are any functions of all the variables except x, or of

any number of them.



I

THE SUMS OF PERIODIC SERIES. 535

SECTION I.

3Iode of ascertaining the nature of the cVisconthmity of a function which is expanded

in a series of sines or cosines, and of obtaining the develupements of the

derived functions.

1. By the term function I understand in tliis paper a quantity whose value depends in any

manner on the value of tiie variable, or on the values of the several variables of which it is com-

posed. Thus the functions considered need not be such as admit of being expressed by any

combination of algebraical symbols, even between limits of the variables ever so close. I shall

assume the ordinary rules of the differential and integral calculus as applicable to such functions,

supposing those rules to have been established by the method of limits, wliich does not in the least

require the possibility of the algebraical expression of the functions considered.

The term discontinuous, as applied to a function of a single variable, has been used in two

totally different senses. Sometimes a function is called discontinuous when its algebraical expression

for values of the variable lying between certain limits is different from its algebraical expression for

values of the variable lying between other limits. Sometimes a function of ,r, /(.r), is called con-

tinuous when, for all values oi x, the difference between /(.r) and/(.t'±/i) can be made smaller

than any assignable quantity by sufficiently diminishing A, and in the contrary case discontinuous.

If /(.r) can become infinite for a finite value of x, it will be convenient to consider it as dis-

continuous according to the second definition. It is easy to see that a function may be discon-

tinuous in the first sense and continuous in the second, and vice versa. The second is the sense in

which the term discontitiuous is I believe generally employed in treatises on the differential calculus

which proceed according to the method of limits, and is the sense in which I shall use the term in

this paper. The terms continuous and discontinuous might be applied in either of the above senses

to functions of two or more independent variables. If I have occasion to employ them as applied

to such a function, I .shall employ them in the second sense ; but for the present I shall consider

only functions of one independent variable.

In the case of the functions considered in this paper, the value of the variable is usually sup-

posed to be restricted to lie within certain limits, as will presently appear. I exclude from

consideration all functions which either become infinite themselves, or have any of their differential

coefficients of the orders considered becoming infinite, within the limits of the variable within whicii

the function is considered, or at the limits themselves, except when the contrary is expressly stated.

Thus in an investigation into which /(a) and its first n differential coefficients enter, and in which

f(v) is considered between the limits tv = and .r = a, those functions are excluded, at least at first,

which are such that any one of the quantities /(.r), f'{w) ...
f"(.v) is infinite for a value of .v

lying between and ri, or for x = or <v = a ; but the differential coefficients of the higher orders

may become infinite. The quantities f{x), f{x) ...f°(x) may however alter discontinuously

between the limits x = and x = a, but I exclude from consideration all functions which are such

that any one of the above quantities alters discontinuously an infinite number of times between the

limits within which x is supposed to lie.

The terms convergent and divergent, as applied to infinite series, will be used in this ])aj)cr in

their usual sense ; that is to say, a series will be called convergent when the sum to n terms

approaches a finite and unique limit as n increases beyond all limit, and divergent in the contrary case.

Series such as 1 - 1 -f I - ..., sin x + sin S x + sin 3 x + ..., (wluro x is su])posed not to be or a

multiple of TT,) will come under tlie class divergent; for, although the sum Ion terms does not

increase beyond all limit, it does not approacii a unique limit as /i increases beyond all limit. Of

3 7.2
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course the first n terms of a ilivergent series may be the limits of those of a convergent series
;
nor

does it appear possible to invent a series so rapidly divergent that it shall not be possible to find a

convero-ent series which shall have for the limits of its first n terms the first n terms respectively of

the divero-ent series. Of course we may employ a divergent series merely as an abbreviated mode

of expressing the limit of the sum of a convergent series. Whenever a divergent series is employed

in this way in the present paper, it will be expressly stated that the series is so regarded.

Convero-ent series may be divided into two classes, according as the series resulting from taking

all the terms of the given series positively is convergent or divergent. It will be convenient for

the purposes of the present paper to have names for these two classes. I shall accordingly call

series belonging to the first class essentially convergent, and series belonging to the second

accidentally convergent, while the term convergent, simply, will be used to include both classes.

Thus, according to the definitions which will be employed in this paper, the series

SB + \X^ + 5*' + •••

is essentially convergent so long as ,r^ < 1 ; it is divergent when ,v-> 1, and when ai = \ ; and it is

accidentally convergent when x= -\.

The same definitions may be applied to integrals, when one at least of the limits of integration

/•" sin ,v

is OS . Thus, if n > 0, f°.v--dx is essentially convergent at the limit eo , while / —^ dx is

only accidentally convergent, and J" sin a; dx, not being convergent, comes under the class of

divergent integrals. These definitions may be applied also to integrals taken between finite limits,

when the quantity under the integral sign becomes infinite within the limits of integration, or at

— divergent at the limit 0.

2. Let /(.») be a function of x which is only considered between the limits ^ = and .v = a,

and which can be expanded between those limits in a convergent series of sines of — and Us

multiples, so that

fix) = A, sin — + Jo sin ... + A„ sin + (1).

To determine J.„ multiply both sides of (I) by sin -^ dx, and integrate from a: = to .r = a.

Since the series in (l) is convergent, and sin -^ does not become infinite for any real value of x,
mrx
a

mrx
awe may first multiply each term by sin dx and integrate, and then sum, instead of first

summing and tlien integrating*. But each term of the series in (1) except the w'" will produce

in the new series a term equal to zero, and the m'" will produce ^aA„. Hence

n-TTX
A„ = - f{x) sm dx,

and therefore /(.r) = - 2 j f(^v) sin - d.r .sin —uttx . . nTTX

Moigno, Lecons de Caleul Diffirentiel, &C. Tom. ii. p. 70.
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3. Hence, whenever /(,i) can be expanded in the convergent series which forms the right-hand

side of (1), the value of A„ can be very readily found, and the expansion performed. But this

leaves us quite in the dark as to the degree of generality that a function which can be so expanded
admits of. In considering this question it will be convenient, instead of endeavourinf to develope

/(.r), to seek the value of the infinite series

-2
/

/(a- ) sm — -dx.sm , (s)
a •!„ a a ^ '

provided the series be convergent ; for it is only in that case that we can, without further definition,

speak of the sum of the series at all. Now if we had only a finite number n of terms in the series

(3) we might of course replace the series by

-
/ f(x ) {sin sin ^ sin sin ... + sm sin > da

aJ(, \ a a a a a a ]

(4).

As it is however this transformation cannot be made, because, the series within brackets in the

expression which would replace (4) not being convergent, the expression would be a mere symbol
without any meaning. If however the series (3) is essentially convergent, its sum is equal to the

limit of the sum of the following essentially convergent series

- Sg-" / /Or ) sm da;'.sm , (5),

when g from having been less than 1 becomes in the limit 1. It will be observed that if (3) were

only accidentally convergent, we could not with certainty affirm the sum of (3) to be the limit of

the sum of (5). For it is conceivable, or at least not at present proved to be impossible, that

the mode of the mutual destruction of the terms of (3) in the infinitely remote part of the series

should be altered by the introduction of the factor g', however little g might differ from 1. Let us

now, instead of seeking the sum of (3) in those cases in which the series is convergent, seek the limit

to which the sum of (5) approaches as g approaches to 1 as its limit.

4. The transformation already referred to, which could not be effected on the series (3), may
be effected on (5), that is to say, instead of first integrating the several terms and then summino-,

we may first sum and then integrate. We have thus, for the value of the series,

-
/ /(.r' 2g-"sm sm \dx' (6).

a J„
[

a a j
'

The convergent series within brackets can easily be summed. The expression (6) thus becomes

h |>(^'>

j

'Jc^--.) , '."(f-^.) J
''^' (')•

]\-2gcos~^ ^ +^ j-ogcos-^ ^ +g'[
\ a a )

Now since the quantity under the integral sign vanishes when g- = 1, provided cos — be

not = 1, the limit of (7) when g= \ will not be altered if we replace the limits and a of,/ by
any other limits or groups of limits as close as we please, provided they contain the values of x
which render ,»' ± .r equal to zero or any multiple of 2 a. Let us first sujjposc that we are con-

sidering a value of x lying between and «, and in the neighbourhood of wliich /(i) alters

continuously. Then, since.r'+a? never becomes equal to zero or any multiple of 'i a within the

limits of integration, we may omit the second term within brackets in (7) ; and since 3> - :v never

becomes equal to any multiple of 2 a, and vanishes only when .i' = .r, we may take for the limits
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of x' two quantities lying as close as we please to x, and therefore so close as to exclude all values

of w' for which /(»') alters discontinuously. Let ^ = l - /;, x = x + ^, expand cos — by the

ordinary formula, and put /(a?') =f{x) + R- Then the limit of (7) will be the same as that of

the limits of ^ being as small as we please, the first negative and the second positive. Let now

(^-) = r'.

so that —^ is ultimately equal to — , that is to say when g is first made equal to 1, and then the
di,

limits of ^, and therefore those of ^', are made to coalesce. Let now G, L be respectively the

values of (l - 1

A

\ dp
greatest and least values of (l - 1 A) - —|, {f(x) + R\ within the limits of integration. Then if

andwe observe that I——^ = tan"" y + C, where tan"' denotes an angle lying between -
*/ /i "T* C '^

putting - ^,, ^2 for the limits of ^', we shall see that the value of the integral (8) lies

between

G ftan-'
I + tan-' ^] and L [tan-' ^ + tan"' |'j :

but in the the limit, that is to say, when we first suppose h to vanish and then ^, and ^j, G^ and

L become equal to each other and to -f{x), and tan"' ^ + tan"' ^ becomes equal to tt. Hence,

f(x) is the limit of (7).

Next, suppose that the value of x which we are considering lies between and a, and that

as x passes through it/(*') alters suddenly from M to N. Then the reasoning will be exactly as

before, except that we must integrate separately for positive and negative values of ^', replacing

f(x) + R hy M + R in the latter case, and by iV + -ff' in the former. Hence, the limit of (7) will

be ^(M+ N).

Lastly, if we are considering the extreme values x = and x = a, it follows at once from the

form of (7) that its limiting value is zero.

Hence the limit to which the sum of the convergent series (5) tends as g tends to 1 as its limit

is/(.r) for values of a; lying between and a, for which /(.r) alters continuously, it is i(M + N)
for values of x for which /(.r) alters suddenly from M to N, and it is zero for the extreme values

and o.

5. Of course the limiting value of the series (5) is /(O) and not zero, if we suppose that g
first becomes 1 and then x passes from a positive value to zero. In the same way, if f(x) alters

abruptly from M to JV as x increases through .r,, the limiting value of (5) will be M if we suppose

that g first becomes 1 and then ,v increases to a;,, and it will be N if we suppose that g first

becomes 1 and then x decreases to .t, . It would be futile to argue that the limiting value of (5)

for a? = is zero rather than /(O), or /(O) rather than zero, since that entirely depends on the

sense in which we employ the expression limiting value. Whichever sense we please to adopt, no

error can possibly result, provided we are only consistent, and do not in the course of the same

investigation change the meaning of our words.
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It is a principle of great importance in these investigations, that a function of two independent

variables which becomes indeterminate for particular values of the variables may have different

limiting values according to the order in which we suppose the variables to assume their particular

values, or according to the nature of the arbitrary relation which we conceive imposed on them as

they approach those values together.

I would here make one remark on the subject of consistency. We may speak of the sum of an

infinite series which is not convergent, if we define it to mean the limit of the sum of a convergent

series of which the first n terms become in the limit the same as those of the divergent series.

According to this definition, it appears quite conceivable that the same divergent series should have

a different sum according as it is regarded as the limit of one convergent series or of another. If

however we are careful in the same investigation always to regard the same divergent series, and
the series derived from it, as the limits of the same convergent series and the series derived from it,

it does not appear possible to fall into error, assuming of course that we always reason correctly.

For example, we may employ the series (.3), and the series derived from it by differentiation, &c.,

without fear, provided we always regard these series when divergent, or only accidentally convergent,

as the limits of the particular convergent series formed by multiplying their w"" terms by g^.

6. We may now consider the convergency of the series (3), in order to find whether we may
employ it directly, or whether we must regard it as the limit of (5).

By integrating by parts in the w"* term of (3), we have

2 /•„, ,, .
n-KX

"^ ft 's
'^'T*''

- / f{x ) sin ax =
/ (i; ) cos

Suppose that/(«) does not necessarily vanish at the limits x = and x = a, and that it alters

discontinuously any finite number of times between those limits, passing abruptly from M, to N,

when X increases through a,, from M, to iV, when x increases through a,, and so on. Then, if

we put S for the sign of summation referring to the discontinuous values of f(x'), on taking the

integrals in (9) from x = to ,r = a, we shall get for the part of the integral corresponding to the

first term at the right-hand side of the equation

^Ino) -(-rf(a) + S(N-M) cos
-"""}

(10).
nw [

a
J

It is easily seen that the last two terms in (9) will give a part of the integral taken from to a,

which is numerically inferior to — , where Z is a constant properly chosen. As far as regards

the.se terms therefore the series (3) will be essentially convergent, and its sum will therefore be

the limit of the sum of (5).

Hence, in examining the convergency or divergency of the series (3), we have only got to

TlTTX
consider the part of the coefficient of sin of which (10) is the expression. The terms /(O),

f(a) in this expression may be included under the sign .V if we put for the first a = 0, M = o,

N = f(0), and for the second a = a, M =/(«)' .^=0. We have thus got a set of series to con-

sider of which the type is

- (iV - 3/) 2 - cos sin (II).
It n II a * '
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If we replace the product of the sine and cosine in this expression by the sum of two sines,

by means of the ordinary formula, and omit unnecessary constants, we shall have for the series

to consider

] .
^ ^2 - sin jjs; , (12).

n

Let now 2< = sin s; + * sin 2xr ... + - sin wsr, (13),^ n

du sin(ra+i)sr
then -;— = cosxr + cos 2 « ... + cos nz = :—r^^— - A :

dz 2 sin ia: 2

and since u vanishes with sr, in which case :

—

t^~-~ is finite, we shall have, supposing z to lie

between -2 7r and + 2 tt, so that the quantity under the integral sign does not become infinite

within the limits of integration,

, /•- sin (n + 1) sr , ST
, ^

-^ J^ sin 1 s; 2

and we have to find whether the integral contained in this equation approaches a finite limit as n

increases beyond all limit, and if so what that limit is. Since u changes sign with z, we need not

consider the negative values of z.

First suppose the superior limit z to lie between and 2 tt ; and to simplify the integral write

2 z for z, w for 2 w + 1, so that the superior limit of the new integral lies between and tt ; then

r'&mnz , r'smnz z , I'imnz „ ^ ,

the integral = / —. dz = / : dz = / {l+Rz)d%,°
Jg Sin z Jo ^ sm z Jq z

z ^ Sin z
where R =

, a quantity which does not become infinite within the limits of integration.
;r sin s-

Hence, as is known, the limit of f^ sin w^ . Rdz when n increases beyond all limit is zero. Hence,

if / ))e the limit of the integral,

,. . „ /•''sin war , ,. . „ r"' sin J' .^
/ = limit of / dz = hmit of / -t^ dT-

Jo ^ -^0 ^ ^

Now, z being given, the limit of wsr is eo , and therefore

Secondly, suppose z in (14) to be equal to 0. Then it follows directly from this equation, or

in fact at once from (13), that u = 0, and consequently the limit of m = 0.

The value of u in all other cases, if required, may be at once obtained from the consideration

that the values of ti recur when z is increased or diminished by 2 tt.

Hence, the series (12) is in all cases convergent, and has for its sum when z = 0, and ^ (tt - z)

when z lies between and 2 tt.

Now, if in the theorem of Article 4. we write z for ,r, and put a = tt, f(z) = 1 (n- - z), we find,

for values of z lying between and tt, and for sr = tt,

limit of 2 — g" sin jiz = i (tt — «) ;
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and evidently

limit of 2 - g" sinnz = 0, when ^ = 0,

that is of course supposing z first to vanish and then g to become I. Also the limit of

2 - g'smnz changes sign with x, and recurs when z is increased or diminished by Sir. Hence,

the series (12), which has been proved to be convergent, is in all cases the limit to which the sum of

the convergent series 2 - ^" sin nz tends as g tends to 1 as its limit. Now the series (11) mav be

decomposed into two series of the form just discussed, whence it follows that the series (3) is

always convergent, and its sum for all values of x, critical as well as general, is the limit of the

sum of the series (5), when g becomes equal to 1.

The examination of the convergency of the series (3) in the only doubtful case, that is to say,

the case in which f(x) is discontinuous, or does not vanish for a; = and for x = a, is more curious

than important. For in the analytical applications of the series (3) it would be sufficient to regard

it as the limit of the series (5) ; and in the case in which (3) is only accidentally convergent, we

should hardly think of employing it in the numerical computation of f{x) if we could possibly

help it, and it will immediately appear that in all the cases which are most important to consider

we can get rid of the troublesome terms without knowing the sum of the series.

The proof of the convergency of the series (3) which has just been given, though in some
respects I believe new, is certainly rather circuitous, and it has the disadvantage of not applying

to the case in which /'(a?) is infinite*, an objection which does not apply to the proof given by

M. Dirichletf. It has been supposed moreover that/"(,^?) is not infinite. The latter restriction

however may easily be removed, as in the end of the next article.

7. Let /(.r) be a function of x which is expanded between the limits x = and x = a m the

series (3). Let the series be

, . ttX . 2 rrx rlirx
At sin — + A., sin ... + ^„ sin + ... , (15),

a a a

and suppose that we have given the coefficients ^,, A2..., but do not know the sum of the series

/(,r). We may for all that find the values of/(o) and /(a), and likewise the values of x for

which /(.() is discontinuous, and the quantity by which f{x) is increased as .r increases through

each of these critical values.

For from (9) and (10)

«^„ = - (/(<0 - (- !)"/(«) +SiN- M) cos "^ + -
,

R being a quantity which does not iiccome infinite with n. If then we use the term limit in an

extended sense, so as to include quantities of the form C cos wy, (of course C(- I)" is a particular

case,) or the sum of any finite number of such quantities, wc shall have for « = 95 ,

limit of nA„ = - |/(0) - (- 1)'7(«) + ,S'(iV"- A/)cos^^i. ... (l(i).

• Thin rMlhction may however be diapcnneiJ with l>y what i« proved in Art. 21). f Crclle'» /ourna/, Tom. iv. p. 157.

Vol.. VIII. Paht V. .J A
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Let then the limit of nj„ be found. It will appear under the form

C„ + Cj(- ly + SC cos 7iy (17).

Comparing this expression with (l6), we shall have

/(0)=^Co, /(a) = -^C,;

and for each term of the series denoted by S we shall have

TT 2

In particular, if /(r) is continuous, and if the limit ol nj„ is Lj or L^ according as n is odd or

even, we shall have

:
IfiO) + /(a)

]
, /., = - {/(O) - f{a) I ;

whence

/(O) = - (L„ + i,), /(a) = - (L„ - 4). (18).
4 4-

If /('') were discontinuous for an infinite number of values of .ii lying between and a, it is

conceivable that the infinite series coming under the sign S might be divergent, or if convergent

might have a sum from which n might wholly or partially disappear, in which case the limit of

nA„ might not come out under the form (17). It was for this reason among others, that in Art. I,

I excluded such functions from consideration.

^^ /('*) 'be expressible algebraically between the limits ,r = and x = a, or if it admit of

different algebraical expressions within different portions into which that interval may be divided,

A„ will be an algebraical function of w, and the limit ol nA„ may be found by the ordinary methods.

Under the term algebraical function, 1 here include transcendental functions, using the term alge-

braicalfunction in opposition to what has been sometimes called an empirical function, or a general

function, that is, a function in the sense in which the ordinate of a curve traced libera manu is a

function of the abscissa. Of course, in applying the theorem in this article to general functions, it

must be taken as a postulate that the limit o{ nA„ can be found, and put under the form (17).

The theorem in question has been proved by means of equation (9), in which it is supposed
that ,f'(v) does not become infinite within the limits of integration. The theorem is however true

independently of this restriction. To prove it we have only got to integrate by parts once instead
n

of twice, and we thus get for the quantity which replaces — the integral

:/"/'(^') COS doc
,

a

which by the principle of fluctuation* vanishes when n becomes infinite. There is however this

difference between the two cases. When the series (15) has been cleared of the part for which the

• I borrow this term from a paper by Sir William R. Hamilton
On Flnclualxiuj Functions. Transactions of the Royal Irish

Academy, Vol. xix. p. 2(>-|. Had I been earlier acquainted with

this paper, and that of M. Dirichlet already referred to, I would

probably have adopted the second of the methods mentioned in the

introduction for establishing equation (2) for any function, or

rather, would have begun with Art. 7. taking that equation as

established. I have retained Arts. (2)_(fi), first, because I

thought the reader would enter more readily into the spirit of the

paper if these articles were retained, and secondly, because I

thought that Section jii, which is adapted to this mode of viewing

the subject, might be found useful.
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limit of nA„ is finite, by the method which will be explained in the next article, the part which

remains will be at least as convergent in the former case as the series h - ... ^ (- ..., whereas

we cannot affirm this to be true, and in fact it may be proved that it is not true, in the case in

which /"(*) becomes infinite. Observing that the same remark will apply when we come to

consider the critical values of the differential coefficients of /(>r), I shall suppose the functions and

derived functions employed in each investigation not to become infinite, according to what has

been already stated in Art. 1.

8. After having found the several values of a, and the corresponding values oi N — M, we

may subtract the expression (10) from A„, provided we subtract from the sum of the series (15)

the sums of the several series such as (11). Now if X be the sum of the series (ll),

X = - (N - M) {^ - sin ^ + S - sin ^ >. ... (19).
TT I w a n a ]

But it has been already shown that 2 — sin nz = kiir-x) when z lies between and Stt, =0
n ^

when z = 0, and = - ^ (tt + «) when « lies between and - 2 tt. Now when .r lies between and a.

TT {x + a) ,. , ,
. TT {as - a) ,. , , , , ,. ,

lies between and 2 tt, and lies between - 2 tt and ; and when x lies between
a a

, TT (;(? + a) ... ...
, , TT (x — a) ,. , , ...

a and a, still lies between and 2 tt, and —^^ now lies between the same limits.

Hence
,7'X = - {N - M) - , when x lies between and a
a

= {N — M) , when x lies between a and a

(20).

We need not trouble ourselves with the singular values of the sum of the series (15), since we
have seen that a singular value is always the arithmetic mean of the values of the sum for values

of X immediately above and below the critical value. This rule will apply to the extreme cases in

which J? = and x = a, if we consider the sum of the series for values of x lying beyond those

limits. The rule applies to the series in (19), which is only a particular case of (15), and con-

sequently will apply to any combination of series having this property, formed by way of addition

or subtraction ; since, when we increase or diminish any two quantities jI/„, N„ by any other two

M, N respectively, we increase or diminish the arithmetic mean of the two former by the arithmetic

mean of the two latter.

It has been already stated that we may, with a certain convention, include quantities referring

to the limits x = and x = a under the sign of summation S. If we do so, and put H for the

sum of the series {\r>), and /?,. for the remainder arising from subtracting the expression (10)

from A„, we shall have

S - SX = ^B„ sin
,

a

1 and the sum of the series forming the right-hand side of this equation will be a continuous function

'of iT. As to SX, the value of each series contained in it is given by ecjuation (20).

To illustrate this, suppose H the ordinate of a curve of which x is the abscisisa. Let OG be

the axis of x ; OA, MB, ND, Gb right lines perpendicular to it, and let OG = «. Let the curve

4 A 2
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of which H is the ordinate be the discontinuous curve AB, CD, EFG. Take Gb equal to BC,

and on the positive or negative side of the axis of w according as the ordinate decreases or

increases as x increases through OM, and from measure an equal length Oc on the opposite

side of the axis. Take Gd, Oe, each equal to DE, and draw the right lines AG, Ob'b, cc'G,

Od'd, ee'G. Then it will be easily seen that if ^o' -^i' ^2 ^^ '^^ values of ^ corresponding to

the critical values of x, x = 0, x = OM, x = ON, respectively, X(, will be represented by the right

line AG; X^ by the discontinuous right line Ob', c'G; and X.^ by the discontinuous right line

Od', e'G. Take MP equal to the sum of the ordinates of the points in which the right lines lying

between OA and c B cut the latter line; MQ equal to the sum of the ordinates of the points in

which the right lines lying between c B and d'E cut the former, and so on, the ordinates being

taken with their proper signs. Let P, Q, R, S be the points thus found, and join AP, QR, SG.

Then SX will be represented by the discontinuous right line AP, QR, SG. Let the ordinates of

the discontinuous curve be diminished by those of the discontinuous right line last mentioned, and

let the dotted curve be the result. Then 3 - SX will be represented by the continuous, dotted

curve. It will be observed that the two portions of the dotted curve which meet in each of the

ordinates MB, NE may meet at a finite angle. If there should be a point in one of the con-

tinuous portions, such as AB, of the discontinuous curve where two tangents meet at a finite angle,

there will of course be a corresponding point in the dotted curve.

If we choose to take account of the conjugate points of the curve of which SX is the ordinate,

it will be observed that they are situated at O, and midway between P and Q, and between R and S.

9. There are a great many series, similar to (3), in which f{x) may be expanded within

certain limits of x. I shall consider one other, which as well as (3) is of great use, observing that

almost exactly the same methods and the same reasoning will apply in other cases.

The limit of the sum of the series

- / f(x) dx + - Sfi-" / /(>t') cos dx'
n J^, a J,j a

(21)'
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when g from having been less than 1 becomes 1, is /(.r), x being supposed not to lie beyond the

limits and a. For values, however, of x for which f(x) alters discontinuously, the limit of the

sum is the arithmetic mean of the values of f(x) for values of x immediately above and below the

critical value. I assume this as being well known, observing that it may be demonstrated just

as a similar theorem has been demonstrated in Art. 4.

10. Let us now consider the series

1 /-<! , 2 /-I , tiTTx' mrx
-

/ f(x)dx-\— 2 / /(,r)cos da;. cos (22).
a J^ a J^ a a

We have by integration by parts

2 r., ,. n-TTX , 2 mrx 2 a U'ttx' 2 a r , mrx
,- fix ) cos dx = fix ) sin + ——„ fix) cos f (ic) cos dx ;

and now, taking the limits properly, and employing the letters M, N, a and S in the same sense

as before, we have

WTT.r , ,
2 „^,^ ,,^ . TOTTO R

cos dx = S(N - M) sin + —
, ... (23),

a 71 TT an''
R being a quantity which does not become infinite with n. It follows from (23), that the series

(22) is in all cases convergent, and its sum for all values of x, critical as well as general, is the

limit of the sum of (21).

It will be observed that if /(.r) is a continuous function the series (22) is at least as convergent

as the series 2 —j . This is not the case with the series (3), unless /(O) =/(a) = 0.

If the constant term and the coefficient of cos in the general term of (22) are given, f{x)
a

itself not being known, except by its developement, we may as before find the values of x for

which f(r) is discontinuous, and the quantity by which f{x) is suddenly increased as x increases

through each critical value. We may also, if we please, clear the series (22) of the slowly con-

vergent part corresponding to the discontinuous values of /(.r).

11. Since the series (3) is convergent, if we have occasion to integrate /(a?) we may, instead

of first summing the series and then integrating, first integrate the general term and then sum.

More generally, if (p{x) be any function of .t which does not become infinite between the limits

r = and x - a, we shall have

Jr'
2 r" n-rx' , r' . raTr.r

I f{x) (p (x) dx = - S
/ f(x') sin dx . d> {x) sm dx,

« -'o
a 'o "

the superior limit x of the integrals being supposed not to lie beyond the limits and a; and the

series at the second side of the above equation will be convergent. In fact, even in the case in

which f(x) is discontinuous the series will be as convergent as the series 2 —j- • A second inte-

j;rati<)n would give a series still more rapidly convergent, and so on. Hence, the resulting series

may be employed directly, and not merely when regarded as limits of converging series. The

Bamc remarks apply in all respects to the series (22) as to the scries (."!).

12. Hut the series resulting from differentiating (3) or (22) once, twice, or any number of

times would not in general be convergent, and could not be employed directly, but only as limits

of the convergent series which would be formed by inserting thf factor g' in the general term.
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This mode of treating the subject however appears very inconvenient, except in the case in which

the series are only temporarily divergent, being rendered convergent again by new integrations;

and even then it requires great caution. The series in question may however be rendered con-

vergent by tneans of transformations to which I now proceed, and which, with their applications,

form the principal object of this paper.

The most important case to consider is that in which /(a;) and its derivatives are continuous,

so that the divergency arises from what takes place at the limits and a, I shall suppose then, for

the present, that /(.r) and its derivatives of the orders considered are continuous, except the last,

which will only appear under the sign of integration, and which may be discontinuous

Consider first the series of sines. Suppose that f(x) is not given in finite terms, but only by

its developement

f(x) = 2A sin -— , (24),

where A„ is supposed to be given, and where the developement of /(a) is supposed to be that which

would result from the formula (3). I shall call the expansions of /(.t) which are obtained, or which

are to be looked on as obtained from the formula; (3) and (22) direct expansions, as distinguished

from other expansions which mav be obtained by differentiation, and wliich, being divergent, cannot

be directly employed. Let us consider first the even differential coefficients of f{~v), and let A'^,

.4 J ... be the coefficients of sin in the direct expansions off {x), f^{a;) ... The coefficient of

sin in the series which would be obtained by differentiating twice the several terms in the
a

series in (24) would be A„. Now

riTrx ,

dx :^n= -
/ /(« ) sin -

a •/(, a

and we have by integrating by parts

2«=7r' p , . n-KX 2mr .^ . nw.v 2
. n-RX

-S- Jf(^) sin —I-d'V =—^/(a;)cos— -/(a;) sin —

-

a a a a a a

+ —
/ / (j? ) sin ax .

a • a

Taking now the limits, remembering the expression for A", and transposing, we get

<= '-^{/(O) -(-!)'/(«)}-^ A (25).

Any even differential coefficient may be treated in the same way. We thus get, n being even,

+ (- i)r ? .^ |_^-»(o) - (- i)»/''-^(a)}. ... (26).
a a

13. In the applications of these equations which I have principally in view, /(O), f(a), f"(0)...

are given, and Ai, A.;,, A^... are indeterminate coefficients. If however A,, A^ ... A„ .•• are given,

and /(O), f{a) ... unknown, we must first find /(O), /(o) ..., and then we shall be able to sub-

stitute in (25) and (20). This may be effected in the following manner.
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We get by integrating by parts

]/(.•") sin dx /(.r)cos + — /(.r)sin + — / (.r)cos— ...

a utt a \mrj > ' a \mrJ a

o

Multiplying now both sides by -
, and taking the limits of the integrals, we get

^"= '-^r ^f^'"'' - (- '>"-^(°)^ - -• (-) V"(0) - (- l)"/»} + -> - (27)-
a Tltr a \nTrl

Hence, if n be always odd or always even, A„ can be expanded, at least to a certain number of

terms, in a series according to descending powers of n, the powers being odd, and the first of

them - I. The number of terms to which the expansion in this form is possible will depend on the

number of differential coefficients of /(«) which remain finite and continuous between the limits x =

and X = a. Let the expansion be performed, and let the result be

'if, = Of) - + O, — + Of — + ... when n is odd
;

|

n n n
(28).

A„ = Ef, —i- E, — -k- Ei —r + ... when n is even.
71 ' nr nr J

Comparing (27) and (28), we shall have

/(O) = ^ (0„+£„), /(«)= ^ (0„ -£„),!
i 4

rO^) =-~ (». + E,). /'(«)=- :^(0. - E,),\ (29),

and so on. The first two of these equtions agree with (18).

If we conceive the value of A„ given by (27) substituted in (26), we shall arrive at a very

simple rule for finding the direct expansion o(f''{x). It will only be necessary to expand A„ as

far as — -j , admitting (-1)° into the expansion as if it were a constant coefficient, and then, sub-

tracting from A^ the sum of the terms thus found, employ the series which would be obtained by

differentiating the equation (2i) fi times. It will be necessary to assure ourselves that the term

in — vanishes in the expansion of .4„, since otherwise /''(a?) might be infinite, or/''"'(.r) discon-

tinuous without our being aware of it. It will be seen however presently (Art. 20) that the

former circumstance would not vitiate the result, nor introduce a term involving n"''.

Should A„ already ai)pear under such a form as - + c"; (-!)"—;-(• ra"c", &c., where c' <\, it

n w
will be sufficient to differentiate equation (24) /u times, and leave out the part of the series which

becomes divergent. For it will be observed that the terms e", w'r", in the examples chosen,

decrease with - faster than any inverse power of n.
n

14. Let us now consider the odd differential coefficients of f{x), supposing f{x) to be

expanded in a series of cosines, so that



548 Mr. stokes, ON THE CRITICAL VALUES OF

/(.r) = 5„ + 2fi„ cos (30).

Let A'„, ji"'„...be the coefficients of sin ^ in the direct expansions of /'(a;), f"{x) ... in
a

series of sines. If we were to differentiate (30) once we should have B„ for the coefficient
a

oi sin . Now
a

nir 2 c_, . jiTTX , ,
2 „ , . n-irx 2 /.^^ . . n-rrx ,

. - jfix ) cos dai = /(ir ) sin \- - /(a;) sin dx: ;

a a a a a a a

and taking the limits of the integrals, and introducing B„ and A'„, we get

A=--5„ (3,).
a

Hence, the series arising from differentiating (30) once gives the direct expansion of /(a;) in a

series of sines.

The coefficient of sin in the series which would be obtained by differentiating (30) /x times,

all /mr\i'
/J. being odd, would be (- 1) 2 — I B„. By proceeding just as in the last article we obtain

(-1)^ ^:= (-; B„.-^[-;) |/(o)-(- .)"/»} --„(-;) ^/"(o)-(-i)Y'»} + ...

+ (--^r\.~\r-'{0)-(-l)\r-\a)\ (32).

When f (0), fip-), &c., are known, this series enables us to develope f^ia;) in a direct series of

sines, the direct developement of f{x) in a series of cosines being given.

15. If we treat the expression for B^ by integration by parts, just as the expression for A„ was

treated, going on till we arrive at the integral which gives A'^, and observe that the very same

process is used in deducing the value of A'^ from that of S„ as in expanding the latter according to

inverse powers of «, and that the index of n in the coefficient of A'^, is - fi, and that .4„ vanishes when

« becomes infinite, we shall see that in order to obtain the direct expansion of /*'(>t) we have only

got to expand B„ as far as — , (the coefficient of — will vanish,) and subtract from B„ these

terms of the expansion, and then differentiate (30) n times.

The expansion of B„, at least to a certain number of terms, will proceed according to even

powers of -
, beginning with — . If we suppose that

n n

B„ = 0,— + O3 — + O5 — + ... when n is odd,
rr TV n'

B„ = E, — + E3 — + Ei — + ... when n is even,
40* (M* Yt"

(33).
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and compare these expansions with that given by integration by parts, we shall have

(34),

/' (0) = - ^ (o. + £,)' /' («) = - :?^ (o, - E,),
ia 4 o

/"(0)= ^AO, + E,), f"(a)^ ^^(0,-E,),

and so on, the signs of the coefficients being alternately + and — , and the index of— increasing

by 2 each time.

16. The values of /''(O) and /''(a) when f{x) is expanded in a series of sines and /i is odd,

or when f(x) is expanded in a series of cosines and fx is even, will be expressed by infinite series.

To find these values we should first have to obtain the direct expansion of /**(«), which would be

got by differentiating the equation (24) or (30) (n times, expanding A„ or B„ according to powers

off— , and rejecting the terms which would render the series contained in the iiP' derived equation

divergent. The reason of this is the same as before.

17- The direct expansions of the derivatives of /(.r) may be obtained in a similar manner in

the cases in which /(.r) itself, or any one of its derivatives is discontinuous. In what follows,

a will be taken to denote a value of a: for which /(.») or any one of its derivatives of the

orders considered is discontinuous; Q, Q,, ... Q^ will denote the quantities by which/(a), f(<v), ...

f^ix) are suddenly increased as x increases through a; S will be used for the sign of summation

relative to the different values of a, and will be supposed to include the extreme values and a,

under the convention already mentioned in Art. 6. Of course f(x) may be discontinuous for a

particular value of x while /''(a;) is continuous, and vice versa. In this case one of the two Q, Q^
will be zero while the other is finite.

The method of proceeding is precisely the same as before, except that each term such as

f{.v) cos in the indefinite integral arising from the integration by parts will give rise to a series
a

such as - SQ cos in the integral taken between limits. We thus get in the case of the even
a

derivatives of f{ps), when /(«) is expanded in a series of sines,

(-\y A'-,= [
—

] A„ - -.(—] SQ cos +-._ .S-Q, sin —
\ a / a \ a I a a \ a I a

2 iriTt

a \ a
A'Q.cos -— - ... + (- ly" .-.SQ,., sin (.W).

a a a

In the case of the odd derivatives of /(^r), when /(,i) is expanded in a scries of cosines, we get

(- 1) 2 ^1;= — W?„ + - ^Qsin - +- .Vy, cos
^ a I a \ a I a a \ a J a

tzl 2 . nira , ,.,

+ (-!)» -5«^.,sin-^ (;iO).

When the several values of a, Q., Q, ... are given, these equations enable us to find the direct

expansion of /"(«). Tiie series corresponding to the odd derivatives in the first case and the even

in the second might easily be found.

Vol.. VIII. I'art V. 4l{
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If we wish to find the direct expansion of /*'(«) in the case in which A„ or B, is given, we

have only to expand A„ or B„ in a series according to descending powers of v, regarding cos ny
or sin 7iy, as well as (- 1)% as constant coefficients, and then reject from the series obtained by the

immediate differentiation of (24) or (30) those terms which would render it divergent. This readily

follows as in Art. 15, from the consideration of the mode in which A'^ is obtained from A„ or B„.

The equations ^35) and (36) contain as particular cases (26) and (32) respectively. It was con-

venient however to have the latter equations, on account of their utility, expressed in a form which

requires no transformation.

18. If we transform A„ and B„ by integration by parts, we get

2 »7ra 2o „„ . nira 2 a^ _,^ nira ^„_^
J^= — A'Qcos r^^Q, sin -—SQ., cos- + ..., (37),

7nr a n'lr a n tt' a

2 itwa 2a „ mra 2a- . nira , ,»= ^Qsin- — ^Q,cos — + —-— ^Q.sin + ..., (38),

where the law of the series is evident, if we only observe that two signs of the same kind are always

followed bv two of the opposite kind. The equations (37), (38) may be at once obtained from (35).

(36). The former equations give the true expansions of A„ and B„ according to powers of — ;

because when we stop after any number of integrations by parts the last integral with its proper

coefficient always vanishes compared with the coefficient of the preceding term.

Hence A„ and B„ admit of expansion according to powers of - , if we regard cos ny or .sin ny

as a constant coefficient in the expansion. Moreover quantities such as cos ny, sin ny will occur

alternately in each expansion, the one kind going along with odd powers of — and the other along

with even. If we suppose the value of A„ or J5„, as the case may be, given, and the expansion

performed, so that

A„ = SF cos ny .- + SFi sin ny. - + SF.^ cos 7ly .— + ..., (39),
n w w

B„ = SG sin ny . —+ SGi cos ny .—„ + SG„ sin ny .—, + ..., (40),
n n- n"

and compare these expansions with (37) or (38), we shall get the several values of a, and the

corresponding values of Q, Q,, Q, ... We may thus, without being able to sum the series in

equation (24) or (30), find the values of x for which f{ic) itself or any one of its derivatives is

discontinuous, and likewise the quantity by which the function or derivative is suddenly increased.

This remark will apply to the extreme values and a of x if we continue to denote the sum of the

series by /(r) when so is outside of the limits and a.

19. Having found the values of a, Q, Qi ..., we may if we please clear the series in (24)

or (30) of the terms which render /(.r) itself, or any one of it dervative.s, discontinuous. If we

wish the function which remains expressed by an infinite series and its first /i derivatives to be

continuous, we have only to subtract from A„ or jB„ the terms at the commencement of its expansion,

ending with the term containing 1- , and from f(x) itself the sums of the series corresponding

to the terms subtracted from A„ or B„. These sums will be obtained by transforming products of

sines and cosines into sums or differences, and then employing known formulae such as
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cos ss COS 3 z IT- tts:——- + h ... = , from z = to X = TT, (*!)>
1= 3- 8 4

which are obtained by integrating several times the equation

sin sf + ^ sin 2 sr + ^ sin 3 sr + ... = 1 (tt - «), from z - to z = 2 tt,

or the equation deduced from it by writing tt — z for z, and taking the semi-sum of the results.

It will be observed that in the several series to be summed we shall always have sines coming

with odd powers of n and cosines with even. Of course, by clearing the series in (24) or (30) in

the way just mentioned we shall increase the convergency of the infinite series in which a part

of /(.r) still remains developed.

When A„ or B„ decreases faster than any inverse power of n as w increases, (as is the case for

instance when it is the w"* term of a geometric series with a ratio less than 1,) all the terms of

its expansion in a series according to inverse powers of n vanish. In this ease, then, /(«) and

its derivatives of all orders are continuous.

20. In establishing the several theorems contained in this Section, it has been supposed that

none of the derivatives of /(.r) which enter into the investigation are infinite. It should be

observed, however, that if /''(.r) is the last derivative employed, which only appears under the sign

of integration, it is allowable to suppose that /''(•r) becomes infinite any finite number of times

within the limits of integration. To show this, we have only got to prove that

/ f^i'"") *'" vvdx or / f'^{,v) cos vxdx

approaches zero as its limit as v increases beyond all limit. Let us consider the former of these

integrals, and suppose that /''(a) becomes infinite only once, namely, when .v = a, within the limits

of integration. Let the interval from to a be divided into these four intervals to a - ^, a - ^
to a, a to a + X! > " + X,' to o, where ^ and ^' are supposed to be taken sufficiently small to

exclude all values of x lying between the limits a -
'C and a + T' for which /''"'(r) alters discon-

tinuously, or for which /''(.r) changes sign, unless it be the value a. For the first and fourth

intervals /''(a;) is not infinite, and therefore, as it is known, the corresponding parts of the integral

vanish for r = co . Since sin vie cannot lie beyond the limits + 1 and - 1, and is only equal to

either limit for particular values of ,v, it is evident that the second and third portions of the

integral are together numerically inferior to /, where

/= {y>-'(a-e)-.r-'(a-^)f + \r'^{a + ^) -/"-(„+.)
J,

the symbol A ~ B denoting the arithmetical difference of ^i and B, and e being an infinitely small

quantity, so that /(a - e), /(a + e) denote the limits to which /(.r) tends as x tends to the limit a

by increasing and decreasing respectively. Hence the limit of the integral first considered, for

1/ = » , must be less than /. But / may be made as small as we please by diminishing ^ and

Y', and therefore the limit required is zero.

The same proof applies to the integral containing cos i/.r, and tliere is no difliculty in extend-

ing it to the case in which /''(a) is infinite more than once witliiii the limits of integration, or at

one of the limits.

2\. It has hitherto been supposed that the function expanded in the scries (3) or (22) does

not become infinite ; but the expansions will still be correct even if f(x) becomes infinite any

finite number of times, provided that ff(x) civ be essentially convergent. Svippose that f(x) be-

comes infinite only when x = a. Then it is evident that we may fiml a fuiiilion of .r, /'(.i), which

.hall be e<|ual to/(.x) except when x lies between the limits « - ^ and a + ^', which shall reniuiu

402

/
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finite from a; = a - ^ to .r = a + ^', and which shall be such that / F(jv)dw^ i f(.v)dx.

Suppose that we are considering the series (3). Then, if C„ be the coefficient of sin in the

expansion of F{x) in a series of the form (3), it is evident that C„ will approach the finite limit A„

when ^ and f' vanish, where A„ = — I f(x) sin dx. But so long as ^ and ^' differ from

zero the series 2C„ sin is convergent, and has F{x) for its sum, and F(x) becomes equal
a

to f{x) when ^ and (T vanish, for anv value of x except a. We might therefore be disposed to

conclude at once that the series (3) is convergent, and has f(x) for its sum, unless it be for the

particular value a = ai but this point will require examination, since we might conceive that the

series (3) became divergent, or if it remained convergent that it had a sum different from /(.r), when

t and t' were made to vanish before the summation was performed. If we agree not to consider

the series (3) directly, but only the limit of the series (5) when g becomes 1, it follows at once

from (7) that for values of «• different from a that limit is the same as in Art. 4. For x = a the

limit required is that of 1 \f{u. - e) + f(.a + e) \ when € vanishes. If f(x) does not change sign

as .v passes through a the limit required is therefore positive or negative infinity, according as /(.r)

is positive or negative ; but if f(x) changes sign in passing through os the limit required may be

zero, a finite quantity, or infinity. The expression just given for the limit may be proved without

difficulty. In fact, according to the method of Art. 4, we are led to examine an integral of

the form

where ^ is a constant quantity which may be taken as small as we please, and supposed to vanish

after h. Now by a known property of integrals the above integral is equal to

- }/(« - |i) +./"(« + ?•)! f TTri '
'"^^'^^ ? ^''^^ between and t

But /
——-rr , which is equal to tan"'

.f , becomes equal to — when h vanishes, and the limit of

^, when h vanishes must be zero, since it cannot be greater than ^, and ^ may be made to vanish

after h.

22. The same thing may be proved by the method which consists in summing the series

. Httx . n-irx 11.11, 1 . 1 .

2 sm sin - to « terms. It we adopt this method, then so long as we are considering a
a a

value of X different from a it will be found that the only peculiarity in the investigation is, that the

quantity under the integral sign in the integrals we have to consider becomes infinite for one value

of the variable ; and it may be proved just as in Art. 20, that this circumstance has no effect on

the result. If we are considering the value x — a, it will be found that the integral we shall have

to consider will be

I /•? sin i/f f , 2a ^ 2n „ 1 ,

where v is first to be made infinite, and then ^ may be supposed to vanish. If /(a + e) +/(n - f)

approaches a finite limit, or zero, when e vanishes, as may be the case it f{x) changes sign in

passing through eo , it may be proved, just as in the case in whicli f(x) does not become infinite,

jthat the above integral approaches the same limit as ^ {f(a + e) + f(a - e)\. In all cases
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however in which /(.r) does not change sign in passing through eo , and in some cases in which

it does change sign, /(a + e) + /(a - e) becomes infinite when e vanishes.

In such cases put for shortness

/(« + — D+/(«--D = ^(D>

and let the numerical values of the integral / —^-^ df taken from to - , from — to -— ...

or which is the same those of - -^ d^ taken from to tt, from tt to Stt ... be denoted by

/,, /a ... Then evidently I^> Ii> I^ ... Also, if ^ be sufficiently small, F(^) will decrease from

^ = to ^ = ^, if we suppose, as we may, F{^) to be positive. Hence the integral (42), which

is equal to

-j/,F(e,)-/.F(Q+/3F(^3)-...u (4.<i),

TT

where P,, ^2 ... are quantities lying between and _ , — and — ... is greater than
V V V

IT

if we neglect the incomplete pair of terms which may occur at the end of the series (43), and

which need not be considered, since they vanish when 1/ = cc . Hence, the integral (42) is

a fortiori > — (Z, — 7^) F(^^). But ^1 vanishes and /'(^i) becomes infinite when v becomes infinite

;

7r

and therefore for the particular value x — a the sum of the first n terms of the series (3) increases

indefinitely with n.

If a coincides with one of the extreme values and a of x, the sum of the series (3) vanishes

for a? = a. This comes under the formula given above if we consider the sum of the series for

values of r lying beyond the limits and a. The same proof as that given in the present and last

article will evidently apply if /(r) become infinite for several values of ,v, or if the series considered

be (22) instead of (3). In this case, the sum of the series becomes infinite for x = a when

a = or = a.

2.3. Hence it appears that/(.r) may be expanded in a series of the form (3) or (22), provided

only ff(v) dx be continuous. It should be observed however that functions like I sin -
J

, which

become infinite or discontinuous an infinite number of times within the limits of the variable Hithiii

which they are considered, have been excluded from the previous reasoning.

Hence, we may employ the formuloe such as (26), (35), &c., to obtain the direct developenieiit

of /*'(.r), without enquiring whether it becomes infinite or not within the limits of the variable for

which it is considered. All that is necessary is that /(.r) and its derivatives up to the (m - 1)"'

inclusive should not be infinite within those limits, although they may be discontinuous.

24. In obtaining the formulae of Arts. 7 and 13, and generally the formula; which apply to

the case in which A„ or B„ is given, and f{x) is unknown, it has hitherto been supposed that we

knew a priori that f{x) was a function of the class proposed in Art. 1 for consideration, or at

least of that class with the extension mentioned in the preceding article. Suppose now that we

have simply presented to us the series (3) or (22), namely

11 TVX TlTT X
'^A„ sni - or H„ + '^B,, cos • ,

a a
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where A„ or B„ is supposed given, and want to know, Jirst, whether the series is convergent,

secondly, whether if it be convergent it is the direct developement of its sum f{x), and thirdly,

whether we may directly employ the formulae already obtained, trusting to the formulas themselves

to give notice of the cases to which they do not apply by leading to processes which cannot be

effected.

25. If the series 2.<4„ or 2fi„ is essentially convergent, it is evident <i fortiori that the series

(3) or (22) is convergent.

c c
li A„= S — cos n-y + C„, or ii B„ = S - sin ny + C„, where 2C„ is essentially convergent, the

n n

given series will be convergent, as is proved in Art. 6.

In either of these cases let /(a?) be the sum of the given series. Suppose that it is the series

of sines which we are considering. Let E^ be the coefficient of sin in the direct developement

of /(.t). Then we have

. rnrx „„ . WTT.r
fLv) = 2^„ sm = S£„ sm ;

and since both series are convergent, if we multiply by any finite function of x, (p(.v), and integrate,

we may first integrate each term, and then sum, instead of first summing and then integrating.

Taking ^(j;) = sin '-
, and integrating from .r = to x = a, we get E„ = A„, so that the given

series is the direct developement of its sum /(.r). The proof is the same for the series of

cosines.

26. Consider now the more general case in which the series S - ^„ is essentially convergent.

The reasoning which is about to be ofTered can hardly be regarded as absolutely rigorous

;

nevertheless the proposition which it is endeavoured to establish seems worthy of attention.

Let M„ be the sum of the first n terms of the given series, and F(n, x) the sum of the first n terms

of the series 2 - A„ cos . Then we have
Wit a

/(M» + m - ?<„) d"' = F(.n + ™i '>') - E(n, x) = \//(«, x), suppose (44).

Now by hypothesis the series "S, - A„ is essentially convergent, and therefore a fortiori the

series 2 A„ cos is convergent, and therefore >i/(c5 , .r) = 0, whatever be tiie value of m.
Mir a ^

Let the limits of .r in (44) be 31 and x + A.t, and divide by I^x, and we get

-r- /
(u, +„-u„)dx= -^-— :

and as we have seen the limit of the second side of this equation when we suppose n first to

become infinite and then Aa' to vanish is zero. But for general values of x the limit will remain

the same if we first suppose A.r to vanish and then n to become infinite; and on this supposition

we have

limit of (m„+„, - «„) =0, for n = M ;

so that for general values of x the series considered is convergent.

To illustrate the assumption here made that for general values of x the order in which n and

^x assume their limiting values is immaterial, let
\f/(y,

x) be a continuous function of x which
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becomes equal to \|/(w, ,v) when j^ is a positive integer; and consider the surface whose equation

is ^ = xl/(y, .?'). Since \M« , x) = for integral values of y, the surface approaches indefinitely to

the plane .vy when y becomes infinite ; or rather, among the infinite number of admissible forms of

\//(!/, x) we may evidently choose an infinite number for which that is the case. Now the assertion

made conies to this ; that if we cut the surface bv a plane parallel to the plane xz, and at a

distance n from it, the tangent at the point of the section corresponding to any given value of x

will ultimately lie in the plane xy when n becomes infinite, except in the case of singular, isolated

values of;!,', whose number is finite between x = and x = a. For such values the sum/(.i') of the

infinite series may become infinite, while ff(x) dx remains finite. The assumption just made

appears evident unless A„ be a function of n whose complexity increases indefinitely with its

rank, i. e. with the value of n.

Since the integral of f{x) is continuous, f(x) may be expanded by the formula in a series

of sines. Let E„ be the coeflicient of sin in its direct expansion ; so that,
a

.(45),

f(x) = S^„ sin ^
,

a

nirx
f{x) = 2£„ sin ,

a

where both series are convergent, except it be for isolated values of w. Consequently, we have,

in a series which is convergent, at least for general values of x,

TlTTX
= 2(J„ - E,) sin -~~- (46).

a

The series (45) may become divergent for isolated values of .r, and are in fact divergent for

values of .r which render f{x) infinite. But the first side of (46) being constantly zero, and the

series at the second side being convergent for general values of x, it does not seem that it can

become divergent for isolated values. Hence according to the preceding article the second side

of the equation is the direct developement of the first side, i. e. of zero ; and therefore E„ = A„,

or the given scries is the direct developement of its sum, which is what it was required to prove.

The same reasoning applies to the series of cosines.

It may be observed that the well known series,

^ + cos X + cos 2,r + cos 3x (47),

forms no exception to the preceding observation. This series is in fact divergent for general

values of x, that is to say not convergent, and in that respect it totally differs from the series in

(46). When it is asserted that the sum of the series (47) is zero except for a; = or any multi})le

of 27r, when it is infinite, all that is meant is that the limit to which the sum of the convergent

series 1 + "^g" cos nx approaches when g becomes 1 is zero, except for a? = or any multiple of 27r,

in which case it is infinity.

27- It follows from the preceding article that even without knowing <l priori the nature of the

function f{v) we may emi)loy tlie formuhr such as (.M), provided that if «"" be the highest power

of - rwjuired by the formula, and W^C^ the remainder in the expansion of J„, tlie series 2- (',.

be essentially convergent. For let G„ he the sum of the terms as far as that containing ?r" in the

expansion of A„, those terms having the form assigned by (.'i.';), that is to say cosines like cosiiy

coming along with odd powers of -
, and sines along with even powers. Then ./„ = G„ + if^C,.
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Let 2G„sin = Fix);
a

then f{x) -F{,v) = 2«-^C„ sin '^^ (48).

Now if (b(x) = 2m„, where the series '2u„, 2—" are both convergent, we may find <p'{x)
^ dx '

by differentiating under the sign of summation. This is evident, since by the theorem referred to

du
in Art. 2 (note), we may find /2 -^ dx by integrating under the sign of summation. Conse-

dx
quently we have from (48)

r-^{x)-F^-^(x) = J=(^Y"l-C„Z'^ (49);

and since the series 2 - C„ is essentially convergent, the convergency of the series forming the

right-hand side of (49) cannot become infinitely slow (see Sect. III.), and therefore, the w"' term

being a continuous function of x, the sum is also a continuous function of x, and therefore

f^ix) — F'^(x) is a function which by Art. 23 can be expanded in a series of sines or cosines.

But F'^(x) is also such a function, being in fact a constant, and therefore /^(a?) is a function

of the kind considered in Art. 23, which is what is assumed in obtaining the formula (35).

It may be observed that these results do not require the assumptions of Art. 26 in the case in

which the series 2C'„ is essentially convergent, or composed of an essentially convergent series

c c
and of a series of the form SiS" - sin ny or "2.8 - cos n-y, according as C„ is the coefficient of a

n ' n '

cosine or of a sine.

SECTION II.

Mode ofascertaining the nature ofthe discontinuity of the integrals which are analogous

to the series considered in Section I, and of obtaining the developements of the

derivatives of the expanded functions.

28. Let us consider the following integral, which is analogous to the series in (I),

y^0(/3)sin/3.rd/3 (50),

2 ra ,

where 0(/^) = - /(x) sin fix' dx (51).

Although the integral (50) may be written as a double integral,

- P /""/(*') sin /3J? sin /3 it' rfj3dcr' (52),
IT Jo •'o
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the integration with respect to x must be performed first, because, the integral of sin jiw sin ^x'dfi

not being convergent at the limit oc , / sin /3iT? sin /3.r'd/3 would have no meaning. Suppose,

however, that instead of (52) we consider the integral,

- /"°r/(^')e-*^sin/3a7sin/3.r'rf/3d^' (53),
TT "0 Jo

where A is a positive constant, and e is the base of the Napierian logarithms. It is easy to see that

at least in the case in which the integral (50) is essentially convergent its value is also the limit to

which the integral (53) tends when h tends to zero as its limit. It is well known that the limit of (53)

when h vanishes is in general /(,i); but when x = the limit is zero; when x = a the limit is i/(«) ;

and when /(.r) is discontinuous it is the arithmetic mean of the values of /(.r) for two values of ,i;

infinitely little greater and less respectively than the critical value. When ,v > o it is zero, and in

all cases it is the same, except as to sign, for negative as for positive values of x.

We may always speak of the limit of (53), but we cannot speak of the integral (50) till we

assure ourselves that it is convergent. Now we get by integration by parts,

//(•r') sin (ix'dx = - ^/('O cos /3*'' + -y./'i^f') sin (iw - — Jfix) sin (ix'dx (54).
P P P

When this integral is taken between limits, the first term will furnish a set of terms of the form

C L— cos /3a, where a may be zero, and the last two terms will give a result numerically less than -7,

where L is a constant properly chosen. Now whether a be zero or not, j cos /3a sin /3.r ~— is

convergent at the limit co , and moreover its value taken from any finite value of /3 to /3 = eo is

the limit to which the integral deduced from it by inserting the factor e"*^ tends when h vanishes.

The remaining part of the integral (50) is essentially convergent at the limit 03 . Hence the

integral (50) is convergent, and its value for all values of x, both critical and general, is the limit to

which the value of the integral (53) tends when A vanishes.

29. Suppose that we want to find f"(x), knowing nothing about /(.i), at least for general

values of x, except that it is the value of the integral (50), and that it is not a function of the

class excluded from consideration in Art. 1. We cannot differentiate under the integral sign,

because the resulting integral would, usually at least, be divergent at the limit eo . We may
however find f"{x) provided we know the values of x for which f{x) and/'(.r) are discontinuous,

and the quantities by which f{x) and f(x) are suddenly increased as x increases through each

critical value, supposing the extreme values included among those for which f(x) or f(x) is

discontinuous, under the same convention as in Art. 6". Let a be any one of the critical values

of X ; Q, Q, the quantities by which f{i'),f{,!r) are suddenly increased as x increases through a;

S the sign of summation referring to the critical values of x; d)-(/3) the coefficient of sin fix in

the direct developement of f"{x) in a definite integral of tlie form (50). Then taking the integrals

in (54) between limits, and applying the formula (51) to f"(x), we get

d),(/3) = - /3^rf)(/3) + - jiSQ cos fta-- SQ, sin /3«.
TT TT

We may find 0^(/3) in a similar manner. Wc get thus when n is even

(- iytp^ifi) = /3''(/.(/3)--/3''-' .yQco8/3a + - /3''-'5'Q, sin ^a + ...

TT TT

+ (- 1)^"^'- 5- (/^., sin /3a (55),
TT

Vol.. VIII. Part V. 4C
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where sines and cosines occur alternately, and two signs of the same kind are always followed by

two of the opposite. The expression for <p'^(fi) when n is odd might be found in a similar manner.

These formulae enable us to express f^ (x) when (p{^) is an arbitrary function which has to be

determined, and/(0), &c. are given.

30. If however d)(/3) should be given, and /(O), &c. be unknown, ^{/3) will admit of expansion

according to powers of /3"', beginning with the first, provided we treat sin /3a or cos /3a as if it

were a constant coefficient ; and sin /3a, cos /3a will occur with even and odd powers of /3 respec-

tively. The possibilitv of the expansion of (^(/3) in this form depends of course on the circum-

stance that (p{x) is a function of the class which it is proposed in Art. 1, to consider, or at least

with the extension mentioned in Art. 23. It appears from (55) that in order to express fix) as a

definite integral of the form (50) we have only got to expand (p (0), to differentiate (50) /u times

with respect to x, differentiating under the integral sign, and to reject those terms which appear

under the integral sign with positive powers of /3 or with the power 0. The same rule applies

whether ii be odd or even.

31. If we have given <j)(a), but are not able to evaluate the integral (50), we may notwith-

standing that find the values of .r which render /{x) or any of its derivatives discontinuous, and

the quantities by which the function considered is suddenly increased. For this purpose it is only

necessary to compare the expansion of (p(,(i) with the expansion

(P{fi) =~ SQcos lia - -^^ SQ, sin ^a- (56),
irp 7r/5

given by (55), just as in the case of series.

We may easily if we please clear the function (^(/3) of the part for which f(a:) or any one of

its derivatives is discontinuous, or does not vanish for .r = and .v = a. For this purpose it will be

sufficient to take any function F{w) at pleasure, which as well as its derivatives of the orders

considered has got the same discontinuity as/(a') and its derivatives, to develope F{v) in a definite

integral of the form / 4>(/3) sin (3xd^ by the formula (51), and to subtract F(.r) from /(,r) and
•'o

<l>(/3) from d)(/3). It will be convenient to choose such simple functions as / + m<v + tix-

;

/ sin a; -I- »B cos ,x' ; le'' + me~°', &c. for the algebraical expressions of i^(.r) for the several

intervals throughout which it is continuous, the functions chosen being such as admit of easy

integration when multiplied by sin (ixd.r, and which furnish a sufficient number of indeterminate

coefficients to allow of the requisite conditions as to discontinuity being satisfied. These conditions

are that the several values of Q, Q„ &c. shall be the same for F(x) as for /(.r).

/•»
.

32. Whenever / /(*') dx is essentially convergent, we may at once put a = oo in the
Jo

preceding formulae. For, first, it may be easily proved that in this case, (though not in this case

only,) the limit of (53) when h vanishes is f(x) ; secondly, the limit of {53) is also the value of

(52) ; and, lastly, all the derivatives of f(x) have their integrals, (which are the preceding

derivatives,) essentially convergent, and therefore co may be put for a in the developements of the

derivatives in definite integrals.

When f{x) tends to zero as its limit as x becomes infinite, and moreover after a finite value

of X does not change from decreasing to increasing nor from increasing to decreasing.

r '
f(x') sin ^x'dx
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will be more convergent than
j f{x') sin (ix'dx, and the latter integral will be convergent, and

'(I

its convergency will remain finite* when /3 vanishes. In this case also we may put a = 05 .

Thus if /(.t) = sin Lv{h- + .r^)"', we may put a = eo because /(.r) has its integral essentially

convergent: if /(.r) = {b + x)-h, we may put a = 00 because /(«) is always decreasing to zero

as its limit. But if /(x) = sin Iw {b + x)-k, the preceding rules will not apply, because /(.t),

though it has zero for its limit, is sometimes increasing and sometimes decreasing. And in fact in

this case the integral in equation (51) will be divergent when /3 = /, and 0(/3) will become infinite

for that value of /3. It is true that /(a) is still the limit to which the integral (53) tends when
h vanishes; but I do not intend to enter into the consideration of such cases in this paper.

33. When m may be put for n, and /(.r) is continuous, we get from (55)

(- 1)=<^.(/3) = (i'-cpi^) - -/S'-'Ao) + -/s-'-T'co) - ... + (- ly-fir-'io) (57).

In this case <p{fi) will admit of expansion, at least to a certain number of terms, according to

odd negative powers of /3. If we suppose d)((3) known, and the expansion performed, so that

<p O) = //„i8-> + i/./3-^ + i/,/3-= + ...

and compare the result with (49), we shall get

/(0) = ^i/„; /"(O) = - |/f,; riO) = ^//,; &c (58).

34. The integral

"
\// (/3) cos /3a; d/3, (59),/

I

where '^((i) = ^ ff(x') cos jix'dx', (60),

which is analogous to the series (22), is another in which it is sometimes useful to develope a function

or conceive it developed. For positive values of x the value of (59) is the same as that of (50).

When X = the value is f(0) ; and for negative values of x it is the same as for positive. It is

supposed here that the integral (59) is convergent, which it may be proved to be in the same

manner as the integral (50) was proved to be convergent.

Suppose that we wish to find, in terms of \//(/3), the developement of /''(,?;) in a definite

integral of the form (50) or (59), according as fi is odd or even. We cannot differentiate under

the integral sign, because the resulting integral would be divergent. We may however obtain the

required developement by transforming the expression \//(/3) by integration by parts, just as before.

We thus get for the case in which /i is odd

(- iy~<pA0) = /3''>/'(/3) + -/S"-' SQ sin /3a + - /S""^ SQ, cos /3a - ...

+ (-1) ^ - SQ^_,sin/3a, (fil),

7r

where 0^(/3) is the value of <p((i) in the direct developement of/''(.r) in the integral (50). In the

same way we may get the value of \|/^(/3) when fx is even, >|'^(/3) being the value of
\J/(/3)

in the

direct developement of /''(a?) by the formulae (59), (60).

Sec- ni^xt Section.

tc2



560 Mr. stokes, on THE CRITICAL VALUES OF

The equation J{6l) is applicable to the case in which \/r(/3) is an arbitrary function, and a,

Q, &c., are given. If however \//(/3) should be given, we may find (p^(l3) or »//-^(/3) by the same

rule as before.

In the case in which •vi/(/3) is given, we may find the values of a, Q, &c., without being able to

evaluate the integral (59). For this purpose it is sufficient to expand a|/-(/3) according to negative

powers of /3, and compare the expansion with that furnished by equation (6l).

35. The same remarks as to the cases in which we are at liberty to put x for a apply to (60)

as to (51), with one exception. In the case in which /(.r) approaches zero as its limit, and is at

last always decreasing numerically, or at least never increasing, as x increases, while //(a?) dw is

divergent at the limit co , it has been observed that 0(/3) remains finite when j3 vanishes. This

however is not the case with ^'(/S), at least in general. I say in general, because, although

/ /(«) dx increases indefinitely with its superior limit, we are not entitled at once to conclude from

thence that / cos /3 .r/(.i') d.» becomes infinite when /3 vanishes, as will appear in Section III. It may

X-" coi (ix d,v, where 1 > re > 0, that if f(x) = F(a:) + CaT",

where F(,r) is such that fF(x)dx is convergent at the limit co , x/'(/3) becomes infinite when /3

vanishes; and the same would be true if there were any finite number of terms of the form C.r"".

There is no occasion however to enquire whether >(/ (/3) altvays becomes infinite : the point to consider

is whether the integral {pf)) is always convergent at the limit zero.

In considering this question, we may evidently begin the integration relative to as' at any

value x„ that we please. Suppose first that we integrate from x' = x^ to x = X, and let '5r(j8) be

the result, so that

(;3) = -
f'^ fix') cos j3x'dx'.

TV J.TT

Let •23-, (/3) be the indefinite integral of •ijr (/3) rf/3 : then, c being a positive quantity, we get from

the above equation

73", (/3) - ZB-re) = - f^f(x') \sinlix' - sincaj'} -^

.

Now put X= CO . Then since
/ f(x') ^dx is a convergent integral, and its convergency

remains finite (Art. 39.) when fi vanishes, as may be proved without much difficulty, its value

cannot become infinite, and therefore S7-,(/3) does not become infinite when (i vanishes. Now

/w((i) cos fix d^ = -sr0) cos fix + xfnr^i^)sin^xd^, (62),

when X is positive ; and when x = 0,

/•sr(^)rf(,3)=7!r,(i3):

hence in either case f-sr(li) cos/3.rd/3is convergent at the limit zero. Now the quantity by

which •23- (/3) differs from \j/(/3) evidently cannot render (59) divergent, and therefore in the case

considered the integral (59) is convergent at the limit zero.

By treating f sr^ji) e-"^ cos (ix dji in the manner in which /w(/3) cos/3a'dj3 is treated in

(62), it may be shown that the convergency of the former integral remains finite when h vanishes.

Hence, not only is the integral (59) convergent, but its value is the limit to which the integral

similar to (53) tends when h vanishes.
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When f(x) is continuous, and eo may be put for a, we have from (61)

(- 1) ' %ili) =/3'*x^(m) + -/B'-V'Co) - -/3''-V"'(o) + ... + (- 1) ^ - /3r-^(o). ... {63).
IT TT TT

If \|/(;3) be given we can find the values of /'(O), /'"(O) ... just as before.

36. The integral

- r f° cos (i (a;' - x)f(w')d(idx', (64),
T 'o ''-II,

in which the integration with respect to ,t' is supposed to be performed before that with respect

to /3, so that the integral has the form

/'"x(j8)cos/3a;rf/3 + r"o-(/3) sin/3a;d/i, (65),

may be treated just as the integral (59) ; and it may be shown that in the same circumstances we

may replace the limits — a^ and « by - co , + co respectively. If we suppose \{(i) and (t(/3)

known, we may find as before the values of ,t? for which /(.r), /'(«) ... are discontinuous, and the

quantities by which those functions are suddenly increased. We may also find the direct develope-

ment of/'(.r), f"(x) ... in two integrals of the form (65); and we may if we please clear the

integrals (65) of the part which renders /(.v), f'(x) ... discontinuous.

37. In the developement of f(a) in an integral of the form (50) or (59), or in two integrals

of the form (65), it has hitherto been supposed that f{a;) is not infinite. It may be observed

however that it is allowable to suppose /(.r) to become infinite any finite number of times, provided

Jf{x) dx be essentially convergent about the values of x which render f{x) infinite. This may be

shown just as in the case of series. Hence, the formulse such as (55) which give the develope-

ment of /''(a;) are true even when/*'(.T) is infinite, f'^''(x) being finite.

SECTION III.

On the discontinuity of the sums of infinite series, and of the values of integrals

taken between infinite limits.

38. Let u, + u.. ... + u„ + (66),

be a convergent infinite series having U for its sum. Let

M, + W2 ... + v„+ (67),

be another infinite series of which the general term v„ is a function of the positive variable A, and

becomes equal to u„ when h vanishes. Suppose that for a sufficiently small value of A and all

inferior values the series (67) is convergent, and has V for its sum. It might at first sight be

supjjosed that the limit of V for h = was necessarily equal to U. This however is not true. For

let the sum to n terms of the series (67) be denoted by /(n, /«) : then the limit of V is the limit

of fin, h) when n first Ixcomes infinite and then h vanishes, wliereas U is the limit of f(n, h) when

h first vanishes and then n becomes infinite, and these limits may be dift'erent. Whenever a dis-

continuous function is developed in a periodic series like (15) or (30) we have an instance of this;

but it is easy to form two series, having nothing to do with periodic scries, in which the same
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happens. For this purpose it is only requisite to take for f(n, h) - U„, {U„ being the sum of the

first n terms of (66),) a quantity which has different limiting values according to the order in which

w and h are supposed to assume their limiting values, and which has for its finite difference a

quantity which vanishes when n becomes infinite, whether A be a positive quantity sufficiently small

or be actually zero.

For example, let

f(n,h)-U„^^^, (68),
nh + I

which vanishes when re = 0. Then

A \nn,h) - U„] = v„,. - M„„ =
(„^ + ,)(;,,+A + l)

•

Assume U„=l , so that u„ = A?7„_, =
n(n + 1)

and we get the series

+ ... + —, r+ ..., (69).
1.2 2.3 n(n + 1)

(70).
1 + 5h A(A + 2)w^ + A(4-A)w + l-A
2(1 + h)

'" n(«+ 1) {(« - 1) A + 1} (n/t + 1)

which are both convergent, and of which the general terms become the same when h vanishes.

Yet the sum of the first is 1, whereas the sum of the second is 3.

If the numerator of the fraction on the right-hand side of (68) had been pwA instead of

2«/i, the sum of the series (70) would have been p + 1, and therefore the limit to which the sum

approaches when h vanishes would have been p + 1. Hence we can form as many series as we

please like (67) having different quantities for the limits of their sums when h vanishes, and yet

all having their n"* terms becoming equal to ti„ when h vanishes. This is equally true whether the

series (66) be convergent or divergent, the series like (67) of course being always supposed to be

convergent for all positive values of h however small.

39. It is important for the purposes of the present paper to have a ready mode of ascertaining

in what cases we may replace the limit of (67) by (66). Now it follows from the following theorem

that this substitution may at once be made in an extensive class of cases.

Theorem. The limit of V can never difi"er from U unless the convergency of the series (67)

become infinitely slow when h vanishes.

The convergency of the series is here said to become infinitely slow when, if n be the number

of terms which must be taken in order to render the sum of the neglected terms numerically less

than a given quantity e which may be as small as we please, n increases beyond all limit as A

decreases beyond all limit.

Demonstration. If the convergency do not become infinitely slow, it will be possible to find

a number w, so great that for the value of A we begin with and for all inferior values greater than

zero the sum of the neglected terms shall be numerically less than e. Now the limit of the sum of

the first M| terms of (67) when A vanishes is the sum of the first w, terms of (66). Hence if e be the

numerical value of the sum of the terms after the w,"" of the series {66), U and the limit of V cannot

differ by a quantity so great as e + e. But e and e may be made smaller than any assignable

quantities, and therefore U is equal to the limit of V.

Cob. 1. If the series (66) is essentially convergent, and if, either from the very beginning, or

after a certain term whose rank does not depend upon A, the terms of (67) are numerically less than

the corresponding terras of (66), the limit of V is equal to U.



THE SUMS OF PERIODIC SERIES. 563

For in this case the series (67) is more rapidly convergent than {66), and therefore its

convergency remains finite.

Cor. 2. If the series (66) is essentially convergent, and if the terms of (67) are derived from

those of (66) by multiplying them by the ascending powers of a quantity g which is less than I,

and which becomes 1 in the limit, the limit of V is equal to U.

It may be observed that when the convergency of (67) does not become infinitely slow when h

vanishes there is no occasion to prove the convergency of (66), since it follows from that of (67).

In fact, let V„ be the sum of the first n terms of (67), U'„ the same for (66), V„ the value of V for

h = 0. Then by hypothesis we may find a finite value of n such that V — V„ shall be numerically

less than e, however small h may be; so that

V = V„ -I- a quantity always numerically less than e.

Now let h vanish : then V becomes F„ and V„ becomes U„. Also e may be made as small as we

please by taking n sufliciently great. Hence U'„ approaches a finite limit when m becomes infinite,

and that limit is Fq.

Conversely, if (66) is convergent, and if f7 = Fq, the convergency of the series (67) cannot

become infinitely slow when h vanishes.

For if n'„', F„' represent the sums of the terms after the w"' in the series (66), (67) respectively,

we have

whence F„' = V- U- (V„ - U„) + U,'.

Now V ~ U, V„ — U„ vanish with /;, and f7„' vanishes when n becomes infinite. Hence for a

sufficiently small value of h and all inferior values, together with a value of ra sufficiently large, and

independent of h, the value of F„' may be made numerically less than any given quantity e however

small ; and therefore, by definition, the convergency of the series (67) does not become infinitely

slow when /* vanishes.

On the whole, then, when the convergency of the series (67) does not become infinitely slow

when h vanishes, the series (66) is necessarily convergent, and has F„ for its sum : but in the

contrary case there must necessarily be a discontinuity of some kind. Either V must become infinite

when h vanishes, or the series (66) must be divergent, or, if (66) is convergent as well as (67),

U must be different from F,,.

When a finite function of x, f(x), which passes suddenly from M to iV as a? increases through a,

where a > a > 0, is expanded in the series (15) or (30), we have seen that the series is always

convergent, and its sum for all values of x e.xcept critical values is f(x), and for x = a its sum is

A (M + N). Hence the convergency of the series necessarily becomes infinitely slow when a - x

vanishes. In applying the preceding reasoning to this case it will be observed that /t is a — x,

F„ is M, and f/ is ^ (M + N), if we are considering values of a? a little less than a ; but h is x — a

and V„ is N, if we are considering values of a/ a little greater than a.

When the series (66) is convergent, as well as (67), it may be easily proved that in all cases

U=V,- L,

where L is the limit of F„' when h is first made to vanish and then n to become infinite.

40. Reasoning exactly similar to that contained in the preceding article may be applied to

F(x, h) d,v is a convergent integral,

a

we may say that the convergency becomes infinitely slow when h vuni.she.s, wlieii, if ..V be the

superior limit to wliich we must integrate in order that the neglected part of the integral, or
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("^ F{a:, K)dx, may be numerically less than a given constant e which may be as small as we

•'I

please, X increases beyond all limit when h vanishes.

The reasoning of the preceding article leads to the following theorems.

If F = r F{x, h) dx, if Fo be the limit of V when ^ = 0, and if F(x, 0) =f{x) ; then, if

'^a p CD

the convergency of the integral V do not become infinitely slow when h vanishes, / /(.r) dx must

be convergent, and its value must be Fj. But in the contrary case either F must become infinite

when h vanishes, or the integral /" /(«) dx must be divergent, or if it be convergent its value

•'o

must differ from F„.

When the integral { f{x) dx is convergent, if we denote its value by U, we shall have in all

cases

F(x, h) dx approaches when h is first made to vanish and then

X to become infinite.

The same remarks which have been made with reference to the convergency of series such as

(15) or (30) for values of a* near critical values will apply to the convergency of integrals such

as (50), (59) or (65).

The question of the convergency or divergency of an integral might arise, not from one of the

limits of integration being eo , but from the circumstance that the quantity under the integral sign

becomes infinite within the limits of integration. The reasoning of the preceding article will

apply, with no material alteration, to this case also.

41. It may not be uninteresting to consider the bearing of the reasoning contained in this

Section and a method frequently given of determining the values of two definite integrals, more

especially as the values assigned to the integrals have recently been called into question, on account

of their discontinuity.

Consider first the integral

r " sin ax
u= / dx, (71).

J, X

where a is supposed positive. Consider also the integral

/•» . sin a a?

V = /
6"*' dx.

J, X

It is easy to prove that the integral v is convergent, and that its convergency does not become

infinitely slow when h vanishes. Consequently the integral u is also convergent, (as might also be

proved directly in the same way as in the case of v,) and its value is the limit of ti for h = 0.

But we have

dv r" k. • ,
"— =- / e~ sinaxdx = — —

;

dh J„ a- + h-

,A
whence v = C - tan - ;

a
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TT
and since « evidently vanishes when A = co , we have C = — , whence

TT A TT
« = tan ' - , u = ~

2 n 2

TT

2

.t sin ax

Also M = when a = 0, and m = when a is negative, since u changes sign with a. By the

value of II for a = 0, which is asserted to be 0, is of course meant the limit of f' — da: when
Jo ^

a is first made to vanish and then X made infinite.

It is easily proved that the convergency of the integral n. becomes infinitely slow when a

vanishes. In fact if

, r" sin ax
u = \ dx,

J-f X

we get by changing the independent variable

, /- " sin cT ,
ti = / dx •

Jax •^

Jr
* sin X

' d

I

an integral which might have been very easily proved to be greater than zero even had we been

unable to find its value. It readily follows from the above that if m' iias to be less than e the value

of X increases indefinitely as a approaches to zero.

42. Consider next the integrals

r'^ cosaxdx /•« , cosaxdx
«= / r , «= / e-"'- ^- (72).

^ 1 + x' J„ 1 + x^

It is easily proved that the convergency of the integral v does not become infinitely slow when

h vanishes, whatever be the value of a. Consequently u is in all cases the limit of v for A = 0.

Now V satisfies the equation

d?v /« . h
- -1. = -/ e-'"coiiaxdx = -

; (73).
da^ J„ li + a

It is not however necessary to find the general value of r ; for if we put A = we see that u

satisfies the equation

:r^-M = 0, (74),
da'

so long as a is kept always positive or always negative : but we cannot pass from the value of u

j
found for positive values of a to the value which belongs to negative values of a by merely writing

- n for ffl in the algebraical expression obtained. For although u is a continuous function of a, it

readily follows from (73) that -— is discontinuous. In fact, we have from this equation
•^ ^ da

_ - = / wda -2 tan-'-.
\dal„^^ Vrfa/„..* J^K ''

Now let A first vanish and then X. Then v becomes u, and f vda vanishes, since v does not

Vol.. VIII. Pabt V. 4D
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become infinite for a = 0, whether h be finite or be zero. Threfore -— is suddenly decreased by
da

TT as o increases through zero, as might have been easily proved from the expression for u by means

of the known integral (71), even had we been unable to find the value of u in (72). The equation

(74) gives, a being supposed positive,

u =€£-"+ C'e".

But u evidently does not increase indefinitely with a, and u = I = — when a = ;
•^ •' ^ 1 + ,r- 2

TT 7r

whence C' = 0, C = — , m = - e'". Also, since the numerical value of u is unaltered when the
2 2

sign of a is changed, we have m = - e" when a is negative.

It may be observed that if the form of the integral u had been such that we could not have

inferred its value for a negative from its value for a positive, nor even known that ii is not infinite

for a = — OS , we might yet have found its value for a negative by means of the known continuity

of 71 and discontinuity of --— when a vanishes. For it follows from (74) that m = 6^6" + C.,e~" for a
da

negative; and knowing already that u = - e'° for a positive, we have

-:=C, + C,, --=C, -C.-7r;
2 2

TT TT

whence Ci = — , Cj = 0, « = — £», for a negative.

Of course the easiest way of verifying the result m = — e'" for a positive is to develope e"' for

a: positive in a definite integral of the form (59), by means of the formula (60).

SECTION IV.

JSxamjiles of the application of the formnlce priwed in the preceding Sections.

43. Before proceeding with the consideration of particular examples, it will be convenient

to write down the formulfe which will have to be employed. Some of these formulas have been

proved, and others only alluded to, in the preceding Sections.

In the following formulae, when series are considered, /(a?) is supposed to be a function of x

which, as well as each of its derivatives up to the {ft.
- l)"" order inclusive, is continuous between

the limits a; = O and x = a, and which is expanded between those limits in a series either of sines

or of cosines of — and its multiples. //„ denotes the coefficient of sin when the series is one
a a

of sines, B„ the coeflicient of cos when the series is one of cosines, -/„'' or Bj^ the coefficient of
a

sin or cos in the expansion of the /«"' derivative. When integrals are considered, /(.r)
a a
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and its first /i - 1 derivatives are supposed to be functions of the same nature as before, whicli
are considered between the limits x = and x = os ; and it is moreover supposed that /(.r)

decreases as a; increases to os , sufficiently fast to allow ff{a;)dx to be essentially convero-ent at the
limit 05 , or else that f{x) vanishes when .^=00, and after a finite value of x never changes from
increasing to decreasing nor from decreasing to increasing. 0(/3) or -v/,(/3) denotes the coefficient

of sin /3.r or cos ^x in the developement of /(«) in a definite integral of the form C 0/3 sin jixdx

"'
/ ylyi.(i)cos (ixdx, ^^{(i) or >//^(/3) denotes the coefficient of sin /3.r or cos /3a; in the deve-

loperaent of the /j"* derivative of f{x). The formulae are

+ - (— )
{/'(O) - (- !)"/'(«)} - ... (^ Odd) (A),

(-lyj: = ^-j A--[—) i/(0)-(-l)Y(a)} +...(m even) (B),

^-'y <= (v) ^"^~aW) 5/(0)-(-ir/'(«)|-... (^odd) (C),

(-1)'b:= {^y B„ + ~-i~-y "|/(0)-(-l)"/'(«)}-... (m even) (D),

except when w = 0, in which case we have always

>?s =
^

{/""'(«) -r"'(o)},

Bn being the constant terra in the expansion of f^ (;r) in a series of cosines.

In the formulae {A), (B), (C), (D) we must stop when we have written the term containing

the power 1 or 0, (as the case may be,) of — . The formulae for integrals are

( - O'^^^^O) -/3".^(/3) - -fi^-'fio) + - (i^-Y'io) - - (m odd) (a),
IT TT

(-l)^'^.(/3) = /3''<^(/3) --^''-7(0)+-/3''-7"(0)-... (m even) (6),
TT 'TT

( - ^)'^<PAft) = ft'i^di) + -fi'-'no) - ~[i^'Y"(o) + ... (m odd) (o),
TT TT

( - l)'^K(/3) =/3->|'(/3) + - /3''-y(0) -- /S-V'CO) + ... (m even) (d),
"TT TT

where we must stop with the last term involving a positive power of /3 or the j)owcr zero.

44. As a first example of the application of the principles contained in Sections I. and II.

suppose that we have to determine the value of d) for values of x lying between and «, o and h

respectively, from the equation

-J- + ^ = (75),
dx' dy" ^ ''

4 I) 2
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with the particular conditions

— - = w(a; — ia), when y = or = b (76),
dy

d(p

dm
= - (o(j/ - ^6), when a; = or = a (77).

This is the problem in pure analysis to which we are led in seeking to determine the motion

of a liquid within a closed rectangular box which is made to oscillate.

For a given value of y, the value of (p can be expanded in a convergent series of cosines of

— and its multiples; for another value of y, <p can be expanded in a similar series with different
a

coefficients, and so on. Hence, in general, (p can be expanded in a convergent series of the form

„ mra:
SF„cos (78),

a

where Y„ is a certain function of y, which has to be determined.

In the first place the value of (p given by (78) must satisfy (7.5). Now the direct developement

of -—^ in a series of cosines will be obtained from (78) by differentiating under the sign of sum-

mation ; the direct developement of ---^ will be given by the formula (D). We thus get

^frf-'F,, w'^ir- „ 2a), , ^ , ^ ,,1 nvx
-\df- a-

h.^~{l-i-m(y-^b)^cos^=0;

and the left-hand member of this equation being the result of directly developing the right-hand

member in a series of cosines, we have

dy- a' a ''

according as ti is odd or even. This equation is easily integrated, and the integral contains two

arbitrary constants, C,„ D„ suppose. It only remains to satisfy (76). Now the direct developement

dV, .

of —— will be obtained by differentiating under the sign of summation, and the direct develope-

ment of w(x - ^a) is easily found to be - 2o —;—j cos , the sign 2o denoting that odd values

only of n are to be taken. We have then, both for y = and for y = h,

dV„ 4(0 o

dy IT w
according as n is odd or even, which determines C„ and D„.

It is unnecessary to write down the result, because I have already given it in a former paper*,

where it is obtained by considerations applicable to this particular problem. The result is con-

tained in equation (4) of that paper. The only step of the process which I have just indicated

which requires notice is, that the term containing {x - lo) (y - ^6) at first appears as an infinite

' Supplement to a Memoir 'On some Cases of Fluid .Motion,' p. 401* of the present Volutue.
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series, which may be summed by the formula (41). The present example is a good one for

showing the utility of the methods contained in the present paper, inasmuch as in the Supplement
referred to I have pointed out the advantage of the formula contained in equation (6), with respect

to facility of numerical calculation, over one which I had previously arrived at by using develope-

ments, in series of cosines, of functions whose derivatives vanish for the limiting values of the

variable.

45. Let it be required to determine the permanent state of temperature in a rectangle which

has two of its opposite edges kept up to given temperatures, varying from point to point, while

the other edges radiate into a space at a temperature zero. The rectangle is understood to be a

section of a rectangular bar of infinite length, which has all the points situated in the same line

parallel to the axis at the same temperature, so that the propagation of heat takes place in two

dimensions.

Let the rectangle be referred to the rectangular axes of x, y, the axis of y coinciding with one

of the edges whose temperature is given, and the origin being in the middle point of the edge.

Let the unit of length be so chosen that the length of either edge parallel to the axis of x shall be

TT, and let 2/3 be the length of each of the other edges. Let u be the temperature at the point

(r, y), h the ratio of the exterior, to the interior conductivity. Then we have

d' u d- u

dx- dy-

dii— - hu = 0, when y = - /3 (80),
dy

du
, ^~~ + Jijt = 0, when y = j3 (81),

dy

u =fiy), when .( = (82),

7/ = F(y), when x = a (83),

f(y), P{y) being the given temperatures of two of the edges.

According to the method by which Fourier has solved a similar problem, we should first

take a particular function Ke*^, where F is a function of y, and restrict it to satisfy (79)- This

gives V - A cos \y + B sin \y, A and B being arbitrary constants. We may of course take, still

satisfying (79), the sum of any number of such functions. It will be convenient to take together

the functions belonging to two values of \ which differ only in sign. We may therefore take, by

altering the arbitrary constants,

u = 2:S^(e*<"-"'- e-*'-") + fi(6*^ -€-*")} cosXy,

+ 2 50(6*'"-^' - £-*<'-^') + D(e*' -£-*")} sinXy (84),

in which expression it will be sufficient to take only one of two values of \ which differ only by

sign, so that X, if real, may be taken positive. Substituting now in (80) and (SI) the value of //

given by (84.), we get either C = 0, D = 0, and

X/3.tanX/3 = /i/3 (85),

or else A = n, B = 0, and

X/3.cotX/3= -k(i (86).

It is easy to prove that the equation (85), in which X/3 is regarded as the unknown (luantity,

TT

has an infinite number of real positive roots lying between each even multiple of - , including zero.
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and the next odd multiple. The equation (86) has also an infinite number of real positive roots

lying between each odd multiple of - and the next even multiple. The negative roots of (85) and

(86) need not be considered, since the several negative roots have their numerical values equal to

those of the positive roots ; and it may be proved that the equations do not admit of imaginary

roots. The values of X in (84) must now be restricted to be those given by (85) for the first line,

and those given by (86) for the second. It remains to satisfy (82) and (83). Now let

/(2/) + /(-2/) = 2/i(2/), f(y)-f{-y) -2f.{y),

F{y) + Fi-y) = 2 F, (y), F(y) -F(-y) = 2F, (?/) :

then we must have for all values of y from to /3, and therefore for all values from - /3 to 0,

2^ Z- cos Xy =/,(?/), '2BLcos\y = F^(y) (87),

•^CM sin ,xy=f,{y), ^DM sin i^y = F,(y) (88),

where Z, = e"" - e'*', M = c"" - e""',

,11 denoting one of the roots of the equation

ix fi. cot IX(i= - hfi (89),

and the two signs 2 extending to all the positive roots of the equations (85), (89), respectively.

To determine A and B, multiply both sides of each of the equations (87) by cos \'ydy, X' being

any root of (85), and integrate from y = to y = ^. The integral at the first side will vanish, by

virtue of (85), except when X' = X, in which case it will become — (2X/3 + sin 2X/3), whence A
4X

and B will be known. C and D may be determined in a similar manner by multiplying both sides

of each of the equations (88) by sin fx'ydy, fx' being any root of (8.9), integrating from y = to

y = fi, and employing (89). AVe shall thus have finally

M = 42X(2X/3 + sin 2X^)-'(6*' -£-*")-' |(e''C-'> - e-^i—") ^ f,(y) cosXydy
Jo

+ (e" - £-") £ F^ {y) cos \y dy} cos \y,

+ 42^t(2,xi3 - sin2^/3)-'(e^'- e-n" {(e"'"'" - e"""-"*) £\f,{y) sin ^y dy

+ (e-" - e-"-^) £^ F,(y) sin ,xydy} sin,xy (90).

46. Such is the solution obtained by a method similar to that employed by Fourier. A

solution very different in appearance may be obtained by expanding u in a series SFsinm^r, and

employing the formula (fi). We thus get from the equation (79)

f]-V 2m
n'Y+— {/(y) -(-!)» F(y) ] = 0,

dy' IT

which gives

1 r'-'

jr
Y= Ae"y + Be-'" -- f {f(y')

- (- l)"F(y')} {e"^^-'-''^ - g-"^^-"'') dy';



THE SUMS OF PERIODIC SERIES. 571

dti . .

whence, — =21' sin nw, where
dy

Y'=nAe''^ - nBe-!' -- f {f(y') - (- i)''F(y')} (e'<»-J'> + e-"'^-"') dy'.
K -J

f,

The values of A and B are to be determined by (80) and (Si), which require that

dY
—- ± A K = when « = ± /3.
dy ^ '

We thus get

(n + h) 6-''J - (n-h) e-^B - -/^ \f(y')-(- iyF(y')]{(.n + h) £"»-")+ (w _ h)e-^^-'-''>} dy'=0,

and the equation derived from this by changing the signs of h and /3 ; whence the values of
A and B may be found. We get finally

M = 2Fsinna', (gi),

where

F= - {(« + A) e"? - (« - A) e-"^; -' (e"* + e""") T |( « + /«) e"<^-^) + (« _ A) e'-'^-yn
T -'o

{/(y')-(-ir^,(y')}rfy

' - /'(e"^-."' - 6-"<^-v')l/,{y') - (- i)"F,(2/')} rfy'

+ - |(« + A) e"^ + (n - ft) f-"^} -' (e"» - e""^) f
^ {(w + ft) e"'^"*' + (n - ft) e-«(S-v)l

" ^/'('""""'^ - """'"""'>
^•^=(2'') - (- ^y^^iy')\ H (92).

47. The two expressions for u given, one by (90), and the other by (gi) and (92), are

necessarily equal for values of x and y lying between the limits and it, - fi and /3 respectively.

They are also equal for the limiting values y = - fi and y = (i, but not for the limiting values

a; = and x = n, since for these values (91) fails; that is to say, in order to find from this series

the value of u for .r = or .r = tt, we should have ^rst to sum the series, and fhett put .r =
or J? = TT.

The comparison of these expressions leads to two remarkable formula;. In the first place it

will be observed that the first and second lines in the right-hand side of (92) are unchanged when
y changes sign, while the third and fourth lines change sign with 7. This is obvious with respect

to the first and third lines, and may be easily proved with respect to the second and fourth by

taking - y' instead of y' for the variable with respect to which the integration is performed, and
remembering thai J\(y), F,{y) are unchanged, and /,(?/), F.(y) change sign, when y changes sign.

Consequently the part of w corresponding to the first two lines of (92) is equal to the part expressed

by the first two in (90), and the j)art corresponding to the last two lines of (!)2) equal to the part

expressed by the last two in (90). Hence the ecpiation obtained by ecpiating the two ex-

pressions for u splits into two; and each of the new equations will again sj)lit into two in eon-

sequence of the independence of the functions /, F, which are arbitrary from y = to // = fi.

As far however as anything peculiar in the transformations is concerned, it is evident that we may
suppress one of the functions /, F, suppose F, and consider only an element of the integral
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by which f is developed, or, which is the same, suppose /i(j/') or f.,(y') to be zero except for values

of the variable infinitely close to a particular value y, and divide both sides of the equation by

IMy')dy' or !My')dy'.

We get thus from the first two lines of (90) and the first two of (92), supposing y and y positive,

and y' the greater of the two,

S -z ^ , r COSXV cos AW
2\/3 + sin2X^ e^'-e-^"

^

where the first 2 refers to the positive roots of (85), and the second to positive integral values

of n from 1 to 05 .

Of course, if y become greater than y', y and y' will have to change places in the second side

of (93). This is in accordance with the formula (92), since now the second line does not vanish;

and it will easily be found that the first and second lines together give the same result as if we had

at once made y and y change places. Although y has been supposed positive in (93), it is easily

seen that it may be supposed negative, provided it be numerically less than y'.

The other formula above alluded to is obtained in a manner exactly similar by comparing the

last two lines in (92) with the last two in (90). It is

2 7: : ?, Sin 1x1/ sin M«
2^/3- sin 2;u/3 t^'-e-"'

^

= -^- ' ,, Jb
7

;^^ Y^ 5.sinw.r (94),
TT (w + A)e"^ + (w - A)6-^

where the first 2 refers to the positive roots of (89), the second to positive integral values of w,

and where x is supposed to lie between and tt, y' between and /3, y between and y\ or, it

may be, between - y and y. Although ,v has been supposed less than tt, it may be observed

that the formulae (gs), (94) hold good so long as x, being positive, is less than Stt.

18. Let it be required to determine the permanent state of temperature in a homogeneous

rectangular parallelepiped, supposing the surface kept up to a given temperature, which varies

from point to point.

Let the origin be in one corner of the parallelepiped, and let the adjacent edges be taken for

the axes of .v, y, x. Let a, b, c be the lengths of the edges; /,(?/, z), Fi(y, x), the given tem-

peratures of the faces for which w = and w = a respectively ; /„(;y, x), F.j(z, .r) the same for the

faces perpendicular to the axis of y; /3(ir, y), F^{x, y) the same for those perpendicular to the

axis of X. Then if we put for shortness v to denote the operation otherwise denoted by

d- d' (F

dx' dy" dx-
'

as will be done in the rest of this paper, and write only the characteristics of the functions, we

shall have, to determine the temperature 71, the general equation y ?< = with the particular

conditions

II =
f\, when a; = ; u = F^, when a; = a (9.'5) ;

u =
f:,,

when y = ; u = F.^, when y = 6 (S^*) ;

u = fn, when ?r = ; u = F„ when « = c '(97);
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It is evident that u is the sum of three temperatures ?<j, u.^, tij, where m, satisfies the conditions

(95), and vanishes at the four remaining faces, and u^, u^ are related to the axes of y, z as Mj is

related to that of x, each of the quantities m,, u-,, M3 representing a possible permanent temperature.

Now M3 may be expanded in a double series 22Z„„ sin sin —-, where Z„„ is a function
a b

of z which has to be determined. Let for shortness

ottt utt p-TT

=11, "T = "' — = ar

;

a be
then the substitution of the above value of u^ in the equation sju, = leads to the equation

-d^ - 9-Z», = 0,

where g^ = /u." + v', which gives Z,„„ = A„„e''- + B„,„e"''; and the constants A„„, B„,„ are easily

determined by the condition (97). We may find m, and u.^ in a similar manner, and the sum of

the results gives u. It is thus that such problems are usually solved.

We may, however, expand m in a series of the form 22Z,„„ sin ixx sin vy, even though it does

not vanish for j; = and a? = o, and for y = and y = b; and the formulae proved in Section I.

enable us to make use of this expansion.

Let then u = 22Z sin nx sin vy,

the suffixes of Z being omitted for the sake of simplicity. We have by the formula {B)

^^ = 2 {
- ,*^2Z sin vy + ~^

[/, - ( - I)"/-,]} sin ;u.r.

ax a

Let /i(y, x) - ( - \)"'Fi{y, z) be expanded in the series 2Qsini/y by the formula (3), so that

Q will be a known function of z, m, and n. Then

-r-; = 22 )
- fx'A + — Q Sin nx sin vy.

aar a

The value of — may be expressed in a similar manner, and that of —— is found by direct

rfy^ -
'^

dz'

differentiation. We have thus, for the direct developement of yw, the double series

[d'Z 21/ 2|a )

22 {, „ - (m'' + /)Z + —- P+ — Q>sin ixx sin vy,*\ dz' b a )

where P is for x what Q is for y. The above series being the direct developement of V"! ^"^l V"
being equal to zero, each coefficient must be equal to zero, which gives

d'Z 2v 2u
-q-Z + --P+ -!^Q = (98)

dz- I) a

where q means the same as before. The integral of the equation (98) is

Z = A(i' + Be-1' - - €-'' r e-'" Tdz + - e"''' [' e'- Tdx,

2 7' denoting the sum of the last two terms of (98). It only remains to satisfy (97). If the

known functions /,(a', y), F,{x, y) be developed in tlie double series 22G sin ^x sin vy,

"^"2.11 sin iix sin vy, we shall have from (97)

A + B = G,

Ae''' + Be-"' - - e'" f' e-i'Tdz + -e-''' f' e^'Tdz = II.

Vol. VIII. Paiit V. lE
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A and B may be easily found from these equations, and we shall have finally

(e'' - e-"') Z =G («""-'' - e-9'' ") + Hie"" - e"'-) + - (e''""'' - e"?''"'') f (e''' - £-'=) Tdz]

+ - (e^-- - e-r-) f (ef'-^-'' - ^-'t^'-^') Tdz,

T being the value of T when s = ar'. It will be observed that the letters Z, P, Q, T, A, B, G, H
ought properly to be affected with the double suffix mn. It would be useless to write down the

expression for u in terms of the known quantities /, (»/, z), &c.

It will be observed that u might equally have been expressed by means of the double series

22 ^„ sin vy sm'ZB'x, or 22 F„ im /ix sin •ars?, where p is any integer. We should thus have

three different expressions for the same quantity u within the limits x = and a = a, y = and

y = 6, z = and « = c. The comparison of these three expressions when particular values are

assigned to the known functions /i(y, z) &c. would lead to remarkable transformations. The

expressions differ however in one respect which deserves notice. Their numerical values are the

same for values of the variables lying within the limits and a, and b, and c. The first

expression holds good for the extreme values of z, but fails for those of x and y : in other words,

in order to find from the series the value of u for the face considered, instead of first giving x or y

its extreme value and then summing, which would lead to a result zero, we should first have to

sum with respect to m or n, or conceive the summation performed, and then give x or y its extreme

value. The same remarks apply, mutatis mutandis, to the second and third expressions ; so that

the three expressions are not equivalent if we take in the extreme values of the variables.

49- Many other remarkable transformations might be obtained from those already referred

to by differentiation and integration. We might for instance compare the three expressions which

would be obtained for / / / udxdydz, and we should thus have three different expressions
- "^0 •'o

for the same function of the three independent variables a, b, c, which are supposed to be positive,

but may be of any magnitudes. Some examples of the results of transformations of this kind may

be seen by comparing the formulae obtained in the Supplement alluded to in Art. 44 with the

corresponding formula contained in the Memoir itself to which the Supplement has been added.

Such transformations, however, when separated from physical problems, are more curious than

useful. Nevertheless, it may be worth while to exhibit in its simplest shape the formula from

which they all flow, so long as we restrict ourselves to a function u satisfying the equation y?« = 0,

and expanded between the limits x = and .r = a, &c. in a double series of sines.

The functions /, (y, z) &c., which are supposed known, are arbitrary, and enter into the

expression for u under the sign of double integration. Consequently we shall not lose generality,

so far as anything peculiar in the transformations is concerned, by considering only one element of

the integrals by which one of the functions is developed. Let then all the functions be zero

except f, ; and since in the process f^ has to be developed in the double series

— 22 / / /a ('-'', y ) sin fix sin vy dx dy . sin \i.x sin vy-,

ah Jg Jf,

consider only the element f^ix', y) sin^''"' sin vy dx' dy of the double integral, omit the dx'dy,

and put/3(x', y) = 1 for the sake of simplicity. If we adopt the first expansion of u, and put

q- for ,u^ + /, we shall have

4
Z = AU''^'-''' - e-?"^--'), uv _ e-v) J = gin fj,x' sin vy ;

ab

whence u = -7^2 ^^—-

—

~— sin /n.r;' sin ry' sin (uj sin vy {99).
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By expanding u in the double series SSFsin fia: sin zzrar we should get

M = — 22 — ;t 3-j sin fxv' sin fix sin Tirs; (100),
ac s e" — e «"

where s^ = ^u^ + sr^, and ^' is the greater of the two y, y'. The third expansion would be derived

from the second by interchanging the requisite quantities. In these formal* a: may have any

positive value less than 2 c.

We should get in a similar manner in the case of two variables ai, y

" = T 2; —^— sin „y' sin vy = - ^ -, —

^

sin nx, ... (101),
b e ~ e a 6^—6

where .i' is supposed to lie between and a, y between and 6, and y between and y . This

formula is however true so long as x lies between and 2a, and y between — y and y .

If we compare the two expressions for / / / udydy'dx obtained from (101), taking 2o for
•'o •'o •'o

the sign of summation corresponding to odd values of n from 1 to co , putting a = rb, and

1
, TT^

replacing 2o ^ by its value — , we shall get the formula

"IT

1 1 1 - e-"" 1 1 _ e~ .;r^

-r^»^TTP^^ + '-^V3 ZE =
T6^

('o^)'

1 + e '

which is true for all positive values of r, and likewise for all negative values, since the left-hand

side of (102) is not changed when — r is put for r. In integrating the second side of (101), sup-

posing that we integrate for y before integrating for y , we must integrate separately from y =
to y = y , and from y = y' io y = h, since the algebraical expression of the quantity to be integrated

changes when y passes the value y

.

It would be useless to go on with these transformations, which may be multiplied to any

extent, and which cease to be useful when they are separated from ])hysical problems to which tliey

relate, and of which we wish to obtain solutions.

It may be observed that instead of supposing, in the case of the parallelepiped, the value of

u known for all points of the surface, we might have supposed the value of the flux known, subject

of course to the condition that the total flux shall be zero. This would correspond to the follow-

ing problem in fluid motion, u taking the place of the quantity usually denoted by <p,
" To

determine the initial motion at any point of a homogeneous incompressible fluid contained in a

closed vessel of the form of a rectangular parallelepiped, which it completely fills, supposing the

several points of tlie surface of the vessel suddenly moved in any manner consistent with the

condition that the volume be not changed." In this case we should expand !< in a series of cosines

instead of .sines, and employ the fomula (Z)) instead of {B). We might, again, suppose the value

of u known for the faces perpendicular to one or two of the axes, and the value of the flux known

for the remaining faces. In this case we should employ .sines involving the co-ordinates perpendi-

cular to the first set of faces, and cosines involving the others.

The formulfc would also be modified by supposing some one or more of the faces to move off

to ,111 infinite distance. In this case some of the series woulil be replaced by integrals. Thus, in

the case in wliich tlie value of ii at the surface is known, if we supposed a to become mfiiiile we

should employ the integral (50) instead of the series (.')), as far as relates to the variable ,/•, and the-

formula (fc) instead of {Ii). If we were considering a rectangular I)ar inluiitely extended both

ways wc should employ the integral (fiS). Of course, if we had already obtained the result for the

4 E 2
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case of the parallelepiped, the shortest way would be thence to deduce the result for the case of the

bar infinite in one or in both directions, but if we began with considering the bar it would be best

to start with the integrals (50) or (65).

50. To give one example of transformations of this kind, let us suppose b to become infinite

in (101). Observing that v = —— , Ai/ = — , we get on passing to the limit

-/ Zi rr^— sin i/y sin vjrdw = - 2 (e"'' -€"•'*') £"''y sin ua^. ...(103).
TT ^D € - 6 a

Multiply both sides of this equation by d.vdy, and integrate from x = to x = a, and from y =
to y = 05 . With respect to the integration of the second side, it is only necessary to remark that

when y becomes greater than y, y and y' must be made to change places in the expression written

down in (103). As to the integration of the first side, if we first integrate from y = to y = V,
we get, putting f(v, -v) for the fraction involving a?.

/ /(i/, x:) sin vy' (I - cos v Y)
du

Now let }' become infinite ; then the term involving cos i- Y may be omitted, not because cos v Y
vanishes when Y becomes infinite, which is not true, but because, as may be rigorously proved,

the integral in which it occurs vanishes when Y becomes infinite. If we write 1 for a, as we mav
without loss of generality, we get finally

J/t
rO ]

g"" dv 2 1

risin./y'— = -2„-(i - f-"*) (104).
1 + e ' v' TT rf

51. Hitherto in satisfying the general equation yw =0, together with the particular conditions

at the surface, the value of u has been expanded in a double series involving two of the variables,

and the functions of the third variable which enter as coefficients into the double series have been

determined by an ordinary differential equation such as (98). We might however expand u in

a triple series, and thus satisfy at the same time the equation yi/ = and the conditions at the

surface, without using an ordinary differential equation at all, but simply by means of the terms

introduced into the series by differentiation, which are given by the formulae at the beginning of

this Section ; and then by summing the triple series once, which may be done in any one of three

ways, we should arrive at the same results as if we had employed in succession three double

series, involving circular functions of x and y, y and z, z and x respectively, and the corresponding

ordinary differential equations. I am indebted for this method to my friend Prof. William

Thomson, to whom I showed the method given in Art. 4-8.

Let us take the case of the permanent state of temperature in a rectangular parallelepiped,

supposing the temperature at the several points of the surface known. For more simplicity

suppose the temperature zero at the surface, except infinitely close to the point {x', y) in the face

for which x; = 0, so that all the functions/, &c. are zero, except f.^ix, y), and/3(,r, y) itself zero

except for values of x, y infinitely close to x, y respectively ; and let jjfzix, y) dxdy = 1, provided

the limits of integration include the values x = x, y = y. Let u be expanded in the triple series

'S.'2.'S,A,„„j, sin iix sin vy sin -i^z, (105),

where n, v, -w mean the .same as in Art. 48. Then

(fu 2 TS— = 2p {
- 2„2„7ir''.r<„„j, sin ,j.x sin py + - fz(a!,y)\ sin mm (106).

4
Now the expansion oi f:i(x, y) in a double series is— 22 sin/nJ?' sin vy' sin fix sin vy, that is to

ah
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say with this understanding, that the result is to be substituted in (106); for it would be absurd to

speak, except by way of abbreviation, of a quantity which is zero except for particular values of

X and «, for which it is infinite. The values of and will be obtained bv direct differ-^
djr df ^

entiation. We have therefore for the direct developement of y m in a triple series

VM = 222 \
- (ju- + V- + m') J„„p + —— sin /xx sin ^y'^ sin nx sin vy sin iirx.

But yw being equal to zero, each coefficient will have to zero, from whence we get A,„„p, and then

8 „„„ 7<r . , . , . . . , .

u = —— 2.2,Z -T, :; r Sin ux sin vv sin ux sin vv sin Tirz (107)-
abc n'+v'+'sr' » " ^

One of the three summations, whichever we please, may be performed by means of the known

formulae

^ 23- sin srz c e*''"" - e-"'"-''2

—

7,

—
yr = - —

re :rrc— > if2c>s;>0, (108),

1 A:cos^« 6 e'"''-*-' + f-*<''-S'.'

¥k^^ k^-.y—. ^̂^-e-"^
.if26>y,>0, (109),

which may be obtained by developing the second members between the limits 2: = and x = c,

y — and y^ = b by the formulae (2), (22), and observing that the expansions hold good within

the limits written after the formula?, since e*''^"^' — e~
''^~'* has the same magnitude and opposite

signs for values of « equidistant from c, and £"'"''' + £-*('-'')
jj^g the same magnitude and sign for

values of y^ equidistant from 6. If in equation (107) we perform the summation with respect to p,

by means of the formula (108), we get the equation (09) : if we perform the summation with respect

to n, by means of the formula (109), we get the equation (lOO).

52. The following problem will illustrate some of the ideas contained in this paper, although,

in the mode of solution which will be adopted, the formulas given at the beginning of this Section

will not be required.

A hollow conducting rectangular parallelepiped is in communication with the ground: required

to express the potential, at any point in the interior, due to a given interior electrical point and to

the electricity induced on the surface.

Let the axes be taken as in Art. iS. Let x', y, z be the co-ordinates of the electrical point, m
the electrical mass, v the required potential. Then i' is determined fir.it by satisfying the equation

in
,

y« = 0, secondly by being equal to zero at the surface, thirdly by being equal to — infinitely

close to the electrical point, r being the distance of the points (x, y, z), (x, y', z'), and by being

finite and continuous at all other points within the parallelepiped.

Let V = — + v„ so that v, is the potential due to the electricity induced on tlie surface,

r

Then «, is finite and continuous within the parallelepiped, and is determined by satisfying the

general equation y?;, = 0, and by being equal to at the surface. Consequently f, can be
r

determined precisely as h in Arts. 48 or .ll. This separation however of « into two parts seems

to introduce a degree of complexity not inherent in tlie problem ; for f itself vanisius at the

surface; and it is when the function expanded vanishes at the limits that tlie application of the

series (2) involves least complexity. On the other hand we cannot immediately expand w in u

triple series of the form (10.'".), on account of its becoming iiidniti- at the point (x ,
y,if)-
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Suppose, therefore, for the present that the electricity is diffused over a finite space : then

it is evident that we may suppose the electrical density, p, to change so gradually, and pass so

gradually into zero, that the derivatives of v, of as many orders as we please, shall be continuous

functions. We may now suppose v expanded in a triple series, so that

V = S22J„ sin fix sin vy sin stz ;

and we shall have

V« = - 222 (;a" + v' + w')A,„„p sin ijljc sin vy sin ars;.

But we have also, by a well-known theorem, yu = — iTvp; and

p = 2225„„;, sin /mx sin vy sin jjr«,

where R„„ = —-- / / p' sin fix' sin u y' sin stx' dot' dy dx',
o,ocJ„ Jg J^

p being the same function of x, y', z that p is of x, y, z. We get therefore by comparing the two

expansions of y«

^^y = 47r (m' + 1-' + sr-)-' R,„„^,

whence the value of v is known. We may now, if we like, suppose the electricity condensed

into a point, which gives

„ Sm . , . , .

aoc

V = —;— 222 Oi^ + v~ + OT^)~' sin fix' sin vy sin zsrs' sin/x.r sin i;y sin tstz ('10).
aoc

One of the summations may be performed just as before. We thus get, by summing witli

respect to p,

S-^m ^^ 1 (e'- - e-"') je"''""' - e-^"' -'') . , . , . . . , .

V = —r— 2,2 sin fix sin vy sm fix sin vy (Hi),
ab q e'l" — e

''°
'

where 9° = ni' + i-'', and z is supposed to be the smaller of the two z, z . If z be greater than z\

we have only to make x and z change places in (ill).

53. The equation (llO) shows that the potential at the point (x, y, z) due to a unit of electri-

city at the point (»', y , z) and to the electricity induced on the surface of the parallelepiped is equal

to the potential at the point {x, y, z) due to a unit of electricity at the point {x, y, z) and to the

electricity induced on the surface. This however is only a particular case of a general theorem

proved by Green *.

Of course the parallelepiped includes as particular cases two parallel infinite planes, two parallel

infinite planes cut at right angles by a third infinite plane, 8ec. The value of v being known, the

density of the induced electricity at any point of the surface is at once obtained, by means of a

known theorem.

If we suppose a ball-pendulum to oscillate within a rectangular case, the value of (h belonging

to the motion of the fluid which is due to the direct motion of the ball and to the motion reflected

from the case can be found in nearly the same manner. The expression reflected motion is here

used in the sense explained in Art. 6 of my paper, "On some Cases of Fluid Motion^." In the

present instance we should expand in a triple series of cosines.

54. Let a hollow cylinder, containing one or more plane partitions reaching from the axis to

the curved surface, be filled with homogeneous incompressible fluid, and made to oscillate about its

• Essay on Electricity, p. 19. -f See p. UI of the present Volutne.
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axis, both ends being closed: required to determine the effect of the inertia of the fluid on the

motion of the cylinder.

If there be more than one partition, it will evidently be sufficient to consider one of the sectors

into which the cylinder is divided, since the solution obtained may be applied to the others. In

the present case the motion is such that udw + vdy + wdz, (according to the usual notation,)

is an exact differential d(p. The motion considered is in two dimensions, taking place in planes

perpendicular to the axis of the cylinder. Let the fluid be referred to polar co-ordinates r, ^ in a

plane perpendicular to the axis, r being measured from the axis, and from one of the bounding
partitions of the sector considered, being reckoned positive when measured inwards. Let the radius

of the cylinder be taken for the unit of length, and let a be the angle of the sector, and a. the

angular velocity of the cylinder at the instant considered. It will be observed that a = Sir

corresponds to the case of a single partition. Then to determine <p we have the general equation

d^d) 1 d(h 1 d^<h

-T^. + -7^ + -3Z = (112),
dr r dr r dd

with the conditions

1 dd)
, „-—^ = eur, when 6 = or - a (113),

r do

d(h—i-=0, when r = 1 (114),
dr • V /'

and, that <p shall not become infinite when r vanishes.

Let r = e"*, and take 0, \ for the independent variables; then (112), (113), (lU) become

(F(f) d-(b
, ^

— = we''"", when = or = a (II6),

-2 = 0, when X = (117).
d\

Let (j) be expanded between the limits = and Q = a m a. series of cosines, so that

d) = Ao + 2A„cos (118),
a

Aq, A„ being functions of X. Then we have by the formula (D) and the condition (116) applied

to the general equation (115)

rf'Ao
0.

dX'

d'A„

d\'

/nTr\- 2(1) , , , ,1— A„-— 1 -(-1)" e-=* = 0;
\ a J a

Iwhence Ad = J„\ + fi„,

A ><=?.»-"•? 2a,a{l -(-1)"}
,,

Since is not to be infinite when r vanishes, that is when X becomes infinite, wo have in the

ffirst place A,, = 0, A, = 0. We have then by the condition (117)
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when n is odd, and B„ = when n is even. If then we omit B^, which is useless, and put for X

its value, we get

— r" -r'
_, «x nTrf ,

<t> = 4«)a2o ;;
rcos (119)-

Wtt' - 4a a

The series multiplied by r^ may be summed. For if we expand sin 2 (0 - ia) between the

limits 6 = 0, = a in a series of cosines, we get

. ^ „ „ 8a cos a tnrO
sin (2 - a) = - So — cos ;

H wir0
r " cos

whence (b = Swa^l. -—IT + —-— r''sin(20-a) (120).^ W TT («' tt' - 4 a ) 2 cos a

In determining the motion of the cylinder, the only quantity we care to know is the moment

of the fluid pressures about the axis. Now if the motion be so small that we may omit the square

of the velocity we shall have, putting (b = — <«/(') Q),

dw
P = f (0 + -^/{r, 9),

where p is the pressure, i^{t) a function of the time t, whose value is not required, and where

the density is supposed to be 1, and the pressure due to gravity is omitted, since it may be taken

account of separately. The moment of the pressure on the curved surface is zero, since the

direction of the pressure at any point passes through the axis. The expression (ug) or (120) shows

that the moments on the plane faces of the sector are equal, and act in the same direction ; so that

it will be sufficient to find the moment on one of these faces and double the result. If we consider

a portion of the face for which = whose length in the direction of the axis is unity, we shall

have for the pressure on an element dr of the surface — /(r, 0)dr; and if we denote the whole
dt

moment of the pressures by — C— , reckoned positive when it tends to make the cylinder move
dt

in the direction of 6 positive, we shall have

C = 2 /" /(r, 0)rdr.
•'o

Taking now the value of /(r, 0) from (120), and performing the integration, we shall have

C = itana - l6a'2„; -^— (l2l).
4 °(wir-2a)W7r(w7r + 2a)'

The mass of the portion of fluid considered is la ; and if we put

C = lak'\

Sir
and write — for a, so that s may have any value from to 4, we shall have

.„ 1 «T 8«^ 1
k'= — tan 2„ (122).

«7r 2 ,r^ °(w-s)n(n+«)' ^ "'



THE SUMS OF PERIODIC SERIES. 581

When s is an odd integer, the expression for k''^ takes the form 05 - os , and we shall easily find

sV vr (n - s)n{n + s)

where all odd values of n except s are to be taken.

The quantity k' may be called the radius of gyration of the fluid about the axis. It would
be easy to prove from general dynamical principles, without calculation, that if k be the corre-

sponding quantity for a parallel axis passing through the centre of gravity of the fluid, h the

distance of the axes

k'^ = fc- + h- (124),

in fact, in considering the motion of the cylinder, which is supposed to take place in two dimen-

sions, the fluid may be replaced by a solid having the same mass and centre of gravity as the fluid,

but a moment of inertia about an axis passing through the centre of gravity and parallel to the

axis of the cylinder difl'erent from the moment of inertia of the fluid supposed to be solidified.

If K', K be the radii of gyration of the solidified fluid about the axis of the cylinder and a parallel

axis passing through the centre of gravity respectively, we shall have
•

•r'2 1 rr2 ,2 , * sin^a 8 . «7r
K^ = ^= K + h% h = 5_ = sm — (125).

If we had restricted the application of the series and the integrals involving cosines to those

cases in which the derivative of the expanded function vanishes at the limits, we should have

expanded <p in the definite integral / ^(fl, )3) cos ^\rf/3, and the equation (115) would have

given

r(^>^) = a/3)e^'+x(/3)^-^

^, Y denoting arbitrary functions, which must be determined by the conditions (II6). We should

have obtained in this manner

32 r^ l-e-^' dH
^aJo 1-He-^"|3(/3S4)^

'^'~^>-

It will be seen at once that k"' is expressed in a much better form for numerical computation by

[the series in (122) than by the integral in (12"). Although the nature of the problem restricts

[a to be at most equal to 27r, it will be observed that there is no such restriction in the analytical

proof of the equivalence of the two expressions for (p, or for k''.

In the following table the first column gives the angle of the cylindrical sector, the second

I

the square of the radius of gyration of the fluid about the axis of the cylin<ler, the radius of the

cylinder being taken for the unit of lengtli, the third tlie square of the radius of gyration of the

fluid about a parallel axis passing through the centre of gravity, the fourtii and fiftli the ratios of

the quantities in the second and third to the corresponding quantities for the solidified fluid.

Vol. VIII. 1'aut V. 4 1"
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to the left of Oe and near O flowing in the direction A 0, while the fluid to the right is nearly at

rest. Of course, in the case of fluids such as they exist in nature, friction would prevent the

velocity in a direction tangential to Oe from altering abruptly as we pass from a particle on one side

of Oe to a particle on the other ; but I have all along been going on the supposition that the fluid

is perfectly smooth, as is usually supposed in Hydrodynamics. The extent of the surface of

discontinuity Oe will be the less the smaller be the motion of the cylinder ; and although the

ejysression (119) fails for points very near O, that does not prevent it from being sensibly correct

for the remainder of the fluid, so that we may calculate k'^ from (122) without committing a

sensible error. In fact, if y be the angle through which the cylinder oscillates, since the extent

of the surface of discontinuity depends upon the first power of y, the error we should commit
would depend upon y'. I expect, therefore, that the moment of inertia of the fluid which would

be determined by experiment would agree with theory nearly, if not quite, as well when a > tt as

when a < TT, care being taken that the oscillations of the cylinder be very small.

As an instance of the employment of analytical expressions which give infinite values for

physical quantities, I may allude to the distribution of electricity on the surfaces of conducting

bodies which have sharp edges.

-56. The preceding examples will be sufficient to show the utility of the methods contained in

this paper. It may be observed that in all cases in which an arbitrary function is expanded

between certain limits in a series of quantities whose form is determined by certain conditions to be

satisfied at the limits, the expansion can be performed whether the conditions at the limits be

satisfied or not, since the expanded function is supposed perfectly arbitrary. Analogy would lead

us to conclude that the derivatives of the expanded functions could not be found by direct differ-

entiation, but would have to be obtained from formulae answering to those at the beginning of this

Section. If such expansions should be found useful, the requisite formula^ would probably be

obtained without difficulty by integration by parts. This is in fact the case with the only

expansion of the kind which I have tried, which is that employed in Art. 45. By means of this

expansion and the corresponding formula; we might determine in a double series the permanent

temperature in a homogeneous rectangular parallelepiped which radiates into a medium whose

temperature varies in any given manner from point to point; or we might determine in a triple

series the variable temperature in such a solid, supposing the temperature of the medium to vary in

a given manner with the time as well as with the co-ordinates, and supposing the initial temperature

of the parallelepiped given as a function of the co-ordinates. This problem, made a little more

general by supposing the exterior conductivity different for the six faces, has been solved in

another manner by M. Duhamel in the Fourteenth Volume of the Journal de VEcole Polytechnique.

Of course such a problem is interesting only as an exercise of analysis.

G. G. STOKE&

ADDITIONAL NOTE.

If the series by which r' is multiplied in (II9) had been left without summation, the scries

which would have been obtained for //" would have been rather simpler in form than the series

in (122), although more slowly convergent. One of these series may of course be obtained from

the other by means of the developement of tan .r in a harmonic series. When s is an integer.

k'' can be expressed in finite terms. The result is

A:'-'' = 8«-'7r-Mog,2 + 8 «-'7r-"{2-' + 4-'... + («-!)-"( + 4-77-' {2"'' + 4-^.
. + (*•- O'^j -

/, , (« odd),

k''= 8«-'7r-^ {l-' + .l-' ... + (*- 1)-'} + 4 7r = {l"'' + .'5-^.. + (*' - l)""} "i- (« even).

Moreover when 2 * is an odd integer, or when a = 4,0", or = I.SS", &:c., Ic' can be expressed in

finite terms if the sum of the series 1
-' + rr' + 9'' + ••• l>e calculated, and then be regarded as

a known transcendental quantity.

4F2



XLI. A Mathematical Theory of Luminous Vibrations. By the Rev. J. Challis,

M.A., F.R.AS., Plumian Professor of Astro7iomy and Experimental Philo-

sophy in the University of Cambridge.

[Read March 6, 1848.]

In three preceding communications to this Society I endeavoured to explain some of

the principal phaenomena of Light on the Hypothesis of Undulations, regarding the aether as

a continuous and elastic fluid, and applying to it the usual Hydrodynamical Equations. I

propose now, on the same principles, to investigate the particular nature of the aetherial vibrations

which produce light, and the laws of their propagation under given circumstances. As this com-

munication is intended to be supplementary to the three former, I shall take occasion to advert

to any reasoning they contain, to which I may be able to add elucidation or confirmation.

1. Let a' {\ + s) be the pressure at any point xyz of the aether at any time t, s being

a small numerical quantity, the powers of which above the first are neglected ; and let u, v, w,

be the resolved parts of the velocity at the same point and at the same time, in the directions

of the axes of co-ordinates. Then, retaining only the first powers of ti, v, w, we have, as is known,

.,
ds dii , „ ds dv

, ^ „ ds dw

"'T.^dt^'^^'^ "'-dy^-dt-'^^'^ ''r.^di = ''^'^

, ds du dv div , ,

^"•^
:77 + l~ + J~+l~ =" W-
dt dx ay dz

The last of these equations gives by means of the other three,

d's „ fd's d's d's\
, ^

d?-''-fc+rfy^^d?)=°
('^-

Suppose, for the moment, that s has been obtained from this equation by integration. Then

for the velocities we have,

o r^* J, 2 d. fsdt
u = c - a- / dt = c - a"^ . —^ (o),

Jdx dec

" rds , , „ dfsdt , ^
v = c -a' —~ dt =c - a- .

—-— (7),
J dy dy

w = c -a- -—dt=c - o . —-;— (8;,
J dz dz

wnere v, c, and c" are functions of co-ordinates only. It is to be observed that these values

of u, V, w are perfectly general, being obtained prior to any consideration of the way in which

the fluid was put in motion, and consequently apply to all points of the fluid in every instance of

motion in which powers of the velocity and condensation above the first may be neglected. Now

the motions of the aetherial medium are vibratory, or, at least, not permanent. There is no known

cause to produce motions in the aether, which either wholly or in part remain permanently the

same at the same points of space for any length of time. And even if, from causes with which
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since ^ = <pf= - arjsdt, it follows that /"jy = " «'«- 3"^ 57 = " o^-^'
^^"" '"'''''-

tuting in the equation (4), we obtain,

de d^ f W df)^ '

Now the nature of the question under consideration requires that this equation should be linear.

Let therefore the coefficient of (p be equal to a constant - 6^. According to this supposition

(p may be a function of s: and t only, and / a function of x and y only ; as, in fact, they ought

to be, in consequence of suppositions already made on these quantities. Thus equation (10) resolves

itself into the two following,

^4^a^.l±^W4> = (It),

df dx' ^

^.^H.*-/=0 (I.).

dj^ dy' a'-'

The equation (U) is transformable into the following:

3-^ - --0=0 (13),
dudv 4a.

in which u=z+ at and v = z - at. (See Peacock's Uirampfes, p. 466). For convenience sake

put e for —J. Then, regarding e as a small quantity, the integral of (13) may be obtained in a

series as follows.

Let —^- = 0; then ^ = F'iti), and d> = F{u) + G («).
dudv du

Hence —L^ = e \F(u) + G{v)} approximately.
dudv

^= G\v) + e\F,{u) + uG{v)}
dv

(p = F(?t) + G(v) + e {vFi(u) + u G, («)} ; and so on.

Thus (p = F{u) + Giv)+e{v F, (u) + m d (u) | + ~-^{ "" -f= (") + "' ^- i"^) 1 + &c.

where F, (m) = fF(u) du, Fr. {u) = /F, (11) du, d (i>) = jG(v) dv, &c. Each of the functions

F and G separately satisfies the given equation. Let us, therefore, for the purpose of drawing

some inferences from this integral, suppose that F = 0. Then,

<p = G(w) + eu G, (t)) +—-. G, («) + pY^ . G3 (u) + &c (14).

4. It appears by this result that <p does not admit of being expressed exactly so long as the

form of the function G is entirely arbitrary. No inference, therefore, can be drawn from the

integral (14) in its general form. The nature of the series, however, suggests at once a

particular form of G, which gives to (p an exact expression, and which, as we shall see, applies

to our present enquiry ; viz. the form 4e'''. As we have already introduced the condition that

the velocity and condensation be small, and consequently that <p be small, whatever be x and /,
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it is clear that G must be a circular function. Let therefore G{v) = Ae'"'\/^^ + Be""''^~; or,

what is equivalent, let G (v) = mcos(7iv + c). Then,

^ , ^ r I , ,
"^ , ^ m d . cos (nv + c)

G, (V) = /mcos(rau + c) dv = — sin (nv + c) = . ^
J n n^ ills

'

^ , ^ r"^ f > '"
, »>

Gi (o) = /— sin (nv + c) dv = cos (nv + c) = —
' J n '

n' ' n"

ri^ dv

m d? . cos {nv + c)

; cos (nv +c)dv = sin (nv + c) =
n- 71^

'
n'

i

Consequently,

dv'

m d' . cos (nv + c)

dv^

&c. = Sic.

m d.cos(nv + c) m d'.cos(nv+c) e'u^m — m cos (Ml) + c) . ; . eu ^ . '
.w dv «* dv^ 1 . 2

m d^.cos(M» + c) e^v?

«' dv^ 1 . 2 . M
+ &c.

= mcos \n\v -\ + c\

= mcos \7i(z — at) (z + at) + c}

= m cos {w )^~ \n ^— \ at + c\.

w + - = V -rr + *^-Let, now, w = — . Then n + - = \/ —^ + 4e. We have, therefore, finally,
n \ ,, \'

oj; v 1 + -^ + c) = \//

I

/ ^ = m/ cos —- (jr - o)"V 1 + -^ + c') = ^/'
A. TT

The velocity in the direction of ^s: is /— . Hence, if w^ =

= m,/sin — (jr - o< V 1 + "t +'') .(15).

Also, since (Art. 3) /.-p-+ a' « = 0, it follows that

« = -- - 1: = ra,/V 1 + —J- s'n— (z - at \/ I + -- + c) (16).
a dt

/ eX*
It hence appears that the velocity of propagation of the wave whose breadth is X, is a \/ 1 + —

-j

.

The value of e depends on equation (12). If the velocity of propagation be independent of X,

L ,1 L eX'' , . ,
,

k'K-
we shall have = k, a. nunicncal constant, and consequently e = -—^ .

tt' X

5. Since equation (g) is linear with constant coefficients, it will be satisfied by the sum

of any number of such values of \1/ as that just obtained, /, c, m, X, and c', being different

for each. Hence we have generally,
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>|/ = 2 \fin cos — (z - at y/ 1 + —j- + c)}

-J^ = M^ = 2 {
/m sm —- (^ - a<V 1 + —r + c)

}

_ _.^ =os = 2{/m, y/ 1 + sin — (xf-a^ V 1 +-T + 0}-
a at TT A T

It follows, since in each of the terms under the sign 2 the quantities which are independent

of g and f are at our disposal, that we may satisfy by this integral any state of the fluid in

the direction of z, subject to the limitation that the condensation and velocity are at all times

small. The course of the reasoning shews that the particular form of the function G which

has conducted to the above results, has not been adopted as an analytical artifice, but is really

the only form which determines the velocity of propagation, and gives a definite solution of

the Problem. The particular kind of motion it represents, and the component character of the

whole motion as consisting of an indefinite number of such motions, are accordingly to be regarded

as physically true. These results explain the fact of the composition of light.

6. Before proceeding farther, it will be worth while to compare the foregoing investigation

with that which I have given in my Paper on Luminous Rays. (Cambridge Philosophical Trans-

actions, Vol. VIII. Part III. p. 363). It may be remarked, that the two investigations agree in

their results, but differ in the course of the reasoning. In the Paper referred to, the velocity of

propagation is assumed to be uniform (p. 365), and the form of the function expressing the nature

of the vibrations is deduced from this assumption (p. 368). In the present communication the

form of that function is first obtained by o priori reasoning from the Hydrodynamical Equations,

and the uniformity of the rate of propagation is then strictly deduced. The inferences in the

former Paper (p. 365), drawn from the supposition that the velocity of propagation is uniform

when the motion is not small, still hold good. It may also here be remarked, that the consider-

ations in p. 366 on which the arbitrary quantities c, c', c" were made to vanish, are superseded

by the more general reasoning in Art. 1. of this Paper.

7. I proceed now to the consideration of equation (12), viz.

-/r,+-ri +4e/=0.
dx- ay

As this equation does not contain t, there is no propagation of motion in any direction

parallel to the plane of xy ; or, the propagation in the direction of z takes place without

lateral spreading. A value of / expressed in finite terms is not therefore required, as in the

case of the integration of equation (11), for deducing velocity of propagation. It may however

be argued, that as a particular form of (p was found, by which the vibrations in the direction

of z were defined, prior to any consideration of the manner in which the fluid was put in motion,

so a particular form of / exists by which the condensation and velocity in directions transverse to

the axis of z are defined, and which is equally independent of the arbitrary disturbance. As

this form may, or may not, be capable of expression in exact terms, I shall first apply to

equation (12) the process already applied to equation (11), for the purpose of ascertaining

whether any exact value of the integral satisfies the conditions of the Problem.

8. The equation (11) coincides in form with (12) by putting - 1 for a', and 4e for h'.

That is, since e = — , we shall have - e in the place of e in the integral of (I2). Hence
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if u = X + y v/ - ! and v = w -y\/ - \, by integrating as before,

f=F(n) + G{v)-e\vF,{u) + uG,{v)\ +~ \i<' F,{u) + u'G,{v)} - &c (17).

The impossible quantities are got rid of by making G the same function as F. If then, to
obtain an exact value of/, we suppose that F {u) = Ae*" and G(«) = ^6*'', we shall have.

« 1 . 2 .
«- '

= Ae (I - — + — — + &c.) + Ae" (1 h + Sic \k l.2.k' 1.2.3.A;=
'' ^

A; 1.2.;r 1 . 2 . 3 . Ar'
'^
^

= 2.^6^ *•'' COS I A; + -
J

«/.

/= 2 4'6^ "' .cos (A: + T7]

Since, from the form of equation (12) .r and y are interchangeable, we shall also have

Therefore generally,

/= 2^6^'''''^''cos (k +
-^ ) y + 2 A'

J-'
'''^ "cos (k' + ^-\

.I'.

As the quantities k and k' may be any whatever, this solution is so far indeterminate. But it

is clear that the value of / must not, from the nature of the question, increase indefinitely

with J.- and y, and that consequently the exponentials must be made to disappear. Hence we

shall have k = k' = \/e, and

/= 2 j^ cos 2 x/ey + 2^' cos 2 \/e,r (18).

This then is the general form of / expressed in finite terms, and subject to the limitation of

being free from exponentials. Other forms may be adduced, apparently, but not really, different

from this, which equally satisfy the equation (12). For instance /= ,/ cosi/.i' cos r///, provided

ij' + q' = Ve. But this is reducible to the form of the terms of equation (IS), by u change in the

direction of the axes of x and y. (See Theory of the Polarization of Light, p. ST.i.)

I shall have occasion hereafter to advert to equation (iS). At present I have only to remark

that the above form of / does not correctly define tlie motion transverse to the axis of ;?, at least

for all values of x and y, for this reason. At the boundary beyond which the motion does

not extend in directions transverse to z there must be neitlicr condensation nor variation of

condensation, otherwise there will be transverse propagation. Hence/, — , and -— must

vanish together. But ])lainly this is not the case with the value of / ol)taiiied above.

9. From the above reasoning we may conclude tii.it thc> form of / we are seeking for, i.s

not expressible in finite terms, and niii-it consequently In- "blained in an infinite series. The

Vol.. VIII. I'Ain V. 4G
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only way in which a particular value of / is deducible from the general integral (17) without

assigning arbitrary forms to the functions F and G, is to suppose F{u) and G(v) to be

arbitrary constants. Let, therefore, F (li) = c, and G {v) = c. Then

F, («) = cu, G, {v) = c'v,

cu- „ , .
c'v-

F, (w) = — ,
G, («) = — ,

Sic. = &c. &c. = &c.

e- e'

Hence /= (c + c') (1 - euv + -r^, uV -
^,

_
^,

^
g,

• u'v' + &e.),

= (c + c) (1 - 6,-= + jf^, - Y^^^. + &«:•) ('9)'

by putting r' for .i- + j/'. Determining the arbitrary quantities so that / = 1 when r = 0, we

have c + c' = 1. Also -^ = when r = 0, and —3 = - 2e. Hence / has a maximum value at

dr **'""

the axis of sr, and is a function of the distance from that axis.

10. It appears, therefore, that the required form of / is derived from equation (12), by

supposing / to be a function of .r^ + y''. That equation accordingly becomes,

-4 +-4 +4e/=0 (20).
dr' rdr

Equation (19) is the integral of this equation in a series, the only mode in which it appears

to be expressible. By putting /= 0, we have for determining the corresponding values of r the

equation,

= \ - er' + -,- , + &c.,
1- .2^ l^ 2-. 3"

from which it appears that there are an unlimited number of possible values of r for which

/ vanishes. Since there is no lateral propagation, the motion does not extend beyond a certain

limitinff distance from the axis, at which f and -— both vanish. It is not, liowever, apparent
" dr

from equation (20) that these quantities may vanish together, that being an approximate equation

which does not give the exact value of -^— when /= 0. To ascertain whether tliis will be the
dr

case, recourse must be bad to equation (12) in the Paper on Luminous Rays, (p. 368), which

was obtained without neglecting small terms. On putting ie for /cm' that equation becomes,

f f 1

TF^lF-''7 =
" ^''^-

Assuming now that / is a function of r, we obtain,

d'f df f df ^
•' dr' dr- r dr

whence it is clear that if f= 0, ~ also vanishes. Since ~- = both when /= 1 and / = n, for
•' dr dr
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some intermediate value —— must be a maximum. Hence if a curve were described havinir for
dr "

its equation y =f(^v), it would have a point of contrary flexure between the values of x corre-

sponding to y= 1 and y = 0, and would resemble the trochoid. It is also to be remarked that

the second term of equation (22) must be regarded as very small compared to the other terms,

in order that that equation may be equivalent to a linear equation in x and y, excepting where f is

very small. By the omission of the second term, equation (22) becomes identical with equation (20).

Hence, with the exception just mentioned, the curves which represent the integrals of (20) and (22)

coincide ; and as we found that the curve corresponding to (20) cuts the axis of abscissae in an
unlimited number of points, the same must be the case with the curve correspondino- to equa-

tion (22). But for the latter curve we have shewn that f= and — = at a point of intersection.
dr

Hence the motion does not extend beyond the least value of r corresponding to / = 0.

11. The integral of equation (21) is derived from that of (12) by putting - for/ and -e fore.

Hence the integral of (21) in a series is,

1 , e-r' e'r°
7 = 1 + er' -H -— , + — + &c.

.
3eV ige'r"

Whence f = i - er + -t- &c (23).
4 36 * •*

This series diverges from the approximate series (19) after the second term. Let / be the least

value of r corresponding to f = 0. Then,

,„ Se'l* 19e3/«
= I

- e/2 + + jjc_
i 36

eX^
Hence eP is a numerical quantity. Let el' = q. Then, as we have also —^ = k, it follows that

k = ——. Hence A; is a constant quantity for all vibrations, if the ratio - be a constant. Now
JT'l" I

it may be thus argued that X and I have a constant ratio to each other. These quantities must

be related in some way, otherwise the motion is not defined. Let F (\, I, S) = express this

relation, S being the maximum condensation corresponding to /= 1. As there are no other

quantities concerned in this relation, and as X and I are the only linear quantities, this equation

X X /Ic /k
is equivalent to -- = FAS). And we have above, — = tt \/ - . Hence rr \/ - = F^ (S). But

I * 9 7

it has already been shewn (Art. 4) that k is independent of S. Hence F, (5) is a constant, the

same for all vibrations. Hence also k is the same for all vibrations.

12. We have now found for / a particular value which satisfies the liydrodynnmlcnl conditions

of the question, but does not admit of being definitely expressed. It can only be expressed in an

infinite series, the terms of which do not necessarily converge. If, therefore, the pha^nomena of

light be ex])ounded by a definite form of f, this can agree with equation (23) only under

certain limitations. Now, by equation (is), we have a definite form of / obtained in a geiienii

manner, without reference to the mode of disturbance. If in this e(|uation '2 A = ^ A' = },, we

obtain,

"e'x* 2e't/*
/=!(!- 2e.r' + &c.) + J (I - 'H'f + - - &c.)

4C2
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= l-eix' + f) + - (^.v* + y*) - &c.

This value of / agrees with that given by equation (23) only to two terms. Consequently the

exact integral (18) may be employed only for small values of r and y. With this limitation, it

cives a value of / definitely expressed, and at the same time satisfying the hydrodynamical

conditions. These results point to the inference that the phEenomena of light depend exclusively

on the motions contiguous to the axis of z ; for it may be presumed that so far as the motions

correspond to the phsenomena of light, they admit of being defined by exact expressions. The

V Y
ratios — and - as applied to the lumitious ray, will each be very small.

A l

13. It may here be remarked, that in my Paper on the Polnrixation of Light, the equation

/=cos\/2er corresponds to common light, and the equations /=cos2\/e,r, f—cos2\/ey, to

light polarized in the planes of wx and yx, subject to the limitation of taking r, x, and y, very

small. The first equation was obtained by assuming / to be a function of r, because common
light is observed to have the same relations to space in all directions perpendicular to the direction

of its propagation, and the other two were deduced from the first, by assuming the bifurcation of

a ray of common light to take place, so that the sum of the condensations at corresponding points' of

the two parts, is equal to the condensation at the corresponding point of the original ray, and the

velocities are the parts of the original velocity resolved in directions at right angles to each other.

Since in the present Paper the same values of / have been arrived at by a priori considerations,

that particular property of common light, and its resolution in that particular manner, may be said

to be accounted for on hydrodynamical principles.

14. The foregoing theoretical conclusions serve to explain some general phenomena of light.

In Article 7. it was argued that the motion transverse to the axis of the fiuid Jilament, must be

defined by a particular form of / independent of the arbitrary disturbance of the fluid, and in

Art. 9, a form of this function was found without assigning particular forms to the arbitrary

functions, which in Art. 10. was proved to be consistent with the hydi'odynamical conditions. As
this form indicates that the condensation is arranged alike in all directions about an axis of pro-

pagation, it follows that light which comes directly to the eye from its origin, of whatever kind

the disturbance may be, is common light, the distinctive property of which is, that it is alike

affected in all directions perpendicular to the direction of propagation. This inference is confirmed

by the fact that Light from the Sun, from Stars, from a lamp, from the electric spark, from

lightning, Sec. is common light. The dispersed light by wliich objects are rendered visible, which

originates in the disturbances passively caused by the presence of the individual atoms of the

medium on which any ray impinges, should according to the theory be common light : and such

it is found to be. Moon-light and light from the Planets come under the same description.

Again, the form which the ray assumes at its origin determines it to have direction, for it is

clear that the direction of its propagation must from the first be coincident with the axis about

which the condensation is symmetrical. Hence as direction is determined without reference to the

mode of disturbance, there may be an unlimited number of directions of propagation, as there may

be an unlimited number of rays, (see Art. 5), due to the same disturbance. In fact, the state of

the fluid at the first instant, whatever it may be, can be satisfied by having at disposal in the

2 7r
equations V=aS = m sin — {at - z + c), the quantities m, X, e, and by an unlimited number

A

of rays unlimited as to direction, notwithstanding that tlic functions (p and /' are defined for each

ray. This agrees with the fact, that liglit coming immediately from its origin, is seen in all

directions.



I

OF LUMINOUS VIBRATIONS. 593

15. Hitherto we have reasoned on the supposition that no extraneous /orce acted on the aether.

It is quite possible tliat a ray, after taking its original form and direction, may be modified

subsequently in both these respects, by the action of forces, and retain the new form and direction

after the action of the forces has ceased. For instance, in the case of the ordinary reflexion of a
ray, forces act upon it for a short time and through a short space at the surface of the reflecting

medium, which, as they do not act symmetrically with reference to the axis of the ray, alter the

form of /. The analytical fact that this function is given generally by the integration of a partial

differential equation, and therefore not necessarily always of the same form, is quite consistent with

such an alteration. But on the principle that the transverse motion in the modified ray, so far

as it corresponds to pha'uomena of light, is still defined by an exact expression, the new form
of/ will be consistent with equation (18). Consequently, as A and A' in that equation are

arbitrary, the new ray will either be completely polarized, or will consist partly of a common ray

and partly of a polarized ray. We cannot however suppose any alteration of the function <p,

unless the forces be such as to destroy the luminous character of the ray ; for on the particular

form of (p which we found in Art. 4, depends the uniformity of propagation, a property which a

ray of light is supposed to retain under the modifications here contemplated. It is unnecessary

to point out the accordance of the above theoretical inferences with observed facts.

16. A ray may also be modified by forces which act upon it continuously, as is the case on its

intromittence into a transparent medium, the modifying forces being the retardations which the

vibrations suflTer by encountering the atoms of the medium. This kind of modification I have

considered in my Paper on the " Transmission of Light through Transparent Media, and on

Double Refraction." (Cambridge Philosophical Tra7tsactions, Vol. viii. Part iv. p. 524.) I

have seen no reason to correct the Theory therein contained, and have only to remark, that the

approximate equation in p. 529, which determines /, may be arrived at by reasoning similar to that

in Arts. 2 and 3 of this Paper, as follows. We have, as in Art. 7 of the Paper cited,

,, ds dw
(--

. -r +-,—
^
0.

dz dt

Hence,

,, ds du

rf.r dt
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—— = c .
—— + c- - . -^ + -

. —^ (b,

dt dz' \f dx- / dy'l ^

which equation resolves itself into the two following. (See Art. 3),

d'f <r-f
h . --J-+ I J+ i,ef = 0, (24),

da;- dy

^-c'^-J-.w-0 = o (25).

The former of these equations is the one it was required to obtain. By reasoning like that bv which

equation (l8) was derived, the analogous integral of equation (24) is,

/7 , /e
f = A cos 2 S/ - X + A' cosZ V rV-

h I

Hence it appears that a ray of common light cannot be transmitted in the medium so long

as h and I are different quantities. Hence also two rays of opposite polarizations cannot in

general be transmitted in the same direction with the same velocity, for in that case they would, if

they were equal, be equivalent to a ray of common light. But equation (25), integrated in the

same manner as equation (11), gives for the velocity of propagation, c \/ \ +— , which, if —-

be equal to the constant k, is the same for rays of opposite polarizations. In explanation of this

apparent contradiction, it is to be said that if -^ = k, and consequently e = —^ the value of/

2ir /k
for a ray polarized in the plane of xz is cos— sj — x , which is not independent of A, and

therefore not independent of the nature of the medium ; whereas experience shews that a polarized

ray remains the same under all circumstances, and is in no way affected by the medium through

which it passes. That the value of/ may be that which belongs to a polarized ray, we must

have X\/h = \' the breadth of the wave; or, — = — . But the velocity of propagation corre-
A C

spending to \ is c'v 1 + k. Hence the time of vibration of a given particle, or the colour

of the light, remaining the same, the velocity of propagation must be altered in the ratio of

X' to X, and consequently becomes a \/l + k. This result was obtained by somewhat different

considerations in Art. 8. of my Paper on Double Befraction.

J. CHALLIS.

Cambridge Observatory,

March 2, 1848.



XLI* Supplement to a Paper " On the Intensity of Light in the neighbourhood of a

Caustic" By George Biddell Airy, Esq., Astronomer Royal.

[Read May 8, 1848.]

In a Paper "On the Intensity of Light in the neighbourhood of a Caustic" communicated to

the Cambridge Philosophical Society about ten years ago, and printed in the 6th Volume of their

Transactions, I shewed that the expression for the intensity of light near a caustic would depend
on the infinite integral

fJw cos — (zi)

'

2
m.w)'* from ai = to to =

where to is a quantity proportional to the distance of a point from the geometrical caustic, measured
in a direction perpendicular to the caustic, and estimated positive towards the bright side of the

caustic : and I gave a detailed account of the method of quadratures by which I had computed the

numerical value of this infinite integral for the values of m - 4-0, - 3'8, &c. as far as + 4-0
; and

I exhibited in a table the computed values of the integral.

The computation by quadratures was exceedingly laborious, and I did not resort to it without

trying other methods of a more refined nature. But in every attempt at expansion of the formula

I was met by the integral of a sine or cosine with infinite limits. The reasonings upon which

several mathematicians have attempted to establish the value of such an integral appeared to me so

little conclusive, that I preferred at once to abandon the expansions which introduced them, and

to rely only on the infallible but laborious method of quadratures.

On my stating to Professor De Morgan, after terminating the calculations, the scruples which

had led me to reject the expansions, he expressed himself so strongly confident of the correctness

of the conclusions upon the point which I had considered doubtful, that I was induced to undertake

the numerical computation of the series given by expansion of the formula. I proceeded at once as

far as it was possible to go with 7-figure logarithms, when I was interrupted, and the computations

were laid aside for some years. I have lately taken them up again, and have completed them as

far as they can be carried with 10-figure logarithms. It is the result of this calculation, and the

comparison of this result with that formerly obtained from quadratures, tiiat I now beg leave to

present to this Society.

Before entering upon the numerical investigations, I will transcribe a letter which Professor

De Morgan at my request has written to me, and which he has permitted mo to publish. It

contains an explanation of his views upon the evidence for the numerical certainty of the results

obtained by such integrals as those to which I have alluded.

• [ retain thi« notation in preference to tliat which is commonly

employed, partly becauKC it is familiar to me, and because 1 have

u«cd it in the paper to which I refer, partly hecaune I thiiil< that

any notation which requires the expression of a differential at the

end is tor that reason ohjcctionuble.
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" University College, London, March 1], 1848.

" In reply to your request that I would send you a sketch of the method which I

communicated to you some years ago, for finding the numerical value of J^ cos (w' - mw) dw, I

send you the following. I am not aware that there is anything about it peculiarly my own, or

other than what would suggest itself as a matter of course to any one familiar with the current

methods in definite integrals.

" The series which I furnished depend ultimately upon the following formula :

—

r<t. „ „ , . „ COS JlO
r e-rcoss.u- COS (r Sin 0.W). «<;""' rfMJ,= r„ ,

r^ _ sin nQ
I

g-rcose.K.
gi„ (,.sin 9.(4,) . u!'-' dw = r„ ,

Jo ^ ' y

in which r and 9 are independent of w, r cos d is positive, n is positive, and F,, stands for

J' e~''x"~^dx, as usual. Under these conditions the theorems do not or need not rely upon any

notion of algebraical as distinguished from numerical equality. Calling either of them f^w .dw,

common arithmetical calculation would establish any degree of approximation between the conver-

gent series 00 . a + (pa. a + d)2a . a + ... and the asserted value of the definite integral, if a were

TT

taken small enough. And this for any value of 0, from ^ = to = --/3, /3 being of any

degree of smallness. But when = - , the nunKrical character of the equivalence is lost, and the

equations assume the same character as 1 - 1 + 1 - 1 + = \, and are subject to the same

discussion.

"The above equations were first obtained by substituting a +b\/- 1 for a in

•I" a"

which is an equivalence of numerical character even after the substitution, if a be positive, and h

(be it positive or negative) numerically less than a. For the use of the expansions ot e-'"'\/^l and

(a + 6 y/ITi)-" in powers of b would produce an equivalence such as

Ao + A,k + A^le' + = B, + B,k + B,k' +

where k = %/- 1, A„ = B„ is a numerical equivalence, and 2J„ is a convergent series. But,

when 6 is numerically greater than a, a convergent series would be rendered divergent in inte-

gration: and, when this happens, I do not see any way to place the divergent series so obtained

upon the same footing as those of ordinary algebra.

" It is not however necessary to depend upon this introduction of divergency. If we call the

two integrals C„ and S„, and differentiate both with respect to Q, we have

'- = !• sin 9 . C I
- r cos Q . >S'„+

1

,

—^ = r sin . A'„+, + r cos . C„t,;
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whence rC„^., =—£ sin 9 + -^" cos 6,

dS„ . ^ dC„
rS„,, = ~sme-~cose,

from which it easily appears that for what value soever of n the equations first given are true, they

remain true when that value is increased by a unit. And that they are true when n = I h proved

by common integration by parts.

" If instead of w we write w'', k being positive, and then for kn write n, we have

„ e-"°^^«'*.cos(rsine.w*).w'-'dw = -r,„, . cos— . r"S
k (j) k

7ftff) 1 fin 1
^-rco,9...> g;„ (^ gj^ . jt,*) _

j^-i a,v =. -r „ . sin — . r"*.

If r = 1, and we call these integrals C„ and S„, let us take

cos (sin 6 . w^ - m w) = cos (sin &.»'). 1
1 h . .

.

+ sin (sin 9 . w') . [mw -
2.3

Multiplying by e''^"^"'"^ .dw, and integrating, we have

^»^-C0s9.«P cos (sine. W'- OTM;)dM,= Ci + ^2.W« - Cj '^*T~Z'^

"If we now make 9 = -, and observe that in this case C„ vanishes whenever n is an odd
2

multiple of 3, and S„ whenever n is an even multiple, we obtain

/„ cos (?/)^ - tnw)dw = Ci - >Si C, — ;; + A,,
'2.3 '2.3 6 '"2.3 9

' "2.3.4 °2.3 7 2.3 10

2.3 ... 6
= - r, cos - . - — r, sin - . - . r» cos -

.
-

3-1 Is 2/ 3 -a Vs 2^ 2.3 3 1 Vs 2^

1 /2 ttN 1 „ /5 7r\ m" 1 _ . /8 ttN m'

^ 3 ^1 ^'"
(i-i)

"^ -^ 3 ri*=°n3- 2) -^TiTj
-

i
^1^'" li-i) 2T3—7

-

1 TT , 1 m=* 4 1 m*^ 7 4. 1 m"
- r r*»s — ' I — + — . — . — . — . — .

3 i. ()' 3' 2.3 3 3 2.3... C 3 3 3 2.3... 9

1 7r,2OT' 52 m' 852 m"> ,

+ -r..cos-.}m--.^-^ + -.-.^-y—^--.-.-.g 3_j„+-.5-

" I may observe that the precautions which I have taken, to shew that the algebraical cases

limits of aritlimetical ones, are not absolutely necessary in this instance. For if we resolve
are

Vol. VIII. Part V. 4H
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Jo cos w^dw into its successive positive and negative portions, we have A^ — Ji + A3- Ai+ ... in

which by -i42„ + i is meant the portion of the integral (taken positively) which occurs from

M>' = (2 » + 1) - to w' = (2 « + 3) — . The greater n is made, the smaller is the interval of this

partial integration ; and these successive portions diminish, and diminish without limit, so that the

series is convergent, and the error always less than the first term rejected. And
J^

sin w^dw may

be treated in the same way.

"A. DE MORGAN."

The following numerical values occurring in the application of Professor De Morgan's final

series may be conveniently placed here :

—

Log Tj = 0-42796274.93.

Log r, = 0-1316564916.

With these series I have computed the values of J^cos — (w^ - m .w) (m = to to = -
j

; for

w = — 5 .6, -5.4, Stc. as far as + 5 . 6 : and I now exhibit a table of the results, compared

with those deduced from quadratures as far as the latter were carried. Each term of the series

was computed to 6 decimals, and one figure was struck ofi^ in the sum.

Values
of m.
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±5.6, the largest term in the series is 1 69-044826 : and it is necessary to proceed as far as the

45"' power of m. The result +0'000114 for m = - 5'6 is obtained by combining the sum of

positive terms + 614-149962 with the sum of negative terms - 614-149848 : and the result

+ 0'414595 for m = + 5-6 is obtained by combining the sum of positive terms + 6l4'357203 with

the sura of negative terms - 6l3'942608. For values of m greater than ± 5'6, the calculation must

be made in natural numbers.

The agreement of the values of the integral, computed by methods so totally different, is not

a little remarkable. On the one hand, it may be received by some persons as a proof of the

correctness of that part of the theory of the series which asserts the evanescence of the integral of

a cosine when the limits are and -
: on the other hand it may be considered to afford evidence

of the great care with which the quadrature computations had been made.

For the last two or three sets of numbers compared, there is a trifling discordance. It will

be remarked that in ray account of the computation by quadratures I have shewn that difficulties

begin to arise in the accurate computation for the values of m approaching to 4'0, (unless the

actual summation were carried to higlier values of w than I carried it in those computations).

That the source of the discordances is in these difficulties and the consequent inaccuracy of the

quadratures, and not in the inaccuracy of the series, is evident from the following consideration.

The numbers computed by the two raethods agree well for the values of m - 4-0, — 3*8, - a"6: and

as the quadratures there present no difficulty, it is reasonable to suppose that both sets of numbers

are accurate (within such limits as are possible for the sums of numerous figures). Now the terms

of the series combined to form the value of the integral for m = + 4'0, + 3-8, + 3-6, are exactly

the same as those by which the value of the integral for wi = - 4-0, - 3'8, - 3-6, is formed : the

only difference being that they are combined in a diflPerent manner, and therefore, from the evident

accuracy of the series for m = - 4-0, — 3-8, — 3'6, we are entitled to infer the accuracy of the

series for m = + 4-0, + 3-8, + 3-6.

G. B. AIRY.

Royal Observatory, Greenwich,

March 24, 1848.

4h2



XLII. Some Remarks on the Theortj of Matter. By Robert L. Ellis, M. A.,

Fellow of Trinity College, Cambridge.

[Read May 22, 1848.]

In the present state of Science, there are few subjects of greater interest than the enquiry

whether all the phenomena of the universe are to be explained by the agency of mechanical force,

and if not whether the new principles of causation, such as chemical affinity and vital action, are to

be conceived of as wholly independent of mechanical force, or in some way not hitherto explained

cognate and connected with it. One reason among many which makes this enquiry interesting is

the circumstance that the application of mathematics to natural philosophy has, up to the present

time, either been confined to phenomena, which were supposed to be explicable without assuming

any other principle of causation than ordinary "push and pull" forces, or as in Fourier's theory of

heat and Ohm's theory of the galvanic circuit, have been based on proximate empirical principles.

2. The intention of the remarks which I have the honour to offer to the Society is to suggest

reasons for believing that while on the one hand it is impossible not merely from the short-comings

of our analysis but from the nature of the case to reduce, as it appears that Laplace wished to do,

all the phenomena of the universe to one great dynamical problem, we cannot recognise the

existence of any principle of causation wholly disconnected with ordinary mechanical force, or of

which the nature could be explained without a reference to local motion : in other words, that

the idea of "qualitative action" in the sense which the phrase naturally suggests must be rejected.

It will be seen from the explanations I am about to attempt that the objection which Leibnitz has

opposed to the atomic, and in effect to any meclianical philosophy, namely, that on such principles

a finite intelligence might be conceived to exist by which all the phenomena of the universe would

be fully comprehended, does not (whatever may be thought of its validity) appear to apply to the

views which I have been led to entertain. For these views essentially depend on the conception of

what may be called a hierarchy of causes, to which we have no reason for assigning any finite limit.

Of this series of principles of causation, ordinary mechanical force is the first term.

3. With respect to the first point, namely, the impossibility of explaining all phenomena mecha-

nically, it may be remarked, that we are met, in the attempt to discuss it, by the difficulty which

always attends the establishment of a negative proposition. It is clear that as in the present state

of our knowledge we are far from being able to enumerate and classify the phenomena which

are or which might be produced by the combined agency of conceivable mechanical forces, we

are not in a position to decide a priori that any given phenomenon might not be thus produced.

Non constat, but that the impossibility we find in the attempt to explain the causes of its existence

may have no higher origin than the imperfect command which we have as yet obtained of the

principles of mechanical causation. We meet, it may be said, with a multitude of ordinary

dynamical problems which have as yet received no adequate solution—why then should we have

recourse to ul'w kinds of causes, while we have not as yet exhausted the resources, if the expression

may thus be used, of those which we already recognise.' To this enquiry no conclusive answer

can be given, but the following considerations will I think naturally suggest themselves.
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4. In the first place, no even moderately successful attempt has, I think, yet been made to

explain any chemical phenomenon on mechanical principles. It is quite true that we are unable,

to take a particular instance, fully to comprehend the mechanical constitution of the luminiferous

ether ; the determinations which have as yet been attempted of the law of attraction between its

molecules cannot, I apprehend, be accepted as any thing njore than hypothetical or provisional

results, and there are other points involved in yet greater obscurity. Nevertheless the undulatory

theory of light has, as we all know, given consistent and satisfactory explanations of a great

variety of phenomena. Thus it appears, and the same remark might be educed from other

though similar considerations, that we are by no means absolutely estopped by the imperfection

of our mechanical philosophy, from explaining phenomena really due to mechanical forces, even

when these phenomena are connected with subjects not as yet fully comprehended : why then

cannot some progress be made in the mechanical explanation of chemical phenomena, or of those,

to mention no other class, which we are in the habit of referring to vital action .'' In these

cases, we see or seem to see that the action of mechanical laws is modified or suspended ; and

though it is not demonstrably impossible that this is not really the case, and that no other

causes are at work beside the " pusli and pull" forces of ordinary mechanics, yet we are at least

much tempted to believe, that the difficulties we meet with do not arise from what may be called

the disguised action of mechanical forces but from the presence of an agency of a distinct nature.

And to this view we find that most of those incline who have made themselves familiar with the

science of chemistry or with that which has been called biology ; and further that, (with reference

to the latter science) the insufficiency not only of a mechanical but even of a chemical physiology

has been generally admitted.

Secondly, it is to be observed that even if it he considered doubtful whether a mechanical

philosophy be not after all sufficient for the explanation of all phenomena, it is at least certain

that it has not been proved to be so : and that bv rejecting other conceivable modes of action than

those which are recognised by it, we unnecessarily and arbitrarily limit tlie problem which the

universe presents to us ; falling thereby into an error similar to that of the atomists, who starting from

the assumption that the dp-yat, or first principles of all things, are atoms and a vacuum proceeded

to construct an imaginary world, in accordance with this arbitrary hypothesis. At the same time it

must be granted that a purely mechanical* system such as that of Boscovich is more self consistent

a.id contains, so to speak, less that is discontiniious, than any which should recognise other

principles, for instance chemical affinity, distinct from force without enquiring into tiie relation

which subsists between them.

5. It may however be asserted that this en(|uiry is altogether superfluous—that the power

of exerting attractive or repulsive force is one property of matter that chemical affinity, (and so

in other cases,) is another—that the two are not merely distinct, but absolutely independent and

heterogeneous. Rut to this view tile arguments which seem to have led to the ailoption of a

purely mechanical system, appear to prevent our assenting. I shall therefore attempt to state

what I conceive these arguments to have been.

G. It is a fundamental |)rineiple of the secondary mechanical sciences, for instance of the theory

of ligiit, that the secondary qualities of bodies arc to be explained by means of the primary.

livery substance, to use for a moment the language of Leibnitz., is essentially active; in other

words it is to be conceived of as the formal cause of the sensible i|uali[ies which are referred to it.

If wc ask why gold is yellow and silver white, the answer at onee presents itsell' lliat tlu' iliU'erence

• 'I'he word mri'linnintl i» of courKe not used in itntilhcsiH to

'lyrulmira/, in the NCnsi* in wliit-h the littter ix coniuitinty ein|iloye(l

l>y ihc philoBophii'iil wrIlerA of (ieniiiiriy. The antitheolK in (jncK-

tion i« toreign to tile »co|>e of tile present tsiuiy, ami I hme

accordini-ly el«ewhcrc uned the word dyiniinicul in its urdiiiuiy

jveceptution.
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of colour corresponds and is due to a difference between the essential constitution of the two

substances. Now the essential constitution here spoken of, and consequently the differences which

individuate it in different cases, may conceivably be something altogether incognisable to the human

intellect. The notion that it is so was expressed scholastically by saying that substantial forms are

not cognoscible. But if, setting aside this opinion, we affirm that the essential constitution of

each substance is a matter of which the mind can take cognisance, we are led at once to the

distinction between primary and secondary qualities. The first are ascribed to each substance as

its essential attributes, in virtue of which it is that which it is—the second result from the primary*,

(by which as we have said the essential or formal constitution of the substance in question is deter-

mined,) and have reference to the mind by which they are perceived, while the primary are ascribed

to it independently of any reference to a percipient mind : and a distinction, analogous or identical

with that between primary and secondary qualities, has accordingly been expressed by the anti-

thesis between that which is a parte hominis and that which is a parte universi. That the

distinction between primary and secondary qualities is necessary on the hypothesis on which we are

proceeding, appears at once from the consideration that if we affirm that all the qualities of bodies

of which we can form any conception are equally subjective and phenomenal, nothing will remain

of which the mind can take cognisance, and by means of which our conception of the nature of any

one substance can be discriminated from that of any other-f. Let it be granted therefore that the

distinction of primary and secondary qualities is a necessary element of physical science. It follows

from this that the secondary qualities in a manner disappear when we look at the universe from the

scientific point of view. Instead of colours we have vibrations of the luminiferous ether—instead

of sounds vibrations of the ambient air, and so on. Now from hence it follows that all the

phenomena which we see produced, of whatever nature they may be, are all in reality dependent on

the primary qualities of matter. Furthermore, these primary qualities themselves all involve the

idea of motion or of a tendency to motion. A body changes its form in virtue of the local motion

(absolute or relative) of some of its parts ; and when 1 press a stone between my hands, I find that

I can produce no sensible change of form, while contrariwise the stone reacts against my hands,

tending to make them move in opposite directions. I then say that the stone is hard as a mode of

expressing this, viz. that when an attempt is made to produce relative local motion of its parts, it

resists it in virtue of its reactive tendency to produce motion in that which acts upon it. Again,

a body whose parts are readily susceptible of relative local motion is said to be soft or fluid, and

when a sensible change of form is accompanied by a tendency to such motion as shall restore the

original form, it is said to be elastic, and so on. We thus arrive at a point of view at which all

secondary qualities having disappeared, and all primary ones J having been resolved into motion

and tendency to motion, the sciences which relate to phenomena appear to be resolved into the

general doctrine of motion. But if this be true the universe can it is said present to us nothing

but one great dynamical problem. Motion, and force the cause of motion, belong essentially to the

domain of mechanics : and if chemical affinity be a cause of local motion, that is, if in virtue of its

action
||
a particle of matter finds itself at a given time in a position different from that which it

would else have occupied, chemical affinity is not really distinct from mechanical force (whicli

looked at from the dynamical point of view includes everything which is a cause of motion)

;

whereas if it be not a cause of motion the enquiry at once presents itself of what is it ? In illus-

tration of this view we may refer to any chemical experiment. If an acid is dropped into a glass

containing any vegetable blue, the colour is changed to red. But to say this is to say that the

• Or that which in its formation it was to be, to ti t)i/

elvai.

I The doctrine of the cognoscibility of substantial forms,

which is intimately connected with this distinction, is as Leibnitz

in ettect remarks, as it were the common character of those who

with more or less success attempted in the seventeenth century,

the restoration of science. Vid. Leibnitz, Epist. ad Thomas, I.

X That is, all that are commonly enumerated as primary
qualities.

II
As, for instance, in the phenomenon of crystallization.
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liquid when the acid is inti-oduced into it begins to act on the luminiferous vibrations which exist

near it in a different manner from that in which it had previously acted. The whole change, whe-
ther we call it a chemical phenomenon or not, consists in the introduction of new forms of motion
in virtue of the action of mechanical force.

7. From considerations of this kind it appears to follow that a complete explanation of all

phenomena would introduce no principles beyond those with which the science of mechanics
is conversant. And in truth if the conclusion drawn had been that all phenomena might, if our
knowledge of nature were sufficiently extensive, be reduced to cinematical considerations (using

the word cinematics in the large sense in which it is equivalent to the doctrine of motion),

I do not see how on our fundamental hypothesis we could refuse to assent to it. But the con-

clusion drawn by the maintainers of the all-sufficiency of a mechanical philosophy is something

different from this—and as I conceive the error they appear to have committed is to be sought

for in this discrepancy. But before entering into the discussion of this point, I will make a few

remarks on certain points in the history of what may be called the theory of matter.

8. If we suppose the maxim that secondary qualities are to be explained by means of the

primary to have been accepted (either in that or in some equivalent form) or if not formally

accepted, at least unconsciously assumed, at a time when the idea of mechanical force was as yet

very imperfectly apprehended—the natural result of this state of things is the formation of

an atomic theory. For in order to individuate the constitution of any given body, we could only

have had recourse to the configuration or motion of its parts. Gold, to return to our previous

example, was said to be yellow in virtue of such and such a configuration of its parts ; since

except configuration there appeared to be no disposable circumstance*, if I may so speak,

whereby gold was in its intimate constitution to be distinguished from silver or from any thing

else. But this configuration must be independent of the bodys visible and external form, since

changes of the latter do not affect the body's sensible qualities. Hence it must be a configuration

of small parts, and we are thus at once led to the primitive form of the atomic theory. In this

the atoms possess the primary qualities of larger bodies—they are of various forms and act if the

expression may be used by their forms, not by being centres of attractive forces. Such was the

atomistic system of the school of Democritusf—a system which as we know found no little favour

among the scientific reformers of the seventeenth century |. As an instance of the influence it

exerted, I need only mention the great work of Cudworth, in which it is presented ajiart from

the atheistical doctrines with which it had often been connected. Cudworth goes so far as to

affirm that Democritus and his followers had corrupted and degraded the atomistic system which

was originally altogether free from any irreligious tendency and which he sought to restore

to its first estate.

But as the imperfections of the atomic system became manifest, and on the other liand mecha-

nical conceptions came to be more developed a new form of this system arose. The atoms,

retaining their forms and those which are commonly called their primary qualities, were now

supposed to act as centres of attractive force, in other words, each atom was to the rest a cause of

motion. But as the ordinary " jirimary qualities" of bodies may as we have seen be analysed into

conceptions which involve nothing beside motion and force, this new form of the docliinc may

clearly be considered merely as a state of transition to that which is now known i)y the title

• Specific (litfcrc-nccs of motion seem for more than one reason I with in tlic writin^ii of modern historians of jihilosopliy, Zcllcr's

not to have been used in giving' an account of the differences of

bodies.

t .See for a more favourable, anil I think, a juster view of the

philoiwphy of Democritus than that wiiich we cotmnonly meet

l'hihso)Mi: Der Oriechen, i. § 10.

X The physical theories of I)e« ('iirles. though not properly

atomistic, since he proceeded on the hypothesis of a plenum, yet

in many respects are akin to those of which we are speaking.
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of Boscovich's theory*. To Boscovich appears to belong the credit of having perceived that

if the atoms were conceived of simply as unextended centres of force the primary qualities of

bodies might sufficiently be accounted for without supposing them to result from the primary

qualities of their constituent atoms—a mode of explanation of which, though there has been

something like a return to it in some recent speculations, it may be observed that it explains

nothing. Boscovich's theory seems to have been so completely in accordance with the direction

in which mathematical physics have of late been moving, that it was adopted as it were uncon-

sciously—almost all modern investigations on subjects connected with molecular action are in

effect based on his views, though his name is, comparatively speaking, but seldom mentioned.

And this theory, (whether or not the hypothesis of the existence of discrete centres of action

be or be not essential to it, a question connected with that which in former times caused so much
perplexity, namely, the nature of continuity, and which it is not necessary to my present purpose

to consider), is in truth the highest developement which the mathematical theory of matter has as

yet received— it is that on which the pretensions of mathematical physicists to vindicate for

their own methods the right, so to speak, if not the power, to explain all phenomena mainly

depend. Adopting for the sake of definite conception the received form of this theory, that namely in

which the centres of force are discrete and at insensible distances from each other, I now shall

attempt to show what ulterior developements it admits of, and how by means of these the

error noticed at the close of the last Section, namely, the confounding the admission that all

phenomena are to be explained cinematically with the assertion that they can all be explained

mechanically may be met, and, as it seems to me, sufficiently refuted.

9. I begin by observing that though we speak and shall continue to do so of the action of

matter on matter, yet that no part of the views I am about to state depends on the hypothesis we

adopt touching the nature of causation. They would remain unchanged whether we accept a

theory of pre-established harmony, or one of physical influence, or whether we abstain from all

theories on the subject. This being understood, we may, I think, lay down the axiom that

whatever property we ascribe to matter, we may also ascribe to it, the property of producing in

other portions of matter the former property. Of this axiom the present state of Boscovich's

theory affords a familiar illustration. Every portion of matter is locally moveable, therefore we

may ascribe to any portion of matter the power of producing motion in any other, hereby giving

rise to the whole doctrine of attractive and repulsive forces. At this point we have hitherto

stopped, but for no satisfactory reason. We may proceed farther, and we are therefore bound,

in constructing the most general possible hypothesis, to do so : we may ascribe to each portion of

matter the power of engendering in any other that which we call force, in other words the power

of producing the power of actuating the potential mobility of matter. It is not a priori at all

more easy to conceive that A should have the power of setting B in motion, or of changing the

velocity it already has, than that C should have the power of enabling J to act on B, or of

changing the mode of action which A already possesses. And let it be observed, that the new

power thus ascribed to C is as distinct from force, as force is from velocity. The two are related

as cause and effect, but formally are wholly independent. Now unless this hypothetically possible

mode of action can be shown to have no existence in rerum natura, it is clear that the inference

from the conclusion that no phenomenon can be imagined not resoluble en derniere analyse, into

local motion to the assertion that mechanical force is the only agency to be recognised in the

* It is, I believe, known that Boscovich^s fundamental idea

was deduced by a not unnatural filiation from the monadism of

Leibnitz. Yet the scope and limits which he proposed to himself

difter e-isentially from those of the German philosopher, inasmuch

as they are essentially physical. Moreover, the latter would have

objected on the principle of sufficient reason to the want of any

thing to individuate the atoms of Boscovich ; and, at least in the

latter years of his life, to the " Ferae M'irkung," on which the

whole theory depends.
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material universe is altogctlicr illusory. For matter may act on matter in a manner wholly

distinct from force, and yet this kind of action shall, ultimately and indirectly, manifest itself

in modifications of local motion. Furthermore, if for an instant we call this kind of action

(force)-, we shall at once be led to recognise a hypothetically possible mode of action of matter on

matter which in accordance with analogy we shall call (force) ^, which consists in the power of

modifying (force)*. And so on, sine limite.

10. If we compare the language in which the relation between mechanical force and chemical

affinity is commonly spoken of, we shall I think perceive its analogy with that which I have used

in describing the mode of action which we have called (fnrce)^. Its chemical affinity is spoken

of as something which suspends or modifies the action of force, as something distinct from it, but

which yet interferes with its effects. Or again, if in physiological writings we observe the manner
in which vital action* is described we recognise, or stem at least to do so, the possibility of referring

its effects to that mode of action which we have called (force)'. I do not however wisli to lav

much stress on these similarities, because I think the kind of reasoning we have pursued shows

more satisfactorily than they can do, that if chemical affinity and vital action are not resoluble into

force, they must be referred to some of the modes of action we have pointed out.

It would be useless to remark on the many points of speculation which here present themselves.

The expansion of bodies by heat may however be particularly mentioned, because notwithstanding

what has been learnt with relation to the theory of heat, nothing like a mechanical explanation

of this phenomenon has as yet been discovered. It seems to depend not on the introduction of new

mechanical forces, but on a modification of those which already exist ; such modification, in cases

of ordinary conduction, being propagated from one part of the body to that which is next it

It is easy to conceive that by an alteration in the function which expresses the mutual action of

the molecules, the body may pas.s into a new state of equilibrium in which the average distance

between adjacent molecules may be increased or diminished. If such an explanation could be

established, we should have a case of the action of (force)-.

11. In conclusion, it may be well to remark that mathematical analysis is conceivably as

applicable to these new modes of action of matter on matter as to ordinary questions in dynamics.

It is, however, easily seen that as in these we deal chiefly with differential equations of the second

order, and in merely cinematical questions with equations of the first only, so contrariwise when \\c

introduce higher powers of force (so to call them) we shall correspondingly have to do with equa-

tions of higher orders. I venture to predict with a degree of confidence, which doubtless I shall

not communicate to many, that if we ever succeed in estalilishing a mathematical theory of chemistry,

it will be as much conversant with equations of liie third or of a higher order, as physical astro-

nomy is with equations of the second.

R L. ELLIS.

May 1, 1848.

• 1 am, of countc, not to be undcrntood ai» Hiif{gctitinK u matcriulintic cx]iiainiii<in of plienonicnit of iliouj,'li( or volition.
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XLIII. 3Ietho(ls of Integrating Partial Differential Equations. By Augustus

De Morgan, of Trinity College, Cambridge, Secretary of the Royal Astro-

nomical Society, and Professor of Mathematics in University College, London.

[Read June 5, 1848.]

The following methods for the treatment of certain cases of partial differential equations of two

independent variables will be interesting, both as having something new, and as combining and

bringing together some isolated instances given by different writers.

Let the differential equation be

FIRST METHOD.

(*> y, P, </) = 0,

p and o meaning — and — . Contrive that this equation, d) = 0, shall be the result of elimi-
d!C

nation between two others, ^ = 0, B = 0, or, at full length,

A {x, y, p, q, v) = 0, B (.V, y, p, q, v) = 0.

Accordingly, v is an implicit function of ,r and y. Let r, s, and t, as usual, be the second

differential coefficients of ss, and form the four additional equations

A^ + Ar + As + A„
dv

d.v
0,

dv
B,+ Bj,r + B^8 + B„-— = 0,

dx

A^ + A^s + A^t + A„-^=o, B^ + B^s + B^t + B„-^ = 0.

From the six equations* eliminate p, q, r, s, t; there will result an equation between

dv dv
X, y, V, —-

,
— , which will often be more tractable than d) = 0. When, after integration, v is

dx dy r "

found in terms of * and y, p and q can be found in the same terms from A = 0, B = 0, and

then s! from dx = pdw + qdy.

Tiiis method was derived from the suggestions afforded by a previous treatment of the equation

Apq + Bp + Cq + D = 0,

A, &c. being functions of x and y; which occurs in the process of developing any surface which

admits it upon a plane. Reduce the preceding to the form

(p +P)(q + Q)= R.

* With regard to the notation, I must state that by such a

symbol as A^ 1 mean the partial difterential coefficient of A with

respect to a, as obtained from an equation in which A is explicitly

given in tlie form A = f\> (a, ). I have found this notation,

however useful it may be as an abbreviation, almost as useful in

the way of distinction. It points out the ultimate and elementary

process, on one or more of whicli the implicit differential coeffi-

cients depend.
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N
Let p + P = Mv, q + Q =—.

V

MN being any convenient resolution of R into two factors. We have then

dv

dy "

Ndv N,
s + Qx=-— — + —

.

V dx V

,, du N dv ^ N^M—+---=P,^-Q, + — - M„v,
dy V- ax v

which depends on ordinary differential equations. But it must be observed that the integration

of this subsidiary equation frequently leads to a form from which v cannot be directly exhibited as

a function of w and y. Where this happens, we must obtain a particular form which contains one

arbitary constant ; another will be introduced in the integration by which x is obtained ; and

Lagrange's process may then be applied to the primary form so obtained.

For example, let pq == pw + qy, or, (p - y) (q - ''") = ^V-

dv
Let p — y = XV, s — I = X —— ,^ ^ dy

y y dv dv y do
^

V V dx dy v' dx

or x'v^ - y- =/(»). Let fv = av^, and we have

y ^y /—i
—

y/ias- — a) V ai' — a

z = xy + y \/X- - a + b.

Let 6 = (pa : then the general solution of pq = px + qy may be obtained by eliminating a from

z = xy + y y/{x' — «) + 0a,

= 7/5 r- + d)'ffl.

But if we take p - y = v, we find

and we ultimately obtain the same form.

We may also obtain as the primary solution

z = ^.{.i^ - a) (y' - (pa) + xy + >// a.

If we apply the whole process to pq = (px . xf/y, we find for a primary solution

z =2^/{(p^x(f^y -«)} +/a,

where ^p^a = J(pxd x, x//, y =
f\j, y d y.

Next, take the instance {p + 7) {px + qy) «= 1.

41 i
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Let px + qy = V, p + q = — .

V

Form tlie four other equations and eliminate, which gives

dv dv
(u + a) — + («- +y) — = v,

diV dy

or -=f[ .

Let /« = au ; then v = \/ ,^ \ — a

1

y/{\ -a)' ^(y-ax)' ^ -y/(l-a) y/{y - asc)'

/y-ax
^

I - a

For -a (l - a)"' write a: then we deduce the general solution by eliminating a between

^ = 2 ^/{a{x -y) + y] + <pa,

^- y= —--.
j + (ha.

s/{a{.^-y) +y\

Let Ap"^ + Bpq + Cq" = D
which can be resolved into {p + K q) (p + Lq) = MN.

Let p .^ Kq = Mv, p = f LMv \ {K - L) "
',

p + Lq=-, q=\Mv \{K-L)~\
V \ V J

Tiie two values of s thence derived, equated to each other, give the equation for determining v.

Accordingly, since A &c. may be any functions of .v and y, the general equation of the second

degree is reducible to ordinary differential equations, provided that sr do not appear in it.

In these examples, I have chosen, merely for simplicity, cases in which p and q are explicitly

found, and the values of s equated. This amounts to exhibiting (p = under the form of

A — and B = 0, and determining v so that pdx + qdy may be a complete differential. And
in like manner as every particular value of v leads to a particular value of sr, so does each

value of sr lead to one of v. And in this way a particular solution of one partial differential

equation may lead to a particular solution for another and a more difficult one. Thus, if d) =
be derived from A = 0, B = 0, leading to the new partial equation 17=0; and if it also be

derived from A' = 0, B' = 0, leading to V' = 0: by means of a solution of U = 0, leading to a

solution of d) = 0, one solution of tT = may be found.

Take the instance >^p + y/q = Sa-,

or p = (.r - vf, q = (.V + vf,

(w + w)— + (a? - «) (x + r).
dx dy
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(a — v) X
«= ^^—

,

x + y — a

, fx"- +2xy - 2aw\' x*dz = ^ dx + - rf«,
\ X + y - a j {x + y-af "^

4 ,
««

« = - » + h.
3 X + y — a

Make b = (pa, and proceed as before.

Another form of solution is derived from v + x = a, or

dz = {9,x - aydx + a'dy,

2r = - (2^7 - ffl)' + a-y + (pa.

Resolve the same equation into

/ 2x V / 2xv\-

giving XV 1- X ~- = - v^ (I + v).
ax ay

f X^ \' ( x^ \~ i 2xvFrom the solution of the original take q= and make ( 1
= (

—

'-—
\x + y - a) y-g + y - aj \1 + v

X + y — 2a

This ought to be a solution of the differential equation last written, and it will be found

to be so on trial.

SECOND METHOD.

Let there be given the equation

(p (.i?. y, «> p, q, -r-, «. = 0.

Interchange p and x, q and y, z and px + qy - «, r and -, s and , ,

rt - s' rt - s^

'>'

t and
rt - 8''

giving (p {p, ,1, V- + qy - ^, ^> y, ^^, , ^, , ^^.) = 0.

If either of these equations can be integrated, say by

Z=^{X, Y),

then the solution of the other is obtained by cliiiiiiiating -V and Y from

rfZ dZ

zm xX + yY - Z.
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The root of this theorem lies in the following, that the interchanges above mentioned do

not alter the truth of the equations

dss =i pda; + qdy, dp = rdx + sdy, dq=sdx+tdy,

so that we have

d{px + qy ~ s) = xdp + ydq,

t s
doc = — dp : dq,

rt - s' rt - s'

s r
dy = — ; dp + dq.
" rt - s' ^ rt- 8= ^

Let ,17, y, z be considered as functions of p and q, derived from the equations

f{x, y, z) =0, /. + /, p = 0, /y +f..q = 0;

but remark that there is a case of exception, namely, when the second and third equations

give simultaneous elimination of x, y, and sr, or lead to 'jr { p-, q) — 0. Since

z = px +qy - J{xdp + ydq),

xdp + ydq must be a complete differential. Let it be dv, then we have, v being a function

of p and q,

dv dv
x = —

, y=^r' z = px +qy-v.
dp dq

Let the second differential coefficients of v be p, a, t, we have then

dx = pdp + cr dq, dp = , dx - r dy,
' pT — a p T — a m

dy=(jdp + Tdq, dq = j dx + — , dy,
" ^ ' jOT-(7* pT - <x

T ~ C P
whence r = ; , s =

, t = ;

pT~a pT-a- pT-a

Hence, in order to make p and q the independent variables instead of x and y, we must

assume a function v, of p and q, such that

dv dv dv dv

"=d^' ' = Tq' '-Pd-p^'Tq-'''

and then we must find v by integrating

idv dv dv dv t -a- P \ n

^\dp dq''^dp ' dq '^ ^ p t - a^ pT-a^ pr-aJ

The manner in which I first stated the theorem changes the meaning of the letters x and y

without changing the letters themselves.

Of this method, I find one instance. Legendre (see Lacroix, Vol. ii. p. 622) has employed it

as a casual artifice for the reduction of

/i (P> 9) • »• +/s (P' l)-s +f3ip,q) ( = 0,

to /i {x, y) r -f., («, y) -s +f^ (x, y).t = o.
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But I am not able to find that it has ever been applied to any equation of the first order.

Lacrolv (Vol. il. p. 558) gives something as near to the whole method as can well be imagined.

He sees everything except the completely interchangeable character of « and pj; + qy — z ; that

he did not see this last may be suspected from his making the restriction that z must only enter

in px + qy — z.

It is to be noted that, so far as equations of t\\Q first order are concerned, the solution takes

exactly the same form, even though we can only integrate the transformed equation by reducing

it to

s], {X, Y, Z,J)=0, ^ = 0,

for the forms of — and are unaltered. There is now one equation more, —^ = 0, anddX dY dA
one more quantity, A, to eliminate.

Let the first instance be

Ax + By + Cx + D=0,

where each of the four, A, &c. is any function whatever of p, q, and px + qy - z. The transformed

equation is obviously of the form Pp + Qq + R = 0, where P, Q, B are all functions of x,y, z.

Lagrange has given a laborious method for the integration of z = pq, and Lacroix (Vol. ii.

p. 565) does not refer to p. 558, I suppose for the reason just given. The transformed equation is

px+ qy - z = xy, of which the integral is

- xy '/(!)

We may therefore find the general solution oi z - pq from

Generally, however, the most convenient method is to select an appropriate primary solution, and

then to use Lagrange's process. This may be done, if we please, from the common ditf'erentia!

equations which integrate the transformed partial ones. These are, in the present case,

z = xy + hx, y = ax.

The retransformcd equations are

px + qy - z = pq + bp, q = up.

With these, and z = pq, eliminate p and q, which gives

(ic + ay — by
z = , so that we have the general solution by eliminating a from

4 a

{x + ay + (baf , dz
z = ^^ ?

—

^—^
, and — = 0.

ia da

Hut wc may often, most often I think, (irocure the primary Milutioti in ,iii e.isiir manner froni the

result of the complete method. Let fz = iiz + b, and we then have

X = }' + b, // = A' + a, z= XY,
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or X = (x - b)(y - a), a very obvious solution. Hence we must eliminate a from

sr = {x-(l>a){y - a), = (x - (pa) + (y - a) <p'a.

In my Differential Calculus, p. 717, I gave a method for the general case z = (b {p, q) ; but
the following, derived from the present method, is preferable.

Let f(X, a) =f(p(X,aX). X-^ dX.

Then Z = Av(.r,l] + ^FQ,
with which proceed as before.

Of the instances which I have tried by the other method,

pq = px + qy gives p.r + qy = xy, from which

In this case we may conveniently take the retransformed equations

q = ap, px + qy — s: = -^ p(] + b, which with pq = px + qy,

give 2a (z + b) = (x + ay)', say 2ax + b = (x + ay)'.

Again, (p + q) {px + qy) = 1 transforms into

1

y{x + y) (px + qy) = 1, or sr + ---- = f l^
X + y \x

Treat this by the method, and assume fz = + b, which will show that the general

solution can be obtained by eliminating a between

X — V ay«= -+ —^+\l/a,
a 'f - y

X ~ y y= ~ + —i— + xf, a.
a- X — y '

The equation ^p + ^q - 2x transforms into

.y/a; + ^y = 2p, or sr = 1 xi + 1 xyi +fy,

X = i Xi + i YK

y = iXV-i+fV,

z = ^Xi-lXYi + Yf'y-fV.

This is not an easy form. But if we take the retransformed equations •

q = a?, px + qy - z == ^ pi + :L pqi + ft^

and join pi + qh = g.r with them, we find

z = ^ (2 X — aY + a^ y + b, a primary solution, being the one already obtained.
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The equation ar + bs + ct. = {rt - s') .f(p, q)

transforms into at - bs + cr = f{x,y), which, a, b, c, being constants, is integrable.

Since rt - s' transforms into (rt - s^)-\ the equations rt - s' = f{p, q), and rt - s^ =

{fi^tV)}' depend each upon the other.

The failure of this method in the case of developable surfaces may be illustrated geometrically,

as follows. Let the equation ^ = be that of a surface, and for each point (.v, y, x) of that

surface, taive another point having for its co-ordinates p, q, p x + qy - x. The surface which has

the second point for its locus is conjugate with the first ; that is, what properties soever connect the

first with the second, the same connect the second with the first. This conjugation cannot exhibit

any absolute geometrical properties, for the conjugate surface depends, as to what it shall be, not

only on the primitive surface, but on the position of the axes of co-ordinates, and also on the linear

unit chosen. Thus it will be found that the conjugate surface of a given sphere is a double

hyperboloid of revolution, having for its real axis the diameter of the sphere which is parallel to

the axis of ss, and for its imaginary semiaxis the linear unit. Now when the first surface is

developable, its conjugate surface becomes a cylinder described by a straight line parallel to x,

guided by the curve f(p, q) = on the plane of xy. There is then no relation which involves all

the three co-ordinates.

It may be worth while to notice, that we can at pleasure obtain forms for elimination which

reproduce the function originally given, by assuming an equation which is its own tranformation.

A. DE MORGAN.
UNrvEEsrrY College, London,

April 27, 1848.

June 1, 1847. I had finished the foregoing Paper, as here written and dated, and it was in the hands of

a friend for transmission to the Society, when I happened to have occasion to turn over all the Notes of M.

Chasles's Aperfu Hlstoriqiie .... des methodes en Gcomctrie, tliat I might collect all that has reference to the history

of Aritlimetic. To my surprise, at Note xxx. p. 376, under the head iS'tir les Courhes el Surfaces reciproques

de Moiif/c, being an account of an tiripiMished memoir of Monge in possession of the Institute, I found tlie

second of these methods fully described. But to judge from all elementary writings, as well as from tlie apparent

resources of those who liavc had to use modes of integration, this method is not known; and therefore 1 do not

abandon my intention of commumcating it to the Society.

A. DE MORGAN.

Vol. VIII. Paut V. 4E



XLIV. Second Memoir on the Fundamental Antithesis of Philosophy. By
W. Whewell, D.D., Master of Trinity College, and Professor of Moral
Philosophy.

[Read November 13, 1848.]

31. In the course of 1844 I had the honour of reading before the Philosophical Society a

Memoir On the Fundamental Antithesis of Philosophy ; and this Memoir has since been printed in

the Society's Transactions. The Fundamental Antithesis of which I then treated, is that which

is expressed in various ways :—for instance, by speaking of Things and Thoughts ; of Sensations

and Ideas ; of Fact and Theory ; of Experience and Necessary Truth ; of the Objective and

Subjective Elements of our Knowledge. I endeavoured to make it apparent that all these are,

at bottom, the same antithesis, and that this antithesis is an antithesis of inseparable Elements ;—so

inseparable, that the opposed terms cannot, either of them, be applied absolutely and exclusively in

any case.

32. To give value to the exposition of this antithesis, it must be used in the expression of

philosophical truth. The antithesis may be looked upon in the light of a Definition by which we

are to enunciate one or more Propositions. In this, as in other cases, the Definition gives meaning

to the Proposition, the Proposition gives reality to the Definition. The Definition saves the

Proposition from being vague or ambiguous ; the Proposition saves the Definition from being

arbitrary or empty.

In the Memoir just referred to, I have already used the fundamental antithesis in stating views

respecting the reality and the developement of human knowledge. But I would wish to be allowed

to pursue the subject a step further, and to express in a more general and distinct form than I have

there done, a general truth in the history of science, which I have there stated in a partial and

imperfect manner.

33. The general Truth of which I speak may be thus expressed :—that the Progress of

Science consists in a perpetual reduction of Facts to Ideas. Portions are perpetually trans-

ferred from one side to another of the Fundamental Antithesis : namely, from the Objective to

the Subjective side. The Center or Fulcrum of the Antithesis is shifted by every movement

which is made in the advance of science, and is shifted so that the ideal side gains something from

the real side.

34. I will proceed to illustrate this Proposition a little further. Necessary Truths belong to

the Subjective, Observed Facts, to the Objective side of our knowledge. Now in the progress of

that exact speculative knowledge which we call Science, Facts which were at a previous period

merely Observed Facts, come to be known as Necessary Truths ; and the attempts at new advances

in science generally introduce the representation of known truths of fact, as included in higher and

wider truths, and therefore, so far, necessary.

3-5. We may exemplify this progress in the history of the science of Mechanics. Thus the

property of the lever, the inverse proportion of the weights and arms, was known as a fact before

the time of Aristotle, and known as no more ; for he gives many fantastical and inapplicable reasons
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for the fact. But in the writings of Archimedes we find this fact brought within the domain
of necessary truth. It was there transferred from the empirical to the ideal side of the Fundamental
Antithesis ; and thus a progressive step was made in science. In like manner, it was at fir.st taken

by Galileo as a mere fact of experience, that in a falling body, the velocity increases in proportion

to the time ; but his followers have seen in this the necessary effect of the uniform force of gravity.

In like manner, Kepler's empirical Laws were shewn by Newton to be necessary results of a central

force attracting inversely as the square of the distance. And if it be doubtful whether this is

the necessary law of a central force, as some philosophers have maintained that it is, we cannot

doubt that if those philosophers could establish their doctrine as certain, they would make an

important step in science, in addition to those already made.

And thus, such steps in science are made, whenever empirical facts are discerned to be neces-

sary laws; or, if I may be allowed to use a briefer expression, whenever /ac<s are idealized.

Sn. In order to shew how widely this statement is applicable, I will exemplify it in some of

the other sciences.

In Chemistry, not to speak of earlier steps in the science, which might be presented as instances

of the same general process, we may remark that the analyses of various compounds into their

elements, according to the quantity of the elements, form a vast multitude of facts, which were

previously empirical only, but which are reduced to a law, and therefore to a certain kind of ideal

necessity, by the discovery of their being compounded according to definite and multiple propor-

tions. And again, this very law of definite proportions, which may at first be taken as a law given

by experience only, it has been attempted to make into a necessary truth, by asserting that bodies

must necessarily consist in atoms, and atoms must necessarily combine in definite small numbers.

And however doubtful this Atomic Theory may at ))resent be, it will not be questioned that any

chemical philosopher who could establish it, or any other Theory which would produce an equiva-

lent change in the aspect of the science, would make a great scientific advance. And thus, in this

Science also, the Progress of Science consists in the transfer of facts from the empirical to the neces-

sary side of the antithesis; or, as it was before expressed, in the idealization of facts.

37. We may illustrate the same process in the Natural History Sciences. The discovery of

the principle of Morphology in plants, was the reduction of a vast mass of Facts to an Idea ; as

Schiller said to Gothe when he explained the discovery ; although the latter, cherishing a horrour

of the term Idea, which perhaps is quite as common in England as in Germany, was extremely

vexed at being told that he possessed such furniture in his mind. The applications of this Principle

to special cases, for instance, to Euphorbia by Brown, to Reseda by Lindley, have been attempts to

idealize the facts of these special cases.

38. We may apply the same view to steps in Science which are still under discussion ;— the

question being, whether an advance has really been made in science or not. For instance, in Astro-

nomy, the Nebular Hypotliesis has been propounded, as an explanation of many of tlie observed

phenomena of the Universe. If this Hypothesis could be conceived ever to be established as a true

Tiieory, this must be done by its taking into itself, as necessary parts of the whole Idea, many

Facts which have already been observed ; such as the various form of nebuhx ; many Facts whicli

it must require a long course of years to observe, such as the changes of nebulte from one form to

anolhcr ; and many facts which, so far as we can at present judge, are utterly at variance with the

Idea, such as the motions of satellites, the relations of the elements of planets, the existence of vege-

table and animal life upon their surfaces. But if all these Facts, when fully studied, sliould appear

to be included in the general Idea of Nebular Condensation according to the Laws of Nature, the

Facts so idealized would undoubtedly constitute a very rcmarkal)le advance in science. But then,

we are to recollect that we are not to suppose that the I'acts will agree with the Idea, merely

because the Idea, considered by itself, and without carefully attending to the Facts, is a large and

striking Idea. And we are also to recollect that the Facts may l)e compared with another Idea, no

1- K 2
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less large and striking ; and that if we take into our account, (as, in forming an Idea of the Course

of the Universe, we must do,) not only vegetable and animal, but also human life, this other Idea

appears likely to take into it a far larger portion of the known Facts, than the Idea of the Nebular

Hypothesis. The other Idea which I speak of is the Idea of Man as the principal Object in the

Creation ; to whose sustenance and developement the other parts of the Universe are subservient as

means to an end ; and although, in our attempts to include all known Facts in this Idea, we again

meet with many difficulties, and find many trains of Facts which have no apparent congruity with

the Idea ; yet we may say that, taking into account the Facts of man's intellectual and moral con-

dition, and his history, as well as the mere Facts of the material world, the difficulties and apparent

incongruities are far less when we attempt to idealize the Facts by reference to this Idea, of Man as

the End of Creation, than according to the other Idea, of the World as the result of Nebular Con-

densation, without any conceivable End or Purpose. I am now, of course, merely comparing these

two views of the Universe, as supposed steps in science, according to the general notion which I

have just been endeavouring to explain, that a step in science is some Idealization of Facts.

39. Perhaps it will be objected, that what I have said of the Idealization of Facts, as the

manner in which the progress of science goes on, amounts to no more than the usual expres-

sions, .that the progress of science consists in reducing Facts to Theories. And to this I reply,

that the advantage at which I aim, by the expression which I have used, is this, to remind

the reader—that Fact and Theory, in every subject, are not marked by separate and promi-

nent features of difference, but only by their pi'esent opposition, which is a transient rela-

tion. They are related to each other no otherwise than as the poles of the fundamental anti-

thesis; the point which separate those poles shifts with every advance of science; and then,

what was Theory becomes Fact. As I have already said, elsewhere, a true Theory is a Fact;

a Fact is a familiar Theory. If we bear this in mind, we express the view on which I am
now insisting when we say that the progress of science consists in reducing Facts to Theories.

Hut I think that speaking of Ideas as opposed to Facts, we express more pointedly the original

Antithesis, and the subsequent identification of the Facts with the Idea. The expression appears

to be simple and apt, when we sav, for instance, that the Facts of Geography are identified with

the Idea of the globular Earth; the Facts of Planetary Astronomy with the Idea of the Helio-

centric system ; and ultimately, with the Idea of universal Gravitation.

40. We may further remark, that though by successive steps in science, successive Facts

are reduced to Ideas, this process can never be complete. However the point may shift which

sepai'ates the two poles, the two poles will always remain. However far the ideal element may
extend, there will always be something beyond it. However far the phenomena may he ideal-

ized, there will always remain a portion which are not idealized, and which are mere pheno-

mena. This also is implied by making our expressions refer to the fundamental antithesis

:

for because the antithesis is fundamental, its two elements will always be present ; the objective

as well as the subjective. And thus, in the contemplation of the universe, however much

we understand, there must always be something which we do not understand; however far

we may trace necessary truths, there must always be things which are to our apprehension

arbitrary : however far we may extend the sphere of our internal world, in which we feel

power and see light, it must always be surrounded by our external world, in which we see

no light, and only feel resistance. Our subjective being is inclosed in an objective shell, which,

though it seems to yield to our efforts, continues entire and impenetrable beyond our reach, and

even enlarges in its extent while it appears to give up to us a portion of its substance.
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ADDITIONAL NOTE TO TWO MEMOIES "ON THE FUNDAMENTAL
ANTITHESIS OF PHILOSOPHY."

Of certain Modern Systems of Philosophy.

I AM desirous of adding, as a note to this and the preceding Memoir, some very brief remarlis

relative to certain philosophical systems which have been much spoken of in modern times, especially

those of the celebrated German philosophers, Kant, Fichte, Schelling, and Hegel.

Every system of pliilosophy offers to us a special and characteristic mode of criticizing preceding

systems : and since every new system aspires to be true, it includes that which was true in the

preceding systems, and is therefore able to point out where the true part of each is. The doctrine

which I have endeavoured to explain in the two preceding Memoirs is, that there is a Fundamental

Antithesis of two elements, of which the union is involved in all knowledge, and of which the

separation is the task of all philosophy. This doctrine naturally directs us to consider how far

each preceding system of philosophy has performed this task ; and the survey of such systems from

this point of view, may enable us to characterize them by a few sentences, at least so far as they

regard one leading point of such systems, the account which they give of the nature and foundations

of human knowledge.

The doctrine of the Fundamental Antithesis, which I have endeavoured to expound in the

above Memoirs, and in other places, is briefly this

:

That in every act of knowledge (I) tliere are two opposite elements iv/tich we may call Ideas

and Perceptions ; but of which the opposition appears in various other antitheses ; as Thoughts

and Things, Theories a?id Facts, Necessary Truths and Experiential Truths ; and the li/ce : (2) that

our knowledge derives from the former of these elements, namely our Ideas, its form and character

as knowledge, our Ideas of space and time being the necessary forms, for instance, of our geome-

trical and arithmetical knowledge , (3) and in like manner, all our other knowledge involving a

developement of the ideal conditions of knowledge existing in our minds : (4) Imt that though ideas

and perceptions are thus separate elements in our philosophy, they cannot, in fact, be distinguished

and separated, but are different aspects of the same thing ; (5) that the only way in which we can

approach to truth is by gradually and successively, in one instance after anotlier, advancingfrom
the perception to the idea ; from the fact to the theory ; from the apprehension of truths as

actual to the apprehension of them as necessary. (6) This successive and various progress from

fact to tlieory constitutes the history of science ; (7) and tliis progress, though always leading us

nearer to that central unity of which both tlie idea and the fact are emanati<ms, can never lead us

to that poitit, nor to any measurable proximity to it, or definite comprehension of its place and

nature.

Now the doctrine of the Fundamental Antithesis being thus stated, the successive sentences

of the statement contain the successive steps of German philosophy, as it has appeared in the

series of great authors whom I have named.

Ideas, and Perceptions or Sensations, being regarded as the two elements of oin- knowledge,

Locke, or at least the successors of I^ocke, had rejected the former element, Ideas, and professed to

resolve all our knowledge into Sensation. After tliis philosophy had prevailed for a lime, Kant

exposed, to the entire conviction of the great body of German speculators, the untenable nature of

this account of our knowledge. He taught (one of the first sentences of the above statement) that

(2) Our laiowledge derives from our Metis its form and charac/er as IcnowU'dgc ; our Ideas of

space and time being, for instance, the necessary forms of our geometriral and arithmetical

knowledge. Fichte carried still further this view of oiir knowledge, as derived from our Ideas, or
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from its nature as knowledge ; and held that (3) all our knowledge is a developement of the ideal

conditions of knowledge existing in our minds, (one of our next following sentences). But when

the ideal element of our knowledge was thus exclusively dwelt upon, it was soon seen that this ideal

system no more gave a complete explanation of the real nature of knowledge, than the old sensa-

tional doctrine had done. Both elements, Ideas and Sensations, must be taken into account. And
this was attempted by Schelling, who, in his earlier works, taught (as we have also stated above) that

(4) Ideas and Facts are different aspects of the same thing

:

—this thing, the original basis of truth

in which both elements are involved and identified, being, in Schelling's language, the Absolute,

while each of the separate elements is subjected to conditions arising from their union. But this

Absolute, being a point inaccessible to us, and inconceivable by us, as our philosophy teaches

(as above), cannot to any purpose be made the basis of our philosophy : and accordingly this

Philosophy of the Absolute has not been more permanent than its predecessors. Yet the philosophy

of Hegel, which still has a wide and powerful sway in Germany, is, in the main, a developement

of the same principle as that of Schelling ;—the identity of the idea and the fact ; and HegeFs

Identity System, is rather a more methodical and technical exposition of Schelling's Philosophy

of the Absolute than a new system. But Hegel traces the manifestation of the identity of the idea

and fact in the progress of human knowledge; and thus in some measure approaches to our doctrine

(above stated), that (5) the way in which we approach to truth is by gradually and successively,

in one instance after another, that is, historically, advancing from the perception to the idea, from
the fact to the theory : while at the same time Hegel has not carried out this view in any compre-

hensive or complete manner, so as to show that (6) this process constitutes the history of science :

and alike with Schelling, his system shews an entire want of the conviction (above expressed as part

of our doctrine), (7) that we can never, in our speculations reach or approach to the central unity

of which both idea andfact are emanations.

This view of the relation of the Sensational School, Kant, Fichte, Schelling, and Hegel, and of

the fundamental defects of all, may be further illustrated. It will, of course, be understood that

our illustration is given only as a slight and imperfect sketch of their philosophies ; but their

relation may perhaps become more apparent by the very brevity with which it is stated ; and the

object of the present note is not detailed criticism, but this very relation of systems to each other.

The actual and the ideal, the external and the internal elements of knowledge, were called by

the Germans the objective and the subjective elements respectively. The forms of knowledge and

especially space and time, were pronounced by Kant to be essentially subjective ; and this view of

the nature of knowledge more fully unfolded and extended to all knowledge, became the subjective

ideality of Fichte. But the subjective and the objective are, as we have said, in their ultimate and

supreme form, one ; and hence we are told of the subjective-objective, a phrase wiiich has also

been employed by Mr. Coleridge. Fichte had spoken of the subjective element as the Me, (das

Ich) ; and of the objective element as the Not-me, (das Nicht-Ich) ; and has deduced the Not-me

from the Me. Schelling, on the contrary, laboured with great subtlety to deduce the Me from the

Absolute which includes both. And this Absolute, or Subjective-objective, is spoken of by Schelling as

unfolding itself into endless other antitheses. It was held that from the assumption of such a prin-

ciple might be deduced and explained the oppositions which, in the contemplation of nature, present

themselves at every step, as leading points of general philosophy :—for example, the opposition of

matter as passive and active, as dead and organized, as unconscious or conscious ; the opposition of

individual and species, of will and moral rule. And this antithetical developement was carried

further by Hegel, who taught that the absolute idea developes itself so as to assume qualities,

limitations, and seeming oppositions, and thus completes the cycle of its developement by returning

into unity.

That there is, in the history of Science, much which easily lends itself to such a formula, the views

which I have endeavoured to expound, show and exemplify in detail. But yet the attempts to carry
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this view into detail by conjecture, by a sort of divination, with little or no attention to the histori-

cal progress and actual condition of knowledge, (and such are those which have been made by the

philosophers whom I have mentioned,) have led to arbitrary and baseless views of almost every

branch of knowledge. Such oppositions and differences as are found to exist in nature, are assumed

as the representatives of the elements of necessary antitheses, in a manner in which scientific truth

and inductive reasoning are altogether slighted. Thus, this peculiar and necessary antithetical

character is assumed to be displayed in attraction and repulsion, in centripetal and centrifugal forces,

in a supposed positive and negative electricity, in a supposed positive and negative magnetism ; in

still more doubtful positive and negative elements of light and heat ; in the different elements of the

atmosphere which are, quite groundlessly, assumed to have a peculiar antithetical character : in

animal and vegetable life : in the two sexes : in gravity and light. These and many others, are

given by Schelling, as instances of the radical opposition of forces and elements which necessarily

pervades all nature. I conceive that the heterogeneous and erroneous principles involved in these

views of the material world show us how unsafe and misleading is the philosophical assumption on

which they rest. And the triads of Hegel, consisting of thesis, antithesis, and union, are still more

at variance with all sound science. Thus we are told that matter and motion are determined as

inertia, impulsion, fall; that absolute Mechanics determines itself as centripetal force, centrifugal

force, universal gravitation. Light, it is taught, is a secondary determination of matter. Light

is the most intimate element of nature, and might be called the Me of nature : it is limited by what

we may call negative light, which is darkness.

In these rash and blind attempts to construct physical science a priori, we may see how imper-

fect the Hegelian doctrines are, as a complete philosophy. In the views of moral and political sub-

jects the results of such a scheme are naturally less obviously absurd, and may often be for a

moment striking and attractive, as is usually the case with attempts to reduce history to a formula.

Thus we are told that the State appears under the following determinations :—first, as one, sub-

stantial, self-included : next, varied, individual, active, disengaging itself from the substantial and

motionless unity : next, as two principles, altogether distinct, and placed front to front in a marked

and active opposition : then, arising out of the ruins of the preceding, the idea appears afresh, one,

identical, harmonious. And the East, Greece, Rome, Germany, are declared to be the historical

forms of these successive determinations. Whatever amount of real historical colour there may be

for this representation, it will hardly, I think, be accepted as evidence of a profound political philo-

sophy ; but on such parts of the subject I shall not here dwell.

I may observe that in the series of philosophical systems now described, the two elements of the

Fundamental Antithesis are, alternately dwelt upon in an exaggerated degree, and then confounded.

The Sensational School could see in human knowledge nothing but facts : Kant and Fichte fixed

their attention almost entirely upon ideas : Schelling and Hegel assume file identity of the two,

(a point which we never can reach,) as the origin of their philosophy. The external world in

Locke's school was all in all. In the speculations of Kant this external world became a dim and

unknown region. Things were acknowledged to be something in themselves, but what, the philoso-

pher could not tell. Besides the phcenomeiion which we see, Kant acknowledged a noumenon

which we think of; but this assumption, for such it is, exercises no infiuence upon his ])hilosophy.

Things in themselves, are in his Drama, merely a kind of mute personages, Kiccpd Trfjuaonra, which

stand on the stage to be pointed at and talked about, but which do not tell us anything, or enter

into the action of the piece. Fichte carries this further, and if we go on with the same illustration,

we may say that he makes the whole drama into a kind of monologue; in which the author tells the

story, and merely names the persons who ajipear. If we would still carry on the im.ige, we may say

that Schelling, going upon the principle that the whole of the drama is merely a progress to the

denoument, which denounicnt contains the result of all the preceding scenes and events, starts

with the last scene of the piece, and bringing all the characters on the stage in their final attitudes,

would elicit the story from this. While the true mode of jirocecding is, to follow the drama
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scene by scene, learning as much as we can of the action and the characters, but knowing that we shall

not be allowed to see the denouraent, and that to do so is probably not the lot of our species on earth.

So far as any philosopher has thus followed the historical progress of the grand spectacle offered to

the eyes of speculative man, in which the Phenomena of Nature are the Scenes, and the Theory of

them the Plot, he has taken the course by which knowledge really has made its advances. But

those who have partially done this, have often, like Hegel, assumed that they had divined the

whole course and end of the story, and have thus criticized the scenes and the characters in a spirit

quite at variance with that by which any real insight into the import of the representation can be

obtained*.

I will only offer one more illustration of the relative position of these successive philosophies.

Kant compares the change which he introduced into philosophy to the change which Copernicus

introduced into astronomical theory. When Copernicus found that nothing could be made of

the phenomena of the heavens so long as everything was made to turn about the spectator, he

tried whether the matter might not be better explained if he made the spectator turn, and

left the stars at rest. So Kant conceives that our experience is regulated by our own faculties,

as the phenomena of the heavens are regulated by our own motions. But accepting and

carrying out this illustration, we may say that Kant, in explaining the phenomena of the

heavens by means of the motions of the earth, has almost forgotten that the planets have

their own proper motions, and has given us a system which hardly explains anything besides

broadest appearances, such as the annual and daily motions of the sun ; and that Fichte

appears as if he wished to deduce all the motions of the planets, as well as of the sun,

from the conditions of the spectator ;—while Schelling goes to the origin of the system like

Descartes, and is not content to shew how the bodies move, without also proving, that from

some assumed original condition, also the movements and relations of the system must neces-

sarily be what they are. It may be that a theory which explains how the planets with

their orbits and accompaniments have come into being may offer itself to bold speculators,

like those who have framed and produced the nebular hypothesis. But I need not here re-

mind my hearers either how precarious such a hypothesis is, or that if it be capable of being

considered probable, its proofs must gradually dawn upon us, step by step, age after age

:

and that a system of doctrine which requires such a scheme as a certain and fundamental

truth, and deduces the whole of astronomy from it, must needs be arbitrary, and liable

to the gravest error at every step. Such a precarious and premature philosophy, at best, is

that of Schelling and Hegel ; especially as applied to those sciences in which, by the past pro-

gress of all sure knowledge, we are taught what the real cause and progress of knowledge

is : while at the same time we may allow that all these forms of philosophy, since they do

recoTni/e the condition and motion of the spectator, as a necessary element in the explanation

of the phenomena, are a large advance upon the Ptolemaic scheme, the view of those who

appeal to phenomena as the source of our knowledge, and say that the sun, the moon, and

the planets move as we see them move, and that all further theory is imaginary and fan-

tastical.

W. WHEWELL.

• If it be asked which posilion we can assign, in this dramatic I say that they loolt on with a belief that the drama has no plot, and

illustration, to those who hold that all our knowledge is derived that these scenes arc improvised without connexion or purpose,

from facts only, and who reject the supposition of ideas ; we may
|
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Cambridge Observatory. By the Rev. J. Challis, M.A., F.R.S., F.R.A.S.,

Plumian Professor of Astronomy and Experimental Philosophy in the University of'

Cambridge.

[Read November 27, 1848.]

The observations I am about to lay before the Society, relate principally to the position of

the Corona in the splendid display of Aurora Borealis which occurred on the night of Nov. 17.

During thirteen years that I have resided at the Cambridge Observatory, there certainly has not

been so favourable an opportunity of observing the position of this critical point of the phasno-

nienon as on the recent occasion : and as the observations I took have enabled me to make a

comparison of the position of the Corona with the Magnetic Declination and Dip at the place of

observation more accurately than in any former instance that I am acquainted with, I have thought

them worthy, with their results, of being formally submitted to the notice of the Society.

The observations were made partly by estimation of the position of the Corona with reference

to neighbouring stars, and partly by means of a small altitude and azimuth instrument, which was

constructed by Mr. Simms (Fleet Street, London), according to my directions, expressly for taking

observations of this kind. I call the instrument a Meteoroscope. It has a graduated azimuth

circle of four inches radius, and a portion of an altitude circle of the same radius graduated from

0° to 120°. An arm somewhat longer than the radius of the altitude circle, and turning about a

horizontal axis passing through the centre of the graduation of that circle, carries a bar eighteen

inches long, by means of which the observations are taken. To that extremity of the bar which

is turned towards the object observed, a rectangular piece is attached having one side horizontal,

and consequently the other movable in a vertical plane. The other end carries a plate in which

is made an eye-let hole one-sixth of an inch in diameter. An altitude is taken by observing through

the eye-let hole the coincidence of the object with the horizontal side of the rectangular piece, and

an azimuth by observing its coincidence with the vertical side. Both are taken simultaneously by

observing the coincidence with the angular point. The bar is set obliquely on the arm which

carries it, for the purpose of observing altitudes a few degrees beyond the zenith, for wliich purpose

also the graduation of the altitude circle extends beyond 90". When the object is near the zenith,

for convenience it is looked at through another eye-let hole made in a small plate standing at right-

angles to the larger plate, the object being seen by reflexion at a small niirror, the plane of which

is inclined at an angle of 4.0" to the direction of the bar. In this case the other angular point of

the rectangular piece is brought into coincidence with the object, care iiaviiig been taken by the

maker of the instrument that the direction of collimation should in tiie two cases be tiie same. The

bar and altitude circle may be readily turned together about the vertical axis, and the bar separately

about its horizontal axis of motion, and both may be quickly clamped as soon as the observation is

taken. The graduations are read off by verniers to single minutes. The instnuneiit has 11 tripod

stand, furnished with adjusting screws for the purpose of |ilacing the axis of nioliou vertical by

means of a small spirit-level, which is carried round witii the vertical circle. Tlie feet of the

screws rest in three angular grooves formed each by two plane faces, i)y applying the feet to which,

the instrument is instantly in position, the vertical adjustment of the axis having been ]>reviously

Vol.. VIII. I'aut V. 4 L
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made. It is proper on each occasion of using it to determine the index errors by observations

of stars.

I proceed now to give the observations just as they were set down in the memorandum-book,

inchisive of those for index errors, premising only that the instrumental azimuths are reckoned

from East towards Soiith, and that the noted times were taken from a solar chronometer, which by

a comparison with the transit clock immediately after the observations was found to be 1". 52'.

fast on Greenwich Mean Time.

(1) S*". 49". 0^ Corona 1" South and 1° East of /3 Andromedae.

(2) 8.51 .0 1;^" South and f
(3) 8.55 .0 1° South and J"
(4) 9- 1-40 2l° South and l^"

(5) 9. 4.25 3" South and 2°

(6) 9. 9 . Altitude of Corona by Meteoroscope 68". u' Azimuth 43". 44'

(7) 9.10.23 /3 Andromeda; 73.15 59.58

(8) 9.13.15 Corona 67- 4 37.56

(9) 9.19.20 Corona 71.47 42.28

(10) 9,29.12 /3 Andromedae 72.20 77-10

(11) 9.32. Corona l" South, and i" East of (i Trianguli.

(12) 9.35.15 Altitude of Corona by Meteoroscope 69 . 20 Azimuth 37.24

(13) 9.44.10 Corona 68.55 41.21

(14) 9.49.40 /BAndromedas 71.20 84.47

(15) 9.56. Corona 2" South, and 1^° East of ji Trianguli

(16) 10.6.0 2" South, and 3"

(17) 10.10.11 Altitude of Corona by Meteoroscope 69.28 Azimuth 42.12

(18) 10.14.36 /3 Trianguli 72. 5 65.30

(19) 10.20.30 Corona 69.30 51.

(20) 10.23. 5 Corona 70.28 40.

(21) 11. 6.20 Corona 71. 62 . .S5

(22) 11.10.56 Corona 69.5 55.30

(23) 11.12.50 Corona 70.55 52. 4

(24) 11.14.10 Corona 69.50- 47. 6

(25) 11 .16. The star ^ Persei appears in the middle of the Corona.

(26) 11.17.30 Altitude of Corona by Meteoroscope 67.30 Azimuth 49.40

r ^Persei 69. 10 46.14
^''

I The Corona seemed coincident with ^ Persei

(28) 11.26. Altitude of Corona by Meteoroscope 70.10 Azimuth 43. 6

Of the above observations Nos. (19) and (21) were marked 'doubtful.' Nos. (23) and (26)

were reckoned good.

The position of the Corona was calculated from these observations in the following manner.

When the observation was made by reference to a star, from the noted time corrected for error of

the chronometer, and the known longitude of the place of observation (viz. 23',5 East), the sidereal

time was calculated in the usual way, and then from the known Right Ascension of the Star, the

hour angle (A) Eastward was deduced. The co-latitude of the Observatory (viz. 37° . 47') being

represented by X, and ^ being the North Polar distance of the Star, its distance (m) from the

meridian, and its distance («) from the astronomical zenith, were calculated by the following

formula;

:

sin TO = sin ^ sin h, tan (p = tan o cos /(, cos z = cos (0 - X) cos in.

Let ,u and T represent the estimated distances of the Corona from the star Eastward and South-
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ward. Since these were made in the directions of the arcs m and z, the distance {M) of the
Corona from the meridian is m + ju, and its distance (Z) from the zenith is 2 + ^.

When the Meteoroscope was used, the recorded altitude J, and azimuth B from East
towards South, were first corrected for index error by a and /3 respectively, and Z and M were
then obtained by the formulas,

Z = 90''-(A + a), sin 31 = cos (S + /3) sin Z.

The index corrections were deduced from Nos. (7), (10), (14.), (IS), and (27). The calculated
altitudes and azimuths of the stars, compared with the instrumental readings, gave the following
values of a and /3.

No. (a) (13)

(7) -40' +27°. 8'

(10) - 2 +2.S. 1

(14) + 5 +28.29
(18) + 9 +25. 6

(27) - 53 +22.48

Mean - 16 + 25 . 18

Respecting these values it is to be remarked, that the discordances between them are much
greater than might have been expected. From subsequent trials of the Meteoroscope I have
found that, without taking particular care in making the observation, the error in an arc of a

great circle may amount to 12'. Whether the discordances above arose from unsteadiness in the

support, the observations being made on the roof of a small out-building, on which several persons

were standing ; or from incautiously bending the collimating bar in the act of observing ; or, in

short, from inexperience in the use of the instrument, this being the first occasion of my using it

in a series of observations, I am unable to say. On replacing the instrument (Nov. 24), I ob-

tained from much more consistent values, the mean results - 5l' and + 23" . 34'. I have, how-

ever, considered it best to adopt the first determinations.

I have now to explain in what manner the point of the heavens to which the South end of the

Dipping Needle was directed, which for the sake of brevity I call the Magnetic Zenith, was ascer-

tained. As we have no Magnetic Observatory here, this was done inferentially. I have assumed

that for any place in England, Scotland, and Ireland, the Westerly Declination of the needle (F) and

the Dip (D) may be given approximately by the formulae,

V = V„ + a\ + bl

D = D„ + a'\ + b'l,

K„ and D^ being the Declination and Dip at the Greenwich Observatory, X the Longitude of the place

Westward of Greenwich, I the excess of its Latitude above that of Greenwich, and o, h, a, h' certain

constants, which may be calculated by knowing the simultaneous values of V and D at Greenwich

and two other positions. From the published results of magnetic observations made in the year 1843

at Greenwich, and at the Observatory of Sir Thomas M. Brisbane (Makerstoun) ; and from a com-

munication, kindly made to me by Professor Lloyd, of the mean Declination at Dublin for the same

year as determined by 3^)00 observations, (viz. 27" . 9', 87,) and the Dip at Dublin as determined by

an elaborate scries of observations in September of 1843, (viz. 70". 4l',3), I have deduced very accu-

rate contemporaneous values of V and I), which with the Latitudes and Longitudes of the three

positions are here subjoined.
Lung. West.

0"'.0",0 ..

10 . 3,5 ..

25 .4,0 ..

From these data, were derived the following formulic, which probably may be applied at the present

time and for several years to come, with considerable accuracy to any place in the United Kingdom:

4 L 2
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V - Vo = 0,142518X + 0,159548^

D - Do= 0,0277i3\ + 0,513523Z.

These formulce give T- F„ and D-Da in minutes, X being expressed in seconds of time, and I

in minutes.

For the Cambridge Observatory, V - ¥„= + 3',7, and D - Z>o = + 22',0.

In order to make the proposed comparison of the position of the Corona with the Magnetic Zenith,

it is now only necessary to obtain the Magnetic Declination and Dip at the respective times of obser-

vation. These I have derived from observations made at the Greenwich Observatory during the

prevalence of the Aurora, which, on my preferring a request, were promptly forwarded to me with

all the requisite data, by James Glaisher, Esq., who is at the head of the Magnetical Department in

that Institution, and which the Astronomer Royal has allowed me to publish with this communica-
tion. For this favour 1 beg here to express my thanks. The observations are given at length in

Tables I, II, and III, at the end of this Paper, as well because they are used in the calculations, as

because they present so striking an instance of great magnetic disturbances occurring simultaneously
with an extraordinary display of the Aurora Borealis, that the connexion in some way of the two
kinds of phaenomena must be regarded as a physical fact.

The Westerly Declinations at Cambridge at the times of observation were inferred from those at

Greenwich at the same times by merely applying the value of V- F„ already obtained, viz. + 3',7.

The latter were deduced from the declinations recorded in Table I. by simple interpolation, it being
understood that the motion of the magnet was uniform in the intervals between the times there given.

The Greenwich observations were made by the admirable photographic process, which has been
brought to so great perfection by C. Brooke, Esq., of St. John's College in tliis University. Between
9 .

25" and g*". 44", the disturbance was so great that the magnet passed the limits of the photo-
graphic paper. The same thing took place in the contrary direction between lo''. 10" and lo". 40".

As Mr. Glaisher states that the motions at these times were smooth and without checks, I have
ventured to deduce the maximum elongation between 9K 25" and 9^ 44" on the supposition that the

magnet continued to move after g*". 25" in the same manner as from 9". 20" to 9". 25", till it attained

the maximum, and then that it immediately returned by the same motion that it had from 9". 44" to
10''. 10". The maximum elongation between lo"". 10" and 10''. 40" was inferred on the same principle.

Mr. Glaisher furnished me with the following values of the Dip at Greenwich :

Dip.

1848. Nov. 12. 21" 68". 54',0

16". 3 (is . 56,3

19. 21 68.53,7
23. 3 68 . 55,5

Hence it is inferred that the Dip, if undisturbed, would have been 68". 55',0 during the Aurora.
The disturbed Dip was calculated in the manner I am about to explain. In the Greenwich obser-
vations (Tables II. and III.), the readings for the horizontal force variations are given in terms of the
whole horizontal force ; but the vertical force readings are given in divisions of the scale, which
require to be converted into parts of the whole vertical force. The factor for this purpose is 0,00067,
which is the value of one division.

The scale reading of the vertical force magnet at Nov. 17, O*", was 21'''''-,7, and at Nov. 18,
0", 21''"',5, at which times there appears to have been no disturbance. The undisturbed read-
ing is consequently assumed to be 21''",6.

The reading of the horizontal force magnet in parts of the whole horizontal force, was 0,1099
at November 17, 0^ and 0,1074, at November 18, o", the latter of which Mr. Glaisher states to be
somewhat below the average value for the season and time of day. The undisturbed reading
during the Aurora is assumed to be the mean between those two readings, viz. 0,1086.
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The variation of horizontal force was not registered from lo"" . 2™ to IS*", the disturbance carry-

ing the magnet out of the limits of the photographic paper. From 12'' the observations were made
independently of the self-registering process. I have assumed that from lo"" .

2" to 12'" the dis-

turbance followed the same law as from 12". Sg" to 14''.5'", when the phasnomenon reappeared in

a similar phase, and accordingly have taken 0,0890 to be the mean horizontal force reading in the

former interval.

Let now X and Y be the undisturbed horizontal and vertical forces respectively, X', V their

disturbed values at any given time, and ,r, y, the horizontal and vertical force readings at that time,

deduced by interpolation from Tables II. and III, the former divided by 10,000. Then

X'= X- (0,108(5 - a?) X, V'= Y- (21,6 - y) 0,00067 Y.

Y' .
Y

,

Hence since—-,= tan of the actual Dip, and -— = tan 68". £5 , it is readily shewn thatX X
the actual Dip = 70°. 43',6 - [3,06215] x + [9,88822] y,

the numbers in brackets being the Logs of the coefficients of a: and y. The Dip at Cambridge is

assumed to be the value given by this formula, increased by D-D,,, or + 22',0.

From the Declination ( V) and Dip (Z>), the distance Z' of the Magnetic Zenith from the

Astronomical Zenith, and its distance M' from the meridian are given by the expressions,

Z'= 90"- D, sin M'= sin V cos D.

The following are the results of the calculations which have been now explained.

Zen. Dist. Zen. Dist. ol' Z — Z'

I

Greenwich
Mean Time ^ ^ nr .^ v -.u

1W8. Nov.17. of Corona. Mag=. Zenith.

8\ 47°',1 is". 59' 20". 35' - l". 36'

49,1 19 . 10 20 . 39 - 1 . 29

53,1 18 . 44 20 . 38 - 1 . 54

8 . 59,8 20 . 3 20 . 37 - . 34

9 . 2,6 20 . 30 20 . 36 -0.6
7,1 22 . 5 20 . ,38 + 1 . 27

11.4 23 . 12 20. 36 + 2 . 36

17.5 18 . 29 20. 42 - 2 . 13

30,1 20 . 27 20 . 26 +0.1
33,4 20 . 56 20 . 26 -H . 30

42,3 21 . 21 20 . 32 + . 49

9 . 54,1 20 . 14 20 . 42 - . 28

10 . 4,1 20. 20 . 34 - . 34

8,3 20 . 48 20 . 28 H- . 20

18.6 20. 46 20 . .30 +0. 16

10.21,2 19.48 20.31 -0.43
11 . \,(\ (\t)

. Hi .20 . 23 -1.7
t),\ 21 . II 20 . 24 + . 47

11.0 19.21 20 . 24 -1.3
12,3 20. 26 20. 24 +0.2
14.1 22 . 7 20 . 24 + 1 . 43

1 5,6 22 . 46 20 . 23 + 2 . 23

20,

1

21 . 4.-i 20. 24 + 1 . 19

21 .6 20 . 24 + . 42

ist. ofCorona
rom Merid".
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The mode of observing by reference to a star is indicated by the letter s, and that by the Meteor-

oscope by the letter m. In taking the means, the observation at ll''. 4'",6 is excluded, the Corona

at that time being seen very obscurely after an interval of total disappearance. The great westerly

deviation given by that observation is, however, supported by the two that follow.

The observations by stars taken separately, give -0° . 2l',8 for the value of Z-Z', and -1"
. 50',7

for that of M-M'. The observations by the Meteoroscope give + 23',9 for the former, and

- 0" . 47',5 for the latter.

The discordances in the positions of the Corona deduced from observation, are no doubt partly

owing to errors of estimation, or instrumental errors, and partly to the extreme difficulty of fixing

with precision on the centre of convergence of the Auroral streamers. But if these were the only

sources of discordance the distances from the zenith and from the meridian would be equally aflPected,

whereas the latter appear to be the more discordant. The fact seems to be, that the centre of the

Corona is contimtally shifthig its position. This may be owing to several causes. The formation

of the Corona is merely an effect of perspective, the apparent convergence of the streamers being due

to the immense height to which they rise. If the streamers were all parallel to a fixed straight line,

they would apparently converge to a fixed point. But the foregoing discussion, and facts that will

be hereafter mentioned, shew that they take, at least very approximately, the direction of the dipping

needle at the locality from which they ascend. Consequently the point of convergence will be

different for streamers, rising from different quarters. Again, the directions of the streamers may

vary by the same causes which produce the disturbances of the position of the dipping needle : and

this change of direction would of course alter the position of the Corona. Lastly, the course of the

streamers may not be rectilinear. The foregoing comparison appears to prove that the Corona is

decidedly more Westivard than the Magnetic Zenith, being less distant from the meridian than the

latter by 1° . l-i'. This is accounted for by saying that the streamers on rising from the Earth are

bent in a westerly direction. The apparent point of convergence would thus depend on the height

to which they rise, and would be continually varying. It is quite possible that streamers rising from

different quarters and to different heights, might apparently cross each other, and so form a fictitious

point of convergence. This explanation will, I think, sufficiently account for the discordances

observable in the foregoing results, and will serve also to shew why they exhibit no decided agree-

ment between the changes of position of the Corona and the changes of position of the Magnetic

Zenith. Such agreement may very well be veiled by the causes just mentioned. It seems to me,

however, that a general accordance of this nature is perceptible. As when the needle was most dis-

turbed, a large Easterly deviation of the South End was succeeded by a large Westerly deviation,

so a large deviation of the Corona to the East of its mean position was succeeded by a large Westerly

deviation : and as the changes of M' are more marked than those of Z , so the changes of M are

greater those of Z.

For the purpose of farther illustrating the subject, I propose to add a discussion of a few

observations of the position of the Corona, made in the instance before us, and in one or two

others, in different parts of England. I have selected those of which the data seemed to be most

precise.

Mr. Boreham of Haverhill informed me by letter that he found the Right Ascension of the

Corona of the Aurora Borealis of Nov. 17, to be l''. 58"". 3'; and its declination + 3l". 18', at g". 15""

Greenwich mean time, the latitude of the place of observation being 52°. 5', and the longitude

1"". 46'. East. Hence I find by calculating as already described,

Z Z' z - z M M' M-M
22°. 56' 20°. 4.'.' + 2°. 11' 11". 18' 7°. 38' + 3°. 40'

The differences in this instance are large, but not very different from those resulting from the

observation made at Cambridge at y''. 11™, 4.
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An anonymous observer at Darlington, states in the Durham Advertiser of Nov. 24, 1848, that

at Nov. 17, U*". 27™, which I suppose to be Darlington time, ^ Persei was exactly in the centre of
the Corona. The latitude of Darlington is 54°. 32', and the longitude 6". 12^ West. Hence I have
deduced.

z
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streamers forming the Corona did not meet in a point, but left a circular dark space, which seemed

to be constant in its position, and the centre of which it was easy to fix upon. On this account I

consider the above results, though derived from a single observation, to be worthy of confidence.

From a consideration of all the results derived from the foregoing discussion of observations made

on different occasions and at different places, the following conclusions seem to be established :

—

First, that the Corona of an Aurora Borealis is formed near the Magnetic Zenith of the place of

observation.

Secondly, that the observations, while they indicate no decided difference of altitude between the

two points, shew with great probability that the Corona is situated between 1° and 2" more to the

West than the Magnetic Zenith.

The Aurora Borealis which gave rise to the present communication, was more remarkable in its

features and more extensively seen than any that have occurred for a long period, having been

visible, as appears by authentic accounts, in France, Italy, Spain, Portugal, and the Azores. I have

therefore thought it would not be out of place to add here a description of it which I derived from

memoranda made very soon after its occurrence, and which was communicated to the Cambridge

Chronicle of Nov. 25, 1848.

" Shortly after eight o'clock on the evening of Friday, Nov. 17, my attention was called to an

unusual appearance of light stretching from N. to W., which gave indication of a coming Aurora.

There was no arch, but the light was diffused and of considerable brilliancy. The maximum of the

brightness was at a position a few degrees N. of W., at an altitude of about 20", which appeared to be

a stationary centre of luminosity during the whole of the display. The diffused light increased by

degrees in intensity, and spread upwards till it reached the Zenith ; but during this time there were

no streamers. The principal features of the phienomenon were, frequent pulsations, and sudden

appearances and disappearances of streaks and large patches of light, so much resembling white

clouds that but for their rapid changes of form and brightness, it would have been difficult to dis-

tinguish them from the latter. The streaks darted in various quarters and different directions,

waning as quickly as they formed, and auroral clouds of all imaginable shapes were continually

bursting forth and vanishing, so as to present a spectacle of the utmost bizarrerie, till at length

greater order began to prevail. Streamers of some degree of definiteness arose, and in a short time

surrounded the magnetic Zenith. I then first observed the appearance of a corona or central point

towards which the streamers converged, and estimated its position at S*". 47™ Greenwich mean time, to

be one degree South and half a degree East of /3 Androniedie.

" A large red patch due West and rising about 20", was observed to retain its position from s''. 35"'

to s''. 51™. At 8h. 56" a broad red band stretched from the Corona through Capella, and in a few

seconds changed to an auroral cloud of great brilliancy having Capella at its centre. At s"". 58" an

extraordinary red band of irregular width was formed extending across the heavens from a little S. of

W. to N.E. These two azimuths were the prevailing positions of the red light during the whole of

the phaenomenon. The band seemed to be a kind of junction of two red clouds. Its general course

was through a and /3 Andromedae to the Corona, and from thence its axis passed through Capella.

" At g"". 15" the phenomenon was at its greatest height of beauty and perfection. Streamers

reached the Corona or Magnetic Zenith from all points of the Compass. The toiit ensemble was a

canopy of drapery, having the Corona for the point of divergence of the folds, and extending rather

more Northward than Southward of the Astronomical Zenith ; while its boundary all round was con

siderably elevated above the horizon. The outline was very irregular, but sharply defined, giving

irresistibly the idea of the lower boundary of a suspended curtain. This feature was in greatest per-

fection towards the N.W., where a broad space appeared so dark by contrast with the bright curtain

above it, that it might have been mistaken for a cloud had not stars shone through it. The predomi-

nating colour of the streamers was white, but about W. S. W. and N. E., the peculiar ruddy tint of

the Aurora was remarkably intense, and in other quarters the streamers were tinged with green and
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blue. Altogether, both as to form and colour, the spectacle at this time was so singular and so beau-

tiful, that those who witnessed it here could not forbear giving repeated expression to their feelings of

wonder and delight.

" The heavens were then partially covered with light clouds, through which the brightness of the

Aurora seemed to penetrate. At 9*'. 58", a red patch covered the constellation of Orion. At lo'',

when the clouds had dispersed, the general light resembled that of a night in midsummer, or the dawn
of morning. Birds were heard to chirp in several quarters.

"At lO*". IS", I saw a meteor, as bright as a star of the second magnitude, move slowly in a

westerly direction, and disappear at an altitude of about 53°, and at an azimuth of about 28" from

W. towards S. Flashes, supposed to be of lightning, were twice noticed. One occurred in the S. W. at

lO*" . 23™. At this time the Aurora had much declined in brightness ; but at 1
1*" it broke out afresh,

and the Corona was again formed, not however with the same distinctness as before. At 11*'. 18", a

meteor, equal in brightness to a star of the second magnitude, was seen to cross the heavens slowly

from E. to W. N. W., leaving a train behind it. Shortly after II'' . Si" the Corona became invisible,

and the Aurora generally declined. I saw it, however, again between l*"" and IS*" in great brilliancy :

a tolerably regular arch was formed in the N. W., from which very definite streamers rose, but did

not reach the zenith : the red light also re-appeared in the West."

With reference to the above particulars I have two remarks to make. First, having in repeated

instances of the Aurora observed the red light to prevail in the same azimuths, I made a comparison

of the azimuths noted here in the instance of November 17 with statements respecting the prevailing

direction of the red light given in descriptions of the same phaenomenon as seen at other places, and

it seems to me probable that the red auroral clouds are formed over the Atlantic and German oceans.

Secondly, the occurrence of meteors during an Aurora has been so frequently remarked, that one can

hardly avoid suspecting some connexion between the two kinds of phaenomenon.

Vol. VIII. Taut V. i M
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The following are the Tables of Magnetic Observations referred to in the foregoing com-

munication.

Table I. The Westerly Declinations of the Declination Magnet about the time of the Aurora
Borealis of November 17, 1848, as observed at the Royal Observatory of Greenwich.

Greenwich
Mean Time,

1848.
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Table II. Readings of the Horizontal Force Magnet in parts of the whole horizontal force,

about the time of the Aurora Borealis of November 17, 1848, as observed at the Royal Observatory

of Greenwich, the whole force being reckoned 10,000, and increasing numbers denoting an increase

of force.

Greenwich
.Mean Time,

1848.
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" At is"" . 45™ the force was at its lowest value, being at that time below its usual value by about

one twenty-fifth part of the whole horizontal force. The force at l**" . 40° was but little above the

minimum, after which it increased very gradually till about noon of November 18 it nearly reached

the average value for the season and time of day."

Table III. Approximate scale divisions of the Vertical Force Magnet about the time of the

Aurora Borealis of November 17, 1848, as observed at the Royal Observatory of Greenwich.

Increasing readings denote an increase of force. One scale division is equal to the fractional

part 0,00067 of the whole vertical force.

Greenwich
Mean Time,

1848.



XLVI. On Clock Escapements. By Edmund Beckett Denison, Esq., M.A.,

of Trinity College, Cambridge.

[Read November 27, 1848.]

In the year 1827 the present Astronomer Royal wrote a paper in the Cambridge Phil. Trans.,

Vol. III. p. 105, "On the Disturbances of Pendulums and the Theory of Escapements," in which he

investigated the effects produced on a free pendulum by connecting it with each of the three classes

of escapements ; and from the amount of the disturbance in each case, he inferred the relative merits

of the escapements. He added : " The Theory of Escapements is by no means complete, but I hope

it will be found that the principal points have been touched on, and that enough has been said to

enable any one else to pursue the subject as far as he may wish."

I know of no work in which the subject has been pursued further ; and therefore I propose to

exhibit a few of the results which are to be obtained by following up Mr. Airy's calculations, and

which I arrived at in investigating the merits of an improved remontoir or gravity escapement, in-

vented and constructed by a friend of mine*, avoiding certain mechanical objections to which such

escapements have hitherto been liable; and it will be seen, from the following remarks, that they may

be made, by a particular arrangement of the parts, free from the mathematical objection which Mr.

Airy says renders them almost as bad as the common recoil escapement. Mr. Bloxam has had some

communication respecting his clock with the Astronomer Royal ; and 1 shall be glad if he is thereby

induced to complete his Theory of Escapements. In the mean time the following remarks may be

of some use. I shall take the mathematical results, though not the practical conclusions, of Mr. Airy's

paper for granted, as they are sufficient for my purpose ; and his method of obtaining them may be

seen either in the volume referred to, or in Pratt's Mechanics, into which the substance of his paper

has been copied.

I shall presume that every one who is at all acquainted with clocks understands the construction

of the Dead Escapement, as it has superseded all others in clocks that are expected (as tile clock-

makers say) to perform correctly ; though it does not appear to be generally known from what the

accuracy of its performance really arises. I shall follow Mr. Airy in assuming the maintaining force

to be constant, although it is not quite so, since the inclination of the tooth of the escape-wheel to

the face of the pallet is greater at the end of the impulse than at the beginning, by nearly the angle

which the wheel moves through in one beat. Let /3 be the angle which the faces of the pallets make

with their dead or circular part ; then, since the tooth ought to be a tangent to the diad part, /3 will

also be the inclination of the tooth to the face of the pallet at the beginning of the impulse ; and we

shall assume it to remain the same throughout the impulse.

Let Pg be the moving force of the clock-weight referred to the extremity of the oscnpc-wheers

teeth : p the length of tlie pallet measured from the axis of suspension of the pendulum : M the

mass of the pendulum, and / its length : 9 its angle with the vertical. Then the equation of

motion is

say, (neglecting the moment of inertia of the whccK .iml puttin-; for sin as usual).

• J. M, Bloxiiiii, Eb(i,, of LincnIn'M Iiiii, Il(irriiitcr-nt- hnw.
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Then if a be the extreme value of 6, y the angle at which the impulse begins, and y on the

other side of zero at which it ends, Mr. Airy shews that A, the increase of the time of an oscil-

lation due to the escapement,

TTO

= ~-^ (7 + 7) (7 - 7) nearly,
-i 7r ct

if y and 7 are so small, that -^ may be neglected.
a

Mr. Airy remarks :
" This is a quantity extremely minute ; for 7 and 7' are generally small,

and 7' - 7 may be made almost as small as we please. It cannot, however, be made absolutely ;

for the wheel must be so adapted to the pallets, that when it is disengaged from one it may strike

the other not on the acting surface, but a little above it ; therefore 7' must be greater than 7 ; but

the difference may be made so small that the effect on the clock's rate shall be almost impercep-

tible. This escapement therefore approaches nearly to absolute perfection ; and in this respect theory

and practice are in exact agreement."

Since A is only the increase in the time of one vibration, and there are 86,400 vibrations in a

day, (assuming the clock to have a second's pendulum,) and a second a day is a large error, it is

worth while to see what A really is. If fVg be the clock-weight, and h its fall in a day ; then, since

p (^ + y') tan /3 is the thickness of the pallets, or the drop of a tooth in one beat,

Pp Wh
_(7 + 7') tan /3, or ,^ (7 + 7') =

W^ei^o'

and this quantity (which we may call F), will be the same for all clocks of the same Hind, whatever

/3 or 7 + 7' may be ; and

Now a weight of 2lbs. falling 9 inches a day will keep a well-made clock of this kind vibrating

2" on each side of zero, ^s 39 inches, and M is usually about Ulbs. Therefore (allowing nothing

for the friction of the train),

2x9 .033

^ =
14. >i 39-< 86400 86400

.005 'y — 'v .

and 86400 A = smce a = 2° = .035.

.001 a

I understand from clockmakers that 7' - 7 can hardly be made less than 20', and is seldom so

little; .-.
"^ ~'^

=-, and 86400 A = .8 of a second, nearly. This is the amount of A in a day
a 6

But it is not the error of the clock, being only the difference between the rate of a free pendulum

and one disturbed by this escapement. The error, or, as it is called, the " rate,^'' of the clock,

with the sign changed from what it would naturally have, is the variation of A, which depends

on the variation of a and of F, according to the friction of the train and the pallets.

Differentiating A with regard both to a and F,
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dA='^—'(dF
3F(y'- 7)

da.

or the "daily rate" = - .8= (^ -— ]

.

We see, therefore, that the real merit of this escapement arises from the two causes of error tending
to counteract each other ; for, though no exact relation can be determined between the chano-es of
the arc and of the force, since they depend on the changes in the friction of different parts of the
clock, yet it is easy to see that a will diminish when F does, under the influence of increasing

friction as the clock gets dirty. It appears that — is not generally so much as and
a 3 F ^

therefore the clock gains as the arc diminishes. Moreover, the circular error, which is never com-
pletely corrected by the pendulum-spring, I understand, tends to make the clock gain as the arc

diminishes ; since d A for the circular error =
, as may be seen from any book on pendulums.

I have in one instance seen the contrary effect take place, where a church-clock, soon after it was
put up, spontaneously increased its arc by more than a degree, from the pallets polishing themselves

more perfectly than had been done by the maker, and at the same time it gained considerably, as

we see it ought to have done. The tendency to gain as the arc diminishes has led to the practice

of making turret-clocks, which are liable to great changes both in the force and the arc, with a

slight recoil in the place of the dead part of the pallets, as the effect of the recoil is to diminish

the time as the arc increases.

The principle of nearly all the gravity or remontoir escapements is this : There are two small

arms three or four inches long on each side of the pendulum suspended separately on an axis coinci-

dent with that of the pendulum and moving in the same plane with it : these arms carry a small

weight at their lower ends, and also a detent to stop a tooth of the escape-wheel, and a pallet of some
kind by means of which the arms are alternately raised by the wheel at every beat. The pendulum
in ascending, at an angle y from the vertical, impinges on one of the arms, unlocks the wheel and
carries the arm with it as far as it swings ; the arm then descends with the pendulum, not only to y,
but farther to an angle /3, less than y. The maintaining force of the arms therefore acts on the

pendulum through y— fi, and the work which the clock has to do is raising the arms from /3 to -y.

This is the way in which these escapements have been usually made, I suppose with the view of keep-

ing the pendulum free during as much of its arc as possible ; but we shall see that it is much better

to make /3 = - 7, or one arm to be taken up by the pendulum just when the other is left ; and as

it is also more simple, I shall consider that case first.

In order to find the errors of such an escapement, let p be the length of the arms supposed to

be without weight ; Pg the weight they carry at their lower end ; S the angle which the arm in con-

tact makes with the pendulum when it is vertical. Then the equation of motion will be

df- I

[e^^il^o)]

1 +
pj/

MP

= 0.

We may, in considering the error in the going of the clock, neglect the denominator I +
Pf
Ml"'

not

only because it very nearly = I, but because it only causes a permanent change in tiie effective

• It muBt be remembered that experiments of altering the

dock'Weight, to find what cfi'cct in produred on the arc, do not

reprenciit what taken place in the elock naturally ; for when the

clock is left to itself the arc varies probably more from the varyinjj

friction and slate of the oil on the pullets than frutii the chunffc of

force in the train.
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length of the pendulum, since one of the arms is, in this form of escapement, always acting on the

pendulum. And expanding sin (^ + G) we may put 1 for cos 6, and 9 for sin 6 as before,

d-e gif Pp cos S\ ^ Pp sin ^)

which is of the form -— + - {mO + <p) = ;

/I e- w'
.-. if d) were = the time would = tt \/ , or for a second's pendulum ^ must = — = tt'" say,

' gm I m ^

which is a very little less than tt^ The only part of the force which produces an effect involving

the arc is tt'^c/), and it is a constant force. Therefore we may apply to it Mr. Airy's expression for

the increase of time due to such a force acting from a down to - -y ; and we have

and it is the same from - -y to the other extremity of the arc ; therefore for the whole oscillation

20 ,- •

vra

This is, in fact, Mr. Airy's result for a recoil escapement ; and if the pallets of a recoil escape-

ment were made of any regular form, so that we could separate the force into one part varying as the

arc and the other part constant, it would be the same thing as a gravity escapement, only with

much greater friction, and the important difference, that the force depends upon the train, whereas

in a gravity escapement it is independent, and therefore uniform. Mr. Airy proceeds to remark,

that " the differential coefficient of this quantity with respect to a is

2(p a' - 27' dA

Hence it appears that the vibrations are quicker " than they would be without the maintaining force

;

but if the arc be increased while the maintaining force remains the same, the vibrations are slower.

If while the arc remains the same the force be increased, the vibrations are quicker."

a d A
But something else appears also : viz. the important fact, that if 7 be made = —7^5 -j— = 0,

provided the force remains the same, as it does in a gravity escapement. And luckily this is a per-

fectly practicable value for 7, though it is larger than a clockmaker would probable make it

without knowing anything of this result ; for if a = 120', 7 will = .7 x 120' = 84', and a - y,

or the space in which the unlocking has to take place = 36', which with p = 4 or 5 inches will do

very well for a clock which is liable to such small changes of arc as these are. Therefore a gravity

escapement may be made, in which the error will be nothing for a small alteration of the arc ; and

in such an escapement there is no such variation in either force or friction as can cause any material

change in the arc.

In a recoil escapement we should have to differentiate A with respect both to a and <p ;

2(h(a'-2y' da ,
ddTi
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This is always negative ; for it cannot be + unless

J— IS <
;;

'- ,

da a" — y^

a

which is impossible, since (p always increases faster than a. Therefore the recoil escapement always

gains as the arc increases, as is well known ; and the cause of its infeiiority to either of the others

is evident.

But still we want to ascertain what the error of a gravity escapement with y of the proper value

will amount to, for some definite value of da, which the clock is not likely to exceed. Therefore we
must find the value of <p.

Now the work done by the clock-weight is raising the weight P through

p\cos {S — y) — cos (^ +y)\ '= ~P sin S sin y, 86400 times a day.

Then assuming W and p the same as before (though this clock evidently does not require the same

maintaining power as the dead escapement with its large amount of friction, I believe not half as

much),

2 Pp sin d sin -y = =— = ;
' 86400 86400

2 2Pp am S 4x9 .01

TT 3Ilir 7rl4 X 39 X 864OO7 864OO7

.-. 86400A = - ^-7-^ \\/a^ - y'\ = - 20 sec, if — be made = 2, and a = a"
a"7 7

= when y = a.

as a clockmaker would probably make it, in ignorance of the fact that — should = -^2 ;

a'
-^-2

. .012rfa a' - 27- 7- da
.: 86400^A = 5- ,^-= - = -012 \

—

7'

= .577 sec, for the last mentioned value of - , if da = 5'.

7
This then is the daily error of a gravity escapement made, as we may say, at random, for an increase

of the arc of 5', remembering that we have taken (p twice as large as it need be.

But if - is made of the proper magnitude, so as to make —- = 0, we must differentiate again,
a da

and put n' = 27^, in order to find the actual error for a small increase of « : tlien we have

d^'A .012 2 a
86400 —-— = ;

da' a'7 y/„^ - y*

, , ., .012 Qada da 1 „ ....
or tlie daily rate = . — = — of a second, it da = H .

7
Vol. VIII. Paut V. 4N
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And we see that the clock will gain if a be either increased or diminished from y \/2. Therefore if

the pendulum be adjusted when the clock is clean to vibrate 2' or s' more than y^/s, the arc may
diminish (and it will never spontaneously increase) as much as 5 or 6' with even a much less error

than that above deduced, which it is to be remembered was already too large in consequence of our

assuming the same maintaining force as in the dead escapement.

I have omitted in this calculation the effect of the impact of the pendulum against the arms, and

the small friction at unlocking, as I found in the calculations which I made retaining them, that

they only introduced a very small term of a lower order than (p.

There is another form of the gravity escapement, in which, instead of one arm being taken

up just as the other is left, the pendulum is free for some space in the middle of its arc. This

is evidently inferior to tiie other, for if the arc varies, the proportion between the time during

which the pendulum has only its own moment of inertia, and that during which it has that of

one of the arms also, will vary. And it will be seen that the inferiority is still greater from

another cause.

For if we put -y for the angle at which each arm is met by the pendulum, and
f3 for that to

which it descends ; then for the two portions of the arc in which the pendulum is acted on by the

arms, we may integrate the same expression as before, only from y to a, and down again to y3

;

dA _ _^ f g' - 2 /3^ g- - 2 7- 1

is no mamtaimng power ;

other values.



XLVII. (Supplement.) Ou Turret-Clock Remontoirs. By E. B. Denison, M.A.,

of Trinity College, Camhridge.

[Read Fehruary 26, 1849.]

I HAVE given above a general description of a remontoir escapement, and shewn its advantages

when properly made. But a remontoir apparatus may be introduced below the escape-wheel of a

common escapement, and will have the same effect as a remontoir escapement, except that it will

not remove the variable friction of the pallets, and will generally introduce some friction of its own.

For astronomical clocks, probably a remontoir escapement is the best construction. But there is

another class of clocks on which some attention has at last begun to be bestowed in this country,

and which, from the great length and weight that may be given to their pendulums, are capable,

when properly made, of excelling the performance of most astronomical clocks : I mean turret-

clocks. And these clocks require a remontoir more than all others, on account of the great in-

equality in the force of the train, arising from the varying friction of the very heavy machinery,

and the occasional exposure of the oil to a freezing temperature, and the action of the wind on

the hands.

Now any remontoir escapement, to satisfy the condition which I have shewn ought to be

satisfied by them, will require great accuracy in its construction, and will be too expensive to

have any chance of being generally adopted. Moreover, there are two other conditions which a

turret-clock must satisfy, in order to be of any use as a public regulator of other clocks; viz. that

of striking the first blow at exactly tiie proper second, and that of enabling people to distinguish

every twentieth or thirtieth second by a quick and visible motion of the minute-hand only at those

intervals. These conditions were laid down by the Astronomer-Royal for the Royal Exchange

Clock, and are also proposed by him for the great Clock for the Houses of Parliament. And these

conditions, especially the second of them, can only be satisfied by introducing a remontoir into the

train somewhere between the dial-work and the escapement. In the Exchange Clock a small weight

is raised by a wheel with internal teeth at every twentieth second : in some French turret-clocks

the weight is raised in a somewhat similar manner by two bevelled wheels : in a clock put u])

in Edinburgh in the last century, mentioned by Reid in his book on Clock-making, tl)ere was

an endless chain remontoir (which has also been attempted again in France) ; but it was removed

on account of the rapid wearing both of the chain and the letting-off pins. But for tliis, and

the variable friction of such a chain, that kind of remontoir is probably the most tempting, as

it is the most simple, of the gravity remontoirs. Both the other constructions are com])licated

and expensive, and have a good deal of friction of their own ; and though I think a dillcrent

kind (jf gravity remontoir may still be made, more simple and quite as effective (iviiich however

I shall not stay to describe), I am inclined to propo.se a spring remontoir as superior to any

gravity one, on account of the greater facility of its construction, and the unusual circumstance

of its being possible totally to exclude friction in its application ; and I may also mention, as an

incidental advantage, that it possesses a sort of natural coinjiensalion, the spring being stronger

in cold weather, when the oil on the pallets is less fluid, and tiiiivfore a grniter niaintiiining

force is required. I find indeed that a sj)ring remontoir is not mw, having been tiiiil in I'rance,

•1 N2
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but without success, from evident defects in its construction, the clock sometimes failing to wind

it up, which of course need no more happen with a spring than a gravity remontoir. It seems

also to have been applied to a peculiar kind of escapement ; which was trying two experiments

at once,—always an unscientific proceeding.

The obvious mode of applying a spring remontoir is to make the pinion of the escape-wheel

ride upon the axis instead of being fixed to it, and to connect the pinion and the wheel by a

spiral spring. Then if the pinion is turned (say) a quarter round by the train at intervals,

the wheel will be driven through a quarter of a revolution by the force of the spring only.

This is the plan I find described for the French spring remontoir, and a similar one has been

proposed by Mr. Airy, only to be wound up at every beat by means of a double escape-wheel and

pallets, and the principle of it was applied to a chronometer many years ago. But if nothing

more than this is done, the escape-wheel axis will have to turn within the pinion, as in a socket

with considerable pressure and friction upon it, which will probably be worse than the ordinary

friction of the train. The method I propose therefore is, to make the pinion (a brass lantern-

pinion, having the inner end of the spiral spring attached to it) ride upon a steel pin fixed to

the frame in the same line as the axis of the escape-wheel, and having in its end (or rather

in a piece of brass screwed on to its end) the pivot hole for the escape-wheel axis. The outer

end of the spring is to take hold of what I believe is called a dog (the shape of which will be

best described by the drawing), which screws on to the escape-wheel axis (the screw also acting

as a connterpoise), so that the tension of the spring can be adjusted to make the pendulum swing

as far as is required. It is evident that the wheel will thus be driven by the spring without

any friction.

The mode of letting off the train at intervals, adopted in the

Exchange Clock and the above-mentioned Clock by Reid, is by fixing

two or more sets of long teeth on spikes in two or more planes on the

broad rim of a wheel on the same axis as the wheel which drives the

escape-wheel pinion ; and notches are cut nearly half through the escape-

wheel axis over each set of spikes, which will let a spike pass through

whenever the corresponding notch is in its lowest position ; and the

driving wheel is then stopped by one of the other set of spikes coming
against the axis in a place where the corresponding notch is not yet in a

position to let that spike pass. The objection to this is, that the spikes

strike the axis with considerable force, and also press on it pretty heavily

when at rest, which causes additional friction and requires a stronger

maintaining power than would otherwise be necessary. The blow against

the axis it is already proposed to diminish by a fly, to restrain the

velocity of the train when it is let off; and a fly is now used in the

French remontoirs ; where however it is much less needed, for they are

let off by pins raising a lever just like a common striking part ; and it

does not signify how hard the lever is struck. But this plan also is

objectionable because of the friction and loss of power in the escape-

wheel in raising such a lever, which is much more than would be due
to the pressure of the same lever, if only exerting a dead pressure on the

axis until it slips through a notch.

I propose to use a fly, but more for the sake of diminishing the pres-

sure on the escape-wheel axis than of diminishing the velocity of the

train ; which is immaterial, except so far as it effects the escape-wheel.

The two letting-off pins are to be one at each end of the fly ; and if the

radius of the fly is equal to the diameter of the driving wheel, and the r j • ^ r^ , j•' ^ o ' End viev) of Cyltnder.
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fly makes twelve revolutions for one of the driving wheel, the fly-pins will only exert ^^th of the

pressure on the axis that the spikes on the driving wheel exert. The fly is very light and made of

thin brass, and is of itself a spring; and so its axis will not be stopped with a sudden shock, and

the impact of the end of the fly on the escape-wheel axis may be made inconsiderable. This axis

must be prolonged beyond the frame, to allow a fly of larger radius than the driving wheel to be

used, and must end in a cylinder about half an inch thick. If the remontoir is to be let off" every

thirty seconds, which is a better interval for observation than twenty, the projecting cylinder may
have two notches cut in it as before described, if the escape-wheel revolves in a minute. But
it is generally made to revolve in two minutes, in order to save a wheel in the train ; and in that

case the letting off may be done better than with a four-armed fly, by making two notches across the

end of the cylinder, at right angles to each other, one broad, and the other narrow and deeper, so

that a broad pin will pass through one of the notches only, and a narrow and long pin through the

other only. These pins are of course to be parallel to the axis of the fly ; and the fly pinion must

have half the number of leaves that the escape-wheel pinion has, whatever may be the number of

teeth of the driving wheel. A Church-clock is now making on this plan. I have added a

drawing of the material parts, placed in the way most convenient for shewing their action.

E. B. DENISON.



XLVIII. On the Formation of the Central Spot of Newton's Rings beyond the Critical

Angle. By G. G. Stokes, M.A., Fellow of PemhroJce College, Cambridge.

[Read December 11, 1848.]

When Newton's Rings are formed between the under surface of a prism and the upper surface

of a lens, or of another prism with a slightly convex face, there is no difficulty in increasing the angle

of incidence on the under surface of the first prism till it exceeds the critical angle. On viewing the

rings formed in this manner, it is found that they disappear on passing the critical angle, but that the

central black spot remains. The most obvious way of accounting for the formation of the spot under

these circumstances is, perhaps, to suppose that the forces which the material particles exert on the

ether extend to a small, but sensible distance from the surface of a refracting medium; so that in the

case under consideration the two pieces of glass are, in the immediate neighbourhood of the point of

contact, as good as a single uninterrupted medium, and therefore no reflection takes place at the

surfaces. This mode of explanation is however liable to one serious objection. So long as the angle

of incidence falls short of the critical angle, the central spot is perfectly explained, along with the rest

of the system of which it forms a part, by ordinary reflection and refraction. As the angle of inci-

dence gradually increases, passing through the critical angle, the appearance of the central spot changes

gradually, and but slightly. To account then for the existence of this spot by ordinary reflection

and refraction so long as the angle of incidence falls short of the critical angle, but by the finite

extent of the sphere of action of the molecular forces when the angle of incidence exceeds the critical

angle, would be to give a discontinuous expiation to a continuous phenomenon. If we adopt the

latter mode of explanation in the one case we must adopt it in the other, and thus separate the theory

of the central spot from that of the rings, which to all appearance belong to the same system; although

the admitted theory of the rings fully accounts likewise for the existence of the spot, and not only for

its existence, but also for some remarkable modifications which it undergoes in certain circumstances*.

Accordingly the existence of the central spot beyond the critical angle has been attributed by

Dr. Lloyd, without hesitation, to the disturbance in the second medium which takes the place of that

which, when the angle of incidence is less than the critical angle, constitutes the refracted light
-f-.

The expression for the intensity of the light, whether reflected or transmitted, has not however been

hitherto given, so far as I am aware. The object of the present paper is to supply this deficiency.

In explaining on dynamical principles the total internal reflection of light, mathematicians have

been led to an expression for the disturbance in the second medium involving an exponential, which

contains in its index the perpendicular distance of the point considered from the surface. It follows

from this expression that the disturbance is insensible at the distance of a small multiple of the

lenn-th of a wave from the surface. This circumstance is all that need be attended to, so far as the

refracted light is concerned, in explaining total internal reflection ; but in considering the theory of

the central spot in Newton's Rings, it is precisely the superficial disturbance just mentioned that must

be taken into account. In the present paper I have not adopted any special dynamical theory : I

have preferred deducing my results from Fresnel's formulte for the intensities of reflected and re-

• I allude especially to the phenomena described by Mr. Airy

in a paper printed in the fourth Volume of the Cambridge Philoso-

phical Transactions, p. 409.

t Report on the present state of Physical Optics. Reports of

the British Association, Vol. ill. p. 310.
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fracted polarized light, which in the case considered became imaginary, interpreting these imaginary

expressions, as has been done by Professor O'Brien*, in the way in which general dynamical con-

siderations show that they ought to be interpreted.

By means of these expressions, it is easy to calculate the intensity of the central spot. I have

only considered the case in which the first and third media are of the same nature : the more general

case does not seem to be of any particular interest. Some conclusions follow from the expression

for the intensity, relative to a slight tinge of colour about the edge of the spot, and to a difference in

the size of the spot ascending as it is seen by light polarized in, or by light polarized perpendicularly

to the plane of incidence, which agree with experiment.

1. Let a plane wave of light be incident, either externally or internally, on the surface of an

ordinary refracting medium, suppose glass. Regard the surface as plane, and take it for the plane

xy ; and refer the media to the i-ectangular axes of w, y, z, the positive part of the latter being

situated in the second medium, or that into which the refraction takes place. Let /, m, n be the

cosines of the angles at which the normal to the incident wave, measured in the direction of

propagation, is inclined to the axes; so that ra = if we take, as we are at liberty to do, the axis

of y parallel to the trace of the incident wave on the reflecting surface. Let V, F, V denote the

incident, reflected, and refracted vibrations, estimated either by displacements or by velocities, it

does not signify which ; and let a, a , a denote the coefficients of vibration. Then we have the

following possible system of vibrations :

V = a cos — (vt — Ix — nz).

F= a^cos— {vt - Iw + nz),

V = a cos— (v t — I X - n z).

{A).

In these expressions u, u' are the velocities of propagation, and X, X' the lengths of wave, in the

first and second media; so that «, v , and the velocity of propagation in vacuum, are proportional

to X, X', and the length of wave in vacuum : H is the sine, and n the cosine of the angle of incidence,

I' the sine, and ri the cosine of the angle of refraction, these quantities being connected by

the equations

- = -, n = '\/l-f, n = y/l - I'-. (1).
V V

2. The system of vibrations (A) is supposed to satisfy certain linear differential equations of

motion belonging to the two media, and likewise certain linear equations of condition at the surface of

separation, for which z = o. These equations lead to certain relations between a, a., and a', by virtue

of which the ratios of a^ and a' to a are certain functions of /, v, and v, and it might be also

of X. The equations, being .satisfied identically, will continue to be satisfied when I' becomes

greater than 1, and con.sequently n imaginary, which may happen, provided v > v ; but the

interpretation before given to the equations (A) and (l) fails.

When n becomes imaginary, and equal to i/\/- i, v being equal to y/l'' - I, z, instead of

appearing under a circular function in the third of equations (A), appears in one of the exponentials

«**"'-,
A;' being equal to ^ • By changing the sign of \/- 1 we should get a second system

X

of equations (A), .satisfying, like tlie first system, all the equations of the problem ; and we should

Cambridge PUtoiopMcal Tramactioim , Vol. viii. p. JO
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get two new systems by writing vt + — ior vt. By combining these four systems by addition and
4

subtraction, which is allowable on account of the linearity of our equations, we should be able to get

rid of the imaginary quantities, and likewise of the exponential e*'"', which does not correspond to

the problem, inasmuch as it relates to a disturbance which increases indefinitely in going from the

surface of separation into the second medium, and which could only be produced by a disturbing

cause existing in the second medium, whereas none such is supposed to exist.

3. The analytical process will be a good deal simplified by replacing the expressions (A) by

2ir
the following symbolical expressions for the disturbance, where k is put for — , so that kv = k'v'

;

A

(B).

In these expressions, if each exponential of the form e^^ ' be replaced by cos P + v — 1 sin P, the

real part of the expressions will agree with {A), and therefore will satisfy the equations of the pro-

blem. The coefficients of v — 1 in '^e imaginary part will be derived from the real part by writing

t -i for t, and therefore will form a system satisfying the same equations, since the form of these

equations is supposed in no way to depend on the origin of the time ; and since the equations are

linear they will be satisfied by the complete expressions {B).

Suppose now I' to become greater than 1, so that n becomes i/^/— i. Whichever sign we
take, the real and imaginary parts of the expressions (B), which must separately satisfy the equations

of motion and the equations of condition, will represent two possible systems of waves ; but the

upper sign does not correspond to the problem, for the reason already mentioned, so that we must

use the lower sign. At the same time that ?i' becomes c'\/- 1, let a, a^, a become

pe " ', jO,e' ',

then we have the symbolical system

p e ', respectively :

y _ -e^ -\ _^li{vt-lx-n!)\/ -\

V =
P.'

-«.\f-l *(ti/-/j- + nz)\/^

y _ '-ii\r^_^-hvz^^k\vt-rT)sf^

(Q,

of which the real part

V = p cos [k(vi — Iw — nz) -
0J

"j

V^= p,coi\k(vt-lx+nz)-e}, \ ... (Z)).

-cos {k'{v't-l'a!)-6'},
\

forms the system required.

As I shall frequently have occasion to allude to a disturbance of the kind expressed by the

last of equations {D), it will be convenient to have a name for it, and I shall accordingly call it

a superficial undulation.

4. The interpretation of our results is not yet complete, inasmuch as it remains to consider

what is meant by V'. When the vibrations are perpendicular to the plane of incidence there is no
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difficulty. In this case, whether the angle of incidence be greater or less than the critical ano-le,

V denotes a displacement, or else a velocity, perpendicular to the plane of incidence. When the
vibrations are in the plane of incidence, and the angle of incidence is less than the critical angle,

V denotes a displacement or velocity in the direction of a line lying in the plane xss, and inclined

at angles ir - i', - I - - i'\ to the axes of x, z, i being the angle of refraction. But when the

angle of incidence exceeds the critical angle there is no such thing as an angle of refraction, and
the preceding interpretation fails. Instead therefore of considering the whole vibration V', consider
its resolved parts F/, F/ in the direction of the axes of .r, z. Then when the angle of incidence is less

than the critical angle, we have

rj - - «' F' = - cos r . F' ; IV = l'V' = sin i' . F',

F' being given by {A), and being reckoned positive in that direction which makes an acute angle
with the positive part of the axis of z. When the angle of incidence exceeds the critical ano-le, we

ir

must first replace the coefficient of F' in F/, namely - n, by v'e^^~^, and then, retaining v

for the coefficient, add — to the phase, according to what was explained in the preceding article.

Hence, when the vibrations take place in the plane of incidence, and the angle of incidence

exceeds the critical angle, F' in (2?) must be interpreted to mean an expression from which the

vibrations in the directions of x, z may be obtained by multiplying by i/', /', respectively, and

increasing the phase in the former case by — . Consequently, so far as depends on the third

of equations (D), the particles of ether in the second medium describe small ellipses lying in

the plane of incidence, the semi-axes of the ellipses being in the directions of a;, z, and being pro-

portional to (/', I', and the direction of revolution being the same as that in which the incident ray

would have to revolve in order to diminish the angle of incidence.

Although the elliptic paths of the particles lie in the plane of incidence, tiiat does not prevent

the superficial vibration just considered from being of the nature of transversal vibrations. For it

is easy to see that the equation

d v; d V.'—- + =0
dx dz

is satisfied ; and this equation expresses the condition that there is no change of density, which is the

distinguishing characteristic of transversal vibrations.

5. When the vibrations of the incident light take place in the plane of incidence, it appears

from investigation that the equations of condition relative to the surface of separation of the two

media cannot be satisfied by means of a system of incident, reflected, and refracted waves, in which

the vibrations are transversal. If the media be capable of transmitting normal vibrations with

velocities comparable with those of transversal vibrations, there will be produced, in addition to

the waves already mentioned, a series of reflected and a series of refracted waves in which the

vibrations are normal, provided the angle of incidence be less tiian either of tlie two critical angles

corresponding to the reflected and refracted normal vibrations respectively. It lias been shewn

however by Green, in a most satisfactory manner, that it is necessary to suppose the velocities of

propagation of normal vibrations to be incoin[)arably greater tiian those of transversal vibrations,

which comes to the same thing as regarding tiie ether as sensibly incompressible; so that the two

critical angles mentioned above must be considered evanescent*. Cmiseciuently the reflected and

• Camfjri'tt/f: I'liil'imitUual TrumtactiofiH, Vol. vil. p.

Vol.. VIII. Part V. lO



646 Mr. stokes, on THE FORMATION OF THE CENTRAL SPOT

refracted normal waves are replaced by undulations of the kind which I have called superficial.

Now the existence of these superficial undulations does not affect the interpretation which has been

given to the expressions (J) when the angle of incidence becomes greater than the critical angle

corresponding to the refracted transversal wave ; in fact, so far as regards that interpretation, it

is immaterial whether the expressions {A) satisfy the linear equations of motion and condition

alone, or in conjunction with other terms referring to the normal waves, or rather to the superficial

undulations which are their representatives. The expressions (D) however will nol represent the

whole of the disturbance in the two media, but only that part of it which relates to the transversal

waves, and to the superficial undulation which is the representative of the refracted transversal wave.

6. Suppose now that in the expressions {J) n becomes imaginary, n remaining real, or that

n and n both become imaginary. The former case occurs in the theory of Newton's Rings when

the angle of incidence on the surface of the second medium becomes greater than the critical angle,

and we are considering the superficial undulation incident on the third medium : the latter case

would occur if the third medium as well as the second were of lower refractive power than the

first, and the angle of incidence on the surface of the second were greater than either of the critical

ano-les corresponding to refraction out of the first into the second, or out of the first into the third.

Consider the case in which n becomes imaginary, n remaining real ; and let y/p _ i = y. Then

it may be shewn as before that we must put - vs/ - \, and not v \/ —\, for n ; and using p, Q

in the same sense as before, we get the symbolical system,

V=p^-'^~
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only be necessary to observe to take ± ,/ \/ - i, or ± v'\/- 1 with the negative sign. If we had
chosen to employ the expressions {B) with the opposite sign in the index, which would have done

equally well, it would then have been necessary to take the positive sign.

8. We are now prepared to enter on the regular calculation of the intensity of the central

spot ; but before doing so it will be proper to consider how far we are justified in omitting the

consideration of the superficial undulations which, when the vibrations are in the plane of incidence,

are the representatives of normal vibrations. These undulations may conveniently be called normal
superficial undulations, to distinguish them from the superficial undulations expressed by the third

of equations (D), or the first and second of equations (F), which may be called transversal. The
former name however might, without warning, be calculated to carry a false impression ; for the

undulations spoken of are not propagated by way of condensation and rarefaction ; the disturbance

is in fact precisely the same as that which exists near the surface of deep water when a series of

oscillatory waves is propagated along it, although the cause of the propagation is extremely

difl'erent in the two cases.

Now in the ordinary theory of Newton's Rings, no account is taken of the normal superficial

undulations which may be supposed to exist ; and the result so obtained from theory agrees very well

with observation. When the angle of incidence passes through the critical angle, although a materikl

change takes place in the nature of the refracted transversal undulation, no such change takes place

in the case of the normal superficial undulations: the critical angle is in fact nothing particular as

regards these undulations. Consequently, we should expect the result obtained from theory when

the normal superficial undulations are left out of consideration to agree as well with experiment

beyond the critical angle as within it.

9. It is however one thing to show why we are justified in expecting a near accordance between

the simplified theory and experiment, beyond the critical angle, in consequence of the observed

accordance within that angle; it is another thing to show why a near accordance ought to be expected

both in the one case and in the other. The following considerations will show that the effect of the

normal superficial undulations on the observed phenomena is most probably very slight.

At the point of contact of the first and third media, the reflection and refraction will take place

as if the second medium were removed, so that the first and third were in contact throughout. Now
Fresnel's expressions satisfy the condition of giving the same intensity for the reflected and refracted

light whether we suppose the refraction to take place directly out of the first medium into the

third, or take into account the infinite number of reflections which take place when the second

medium is interposed, and then suppose the thickness of the interposed medium to vanish. Conse-

quently the expression we shall obtain for the intensity by neglecting the normal superficial undu-

lations will be strictly correct for the point of contact, Fresnel's expressions being supposed correct,

and of course will be sensibly correct for some distance round that point. Again, the expression for

the refracted normal superficial undulation will contain in the index of the exponential - k I z, in

r—^.

place of - /c V P 1^ », which occurs in the expression for the refracted transversal superficial

undulation ; and therefore the former kind of undulation will decrease much more rapidly, in receding

from the surface, than the latter, so that the efl'ect of the former will be insensible at a distance from

the point of contact at which the efl'ect of the latter is still important. If we combine these two

considerations, we can hardly suppose the effect of the normal superficial undulations at intermediate

points to be of any material importance.

10. The phenomenon of Newton's Rings is the only one in which I see at present any chance

of rendering these undulations sensible in experiment: for the only way in which I can conceive

them to be rendered sensible is, by their again producing transversal vibrations ; and in consequence

of the rapid diminution of tlie disturbance on receding from the surface, liiis can only happen when

losi
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there exists a second reflecting surface in close proximity with the first. It is not my intention to

pursue the subject further at present, but merely to do for angles of incidence greater than the

critical angle what has long ago been done for smaller angles, in which case light is refracted in the

ordinary way. Before quitting the subject however I would observe that, for the reasons already

mentioned, the near accordance of observation with the expression for the intensity obtained when
the normal superficial undulations are not taken into consideration cannot be regarded as any valid

argument against the existence of such undulations.

11. Let Newton's Rings be formed between a prism and a lens, or a second prism, of the same
kind of glass. Suppose the incident light polarized, either in the plane of incidence, or in a plane

perpendicular to the plane of incidence. Let the coeflicient of vibration in the incident light be
taken for unity ; and, according to the notation employed in Airy's Tract, let the coefficient be mul-
tiplied by b for reflection and by c for refraction when light passes from glass into air, and by e for

reflecuon and / for refraction when light passes from air into glass. In the case contemplated 6, c,

e, f become imaginary, but tliat will be taken into account further on. Then the incident vibration

will be represented symbolically by

according to the notation already employed ; and the reflected and refracted vibrations will be repre-

sented by

Consider a point at which the distance of the pieces of glass is D ; and, as in the usual investi-

gation, regard the plate of air about that point as bounded by parallel planes. When the superficial

undulation represented by the last of the preceding expressions is incident on the second surface, the

coefficient of vibration will become cq, q being put for shortness in place of e"*"^; and the reflected

and refracted vibrations will be represented by

cqee"'"'. /<»''-MV-^

z being now measured from the lower surface. It is evident that each time that the undulation

passes from one surface to the other the coefficient of vibration will be multiplied by q, while the

phase will remain the same. Taking account of the infinite series of reflections, we get for the sym-
bolical expression for the reflected vibration

{6 + cefq'(l + e'q' + e'q' + ...)]
e*("'-"-+"--iv^.

Summing the geometric series, we get for the coefficient of the exponential

b + ^-!—

.

1 - e'q'

Now it follows from Fresnel's expressions that

b = - e, cf = 1 - e**.

These substitutions being made in the coeflicient, we get for the symbolical expression for the

reflected vibration

(1 -9")0
j,|i,f-to+,ijK/~ /-yj^ ,

1 -q'b^ ^ ''

• I have proved these equations in a very simple manner, without any reference to Fresnel's formulsp, in a paper which will appear in

ihe next number of the Cambridge and Dublin Mathematical Journal.
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Let the coefficient, which is imaginary, be put under the form p (cos \1/ + x/- 1 sin \l/) ; then

the real part of the whole expression, namely

p cos [k (vt - Lv + nz) + \^|,

will represent the vibration in the reflected light, so that p- is the intensity, and \l/ the acceleration

of phase.

12. Let i be the angle of incidence on the first surface of the plate of air, /n the refractive

index of glass ; and let \ now denote tlie length of wave in air. Then in the expression for q

, , Stt / , . ,

In the expression for b we must, according to Art. 2, take the imaginary expression for cos i'

with the negative sign. We thus get for light polarized in the plane of incidence (Airy's Tract,

p. 362, 2nd edition*), changing the sign of \/ - 1,

6 = cos 20 + \/^l sin 2 6,

where

V// sin^j - 1

tanO = -^ — (2).
fi cos i

Putting C for the coefficient in the expression (G), we have

1 -q' 1-9'

vhence

I

vhere

6"' - q-b (1 - q') cos 20 - vA- 1 (1 + ?') sin 20

_ (1 - <f) 1(1 - g") cos 20 + \/^ (1 + q") sin 20}

- fff + i-q' sin' 29

1 + a'
tanxf/ = \ tan 20 (3),

' 1 — q^

e = (' - TT ...
P

(1 -q-)-+ iq'sin'2e ^ ''

9 = e * (5).

If we take p positive, as it will be convenient to do, we must take \l^ so that cos\l/ and cos 20
may have the same sign. Hence from (3) sin \// must be positive, since sin 2 is positive, inasmuch

as lies between and — . Hence, of the two angles lying between - tt and tt which satisfy (2),

we must take that which lies between and tt.

For light polarized perpendicularly to the plane of incidence, we have merely to substitute rf) for

in the equations (3) and (t), where

»o„^ //\/M'sin^J-

1

tan© = (01.
' cos I

The value of q does not depend on the nature of the polarization.

* Mr. Airy HpcakH of" vilirationn perpendicular to tlic plane of 1 which rc(|uireH us to enter into the (luculion whether the vibrntlonB

incidence," and " vibrations parallel to the plane of incidence," in jdane polarized li^llt are in ur perpendicular to the piano of

adopting the theory uf Fresncl ; but there is nothing in this paper
I

polarization.
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13. For the transmitted light we have an expression similar to (G), with — nx: in place of nz,

and a different coefficient C^, where

l-eV 1-96 b^-qb
When the light is polarized in the plane of incidence we have

- y/- 1 . Sq sin 20

' (1 - g-)cos20 - -v/~(l +9') sin2

_ 29 sin 20 1(1 + q^) singg- y/- 1 (1 - q') cos 29\

(1 - q-y + iq'sm-Qd

so that if \|/^ and p^ refer to the transmitted light we have

•(7);

2_ 4(/^sin^20
'''"

(1 - q'y + 4:fsm'2e

If we take
p,

positive, as it will be supposed to be, we must take \p-^ such that cos \|/^ may be

positive ; and therefore, of the two angles lying between - ir and tt which satisfy (8), we must

choose that which lies between and +— . Hence, since from (3) and (S) \|/^ is of the form

\j, + - + JiTT, n being an mteger, we must take x|/^ = \^ .

For light polarized perpendicularly to the plane of incidence we have only to put (p for d. It

follows from (4) and (g) that the sum of the intensities of the reflected and transmitted light is equal

to unity, as of course ought to be the case. This renders it unnecessary to discuss the expression

for the intensity of the transmitted light.

14. Taking the expression (4) for the intensity of the reflected light, consider first how it varies

on receding from the point of contact.

As the point of contact D = 0, and therefore from (5) q = 1, and therefore p' = 0, or there is

absolute darkness. On receding from the point of contact q decreases, but slowly at first, inasmuch

as D varies as r-, r being the distance from the point of contact. It follows from (4) that the

intensity p' varies ultimately as r% so that it increases at first with extreme slowness. Consequently

the darkness is, as far as sense can decide, perfect for some distance round the point of contact.

Further on q decreases more rapidly, and soon becomes insensible. Consequently the intensity de-

creases, at first rapidly, and then slowly again as it approaches its limiting value 1, to which it soon

becomes sensibly equal. All this agrees with observation.

15. Consider next the variation of intensity as depending on the colour. The change in 9 and

cf)
in passing from one colour to another is but small, and need not here be taken into account : the

quantity whose variation it is important to consider is q. Now it follows from (5) that q changes

the more rapidly in receding from the point of contact the smaller be X. Consequently the spot

must be smaller for blue light than for red ; and therefore towards the edge of the spot seen by
reflection, that is beyond the edge of the central portion of it, which is black, there is a predominance

of the colours at the blue end of the spectrum ; and towards the edge of the bright spot seen by
transmission the colours at the red end predominate. Tlie tint is more conspicuous in the trans-
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niitted, than in the reflected light, in consequence of the quantity of white light reflected about the

edge of the spot. The separation of colours is however but slight, compared with what takes place

in dispersion or diff"raction, for two reasons. First, the point of minimum intensity is the same for

all the colours, and the only reason why there is any tint produced is, that the intensity approaches

more rapidly to its limiting value 1 in the case of the blue than in the case of the red. Secondly,

the same fraction of the incident light is reflected at points for which Z) »= X, and therefore r cc ,y/\

;

and therefore, on this account also, the separation of colours is less than in diffraction, where the

colours are arranged according to the values of X, or in dispersion, where they are arranged according

to values of X"^ nearly. These conclusions agree with observation. A faint blueish tint may be

perceived about the dark spot seen by reflection ; and the fainter portions of the bright spot seen

by transmission are of a decided reddish brown.

16. Let us now consider the dependance of the size of the spot on the nature of the polarization.

Let s be the ratio of the intensity of the transmitted light to that of the reflected ; «„ s,, the par-

ticular values of s belonging to light polarized in the plane of incidence and to light polarized

perpendicularly to the plane of incidence respectively ; then

, / sin 2 \ ' ,

I

Now according as s is greater or less, the spot is more or less conspicuous ; that is, conspicuous

in regard to extent, and intensity at some distance from the point of contact ; for in the immediate

neighbourhood of that point the light is in all cases wholly transmitted. Very near the critical angle

we have from (10) S2= n^s,, and therefore the spot is much more conspicuous for light polarized

perpendicularly to the plane of incidence than for light polarized in that plane. As i increases the

spots seen in the two cases become more and more nearly equal in magnitude : they become exactly

alike when i = i, where

sin% = .

When i becomes greater than i the order of magnitude is reversed ; and the spots become more

and more unequal as i increases. When 1 = 90° we have «, = fi*S2! so that the inequality becomes very

great. This however must be understood with reference to relative, not absolute magnitude; for

when the angle of incidence becomes very great both spots become very small.

I have verified these conclusions by viewing the spot through a rhomb of Iceland spar, with its

principal plane either parallel or perpendicular to the plane of incidence, as well as by using a

doubly refracting prism ; but I have not attempted to determine experimentally the angle of inci-

dence at which the spots are exactly equal. Indeed, it could not be determined in this way with

any precision, because the difference between the spots is insensible through a considerable range of

incidence.

17. It is worthy of remark that the angle of incidence i at which the spots are equal, is exactly

that at which the difference of acceleration of phase of the oppositely polarized pencils, which arises

from total internal reflection, is a maximum.

When i = I wc have

2/u
sin 20 = sin 'Jd) = ——-; whence cot() = tan rf) = /i...(l l) ;

'^
/i' + I

'^

andp^^ K*,L,r,. ^ where ry = e ^^"'^...(12).
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If we determine in succession the angles 6, ^, rj from the equations cot = /u, tan ^= q, tan ij =

sin 2 6 tan 2 T, we have p^^ = 1 - p^ = -1^ versin 2 r;. The expression for the intensity may be adapted

to numerical computation in the same way for any angle of incidence, except that or must be

determined by (2) or (6) instead of (11), and q by (5) instead of (12).

18. When light is incident at the critical angle, which I shall denote by 7, the expression for

the intensity takes the form - . Putting for shortness y'^u^sin'^i - 1 = w, we have ultimately

= 1 w, tan = = : = / „ , (b = fi i

\ /i cos J v /" - 1

and we get in the limit

O"- =—7771 T- (13).

according as the light is polarized in or perpendicularly to the plane of incidence. The same for-

mulae may be obtained from the expression given at page 304 of Airy's Tract, which gives the inten-

sity when i < 7, and which like (4) takes the form — when i becomes equal to 7, in which case

e becomes equal to — 1.

19. When i becomes equal to 7, the infinite series of Art. 11 ceases to be convergent : in fact, its

several terms become ultimately equal to each other, while at the same time the coefficient by which

the series is multiplied vanishes, so that the whole takes the form x co . The same remark applies

to the series at page .TO3 of Airy's Tract. If we had included the coefficient in each term of the

series, we' should have got series which ceased to be convergent at the same time that their several

terms vanished. Now the sum of such a series may depend altogether on the point of view in which

it is regarded as a limit. Take for example the convergent infinite series

2xsmy
f(.v, y) = .1? sin y + lie^sin 3y + 1 a: sm 5y + ... = 1 tan

, ,

where « is less than 1, and may be supposed positive. When x becomes 1 and y vanishes

f(x,y) becomes indeterminate, and its limiting value depends altogether upon the order in which we

suppose X and y to receive their limiting values, or more generally upon the arbitrary relation which

we conceive imposed upon the otherwise independent variables jc and y as they approach their limit-

ing values together. Thus, if we suppose y first to vanish, and then x to become 1, we have

TT

/(.r,y) = 0; but if we suppose x first to become 1, and then y to vanish, /(.r,y) becomes ± -, +or-

according as y vanishes positively or negatively. Hence in the case of such a series a mode of

approximating to the value of te or y, which in general was pefectly legitimate, might become inad-

missible in the extreme case in which ir = l, or nearly =1. Consequently, in the case of Newton's

Rino-s when j ~ 7 is extremely small, it is no longer safe to neglect the defect of parallelism of the

surfaces. Nevertheless, inasmuch as the expression (4), which applies to the case in which i>y,

and the ordinary expression which applies when i<y, alter continuously as i alters, and agree with (13)

when i = 7, we may employ the latter expression in so far as the phenomenon to be explained alters

continuously as i alters. Consequently we may apply the expression (13) to the central spot when

i = 7, or nearly =7, at least if we do not push the expression beyond values of D corresponding to

the limits of the central spot as seen at other angles of incidence. To explain however the precise
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mode of disappearance of the rings, and to determine their greatest dilatation, we should have to

enter on a special investigation in which the inclination of the surfaces should be taken into

account.

20. I have calculated the following Table of the intensity of the transmitted light, taking the

intensity of the incident light at 100. The Table is calculated for values of D increasing by \\,
and for three angles of incidence, namely, the critical angle, the angle i before mentioned, and a

considerable angle, for which I have taken 60". I have supposed
ij.
= V63, which is about the refrac-

tive index for the brightest part of the spectrum in the case of flint glass. This value of
fj.

gives

'y = 37''5]', I = 42° 18'. The numerals I., II. refer to light polarized in and perpendicularly to the

plane of incidence respectively.

4D
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23. Suppose the incident light to be polarized in a plane making an angle a with the plane

of incidence. Then at the point of contact the light, being transmitted as if the first and third

media formed one uninterrupted medium, will be plane polarized, the plane of polarization being the

same as at first. At a sufficient distance from the point of contact there is no sensible quantity of

lio-ht transmitted. At intermediate distances the transmitted light is in general elliptically polarized,

since it follows from (8) and the expression thence derived by writing (p for d that the two streams

of light, polarized in and perpendicularly to the plane of incidence respectively, into which the inci-

dent lio-ht may be conceived to be decomposed, are unequally accelerated or retarded. At the point

of contact, where q=l, these two expressions agree in giving •>/', = 0. Suppose now that the trans-

mitted light is analyzed, so as to extinguish the light which passes through close to the point of

contact. Then the centre of the spot will be dark, and beyond a certain distance all round there

will be darkness, because no sensible quantity of light was incident on the analyzer ; but at inter-

mediate distances a portion of the light incident on the analyzer will be visible. Consequently the

appearance will be that of a luminous ring with a perfectly dark centre.

24. Let the coefficient of vibration in the incident light be taken for unity ; then the incident

vibration may be resolved into two, whose coefficients are cosa, sin a, belonging to light polarized

in and perpendicularly to the plane of incidence respectively. The phases of vibration will be

accelerated by the angles \^^, \|/^^, and the coefficients of vibration will be multiplied by p^, p^^, if \|/,

,

o are what v|/^, jO, in Art. (l3) become when (p is put for 6. Hence we may take

{27r , ]— {vt - hoc) + \|/ V ,

,|^(«<-Mr')+^|'„}sm a . cos •

to represent the vibrations which compounded together make up the transmitted light, a' being mea-

sured in the direction of propagation. The light being analyzed in the way above mentioned, it is

only the resolved parts of these vibrations in a direction perpendicular to that of the vibrations in

the incident light which are preserved. We thus get, to express the vibration with which we are

concerned,

sin a cos a |p,cos i'^ {vt - fix) + \l/\
- p cos

[
— (u < - yu*') + '^„] \ ,

which gives for the intensity (/) at any point of the ring

/ = isin-2a{(,o, cos x// - jo,,cos'>//^,)*+ (,0, sin\^^ - jo^^sin \//J'} ... (14),

= 1 sin=2a |p/ + p^; - 2p^ p^^ cos (x/,„ -i^)\.
Let Pg, Qg be respectively the real part of the expression at the second side of (7) and the

coefficient of \/- 1, and let P^, Q^ be what Pg, Q, become when <p is put for 9. Then we may
if we please replace (14) by

I = is\n'2a\{P,-P^y+{Q,-QJl (15).

The ring is brightest, for a given angle of incidence, when a = 45°. When i = i, the two kinds

of polarized light are transmitted in the same proportion ; but it does not therefore follow that the

ring vanishes, inasmuch as the change of phase is different in the two cases. In fact, in this case

the angles cp, 6 arc complementary ; so that cot 2rf), cot 26 are equal in magnitude but opposite in

sign, and therefore from (8) the phase in the one case is accelerated and in the other case retarded

by the angle

tan-fi-HiJcotse), or tan-(i^^:^



OF NEWTON'S RINGS BEYOND THE CRITICAL ANGLE. 655

It follows from (14) that the ring cannot vanish unless p, cos\f^^=
p^^ cosxj/^ , and p sinxl/' =

P„ ^''^
"^i,-

'^^'^ requires that pf = p^f, which is satisfied only when i = i, in which case as we have
seen the ring does not vanish. Consequently a ring is formed at all angles of incidence ; but it

should be remembered that the spot, and consequently the ring, vanishes when i becomes 90".

25. When i = y, the expressions for P^, Q^, take the form -
, and we find, putting for

ttD
shortness = p,

p _ (m^ - 1)''
p ,/U— 1)-'

p-' + (m^ - 1)-'
'

* p^ + ^c'U^ - 1)-"

If we take two subsidiary angles 1^, co, determined by the equations

ttD /——-Vm — 1 = tan -^ = /r tan cu,

we get

Fg = cos" T^, P^ = cos* w, Qe = - sin j^ cos 1^, Q^ = - sin w cos cu.

Substituting in (15) and reducing we get, supposing a = 45°,

/ = iversin (2i^ - '2to) (16).

When i = i, cos 2<^ = - cos 29, sin 2(^ = .sin 29 ; and therefore P^- P„, Q^ = - Qj, which when

a = 45" reduces (15) to / = Q/.

If we determine the angle nr from the equation

1 - 5" = 25 sin 20 tan is; or tan Tsr = cot 2^. cosec 29,

we get

/=lsin'''27!r.cos=20 (17).

In these equations

2,rZ» //I'-l
log. tan ^ ^ -~~

, cot 9 = ,x.

26. The following Table gives the intensity of the ring for the two angles of incidence i =7 and i= i,

and for values of D increasing by ^,\. The intensity is calculated by the formula; (16) and (17).

The intensity of the incident polarized light is taken at 100, and ^x is supposed equal to 1-63,

as before.

4 p2
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light transmitted near the centre increased in intensity till the dark patch disappeared : the patch

did not break up into a dark ring travelling outwards.

On making the analyzer revolve in the contrary direction, the same appearances were of course

repeated in a reverse order : a dull central patch was seen, which became darker and darker till it

appeared quite black, after which it broke up into a dark ring which travelled outwards till it was

lost in the dark field surrounding the spot. The appearance was a good deal disturbed by the

imperfect annealing of the prisms. When the plane of incidence was inclined at an angle of about
-45" to the plane of primitive polarization, the same appearance as before was presented on revers-

ing the direction of rotation of the analyzer.

28. Although the complete theoretical investigation of the moving dark ring would require a great

deal of numerical calculation, a general explanation may very easily be given. At the point of contact

the transmitted light is plane polarized, the plane of polarization being the same as at first*. At some

distance from the point of contact, although strictly speaking the light is elliptically polarized, it

may be represented in a general way by plane polarized light with its plane of polarization further

removed than at first from the plane of incidence, in consequence of the larger proportion in which

light polarized perpendicularly to the plane of incidence is transmitted, than light polarized in that

plane. Consequently the transmitted light may be represented in a general way by plane polarized,

with its plane of polarization receding from the plane of incidence on going from the centre

outwards. If therefore we suppose the position of the plane of incidence, and the direction of

rotation of the analyzer, to be those first mentioned, the plane of polarization of light transmitted by

the analyzer will become perpendicular to the plane of polarization of the transmitted light of the

spot sooner towards the edge of the spot than in the middle. The locus of the point where the two

planes are perpendicular to each other will in fact be a circle, whose radius will contract as the ana-

lyzer turns round. When the analyzer has passed the position in which its plane of polarization is

perpendicular to that of the light at the centre of the spot, the inclination of the planes of polar-

ization of the analyzer and of the transmitted light of the spot decreases, for a given position of the

analyzer, in passing from the centre outwards ; and therefore there is formed, not a dark ring

travelling outwards as the analyzer turns round, but a dark patch, darkest in the centre, and

becoming brighter, and therefore less and less conspicuous, as the analyzer turns round. The

appearance will of course be the same when the plane of incidence is turned through 90", so as to

be equally inclined to the plane of polarization on the opposite side, provided the direction of

rotation of the analyzer be reversed.

29. The investigation of the intensity of the spot formed beyond the critical angle when the

third medium is of a difl'erent nature from the first, does not seem likely to lead to results of any

particular interest. Perhaps the most remarkable case is that in which the second and third media

are both of lower refractive power than the first, and the angle of incidence is greater than either of

the critical angles for refraction out of the first medium into the second, or out of the first into the

third. In this case the light must be wholly reflected ; but the acceleration of phase due to the

total internal reflection will alter in the neighbourhood of the point of contact. At that point it will

be the same as if the third medium occupied the place of the second as well as its own ; at a distance

sudicicnt to render the influence of the third medium insensible, it will be the same as if the second

medium occupied the place of the third as well as its own. The law of the variation of the accele-

ration from the one to the other of its extreme values, as the distance from the point of contact varies,

would result from the investigation. This law could be ])Ut to the test of experiment by examining

the nature of the elliptic polarization of the light reflected in the neighbourhood of the poini of

• The rotation oC the plane of jiolarization due to the refraction at the surfaces ai which ihv litthi tnicr» ihc lirsi priMii and quim ihe

second is not here mentioned, at it has nothing to do with the phenomenon discunscd.
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contact when the incident light is polarized at an azimuth of 45", or thereabouts. The theoretical

investigation does not present the slightest difficulty in principle, but would lead to rather long

expressions ; and as the experiment would be difficult, and is not likely to be performed, there is no

occasion to go into the investigation.

30. In viewing the spot formed between a prism and a lens, I was struck with the sudden, or

nearly sudden disappearance of the spot at a considerable angle of incidence. The cause of the

disappearance no doubt was that the lens was of lower refractive power than the prism, and that the

critical angle was reached which belongs to refraction out of the prism into the lens. Before disap-

pearing, the spot became of a bright sky blue, which shows that the ratio of the refractive index of

the prism to that of the lens was greater for the blue rays than for the red. As the disappearance

of the spot can be observed with a good deal of precision, it may be possible to determine in this

way the refractive index of a substance of which only a very minute quantity can be obtained. The
examination of the refractive index of the globule obtained from a small fragment of a fusible

mineral might afford the mineralogist a means of discriminating between one mineral and another.

For this purpose a plate, which is what a prism becomes when each base angle becomes yo", would

probably be more convenient than a prism. Of course the observation is possible only when the

refractive index of the substance to be examined is less than that of the prism or plate.

G. G. STOKES.



XLIX. Of the Intrinsic Equation of a Curve*, and its Application.

By W. Whewell, D.D., Master of Trinity College, Cambridge.

[Read February 12, 1849.]

1. Mathematicians are aware how complex and intractable are generally the expressions

for the lengths of curves referred to rectilinear coordinates, and also the determinations of their

involutes and evolutes. It appears a natural reflexion to make, that this complexity arises in a

considerable degree from the introduction into the investigation of the reference to the rectilinear

coordinates (which are extrinsic lines) ; the properties of the curve lines with relation to these

straight lines are something entirely extraneous, and additional with respect to the properties of

the curves themselves, their involutes and evolutes ; and the algebraical representation of the former

class of properties may be very intricate and cumbrous, while there may exist some very simple

and manageable expression of the properties of the curves when freed from these extraneous append-

ages. These considerations have led me to consider what would be the result if curves were

expressed by means of a relation between two simple and intrinsic elements, tlie length of the curve

and the angle through which it bends : and as this mode of expressing a curve much simplifies the

solution of several problems, I shall state some of its consequences.

2. Let s = f {(p), any function of d), when s is the length of the curve, and (p the angle of

deviation of the tangent from the tangent at the origin.

Then using the common notation we have ds =f ((p) . dxp. The curve may be constructed

npproximately by taking small finite differences o{ (p, and determining the corresponding rectilinear

elements of the polygon or approximate curve, by the equation

As =/' {(p) . A0. See Fig. 1.

ds
3. It is evident that is p, the radius of curvature. Hence p =/' (rf)), and the curve mav

d(p

also be contracted approximately by taking small finite difPerences of (p, drawing a line perpen-

dicular to the curve at first, setting off the value of p, drawing a circular arc to radius p for A0,
then setting off p„ and drawing a circular arc with radius p^ for A^i, and so on. See Fig. 2.

4. The cvolute of a curve is easily found from this equation. For if (Fig. 3) JP be the

curve, BQ the cvolute, AP = s, RQ = s', it is evident that (p is the same for both s and .9', if s in

IIQ, (p be measured from BA, perpendicular to A,v.

And QP= QB - BA, or p = s' + C. Hence s =/' (^) " C = ^X " C-

If the curves have the forms represented in Fig. 3a, the formula- arc nearly similar.

• After writinK this paper, I found that Kulcr had, in the solu-

tion of a particular problem, expressed curves by means of an

et|uation between the arc and the radius of curvature. This equa-

tion is, as is shown in the paper, the difterential of my "intrinsic

f'luation," and has an erjually f^ond right to the name. .My eijua-

tion being the intcRral of Euler's, has, of course, one more arbitrary

constant tllari his. There may very possibly be other modes of

cxprerthinjj curves which may l)c fitly described as '' intrinsic eqiui-

lions" to the curves. I was not able to iind any other name for the

etjuation which I have employed.
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5. Hence s, s", &c. indicating the successive evolutes, p, p, p", &c. the successive radii

of curvature, we have,

I
dS

f, II
^^'

f^l
<'*"'

fylll

d<p dip dtp

ds , ds „ ds'

P^d^' P^d^' P =d^'^"-

6. Also we may in like manner find the successive involutes s„ Sj) «3) &c. For we have

-^ = s'+C=f(<p) + C,s =/ ((p) + C<p.

So ^ = «+C, =/(^)+ C^ + C,

s,=f,{<p) + C% + C,<p.

Hence s is known in function of (p, and therefore the curve known. And in like manner s„, S3, &c.,

if these be the arcs of the successive involutes.

In Fig. 4, CJR, BQ, AP are successive involutes of DS.

7. It is evident that the intrinsic equation to the circle is

8 = ad), a being the radius.

Also for the equiangular spiral, since the curve from its origin is everywhere similar to itself,

the radius of curvature is proportional to the whole arc. Hence

ds
—7 = /n« ; whence s = o""*', if s be measured from the pole.
dm

If 8 and (p vanish at the same time, s = a (e""* - I).

We shall afterwards give general formula^ for obtaining the intrinsic equation from the ordinary

coordinate equation, and reversely. But the operation of our method will be better seen by first

taking some special cases.

Of Cycloids, Ejiici/cloids, and Hypocychids.

8. In the Cycloid, if VB, Fig. 5, be the diameter of the generating circle, rolling on the

straight line DB from the initial position AD, when it is perpendicular to DB, and P the describ-

ing point at that time, PQ being the diameter, by the mode of description, the arc BQ = ED.
But the curve at P is perpendicular to PB ; and if be the angle of deflexion, <p = VBP, and
20= VCP. Hence chord VP = 2b sin <p, if h be the radius of the circle. And the arc AP
= 2 chord VP. Hence the intrinsic equation to the cycloid is

« = 4 6 sin d».

When (p becomes a right angle, « becomes a maximum. At this point there is a cusp (Z), and the
added part of s after this is negative ; and so continues, till = 3 right angles, where there is

another cusp (Z), and the added part of s becomes positive ; and so on.
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9. In the Epicycloid, if we take Newton's construction (Princip. B. iv. Sect. 10, Prop. 49),

Fig. 6, CB the radius of the globe, VB the diameter of the wheel when the describing point is at

P, E its center, we have, by Newton's proposition, only measuring the arc from A the vertex,

instead of Z the cusp, the arc at P perpendicular to the chord BP ; and

CB : 2CE :: chord VF : arc AP.

Let a be the radius of the globe, b the radius of the wheel : 6 the angle DCB, through which

the wheel has rolled upon the globe. Then (PQ being a diameter) by the mode of description, arc

BQ = BD. Therefore angle BEQ = ^ : therefore chord VP = 2fc sin— ; and
b 2h

o/ IX oi • °^
>

i (a + b) b . aO
a : 2(a+b) :: 2 6 sin — :s; whence s = —^ —sin — .

26 a 26

But VBP = — , and DCB = 6. Hence BP makes with CA an angle = — + 9. And since the
2o ab

curve at A is perpendicular to CD, and at P, to BP, it is evident that if (p be the angle through

which the curve has deflected at P, d) = h 9 = ^ 9.
^ 26 26

26
Hence 9 = <p; and the intrinsic equation to the epicycloid is

o + 26

4 (a + 6)

6

s = sm
:<P-a + 2b

This may coincide with any curve of which the equation is

s = I sin r>i(p, where m is less than i.

- , . a , 4 (a + 6) 6
In this case, m =

, I = ^—

;

a + 20 a

,
6 1 - m , 2(l+»n)6

whence - = , I = —^^ — .

a 2m m

10. In the same manner we shall find that the intrinsic equation to the hypocycloid is

4 (o - 6) 6 .

-sin .^-a a — 2b

And this may coincide with any curve of which the equation is

s = I sin m <p, where m is greater than 1 , by making

6 TO - 1 2 (1 + wi) 6

n 2»» ' m

11. It is evident from the equation s = Isinm^, that the curves rcjjrcscntcd by that equation

will be of such forms as are seen to result from the epicycloidal mode of description. Thus the

equation « = ;sin- gives a curve in which « continues to increase from A, where (p = o, till

f/> = TT, after which it decreases. Hence there will be a cusp when the curve has deflected

through two right angles, as at Z, Fig. 7. After this point the curve goes on in an identical

inverted course, till ^ = 27r, as at A', when s - 0, the negative part having destroyed the positive

Vol. VIII. Part V. 4Q



662 Dr. WHEWELL, ON THE INTRINSIC EQUATION OF

part. The negative value of s goes on increasing till <p = Sir, at Z', when there is another cusp

Afterwards the arc becomes positive, and the curve returns to A, having deflected through iir*.

The curve is an epicycloid in which h = \a.

12. Ao-ain, ii s = I sin 2^, s increases from A, where <p = 0, till !- = -n , when it is a maxi-

mum, and there is a cusp, Z, Fig. 8. After this the arc (from Z) is negative till cp = —, when

there is a second cusp, Z'. Then the arc is positive, till (p = — (at Z"). Then it is negative
4

till d) = -— (at Z"'). When
(f>

= 2Tr, the curve returns to A.
4,

The curve is a hypocycloid in which b = ^a.

d) d) , ^
13. If s = Z sin 3-

, s = Z sin i , s = / sin i , &c.
3 4 5

b . . ,

we have epicycloids in which - is respectively

1, |, 2, &c.

The radius of the wheel in these latter cases is greater than that of the globe, and the curve is

deflected through more than a whole circumference before it comes to a cusp. Thus in the case

g = / sin * , the curve deflects through 2 7r + ^ to come to a cusp. See Fig. 9.

5 2

14. In the same way, if we have

s=lsin3(p, s = lsm4!(p, s = lsin5(p, &c.

we have a series of hypocycloids, in which - is respectively

1 3 4
-, -, -, &c.
3 s' 9'

As m becomes larger and larger, - approaches more and more nearly to ^, but never attains

that magnitude. As is well known, for that supposition, the hypocycloid is a straight line.

15. It is evident that the ordinary properties of epicycloids and hypocycloids, as to their

lengths, radii of curvature, involutes, evolutes, &c., all follow with great facility from the use of our

equation. Thus the length of the epicycloid from the vertex A to the cusp Z is had by making

the ano-le - d) = -, which gives the length of that half of the curve = , and the
" a + 2b^ 2 "•

whole length —^^ —
• from cusp to cusp, the known values.

" a

Also the radius of curvature of the epicycloid

ds i (a + b) b a ^ , , 1— = —^ — cos d), the known value.

d(p a + 2h a +2b^

• That there will be a cusp when s is a maximum, appears also by considering that in that case g^= 0, tliat in, the radius of cur-

vature vanishes.
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16. Again, for the evolute of the epicycloid, let, in Fig. fi, ZO = s be the arc of the evolute.

Therefore

, i(a +b)b a
s = ~ cos (h.

ra + 26 a + 2b^

x> .. .. rr u '„ " , 1" ,
Jra + 26

Hut at Z, where « = 0, d) = _ (6 = - .

a + 9.b^ 2 '^ 2 a

And the deflexion of the evolute beginning from Z and going to is the excess of this value
of (p above the value at P, because at every point the evolute is perpendicular to the curve.

Therefore if d)' be the deflection of s, (h'=~ . (h ; and —-— d) = - ? (h'
2 n

'^
a + 2b^ 2 a + 2b'^'

, i {a + b) b a
,1 herefore s = — sin (h . This is an epicycloid similar to the first ; for the

ra + 26 a + 2b '

., , 4(o'+6')6' . a' ,, .~b' b , o' a
equation agrees with s = ; sin —. r (h, if — = - , and - = .^ ^ a a'+2b'^ a a a a + 2b

Of Ru7ining-2i(ittern Curves.

17. By Running-pattern Curves I mean curves in which a certain form of curve is repeated

over and over again in the progress of the whole curve. For example, let d) = sin « ; as s increases

from to infinity, it becomes successively 0, — , tt, —, 2 tt, , &c., and the corresponding values

of (p are 0, 1, 0, — ], 0, 1, &c. : and the curve is evidently a sinuous curve, as represented in Fig.

10, in which the same form is constantly repeated every time that s goes through the value 2 tt.

The greatest angle which the curve makes with the original direction is 1 and - 1 ; that is,

the angle of which the arc = 1, to the one side and to the other.

18. If ^ = rre . sin s, we shall in like manner have a sinuous curve in which the greatest

angles of deflexion to one side and the other are = m.

If (p = — sin s, these deflexions become right angles, and the curve is as represented in Fig. 1 1.

19. 11 (p = TT sin s, the curve from « = to s = — is of the form CA, Fig. 12 ; J being

behind C. For in this case, —— =
. Hence the radius of curvature is - at C, where .« = 0,

d(p TT cos .<( TT

and increases to A, wliere it is infinite. The evolute is of the form BD, and has for its asymp-

tote the line AJE, perpendicular to the original direction. And hence the general form of the curve

CA is manifest. At A there will be a point of inflexion ; and after A the curve will be repeated

in inverse position, as AC', and then continued reversely from C' to A', and so on, as in tlie Figure.

20. If ^ = 27r sin 4-, it will l)e seen, in like manner, that the curve from » = to ,v =-

is of the form CA, Fig. 1.3, and by the repetition of this, we have the curve as represented.

21. The pattern in the above curves is symmetrical with regard to a line transverse to the

line d) = 0. But we may have patterns which arc not thus syiiinietrical.

sin a?
,

rfw m+coso!
Let y = , whence ~— = ; r, . (m< 1).

1 + m cos a? d,v ( 1 + ?n cos toy

id 2
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If X, y, be ordinary coordinates, these equations represent a curve sinuous, but each siriris

not symmetrical. The angles at which the curve cuts the axis are alternately those of which the

tangents are

1 1

I + m \—m

Hence the descending side is more inclined than the ascending.

We shall obviously have a curve nearly resembling this, if we take the intrinsic equation

VfL "i* COS J?

<p = r^ ; which differs from the former by putting <p for tan (p, and s for x.

The curve will be a sinuous curve, inclined to the original line d) = 0, at maximum angles

<b = , d) = , on one side, and on the other, when cos s = ± l. And if a be the arc in
' I + m ^ 1 - m
the first quadrant for which cos a = m, (p = when s = w - a, tt + a, 3 tt - a, 3 ir + a, &c. ; and

the curve will be as represented in Fig. 14.

For example, if m =-, the curve deflects alternately on the positive side, so that the angle of

3 3
deflexion is -, and on the negative side, so that the angle is -; that is, the angles are respectively

43" and 86" nearly.

We have, in this case, -—

=

d(p {2m' -1 + mcoss) sins

This is the radius of curvature, which becomes infinite when s = 0, tt, 2 tt, &c. ; that is, at J,

A', A", &c., when there are points of inflexion.

m + cos s
22. If we have <h - p . r-

(1 + jre cos s)

P P
we shall still have a sinuous curve, and the greatest deflexions will be , and -

1 + m 1 — m
K 1

Thus if /) = —
, and m = - , the greatest angles are

- -, and -2. — ; that is 60" and - 180".
3 2 2

Hence the curve will be of the form represented in Fig. 15, making at A an angle of ikf with

the line 0=0, and at B, where cos s = — I, the curve being parallel to = 0, but in the opposite

direction.

The radius of curvature is infinite at A and at B, and has a minimum value at some intermediate

point, nearer to B.

23. It is easy to construct running patterns curves of this kind which have any given angles

for their extreme deflexions. Thus let Fig. l6 represent a pattern curve which sinuates between the

angles 60° one way and 3 x go" = 270° the other. Then,

K p Sir p I + m 9 7 Sir

3 1 + m 2 l-m 1-m 2 II
'^

II



A CURVE, AND ITS APPLICATION. 665

Gtt m + cos s
And the curve is = — . . [m = — .^ U {1+ m cos s)" \ 111

TT TO + cos « ( 5\1 he curve = - — —
, [m = -\

^ 2 {I + m cos s)- \ 8/

8 TT 8 IT
gives the angles of deflection = — - and - - ; that is, 55l° and 240°, which nearly resembles

the last, and may also be represented by Fig. l6.

l6ir TO + cos s
The curve may deflect through more than a circumference. Thus if cb

L

27 Q + m cos s)-

'

(to =-| , the greatest deflexions are - and — ; that is 60° positive, and 360° + 60° negative.

Hence the curve at J and B, Fig. 17, is parallel, at both points making an angle of 6o with = 0.

Such a curve has a loop; C being the place of minimum radius of curvature, the curve opens

both ways from C.

Of Diminishing Running-pattern Curves.

24. If d) = sin s^ a, where a is a quadrant, we shall have a sinuous curve;

And if we make « = 1, \/3, \/5, •y/7, -y/S, \/ll, &c.,

we shall have a series of points of inflexion in the curve. And since these values of « have

for their differences

y/3 - 1, ^/5 - y/S, y/n - -v/S, y/c, - y/i, ^\\ - ^9, &c.

which are a decreasing series, it is evident that we shall have such a curve as Fig. 18, in which the

lengths of the curve between the points of inflexion, A A', A" A", A" A"', Sec constantly decrease.

The same will be the case \i <p = p sin s^ a.

If p be large enough, such curves will have loops, like those represented hy (p = p sin s.

Thus if (p = — sin s^ a, we shall have a curve such as Fig. 19. (See Fig. 12, which

27r
represents (p = — sin s, as to its general form).

The lengths of the alternate loops will constantly diminish, and the whole curve will occupy a

triangular space, like a writing-master's flourish.

25. We may have a similar flourish, liut unsymmetrical, by taking, instead of sin x'-'a, the

TO + cos s'a
expression : .

(1 + TO cos s a)'

This will give a figure like Fig. 20.

Of Circularly-running Pattern Curves.

s a
2G. If we take the equation (l) = p sin r + -,

' b a
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we shall have the figure in which a curve such as = p sin - , runs along the circumference of a

circle.

And in the same manner, by adding to the value of (p, in any of the other cases previously given,

a term - , we have the equation to the pattern curve there considered, made to run round the

circumference of a circle.

Thus d) = sin - h— gives such a figure as Fig. 21 ;

b a

TT m + cos s s
, „ „.

(p = - — -r + — such a ngure as rig. 22,^ 2 {I + m cos sf a ^ "

m being about -, as in Fig. 1 6.

27. The radius of the circle round which the pattern runs is less than a. When (p has gone

through all its values, so that « = 2-jra, the curve has not been laid along the circumference of the

circle, but has, besides, followed all the sinuosities of the pattern.

Of the Catenary and Tractrix.

28. The intrinsic equations simplify the properties of these curves.

Fig. 23. Let CO be any arc of a Catenary from C the lowest point; OS, CS, tangents, OV
vertical, meeting CS ; therefore OSV is the triangle of the forces which support the weight of

CO; and if O be the tension at C, expressed in length of the curve,

s OV
- = =tan OSV, and if OSV = 0,
a SV ^

s = a tan (p,

the equation to the catenary.

29. For the Tractrix, let PT be the tangent, AT the fixed line, PN, perpendicular on

AT = or, tan NPT = p. Then PT = ic y/i + pS = c, a constant, by hypothesis.

Hence w = . ; 3 ;-,; also (s being now CP,) — = - V 1 + p:
y/l+f dp {\ + pT- dx

ds cp
Therefore - —

dp 1 + p*

But if d) be the angle of deflexion, beginning when the curve is perpendicular to AT, p = tan (p ;

therefore = sec^ d) = 1 + p^.

d <p

ds ,
sin m

Hence -— =cp = c tan d) = c '-
.

d<p ^ cos(p

This is the equation to the evolute. Integrating

1 _•

s = cl ; or cos = e~<^,

cos (p

the equation to the tractrix.
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30. It appears in this investigation, that the evolute of the tractrix is the catenary, a well-

known property.

General Properties of the Intrinsic Equation.

31. Given the equation of a curve to rectangular coordinates tv, y, to find the intrinsic

equation.

Let y = / (r) : hence, /' («) = ^ = —^ being for y.
d.v tan ^ ° ^

Hence -v is known in terms of tan
(ft. Let x = F (tan (b),

d X
Then ~~ = F (tan (b) x sec" (b.

dtp ' '

A 1
d^

Also -— = cosec (h.

dx ^

Hence -— = F' (tan <h) . sec= (b . cosec (h = ^^ JlL.
d(p T T T sin^.cos^d)

32. Examples. 1. The Common Parabola.

,
/a dy I

= 4 o.r ; \/ _ = -— = ; hence x = a tan- (b.
* /^ rf.r tan m '

f-
X dx tan (p

dx 2nsin0
Hence -— =ia tan &>. se&(b = -.

d<p ^ ^ cos'0

, , rfs 1 ,^ rfs 2 a
And -— = -, . Hence

dx sin <p d(p cos'rf)

2 a2 a
Hence the equation to the evolute of the parahola is s = .

' '
cos'0

2 a
The length of the parabola may be found by integrating —-—

.

cos (p

2. The Semicuhical Parabola.

dy 2 a^ 1 , 8«tan'd)
v' = a x\ — = -

.—J = ; hence x = .

dx 3 .r* tancp 27

dx 8a ,ds l ds 8a sinrf»
-— = — tan'd) .sec'rf); and — = ; ; whence -—

- = — . r—;
dcj) I)

-r -r ^^ ^,^^ ,ifp ,, cos'0

tlie intrinsic equation to the curve.

8 «
I

1
I

Integrating, we have i = — { — 1 >.

27 (cos'0 J

3. Thi' Ellipse.

l> ,—- dy h a> ' IT
*'

y = - V «' - y, = — .
-

,
= . Hence m = . =

.

a rf.t a y/a'-al' tan<p y/a' + b'tan' (p
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dx a?b'' tan (p . sec^
(f)

a^ b'- sin <p

d^~ ~
{a' + hHan' <p)i ~ ~

(a'cos^tp+b" sia' (p)i'

.
:,ds 1 „ ds a'b'

, . . .And— = - -:—-. Hence —- = -— —-— . „ ,^. , the intrinsic equation to the ellipse.
da! iin (p d<p {a'' cos'' <p + b' sm'' (p)i ^ '^

TT , :,. ^ •
«'&'

Hence the radius of curvature is

(o^ cos^ (p + b' sin* 1^)*

'

When
(f)
= 0, this radius is — ; (^ beginning at the extremity of the major axis, which was the

supposition made.

The intrinsic equation to the evolute of the ellipse is

a'b' b'

{d'cos'cp +6^ sin' 0)8 a

if s' begin from a cusp, where d) = 0.

33. Given the intrinsic equation, to find the equation to rectangular coordinates.

Let the coordinates .v, y, be in the positions = 0, (p = —

.

Then it is evident that x = fds . cos (p,y = fds . &in (p:

and the equation being given, these coordinates are found by integration.

Thus in the cycloid, s = a sin (p. Hence ds = a cos (p . d(p ;

w = fa cos'* (p . d(p, y = fa sin (p cos (pd(p. Hence, integrating,

a? = - sm cos (p + -<p, y = - sin^ (p : the equation to the cycloid.

34. In the running-pattern curves (Art. 17, &c.) of which the equation is

d(p ds Im = m sin s, we have -— = m cos s = -v/(m* - (jy\ : = / .^ ds ^ ^ ^ ' d<p s/{m^ - ^')

Hence .v = f
'°' t>d<p ^ f

sin 0rf0

If these could be integrated, we could find the dimensions of the loops in Figures 11, 12, 13.

There is one case for which f ., ^ ^„, taken from d) = to d) = »i is = 0. In this case the
'\/(m'-(p^) ^ ^

curve neither runs forward as in Fig. U, nor backward as in Fig. 12, but is simply two loops. Fig. 24.

35. The following proposition, enunciated by John Bernoulli and proved by Euler, may
easily be proved by means of the intrinsic equation.

If JB be any curve, AB' its involute beginning from A, B A the involute of AS beginning

from C, A B" the involute of A' B' beginning from A' ; and so on alternately and indefinitely :

the successive involutes approach indefinitely to the form of the common cycloid, provided the tan-

gents at A and B in the original curve are perpendicular to each other.

(The proof of this is here omitted, being included in the proof of the extended propositions

given in the Additional Note.)
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36. The following proposition may be proved by the intrinsic equation.

Fig. 25. Let any curve be evolved, and its involute evolved, and the involute of that evolved, and

so on, beginning always the evolution with a rectilinear tail, AA', extending beyond the curve,

and all these tails being equal. The curve tends continually to the form of the equiangular spiral.

Let s, s', s", «"', &c. be the successive curves, d) the angle, which is the same for all, be-

ginning from for each. And let each of the tails AA', A A", A"A"', he, = a.

Let s = ai(p + a-^cj)^ + a,(p' + &.c., which may express any curve.

Then s' = f(a + s) d<p = a<p + - cj)' + ~ (p'' + - (p* + &c.
2 3 4

s = j(a + s ) d(h = ad) + — 0-+ — (f)^ + (h* + gjc.^ ^ 1.2^ 2.3^ 3.4^

rn • // a a at d)^
s = l(a + s ) d<h = ad) + 0° + dy' + ^-— + &c.^ ^ 1.2^ 1.2.3'^ 2.3.4

And as the operation goes on, the terms in a,, a,,, a^, &c. being divided by the factorials 2.3.4,
&c. indefinitely, may be neglected as to their influence on the curve. Therefore ultimately

s = a(h + -- 0= +

—

— 03 + &c. = a fe* - l],

which is (Art. 7) the equation to the equiangular spiral.

Of course, from the nature of the construction, the curvature of the original curve is throughout

towards the same side*.

Additional Note to a Memoir on the Intrinsic Equation of Curves.

Trinity College, April 12, 1849.

In the Memoir on the Intrinsic Equation of Curves, I gave a proof of the following Proposi-

tion, which was enunciated by John Bernoulli, and demonstrated by Euler. (Novi Comm. Petrop.

Tom. X.)

Fig. 26 and 27. If AB be any curve, AB' its involute beginning from A, B'A' the involute

of AB' beginning from B', A'B" the involute of A'B', beginning from A' ; and so on, alternately

and indefinitely : the successive involutes approach indefinitely to the form of the common cycloid,

provided ffie tangents at A and B in the original curve are perpendicular to each other.

The question naturally offers itself. What is the curve to which the successive involutes tend, if

the original curve do not conform to the condition above stated, that the total deflexion is a right

angle ?

I am now able to state that in that case the curve will be an epicycloid or a hypocycloid as the

total deflexion is greater or less than a right angle.

• AUo it in neccsAary, as has been remarked to nic, that the i ginal curve, or any of its cvoUltCB in infinitum. For if it were,

point where ';i = 0, is not a point of contrary tiexurc from the ori- some of the iiuantities «,, «a, &c. woiiKl be inlinitc.

Vol. VIII. Fart V. 4U
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The proof of this extension of Bernoulli's proposition easily follows from the mode of repre-

senting curves by their Intrinsic Equation, namely, the equation between the tangent and the

deflexion.

Let AOB be any curve, and let the tangents at A and at B make with each other any angle

ma, a being a right angle.

Let APB", B'O'A, A'P'B", B"0"A", &c. be the successive involutes, beginning alternately at

opposite ends.

Let AB'= 6,, A'B"= b.,, &c. the whole arcs of the alternate involutes.

Let the intrinsic equation to AOB be

s = a^Kp + ^^ (p' + ^' + &c., which may express any curve.

Hence AP = t, ==— <b' + -^^— (h' +
"^ 0' + &c.

1.2^ 1.2.3^ 1 .2.3.i^

And B'P=b, -— <h'
"^—

d)' ^ 0' - &c.;1.2^ 1.2.3^ 1.2.3.4'^

.-. A'O' = s, = J PC/. d(p = fBP.d<p, beginning from (p = at A'

;

^ 1.2.3 1.2^

In like manner, if A'P" — t^, A'O" = Sj, &c.

<2 = <i? + d) + &c.
1.2^ 1.2.3.4^

So = fcod) d)' d)* + &c.
^ ^ 1.2.3^ 1 ... 5^

^3 =A W>» h d,4 _ ^. ,6 ^ g^^
1.2^ 1.2.3.4^ 1 ... 6^

s, = 63d) '— (b' + —— d)' + — (b- + &.C.
' ^ 1.2.3^ 1 ... 5 ^ 1 ... 7

^

«„ = 6n<^ - -^^^^ 0' + -^ 0" - &c. ± ^ 0="+' ± &c.
^ 1.2.3^ l...w^ l...(2n + l)^

Now as re becomes larger, the terms in a,, a^, &c. which have for denominators the factorials

1 .2.3 ... (w - 1) &c. become smaller and smaller, and thus the arc s„ depends less and less upon

the form of the original arc AOB. Hence we may ultimately omit those terms.

Of the arcs <i, 4, ... ^„, each vanishes when (p = 0; and when (p = ma, they become respectively

6,, 62, ... b„. Hence, by the expression for t„, ultimately

rn'o."
.

m*a , m'a' _

b„ = b„_, 6„_, + o„_3 -. - &c.
1.2 1.2.3.4 1 ... 6

This expresses a relation among the successive arcs, 6,, bs, 63 ... b„, which relation, it appears,

is ultimately independent of the form of the curve AB. But since a is a quadrant, and cos « = 0,

we have
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2 4 6a a a
= 1--—+ + &c.

1.2 1 ... 4 1 ... 6

whence

a" . a'

Hence the necessary relation among 6,, 62, b^, &c. is satisfied if

b„ = m'b„_, = TO"6„_2 = m''b„^, = m"b„.„

that is, if A..,= — fi„, 6„-o = — 6„, 6,-3 = — 6„, &c.

Hence we have, by the expression for s„, ultimately,

.s„ = mb„ |2 i— 2. + _J_ 2. _ gjc.l
Ito 1 .2. 3 ot^ 1 ... 5 m" , j

•= »»6„ sin — .

m

This is the equation to an epicycloid, if m > 1 ; and to an hypocycloid, if wj < 1.

If A and B be the radius of the globe and wheel of the epicycloid

;

iB{A + B) . A ^
s = sin — =r (p.

A A + 2B^

„ A + 2B B m-\
Hence m = ; — =

.

A ' A 2

r. u u , J iB{A- B) . A
ror the hypocycloid, s = sin <B.^^ ^ A A -2B^

A - ZB B 1 - m
Hence m = : ; —-

=
A A 2

In the figures, the angle ACB = (m - 1) a, when m > 1

:

ACB = (1 - m) a, when m < 1.

t b2



L. On the Variation of Gravity at the Surface of the Earth. By G. G. Stokes, M.A.,

Fellow of Pembrohe College, Camhridge.

[Read April 23, 1849.]

On adopting the hypothesis of the earth's original fluidity, it has been shewn that the surface

ought to be perpendicular to the direction of gravity, that it ought to be of the form of an oblate

spheroid of small ellipticity, having its axis of figure coincident with the axis of rotation, and that

gravity ought to vary along the surface according to a simple law, leading to the numerical relation

between the ellipticity and the ratio between polar and equatoreal gravity which is known bv the

name of Clairaut's Theorem. Without assuming the earth's original fluidity, but merely supposing

that it consists of nearly spherical strata of equal density, and observing that its surface may be

regarded as covered by a fluid, inasmuch as all observations relating to the earth's figure are reduced

to the level of the sea, Laplace has established a connexion between the form of the surface and

the variation of gravity, which in the particular case of an oblate spheroid agrees with tlie connexion

which is found on the hypothesis of original fluidity. The object of the first portion of this paper

is to establish this general connexion without making any hypothesis whatsoever respecting the

distribution of matter in the interior of the earth, but merely assuming the theory of universal

gravitation. It appears that if the form of the surface be given, gravity is determined throughout

the whole surface, except so far as regards one arbitrary constant which is contained in its com-

plete expression, and which may be determined by the value of gravity at one place. Moreover

the attraction of the earth at all external points of space is determined at the same time ; so that

the earth's attraction on the moon, including that part of it which is due to the earth's oblateness,

and the moments of the forces of the sun and moon tending to turn the earth about an equatoreal

axis, are found quite independently of the distribution of matter within the earth.

The near coincidence between the numerical values of the earth's ellipticity deduced independ-

ently from measures of arcs, from the lunar inequalities which depend on the earth's oblateness,

and, by means of Clairaut's Theorem, from pendulum experiments, is sometimes regarded as a

confirmation of the hypothesis of original fluidity. It appears, however, that the form of the surface

(which is supposed to be a surface of equilibrium,) suflices to determine both the variation of gravity

and the attraction of the earth on an external particle*, and therefore the coincidence in question,

being a result of the law of gravitation, is no confirmation of the hypothesis of original fluidity.

The evidence in favour of this hypothesis which is derived from the figure and attraction of the

earth consists in the perpendicularity of the surface to the direction of gravity, and in the circum-

stance that the surface is so nearly represented by an oblate spheroid having for its axis the axis

of rotation. A certain degree of additional evidence is afforded by the near agreement between

i

' It has been remarked by Professor O'Brien, {Mathematical
Tracts, p. 56) that if we have given the form of the earth's sur-

face and the variation of gravity, we have data for determining

the attraction of the earth on an external particle, the earth being

supposed to consist of nearly spherical strata of equal density ; so

that the motion of the moon furnishes no additional confirmation

of the hypothesis of original fluidity.

If we have given the component of the attraction of any mass,

liowever irregular as to its form and interior constitution, in a di-

rection perpendicular to the surface, throughout the whole of the

surface, we have data for determining the attraction at every ex-

ternal point, as well as the components of the attraction at the

surface in two directions perpendicular to the normal. The corre-

sponding proposition in Fluid ^lotion is self-evident.
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the observed ellipticity and that calculated with an assumed law of density which is likely a priori
to be not far from the truth, and which is confirmed, as to its general correctness, by leading to a

value for the annual precession which does not much differ from the observed value.

Since the earth's actual surface is not strictly a surface of equilibrium, on account of the ele-

vation of the continents and islands above the sea level, it is necessary to consider in the first

instance in what manner observations would have to be reduced in order to render the preceding
theory applicable. It is shewn in Art. 13 that the earth may be regarded as bounded by a surface

of equilibrium, and therefore the expressions previously investigated may be applied, provided the

sea level be regarded as the bounding surface, and observed gravity be reduced to the level of the

sea by taking account only of the change of distance from the earth's centre. Gravity reduced in

this manner would, however, be liable to vary irregularly from one place to another, in consequence
of the attraction of the land between the station and the surface of the sea, supposed to be prolono-ed

underground, since this attraction would be greater or less according to the height of the station

above the sea level. In order therefore to render the observations taken at different places com-
parable with one another, it seems best to correct for this attraction in reducing to the level of the

sea ; but since this additional correction is introduced in violation of the theory in which the earth's

surface is regarded as one of equilibrium, it is necessary to consider what effect the habitual neo-Iect

of the small attraction above mentioned produces on the values of mean gravity and of the ellipticity

deduced from observations taken at a number of stations. These effects are considered in Arts.

17, 18.

Besides the consideration of the mode of determining the values of mean gravity, and
thereby the mass of the earth, and of the ellipticity, and thereby the effect of the earth's

oblateness on the motion of the moon, it is an interesting question to consider whether the

observed anomalies in the variation of gravity may be attributed wholly or mainly to the

irregular distribution of land and sea at the surface of the earth, or whether they must be

referred to more deeply seated causes. In Arts. 19, 20, I have considered the effect of the excess of

matter in islands and continents, consisting of the matter which is there situated above the actual

sea level, and of the defect of matter in the sea, consisting of the difference between the mass

of the sea, and the mass of an equal bulk of rock or clay. It appears that besides the attrac-

tion of the land lying immediately underneath a continental station, between it and the level of

the sea, the more distant portions of the continent cause an increase in gravity, since the attraction

which they exert is not wholly horizontal, on account of the curvature of the earth. But besides

this direct effect, a continent produces an indirect effect on the magnitude of apparent gravity.

For the horizontal attraction causes the verticals to point more inwards, that is, the zeniths to

be situated further outwards, than if the continent did not exist; and since a level surface is

everywhere perpendicular to the vertical, it follows that the sea level on a continent is higher than

it would be at the same place if the continent did not exist. Hence, in reducing an observation

taken at a continental station to the level of the sea, we reduce it to a point more distant from

the centre of the earth than if the continent were away ; and therefore, on this account alone,

gravity is less on a continent than on an island. It appears tiiat this latter effect more than

counterbalances the former, so that on the whole, gravity is less on a continent than on an island,

especially if the island be situated in the middle of an ocean. This circumstance lias already

been noticed as tiie result of ol)scrvati<)n. In consequence of the iiicciuaiity to which gravity is

subject, de])ending on the cliaracter of the station, it is pr()l);il)le that tiie value of tile ellipticity

which Mr. Airv has deduced from his discussion of pendulum observations is a little too great, on

account of the decided preponderance of oceanic stations in low latitudes among the group of

stations where the observations were taken.

The alteration of attraction produced by the excess anil defect of matter mentioned in tiie
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preceding paragraph does not constitute the whole effect of the irregular distribution of land and

sea, since if the continents were cut off at the actual sea level, and the sea were replaced by rock

and clay, the surface so formed would no longer be a surface of equilibrium, in consequence of

the change produced in the attraction. In Arts 25—27, I have investigated an expression for the

reduction of observed gravity to what would be observed if the elevated solid portions of the

earth were to become fluid, and to run down, so as to form a level bottom for the sea, which in

that case would cover the whole earth. The expressions would be very laborious to work out

numerically, and besides, they require data, such as the depth of the sea in a great many places,

&c., which we do not at present possess ; but from a consideration of the general character of the

correction, and from the estimation given in Art. 21 of the magnitude which such corrections are

likely to attain, it appears probable that the observed anomalies in the variation of gravity are

mainly due to the irregular distribution of land and sea at the surface of the earth.

1

.

Conceive a mass whose particles attract each other according to the law of gravitation, and

are besides acted on by a given force /, which is such that if A", 1', Z be its components along

three rectangular axes, Xdx + Ydy + Zdz is the exact differential of a function U of the co-

ordinates. Call the surface of the mass S, and let V be the potential of the attraction, that is

to say, the function obtained by dividing the mass of each attracting particle by its distance from

the point of space considered, and taking the sum of all such quotients. Suppose 5' to be a

surface of equilibrium. The general equation to such surfaces is

V+ U=c, (1)

where c is an arbitrary constant; and since S in included among these surfaces, equation (l)

must be satisfied at all points of the surface S, when some one particular value is assigned to c.

For any point external to S, the potential V satisfies, as is well known, the partial differential

equation

d'V d'V d'V
d«r dy dz-

and evidently V cannot become infinite at any such point, and must vanish at an infinite distance

from .S*. Now these conditions are sufficient for the complete determination of the value of V for

every point external to S, the quantities U and c being supposed known. The mathematical

problem is exactly the same as that of determining the permanent temperature in a homogeneous

solid, which extends infinitely around a closed space S, on the conditions, (1) that the temperature

at the surface S shall be equal to c — U, (2) that it shall vanish at an infinite distance. This

problem is evidently possible and determinate. The possibility has moreover been demonstrated

mathematically.

If U alone be given, and not c, the general value of V will contain one arbitrary constant,

which may be determined if we know the value of V, or of one of its differential coefficients, at

one point situated either in the surface S or outside it. When V is known, the components

of the force of attraction will be obtained by inere differentiation.

Nevertheless, although we know that the problem is always determinate, it is only for a very

limited number of forms of the surface .S" that the solution has hitherto been effected. The
most important of these forms is the sphere. When .S" has very nearly one of these forms the

problem may be solved by approximation.

2. Let us pass now to the particular case of the earth. Although the earth is really

revolving about its axis, so that the bodies on its surface are really describing circular orbits



AT THE SURFACE OF THE EARTH. 675

about the axis of rotation, we know that the relative equilibrium of the earth itself, or at least

its crust, and the bodies on its surface, would not be affected by supposing the crust at rest,

provided that we introduce, in addition to the attraction, that fictitious force which we call the

centrifugal force. The vertical at any place is determined by the plumb-line, or by the surface

of standing fluid, and its determination is therefore strictly a question of relative equilibrium.

The intensity of gravity is determined by the pendulum ; but although the result is not

mathematically the same as if the earth were at rest and acted on by the centrifugal force, the

difference is altogether insensible. It is only in consequence of its influence on the direction

and magnitude of the force of gravity that the earth's actual motion need be considered at all in

this investigation : the mere question of attraction has nothing to do with motion ; and the results

arrived at will be equally true whether the earth be solid throughout or fluid towards the centre,

even though, on the latter supposition, the fluid portions should be in motion relatively to the

crust.

We know, as a matter of observation, that the earth's surface is a surface of equilibrium, if

the elevation of islands and continents above the level of the sea be neglected. Consequently the

law of the variation of gravity along the surface is determinate, if the form of the surface be

given, the force / of Art. 1 being in this case the centrifugal force. The nearly spherical form

of the surface renders the determination of the variation easy.

3. Let the earth be referred to polar co-ordinates, the origin being situated in the axis of

rotation, and coinciding with the centre of a sphere which nearly represents the external surface.

Let r be the radius vector of any point, Q the angle between the radius vector and the northern

direction of the axis, the angle which the plane passing through these two lines makes with a

plane fixed in the earth and passing through the axis. Then the equation (2) which V has to

satisfy at any external point becomes by a common transformation

Let 0) be the angular velocity of the earth ; then U = — r-sin^O, and equation (l) becomes

2

V+—r^sm"e=c, (4)

which has to be satisfied at the surface of the earth.

For a given value of r, greater than the radius of the least sphere which can be described

about the origin as centre so as to lie wholly without the earth, V can be expanded in a series

of Laplace's coefficients

V,+ V, +V,+ ...;

and therefore in general, provided r be greater than the radius of the sphere above mentioned,

V can be expanded in such a scries, but the general term r„ will be a function of )•, as well as of

9 and 0. Substituting the above series in equation (3), and observing tliat from the nature of

Laplace's coefficients

I d f .
^dV„\ 1 d-V„

, ^,^ _^
sin0 -

I
+ -.—r = - n(ti + i)V„, (5)

sine dB\ dd I i^m' 6 d(f^'
v

^ „,

we get

r d'.rV,, 1

where all integral values of n from () to -x, are to l)e taken.
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Now the differential coefficients of V„ with respect to r are Laplace's coefficients of the n"'

order as well as V„ itself; and since a series of Laplace's coefficients cannot be equal to zero unless

the Laplace's coefficients of the same order are separately equal to zero, we must have

r~^"-nin+l)V„ = (6)
ClT

The integral of this equation is

»^»=4+2»'-'

where ¥„ and Z„ are arbitrary constants so far as r is concerned, but contain 9 and (p. Since these

functions are multiplied by different powers of r, V„ cannot be a Laplace's coefficient of the n""

order unless the same be true of V„ and Z„. We have for the complete value of F

Y y v.
-^+-^ + -^+ ... + Z, + Z,ri-
r r r'

Now V vanishes when r = oo , which requires that Zg = 0, Z, = 0, &c. ; and therefore

V= — +— + — + (7)
r r r-*

4. The preceding equation will not give the value of the potential throughout the surface of

a sphere which lies partly within the earth, because although V, as well as any arbitrary but finite

function of Q and (p, can be expanded in a series of Laplace's coefficients, the second member of

equation (3) is not equal to zero in the case of an internal particle, but to - inrp^'^, where p is the

density. Nevertheless we may employ equation (7) for values of r corresponding to spheres which

lie partly within the earth, provided that in speaking of an internal particle we slightly change the

signification of V, and interpret it to mean, not the actual potential, but what would be the poten-

tial if the protuberant matter were distributed within the least sphere which cuts the surface, in

such a manner as to leave the potential unchanged throughout the actual surface. The possibility

of such a distribution will be justified by the result, provided the series to which we are led prove

convergent. Indeed, it might easily be shewn that the potential at any internal point near the

surface differs from what would be given by (7) by a small quantity of the second order only ;

but its differential coefficient with respect to r, which gives the component of the attraction along

the radius vector, differs by a small quantity of the first order. We do not, however, want the

potential at any point of the interior, and in fact it cannot be found without making some hypo-

thesis as to the distribution of the matter within the earth.

5. It remains now to satisfy equation (4). Let r = a (I + u) be the equation to the earth's

surface, where m is a small quantity of the first order, a function of 6 and (p. Let u be expanded

in a series of Laplace's coefficients «„ + ti., + The term m„ will vanish provided we take for a the

mean radius, or the radius of a sphere of equal volume. We may, therefore, take for the equation

to the surface

r = a (l -1- Ui+ u.,+ ...) (8)

If the surface were spherical, and the earth had no motion of rotation, V would be independent

of and (p, and the second member of equation (7) would be reduced to its first terra. Hence,

since the centrifugal force is a small quantity of the first order, as well as u, the succeeding terms

must be small quantities of the first order; so that in substituting in (7) the value of r given by

(8) it will be sufficient to put r = o in these terms. Since the second term in equation (4) is a

small quantity of the first order, it will be sufficient in that term likewise to put r = a. We thus

get from (4), (7), and (8), omitting the squares of small quantities,
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" / . ^ * 1 ^9 is)' (l~- (1 - w, -u,- u, ...) +_+%,.. + sin = = r (9)" a a? 2 ^ '

The most general Laplace's coefficient of the order is a constant ; and we have

sin-0 = | + (l -cos'0),

of which expression the two parts are Laplace's coefficients of the orders 0, 2, respectively. We
thus get from (9), by equating to zero Laplace's coefficients of the same order,

Fo = "c -
;5

tti'a^

Y, = a Y„u,,

I'a = a- r„u, - 1 tt,'-a5 (1 _ g^ga
q^^

¥-, = a^y,it„ &c.

The first of these equations merely gives a relation between the arbitrary constants J';, and c

;

the others determine V„ V,,, &c. ; and we get by substituting in (7)

^=^o[- + ,-5 " + 73 ". + •••) -'oT^'^i- '=°^'^) (10)

6. Let g be the force of gravity at any point of the surface of the earth, dn an element of

the normal drawn outwards at that point ; then g = --—(V + U). Let \|/ be the angle between

the normal and the radius vector ; then g cos x|/ is the resolved part of gravity along the radius

vector, and this resolved part is equal to - — (F + U). Now \// is a small quantity of the first

order, and therefore we may put cos v|/ = 1, which gives

g= -j- (F+ U),
dr

where, after differentiation, r is to be replaced by the radius vector of the surface, which is given by
(8). We thus get

V V
^ = -° (I - 2?^, - 271, - 2u, ...) + ~ (2?«, + 3tt, + iu, ...) - ^ai'a U - cos=0) - w'a (|- + 1 - cosW,

which gives, on putting

-feo=a = G, -^ = m, (l1)

and neglecting squares of small quantities,

g = G {l - ^m {^ -cos'^e) + u., + 2Us+ 3u,...\ (12)

In this equation G is the mean value of g- taken throughout the whole surface, since we know

that / / ii„ sin 6 dOd(p = 0, if n be diU'ercnt from zero. The second of equations (II) shews

that m is tiie ratio of the centrifugal force at a distance from the axis equal to the mean distance to

mean gravity, or, which is the same, since the squares of small ipiantitics are neglected, the ratio

of the centrifugal force to gravity at the equator. Equation (12) makes known the variation of

gravity when the form of the surface is given, the surface being supjiosed to be one of ecjuilibriuni
;

and, conversely, equation (S) gives the form of the surface if the variation of gravity be known.

It may be observed that on the latter supposition there is nothing to determine ?/,. The most

general form of u, is

a sin cos rf) + /3 sin sin (p + y tos 6,

Vol.. Vin. Part V. 4S
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where a, /3, 7 are arbitrary constants ; and it is very easy to prove that the co-ordinates of the

centre of gravity of the volume are equal to aa, a(i, ay respectively, the line from which Q is

measured being taken for the axis of z, and the plane from which (p is measured for the plane of

xz. Hence the term u^ in (8) may be made to disappear by taking for origin the centre of gravity

of the volume. It is allowable to do this even should the centre of gravity fall a little out of the

axis of rotation, because the term involving the centrifugal force, being already a small quantity

of the first order, would not be affected by supposing the origin to be situated a little out of

the axis.

Since the variation of gravity from one point of the surface to another is a small quantity of

the first order, its expression will remain the same whether the earth be referred to one origin or

another nearly coinciding with the centre, and therefore a knowledge of the variation will not

inform us what point has been taken for the origin to which the surface has been referred.

7. Since the angle between the vertical at any point and the radius vector drawn from the

origin is a small quantity of the first order, and the angles 0, (p occur in the small terms only of

equations (8), (lO), and (12), these angles may be taken to refer to the direction of the vertical,

instead of the radius vector.

ultimately equal to — . Comparing this with (10), we get F„ = E, and therefore, from the first

r

8. If E be the mass of the earth, the potential of its attraction at a very great distance r is

imately equal tc

of equations (H),

£=Ga=+f<..= a' = Go^(l+|m), (13)

which determines the mass of the earth from the value of G determined by pendulum experiments.

9. If we suppose that the surface of the earth may be represented with sufficient accuracy by

an oblate spheroid of small ellipticity, having its axis of figure coincident with the axis of rotation,

equation (8) becomes

r = a{l +e(l-cos'^0)}, (14)

where e is a constant which may be considered equal to the ellipticity. W^e have therefore in this

case M, = 0, u, = \- cos' 6, u,. = when w > 2 ; so that (12) becomes

g=G{l - (|m -6)(i-cos-0)|, (15)

which equation contains Clairaut's Theorem. It appears also from this equation that the value of

G which must be employed in (13) is equal to gravity at a place the square of the sine of whose

latitude is ^.

10. Retaining the same supposition as to the form of the surface, we get from (10), on

replacing }'„ by E, and putting in the small term at the end uya^ = niGa' = mEa^,

E K (i'

F= - + (e_im) -3 (i_cos'0) (U>)

Consider now the effect of the earth's attraction on the moon. The attraction of any particle

of the earth on the moon, and therefore the resultant attraction of the whole earth, will be very

nearly the same as if the moon were collected at her centre. Let therefore r be the distance of the

centre of the moon from that of the earth, Q the moon's North Polar Distance, P the accelerating

force of the earth on the moon resolved along the radius vector, Q_ the force perpendicular to the

radius vector, which acts evidently in a plane passing through the earth's axis ; then

dV dV
^= -:r' ^ = -ir^'dr rdti
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whence we get from (l6)

^=^' +^ (« " a'») 75- (i- cos°0), Q = 2(e-lm)^-sin6lcos0 (17)

The moving forces arising from the attraction of the earth on the moon will be obtained by
multiplying by M, where J/ denotes the mass of the moon ; and these are equal and opposite to

the moving forces arising from the attraction of the moon on the earth. The component J\IQ of
the whole moving force is equivalent to an equal and parallel force acting at the centre of the earth
and a couple. The accelerating forces acting on the earth will be obtained by dividing by E ; and
since we only want to determine the relative motions of the moon and earth, we may conceive equal
and opposite accelerating forces applied both to the earth and to the moon, which comes to the
same thing as replacing E by E + M in (17). If A' be the moment of the couple arising from the
attraction of the moon, which tends to turn the earth about an equatoreal axis, A' = AfQr, whence

. . MEa- . ^A = 2(e - im) — sm6 cos 9 (18)

The same formula will of course apply, mutatis mutandis, to the attraction of the sun.

11. The spheroidal form of the earth's surface, and the circumstance of its being a surface of
equilibrium, will afford us some information respecting the distribution of matter in the interior.

Denoting by ,r', y', z' the co-ordinates of an internal particle whose density is p, and by a;, y, z
tho.se of the external point of space to which V refers, we have

V 'Iff
p dx dy dz'

|(.^•-,^•')^ + (y-2/T + (^-^')1*'

the integrals extending throughout the interior of the earth. Writing dm for p' dx dy dz,
putting X, n, V for the direction-cosines of the radius vector drawn to the point {x, y, z), so that

r = Xr, y = fir, z = vr, and expanding the radical according to inverse powers of r, we get

1 A 1 ^
'

''= -fffdm' y'S.-Jifx dm' +-^^1{3X' - 1) ffjx"- dm' + — l.X/x JJfw' y dm' + ...(19)

S denoting the sum of the three expressions necessary to form a symmetrical function. Comparing
this expression for V with that given by (10), which in the present case reduces itself to (iG), we

get Y„ = fjjdm' = E, as before remarked, and

fffx'd?n' = Q, fffy' dm' = 0, jj'jz'dm = 0, (20)

12(3V-- 1) fffx'-dm' + S^Xiu fffx'y'dm' = (e-^ra) Ea-(^- cos=0); (21)

together with other equations, not written down, obtained by equating to zero the coefficients of

i,i&c.in(l9).

Equations (20) shew that the centre of gravity of the mass coincides with the centre of gravity

of the volume. In treating equation (21), it is to be remarked tliat X, (u, f are not independent, but

connected by the equation X" + //" -t- i/° = 1. If now we insert X^ + n' + v' as a coefficient in each

term of (21) which does not contain X, iuL,or v, the equation will become iiomogeneous with respect to

X,(i, I', and will therefore only involve the two independent ratios which exist between these three

quantities, and consequently we shall have to equate to zero the coefficients of corresponding powers

of X, /J, V. 15y the transformation just mentioned, equation (21) becomes, since cos ti = v,

S (X'^ - J ^/ - ^v") ///V'' dm' + :s-:i\,xfffx'y'dm' = (e- ^m) £0' (^X* + 1^' -
f"') J

and we get

fffvy'dni' = 0, fffy'z'dm' = 0, fffz'x'dm' = 0, (22)

Sf{a:'"-dm' - }Jffy'"-dm' - yffz'^-dm' = fffy'^dm' - yffz'^dn,' - IJffx'dm']

= -ijjfz"dm' + iffjx"dm' + Uffy'dm' = }^{c - ^m) Ea\ \

4 s 2



680 Mr. stokes, on THE VARIATION OF GRAVITY

Equations (22) shew that the co-ordinate axes are principal axes. Equations (23) give in

the first place

fffa!"dm'=fffy"dm',

which shews that the moments of inertia about the axes of x and y are equal to each other, as might

have been seen at once from (22), since the principal axes of ,t and y are any two rectangular axes

in the plane of the equator. The two remaining equations of the system (23) reduce themselves to

one, which is

fffx'dm' - fff^'^dm' = |(e - ^m)Ea\

If we denote the principal moments of inertia by J, A, C, this equation becomes

C -A = ^(e-^m)Ea\ (24)

which reconciles the expression for the couple .ff" given by (18) with the expression usually given,

which involves moments of inertia, and which, like (18), is independent of any hypothesis as to the

distribution of the matter within the earth.

It should be observed that in case the earth be not solid to the centre the quantities A, C must

be taken to mean what would be the moments of inertia if the several particles of whicli the earth

is composed were rigidly connected.

12. In the preceding article the surface has been supposed spheroidal. In the general case of

an arbitrary form we should have to compare the expressions for F given by (10) and (ig). In the

first place it may be observed that the term i<, can always be got rid of by taking for origin the

centre of gravity of the volume. Equations (20) shew that in the general case, as well as in the

particular case considered in the last article, the centre of gravity of the mass coincides with the

centre of gravity of the volume.

Now suppress the term ?«, in ii, and let u = u' + u", where u" = gW'C 3 ~ cos' 0). Then ?«' may
be expanded in a series of Laplace's coefficients ti'.^ + ii\ + ... ; and since Fq = E, equation (10) will

be reduced to

V = E(-+-^u, + -^tc',...) (25)

If the mass were collected at the centre of gravity, the second member of this equation would

be reduced to its first term, which requires that u',. = 0, it's = 0, &c. Hence (8) would be reduced

to r = a(l + u"), and therefore au" is the alteration of the surface due to the centrifugal force, and

au the alteration due to the difference between the actual attraction and the attraction of a sphere

composed of spherical strata. Consider at present only the term ?('„ of u'. From the general form

of Laplace's coefficients it follows that ati'., is the excess of the radius vector of an ellipsoid not much
differing from a sphere over that of a sphere having a radius equal to the mean radius of the ellipsoid.

If we take the principal axes of this ellipsoid for the axes of co-ordinates, we shall have

u'2 = 6'(^ - sin' 9 cos^<p) + e"(^ - sin- 9s\a-(p) + e"\^ - cos' 6),

€, e", e'" being three arbitrary constants, and 9, (p denoting angles related to the new axes of x, y, z

in the same way that the angles before denoted by 0, tp were related to the old axes. Substituting

the preceding expression for ii^ in (25), and comparing the result with (19), we shall again obtain

equations (22). Consequently the principal axes of the mass passing through the centre of gravity

coincide with the principal axes of the ellipsoid. It will be found that the three equations which

replace (2.S) are equivalent to but two, which are

A - yEa' = B - le"Ea = C - |e"'£o^

where A, B, C denote the principal moments.

The permanence of the earth's axis of rotation shews however that one of the principal axes of

the ellipsoid coincides, at least very nearly, with the axis of rotation; although, strictly speaking, tills
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conclusion cannot be drawn without fm-thtr consideration except on the supposition that the earth

is solid to the centre. If we assume this coincidence, the term £"'(i — cos° 0) will unite with the

term u" due to the centi-ifugal force. Thus the most general value of u is that which belongs to an

ellipsoid having one of its principal axes coincident with the axis of rotation, added to a quantity

which, if expanded in a series of Laplace's coefficients, would furnish no terms of the order 0, I, or 2.

It appears from this and the preceding article that the coincidence of the centres of gravity of the

mass and volume, and that of the axis of rotation and one of the principal axes of the ellipsoid whose

equation is r= a(l + M2), which was established by Laplace on the supposition that the earth consists of

nearly spherical strata of equal density, holds good whatever be the distribution of matter in the interior.

1.3. Hitherto the surface of the earth has been regarded as a surface of equilibrium. This we

know is not strictly true, on account of the elevation of the land above the level of the sea. The
question now arises, By what imaginary alteration shall we reduce the surface to one of equilibrium;'

Now with respect to the greater portion of the earth's surface, which is covered with water, we

have a surface of equilibrium ready formed. The expression level nf the sea has a perfectly definite

meaning as applied to a place in the middle of a continent, if it be defined to mean the level at

which the sea-water would stand if introduced by a canal. The surface of the sea, supposed to be

prolonged in the manner just considered, forms indeed a surface of equilibrium, but the preceding

investigation does not apply directly to this surface, inasmuch as a portion of the attracting matter

lies outside it. Conceive however the land which lies above the level of the sea to be depressed till

it gets below it, or, which is the same, conceive the land cut off at the level of the sea produced,

and suppose the density of the earth or rock which lies immediately below the sea-level to he in-

creased, till the increase of mass immediately below each superficial element is equal to the mass

which has been removed from above it. The whole of the attracting matter will thus be brouglit

inside the original sea-level; and it is easy to see that the attraction at a point of space external to

the earth, even though it be close to the surface, will not be sensibly affected. Neither will tlie

sea-level be sensibly changed, even in the middle of a continent. For, suppose the sea-water intro-

duced by a pipe, and conceive the land lying above the sea-level condensed into an infinitely thin

layer coinciding with the sea-level. The attraction of an infinite plane on an external particle does

not depend on the distance of the particle from the plane ; and if a line be drawn througli the

particle inclined at an angle a to the perpendicular let fall on the plane, and be then made to revolve

around the perpendicular, the resultant attraction of the portion of the plane contained witliin the

cone thus formed will be to that of the whole plane as versin a to 1. Hence the attraction of a

piece of table-land on a particle close to it will be sensibly the same as that of a solid of equal

thickness and density comprised between two parallel infinite planes, and that, even though the

lateral extent of the table-land be inconsiderable, only equal, suppose, to a small multiple of the

lengtii of a perpendicular let fall from the attracted particle on the further bounding phme. Ilenie

the attraction of the land on the water in the tube will not be sensibly altered by the condensation we

have supposed, and therefore we are fully justified in regarding the level of the .sea as unchanged.

The surface of equilibrium which by the imaginary displacement of matter just considered has

also become the bounding surface, is that surface which at the same time coincides with the surface

of the actual sea, where the earth is covered by water, and belongs to the system of surfaces i>f

equilibrium which lie wholly outside the earth. 'J"o reduce observed gravity to what would have

been observed just above this imaginary surface, we n)Ust evidently increase it in the inverse ratio

of the square of the distance from the centre of the earth, without taking account of the attraction

(,f the table-land which lies between the level of the station and the level of the sea. The question

now arises. How shall we best determine the numerical value of the eartii's cllipticity, and how

best compare the form which results from observation with the spheroid whicli results from theory

on the hypi)the>is of original fluidity .'
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14. Before we consider how the numerical value of the earth's ellipticity is to be determined,

it is absolutely necessary that we define what we mean by ellipticity ; for, when the irregularities of

the surface are taken into account, the term must be to a certain extent conventional.

Now the attraction of the earth on an external body, such as the moon, is determined by the

function V, which is given by (10). In this equation, the term containing r"^ will disappear if r

be measured from the centre of gravity; the term containing r"*, and the succeeding terms, will

be insensible in the case of the moon, or a more distant body. The only terms, therefore, after

the first, which need be considered, are those which contain r"". Now the most general value of m^

contains five terms, multiplied by as many arbitrary constants, and of these terms one is -^ - cos' 9,

and the others contain as a factor the sine or cosine of i^ or of 2 (p. The terms containing sin (p or

cos d, will disappear for the reason mentioned in Art. 12 ; but even if they did not disappear their

effect would be wholly insensible, inasmuch as the corresponding forces go through their period in

a day, a lunar day if the moon be the body considered. These terms therefore, even if they ex-

isted, need not be considered ; and for the same reason the terms containing sin 2(p or cos 2(p may

be neglected; so that nothing remains but a term which unites with the last term in equation (10).

Let 6 be the coefficient of the term ^ - cos- 6 in the expansion of u : then e is the constant which

determines the effect of the earth's oblateness on the motion of the moon, and which enters into

the expression for the moment of the attractions of the sun and moon on the earth ; and in the

particular case in which the earth's surface is an oblate spheroid, having its axis coincident with

the axis of rotation, e is the ellipticity. Hence the constant e seems of sufficient dignity to deserve

a name, and it may be called in any case the ellipticity.

Let r be the radius vector of the earth's surface, regarded as coincident with the level of the

sea; and take for shortness m {f{0,(p)\ to denote the mean value of the function/ (6,<p)

throughout all angular space, or — [„" f^'^"/ (fi,(j)) sin 9 dOdcp. Then it follows from the theory

of Laplace's coefficients that

45
e = — m {(1- sin'Z)r|, (26)

4 a

I being the latitude, or the compliment of 9. To obtain this equation it is sufficient to multiply

both sides of (8) by (1 - cos^ 9) sin 9d9d(p, and to integrate from 6 = to = tt, and from

^ = to (^ = 2 TT. Since ^ - cos^ is a Laplace's coefficient of the second order, none of the

terms at the second side of (S) will furnish any result except Mo, and even in the case of n^ the

terms involving the sine or cosine of (h or of 2d) will disappear.

15. Let g be gravity reduced to the level of the sea by taking account only of the height of

the station. Then this is the quantity to which equation (12) is applicable; and putting for u. its

value we get by means of the properties of Laplace's coefficients

45
G = m(g),G{^m -e) = --m {(i-sin=/)^| (27)

If we were possessed of the values of g at an immense number of stations scattered over

the surface of the whole earth, we might by combining the results of observation in the

manner indicated by equations (27) obtain the numerical values of G and e. We cannot, however,

obtain by observation the values of g at the surface of the sea, and the stations on land where

the observations have been made from which the results are to be obtained are not very numerous.

We must consider therefore in what way the variations of gravity due to merely local causes are

to be got rid of, when we know the causes of disturbance ; for otherwise a local irregularity,

which would be lost in the mean of an immense number of observations, would require undue

importance in the result.
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16. Now the most obvious cause of irregularity consists in the attraction of the land lying

between the level of the station and the level of the sea. This attraction would render the

values of g sensibly different, which would be obtained at two stations only a mile or two apart,

but situated at different elevations. To render our observations comparable with one another, it

seems best to correct for the attraction of the land which lies underneath the pendulum ; but then

we must consider whether the habitual neglect of this attraction may not affect the mean values

from which G and e are to be found.

Let g = g: +g', where g is the attraction just mentioned, so that g^ is the result obtained by
reducing the observed value of gravity to the level of the sea by means of Dr. Young's formula*.

Let h be the height of the station above the level of the sea, a the superficial density of

the earth where not covered by water; then by the formula for the attraction of an infinite plane

we have g = Zircrh. To make an observation, conceived to be taken at the surface of the sea,

comparable with one taken on land, the correction for local attraction would be additive, instead of

subtractive ; we should have in fact to add the excess of the attraction of a layer of earth or rock,

of a thickness equal to the depth of the sea at that place, over the attraction of so much water.

The formula g' = 2irah will evidently apply to the surface of the sea, provided we regard A as a

negative quantity, equal to the depth of the sea, and replace cr by cr - 1, the density of water being

taken for the unit of density ; or we may retain o- as the coefficient, and diminish the depth in

the ratio of cr to cr - 1.

Let p be the mean density of the earth, then

§' = 2 irah O 7 = G-
i-TTf 2 pa

If we suppose a o\_ p = 5^, a = 4000 miles, and suppose h expressed in miles, with the

I

understanding that in the case of the sea k is a negative quantity equal to f^ths of the actual

depth, we have g' = .00017 G/j nearly.

17. Consider first the value of G. We have by the preceding formula, and the first of

equations (27),

G = m (g,) + G x .00017 m (A)-

According to Professor Rigaud's determination, the quantity of land on the surface of the

earth is to that of water as 100 to 276^. If we suppose the mean elevation of the land
-J

tli

of a mile, and the mean depth of the sea 3 ^ miles, we shall have

f X 3| X 276-1 X 100
m (/i) = - ^ ^ —g—2 = - 1.49 nearly ;

so that the value of G determined by g, would be too great by about .000253 of the whole. Hence

the mass of the earth determined by the pendulum would be too great by about the one four-

thousandth of the whole ; and therefore the mass of the moon, obtained by subtracting from

the sum of the masses of the earth and moon, as determined by means of the coefficient of lunar

parallax, the mass of the earth alone, as determined by means of the pendulum, would be too

small by about the one four-thousandth of the mass of the earth, or about the one fiftieth of

the whole.

18. Consider next the value of

stituting g, for g in (27), and let

Let £| be the value whic he di'liriiiined by sub-

* I'hi/. Trans, for IKlii. Dr. Young's formula in Ijasttl on the

principle of taking into account the attraction of tlic table-lantl

exiHting between the .station antl the level of the sea, in reiiucing

the ohnervation to the sea level. On account of this atlrsction, the

—
J

which gives the correction for elevation alone

must be reduced in tlic ratio of I to 1 , or 1 to .&') nearly, if

ff = 2j, ^ = 5J. Mr Airy, observing that the value it i a j is n

little too snuill, and (J.. (IJ a little loo grcvt, has employed the

factor .(!, instead of .(III.

t Ciiiii'iriih/r 1'hilo.miMeill yn/luv/ffio;!., Vol. vi. p. '.",1".
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45

4

111 considering the value of q we may attend only to the land, provided we transfer the defect of

density of the sea with an opposite sign to the land, because if g' were constant, q would vanish.

This of course proceeds on the supposition that the depth of the sea is constant. Since e = e, — q,

if q were positive, the ellipticity determined by the pendulum would appear too great in con-

sequence of the omission of the force g. I have made a sort of rough integration by means of

a map of the world, by counting the quadrilaterals of land bounded each by two meridians

distant 10", and by two parallels of latitude distant 10°, estimating the fraction of a broken

quadrilateral wliich was partly occupied by sea. The number of quadrilaterals of land between

two consecutive parallels, as for example 50° and 60", was multiplied by 12 (1^ - sin'/) cos /, or

.S cos 3 / + cos /, where for / was taken the mean latitude, (S5° in the example,) the sum of the

results was taken for the whole surface, and multiplied by the proper coefficient. The north pole

was supposed to be surrounded by water, and the south pole by land, as far as latitude 80''. It

appeared that the land lying beyond the parallels for which sin'7 = ^, that is, beyond the

parallels 35° N. and 35° S. nearly, was almost exactly neutralized by that which lay within those

parallels. On the whole, q appeared to have a very small positive value, which on the same

suppositions as before respecting the height of the land and the depth of the sea, was .0000012.

It appears, therefore, that the omission of the force g' will produce no sensible increase in the

value of £, unless the land be on the whole higher, or the sea shallower, in high latitudes than in

low. If the land had been collected in a great circular continent around one pole, the value of

7 would have been .000268 ; if it had been collected in a belt about the equator, we should have

had q = — .000362. The difference between these values of q is about one fifth of the whole

ellipticity.

19. The attraction g' is not the only irregularity in the magnitude of the force of gravity

which arises from the irregularity in the distribution of land and sea, and in the height of the

land and depth of the sea, although it is the only irregulai'ity, arising from that cause, which is

liable to vary suddenly from one point at the surface to another not far off. The irregular coating

of the earth will produce an irregular attraction besides that produced by the part of this coating

which lies under and in the immediate neighbourhood of the station considered, and it will

moreover cause an irregular elevation or depression in the level of the sea, and thereby cause a

diminution or increase in the value of g^.

Consider the attraction arising from the land which lies above the level of the sea, and from

the defect of attracting matter in the sea. Call this excess or defect of matter the coating of the

earth : conceive the coating condensed into a surface coinciding with the level of the sea, and

let Ac be the mass contained in a small element A of this surface. Then S = ah in the case of the

land, and ^ = — {a — I) h in the case of the sea, h being in that case the depth of the sea. Let

V^ be the potential of the coating, V', V' the values of V^ outside and inside the surface respec-

tively. Conceive S expanded in a series of Laplace's coefficients ^„ + ^i + ..., then it is easily

proved that

V' = .,^a^(l§, + ^J, + fj,+ ..X V" = t^a'(-^, + ^J,+ ...], (28)
\r 3r' 5r^ j \a 3a' J

r being the distance of the point considered from the centre. These equations give

dV ^ i + \ fa\**\ dF" ^ i try-'-— =-47r2-T - 4-^ = 4x2-^ - Si (29)
dr 2t + 1 \rl ' dr 2j + 1 \a!

Consider two points, one external, and the other internal, situated along the same radius vector
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very close to the surface. Let E be an element of this surface lying around the radius vector, an
element which for clear ideas we may suppose to be a small circle of radius s, and let s be at the
same time infinitely small compared with a, and infinitely great compared with the distance between

dV' d V"
the points. Then the limiting values of —— and —— will differ by the attraction of the element

dr dr '

E, an attraction which, as follows from what was observed in Art. 13, will be ultimately the same

as that of an infinite plane of the same density, or Stp^*. The mean of the values of and
dr dr

will express the attraction of the general coating in the direction of the radius vector the

general coating being understood to mean the whole coating, with the exception of a superficial

element lying adjacent to the points where the attraction is considered. Denoting this mean by
dV^—— , we get, on putting r = a.

= -2,r2-
dr 2i + 1

This equation becomes by virtue of either of the equations (28)

y^ = -I% (30)
dr 2a '

which is a known equation. Let either member of this equation be denoted by — g''. Then
gravity will be increased by g", in consequence of the attraction of the general coating.

20. But besides its direct effect, the attraction of the coating will produce an indirect effect by
altering the sea-level. Since the potential at any place is increased by V^ in consequence of the

coating, in passing from what would be a surface of equilibrium if the coating were removed, to the

actual surface of equilibrium corresponding to the same parameter, jthat is, the same value of the

constant c in equation (1),} we must ascend till the labouring force expended in raising a unit of

mass is equal to V^, that is, we must ascend through a space — , or — nearly. In consequence of

^
.

this ascent, gravity will be diminished by the quantity corresponding to the height G"' F^, or li

suppose. If we take account only of the alteration of the distance from the centre of the earth,

2h' 2V^ „
this diminution will be equal to G.— , or , or ig , and therefore the combined direct and

a a

indirect effects of the general coating will be to diminish gravity by 3g".

But the attraction of that portion of the stratum whose thickness is h', which lies immediately

about tlie station considered, will be a quantity which involves /*' as a factor, and to include this

attraction we must correct for the change of distance // by Dr. Young^s rule, instead of correcting

merely according to the square of the distance. In this way we shall get for the diminution of

gravity due to the general coating, not 3g", but only 4 I I
]
g" - g'l '"' '^g' suppose. If

a p.: S: II, we have /c = r . (H nearly.

* This roult readily follows from equations (2R), which give,

on putting r=at —.
,

- = 47r 2 ^( = 4Tr3. ThiR difference of
dr dr

attraction at points infinitely close can evidently only arise from

the altracliori of the Interposed element of surface, which, being

ullimutely plane, will net equally at both piiintu \ and, thcrefiire,

the altractiim will lie in each case 'Jiri, and will act outwardj in

the iitst case, and inwards in the second.

Vol. VIII. rAiiT V. 4T
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If we cared to leave the mean value of gravity unaltered, we should have to use, instead of ^,

its excess over its mean value S^. In considering, however, only the variation of gravity from one

place to another, this is a point of no consequence.

21. In order to estimate the magnitude which the quantity 3g" is likely to attain, conceive

two stations, of which the first is surrounded by land, and the second by sea, to the distance of

1000 miles, the distribution of land and sea beyond that distance being on the average the same at

the two stations. Then, by hypothesis, the potential due to the land and sea at a distance greater

than 1000 miles is the same at the two stations; and as we only care for the difference between the

values of the potential of the earth's coating at the two stations, we may transfer the potential due

to the defect of density at the second station with an opposite sign to the first station. We shall

thus have around the first station, taking h' for the depth of the sea around the second station,

S =ah + {a - 1) /i. In finding the difference V of the potentials of the coating, it will be amply

sufficient to regard the attracting matter as spread over a plane disk, with a radius s equal to 1000

miles. On this supposition we get

Now G = t Trpo, and therefore 3g- = — =
; G = -.

. - G. Making the same
3 " ' 2a ipa 4 pa a

suppositions as before with regard to the numerical values of a, p, h, h', and a, we get

3g" = -000147 G. This corresponds to a difference of 6-35 vibrations a day in a seconds' pendulum.

Now a circle with a radius of 1000 miles looks but small on a map of the world, so that we may

readily conceive that the difference depending on this cause between the number of vibrations

observed at two stations might amount to 15 or 20, that is 7.5 or 10 on each side of the mean, or

even more if the height of the land or the depth of the sea be under-estimated. This difference

will however be much reduced by using kg" in place of 3g"*.

22. The value of V^ at any station is expressed by a double integral, which is known if S be

known, and which may be calculated numerically with sufficient accuracy by dividing the surface

into small portions and performing a summation. Theoretically speaking, T, could be expressed

for the whole surface at once by means of a series of Laplace's coefficients ; the constants in this

series could be determined by integration, or at least the approximate integration obtained by

summation, and then the value of V^ could be obtained by substituting in the series the latitude and

longitude of the given station for the general latitude and longitude. Rut the number of terms

which would have to be retained in order to represent with tolerable accuracy the actual state of the

earth's surface would be so great that the method, I apprehend, would be practically useless

;

although the leading terms of the series would represent the effect of the actual distribution of land

and sea in its broad features. It seems better to form directly the expression for F, at any station.

This expression may be calculated numerically for each station by using the value of S most likely

to be correct, if the result be thought worth the trouble; but even if it be not calculated

numerically, it will enable us to form a good estimation of the variation of the quantity 3g" or kg"

from one place to another.

Let the surface be referred to polar co-ordinates originating at the centre, and let the angles

\1/, y be with reference to the station considered what 6, <p were with reference to the north pole.

The mass of a superficial element is equal to Sa- sin v|/dx|/dj^, and its distance from the station is

2o sin — . Hence we have

F, = fl//5cos|^dx|/dx (31)

• The efFectof the irregularity of the earth's surface is greaier than what is represented by kg", for a reason which will be explained

further on (Art. 25).
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Let S„ be the mean value of S throughout a circle with an angular radius
\J/,

then the part of

V^ which is due to an annulus having a given infinitely small angular breadth rfx// is proportional to

S„ cos ^ , or to S„, nearly when r// is not large. If we regard the depth of the sea as uniform, we

may suppose ^ = for the sea, and transfer the defect of density of the sea with an opposite sign to

the land. We have seen that if we set a circle of land i mile high of 1000 miles radius surrounding
one station against a circle of sea 3^ miles deep, and of the same radius, surrounding another, we get

a difference of about ^ x 1.64 x 6.35, or 3I nearly, in the number of vibrations performed in one
day by a seconds' pendulum. It is hardly necessary to remark that high table-land will produce
considerably more effect than land only just raised above the level of the sea, but it should be
observed that the principal part of the correction is due to the depth of the sea. Thus it would
require a uniform elevation of about 2.1 miles, in order that the land elevated above the level of the

sea should produce as much effect as is produced by the difference between a stratum of land
3i miles thick and an equal stratum of water.

23. These considerations seem sufficient to account, at least in a great measure, for the

apparent anomalies which Mr. Airy has noticed in his discussion of pendulum experiments*. The
first table at p. 230 contains a comparison between the observations which Mr. Airy considers first-

rate and theory. The column headed " Error in Vibrations" gives the number of vibrations per

diem in a seconds' pendulum corresponding to the excess of observed gravity over calculated

gravity. With respect to the errors Mr. Airy expressly remarks " upon scrutinizing the errors of

the first-rate observations, it would seem that, cceteris paribus, gravity is greater on islands than on

continents." This circumstance appears to be fully accounted for by the preceding theory. The
greatest positive errors appear to belong to oceanic stations, which is just what migiu be expected.

Thus the only errors with the sign + which amount to 5 are. Isle of France + 7.0 ; Marian
Islands + 6.8 ; Sandwich Islands + 5.2 ; Pulo Gaunsah Lout (a small island near new Guinea and

almost on the equator,) -t- 5.0. The largest negative errors are, California - 6.0; Maranham — 5.6;

Trinidad — 5.2. These stations are to be regarded as continental, because generally speaking the

stations which are the most continental in character are but on the coasts of continents, and Trinidad

may be regarded as a coast station. That the negative errors just quoted are larger than those that

stand opposite to more truly continental stations such as Clermont, Milan, &c. is no objection,

because the errors in such different latitudes cannot be compared except on the supposition that the

value of the ellipticity used in the comparison is correct.

Now if we divide the 49 stations compared into two groups, an equatoreal group containing the

stations lying between latitudes 35''N. and 35°S., and a polar group containing the rest, it will

be found that most if not all of the oceanic stations are contained in the former group, while the

stations belonging to the latter are of a more continental character. Hence the observations will

make gravity appear too great about the equator and too small towards the poles, that is, they will

on the whole make gravity vary too little from the equator to the poles ; and since the variation

depends upon ^m ~ e, the observations will be best satisfied by a value of e which is too great.

This is in fact precisely the result of the discussion, the value of e which Mr. Airy has obtained

from the pendulum experiments (.003535) being greater than that whith resulted from the dis-

cussion of geodetic measures (.003352), or than any of the values (.003370, .003360, and .003107),

obtained from the two lunar inequalities which depend upon the earth's oblateness.

Mr. Airy has remarked that in the high north latitudes the greater number of errors have the

sign -f , and that those about tiie latitude •1'5" have the sign — ; those about the e(|ual()r being

Encydopadia Metropotitana, Art. Figure of the Kiirth.
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nearly balanced. To destroy the errors in high and mean latitudes without altering the others, he

has proposed to add a term - Jsin^Xcos°X, where X is the latitude. But a consideration of the

character of the stations seems sufficient, with the aid of the previous theory, to account for the

apparent anomaly. About latitude 45" the stations are all continental; in fact, ten consecutive

stations including this latitude are Paris, Clermont, Milan, Padua, Fiume, Bordeaux, Figeac, Toulon,

Barcelona, New York. These stations ought, as a group, to appear with considerable negative errors.

Mr. Airy remarks "If we increased the multiplier of sin'-X," and consequently diminished the

ellipticity, "we might make the errors at high latitudes as nearly balanced as those at the equator:

but then those about latitude 45° would be still greater than at present."

The largeness of the ellipticity used in the comparison accounts for the circumstance that the

stations California, Maranham, Trinidad, appear with larger negative errors tlian any of the stations

about latitude 45", although some of the latter appear more truly continental than the former. On
the whole it would seem that the best value of the ellipticity is one which, supposing it left the errors

in high latitudes nearly balanced, would give a decided preponderance to the negative errors about

latitude 45" N. and a certain preponderance to the positive errors about the equator, on account of

the number of oceanic stations which occur in low latitudes.

If we follow a chain of stations from the sea inland, or from the interior to the coast, it is

remarkable how the errors decrease algebraically from the sea inwards. The chain should not extend

over too large a portion of the earth's surface, as otherwise a small error in the assumed ellipticity

might affect the result. Thus for example, Spitzbergen + 4.3, Hammerfest — 0.4, Drontheim - 2.7.

In comparing Hammerfest with Drontheim, we may regard the former as situated at the vertex of a

slightly obtuse angle, and the latter as situated at the edge of a straight coast. Again, Dunkirk — O.I,

Paris - 1.9, Clermont - 3.9, Figeac - 3.8, Toulon - 0.1, Barcelona 0.0, Fomentera + 0.2. Again,

Padua + 0.7, Milan - 2.8. Again, Jamaica - 0.8, Trinidad - 5.2.

24. Conceive the correction kg" calculated, and suppose it applied, as well as the correction

—g, to observed gravity reduced to the level of the sea, or to g, and let the result be g . Let e

be the ellipticity which would be determined by means of g^^, e^^ + Af,, the true ellipticity. Since

g,1
= g - g' + k'g', and therefore g = g , + g — kg", we get by (27)

45
Ae„=^m|(i-sin^/)(g''-A:^")j (32)

Now g' = 2ircr/i = 27r^ = 2 7r2^,; and we get from (30) and (28)

ug"=-k'pj-^=.k.^J^.° dr 2a 2j + 1

All the terms ^j will disappear from the second side of (32) except ^.,, and we therefore get

45 / ^\

Hence the correction Af,^ is less than that considered in Art. 18, in the ratio of 5 - A; to 5, and is

therefore probably insensible on account of the actual distribution of land and water at the surface of

the earth.

25. Conceive the islands and continents cut off at the level of the sea, and the water of the sea

replaced by matter having the same density as the land. Suppose gravity to be observed at the

surface which would be thus formed, and to be reduced by Dr Young's rule to the level of what
would in the altered state of the earth be a surface of equilibrium. It is evident that g ^ expresses

tile gravity which would be thus obtained.

The irregularities of the earth's coating would still not be wholly allowed for, because the surface

which would be formed in the manner just explained would no longer be a surface of equilibrium.
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in consequence of the fresh distribution of attracting matter. The surface would thus preserve traces

of its original irregularity. A repetition of the same process would give a surface still more regular,

and so on indefinitely. It is easy to see the general nature of the correction which still remains.

Where a small island was cut off, there was previously no material elevation of the sea-level, and

therefore the surface obtained by cutting off the island and replacing the surrounding sea by land

will be very nearly a surface of equilibrium, except in so far as that may be prevented by alterations

which take place on a large scale. But where a continent is cut off there was a considerable elevation

in the sea-level, and therefore the surface which is left will be materially raised above the surface of

equilibrium which most nearly represents the earth's surface in its altered state. Hence the general

effect of the additional correction will be to increase that part of g' which is due to causes which act

on a larger scale, and to leave nearly unaffected that part which is due to causes which are more

local.

The form of the surface of equilibrium which would be finally obtained depends on the new

distribution of matter, and conversely, the necessary distribution of matter depends on the form of

the final surface. The determination of this surface is however easy by means of Laplace's analysis.

26. Conceive the sea replaced by solid matter, of density cr, having a height from the bottom

upwards which is to the depth of the sea as 1 to <r. Let h be the height of the land above the actual

sea-level, h being negative in the case of the sea, and equal to the depth of the sea multiplied by

1 — CT"'. Let X be the unknown thickness of the stratum which must be removed in order to leave

the surface a surface of equilibrium, and suppose the mean value of x to be zero, so that on the whole

matter is neither added nor taken away. The surface of equilibrium which would be thus obtained

is evidently the same as that which would be formed if the elevated portions of the irregular surface

were to become fluid and to run down.

Let V be the potential of the whole mass in its first state, F, the potential of the

stratum removed. The removal of this stratum will depress the surface of equilibrium by the

space G"'r, ; and the condition to be satisfied is, that this new surface of equilibrium, or else a

surface of equilibrium belonging to the same system, and therefore derived from the former by

further diminishing the radius vector by the small quantity c', shall coincide with the actual

surface. We must therefore have

G-'F, 4 c' = .r-A (S^^)

Let h and x be expanded in series of Laplace's coefficients h„ + h^ +... and Xd + x^ +... Then

the value of V, at the surface will be obtained from either of equations (28) by replacing I by ax

and putting r = a. We liave therefore

F, = 4 7ro-a(.r„ + i.r, + }x„ + ...) (34.)

After substituting in (33) the preceding expressions for F„ h, and x, we must equate to zero

Laplace's coefficients of the same order. The condition that x^ = may be satisfied by means

of the constant c', and we shall have

G~' iwaa = Xi — hi,
2i + l

which gives, on replacing G Kiiraa by its equivalent — ,

(ii+jlf „J,+^ 1,,, (.3.,)

' (2i+ \)p-3<T ^
I (2«+ l)p-:ia\

We see that for terms of a high order .r, is very nearly equal to //„ but for terms of a low order,

whereby the distribution of land and sea would be expressed as to its broad features, .r^ is sensibly

greater tliaii //,.
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27. Let it be required to reduce gravity g to the gravity which would be observed, in the

altered state of the surface, along what would then be a surface of equilibrium. Let the correction

be denoted by g — Sg'", where g' is the same as before. The correction due to the alteration of the

coating in the manner considered in Art. 20 has been shewn to be equal to

2 7r^-67r2-r-i-,
2l + 1

and the required correction will evidently be obtained by replacing S by ax. Putting for x^ its

value got from (35) we have

® ®
{Hi + I) p - Sa '

I
{2i + l)p-3a]

which gives, since 27rcr2^j = SttctA =g', and G = ^wpa,

Sg"'= G—

S

,
^

,
— - (36)^

2p (2t + 1) p - 3(T a

If we put (T = 2I, p = 5^, a = 4000, and suppose h expressed in miles, we get

Sg" = G. 2 -^ -'— = G X .00017 (- 4.5^0 + ^1 + -^S/t. + .29OA3 + .214./ti + ...). ...(37)^
8S000 11 j- 2

Had we treated the approximate correction Sg" in the same manner we should have had

3g" = G —^2 — = G X .00017 (3^0 + ''1 + -6*2 + .4.29A3 + .333ki + ...)
Zpa 2j + 1

whereas, since A: = 3 (
1

)
> we get

kg" = G — S /~ '^' '' = G X .00017(1.636/(0 + .545^1 + .327A2 + .234^3 + .182^1 + ...).. .(38)
2|ua (2j + \) p

The general expressions for 3g"', Sg'', and kg" shew that the approximate correction kg" agrees

with the true correction 3g"' so far as regards terms of a high order, whereas the leading terms,

beginning with the first variable term, are decidedly too small ; so that, as far as regards these

terms, 3g"' is better represented by Sg" than by kg" . This agrees with what has been already

remarked in Art. 25.

If we put g-- §•'+ 3g-"'=g'_
, and suppose G and e determined by means of g^^^, small corrections

similar to those already investigated will have to be applied in consequence of the omission of the

quantity g' — 3g"' in the value of g. The correction to e would probably be insensible for the

reason mentioned in Art. 18. If we are considering only the variation of gravity, we may of course

leave out the term /i,,.

The series (37) would probably be too slowly convergent to be of much use. A more

convergent series may be obtained by subtracting kg" from Sg", since the terms of a high order in

Sg"' are ultimately equal to those in kg". We thus get

Sg-'" = kg" + G X .00017 (-6.I36A0 + .455^1 + .123A, + .O56A3 + .032^4 + ...) {SO;)

which gives g'" if g" be known by quadratures for the station considered.

Although for facility of calculation it has been svipposed that the sea was first replaced by a

stratum of rock or earth of less thickness, and then that the elevated portions of the earth's

surface became fluid and ran down, it may be readily seen that it would come to the same thing if

we supposed the water to remain as it is, and the land to become fluid and run down, so as to

form for the bottom of the sea a surface of equilibrium. The gravity g^^^ would apply to the

earth so altered.
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28. Let us return to the quantity F^ of Art. 19, and consider how tlie attraction of the earth's
irregular coating affects the direction of the vertical. Let / be the latitude of the station, which
for the sake of clear ideas may be supposed to be situated in the northern hemisphere, sr its

longitude west of a given place, f the displacement of the zenith towards the south produced by
the attraction of the coating, tj its displacement towards the east. Then

p_ _}_^ _secl dV^

Ga dl Ga d'gr

1 dV seel dV
because - —y and ~ are the horizontal components of the attraction towards the northQui (I (I'^j-

and towards the west respectively, and G may be put for g on account of the smallness of the
displacements.

Suppose the angle
;;^

of Art. 22 measured from the meridian, so as to represent the north
azimuth of the elementary mass ^a- sin \|/d\^dj('. On passing to a place on the same meridian
whose latitude is I + dl, the angular distance of the elementary mass is shortened by cos v . dl, and

therefore its linear distance, which was a chord \|/, or 2o sin — , becomes 2 a sin i - o cos — cos v dlo 2 o A. ' '

Hence the reciprocal of the linear distance is increased by — cos — cosec'— cos v . d/, and therefore
4a 2 2 '^

the part of V^ due to this element is increased by l^a cos^— cosec — cosy .d^dydl. Hence we have

dV.
cos — cosi^

ar^ arc 2 " „

sin —

Although the quantity under the integral sign in this expression becomes infinite when -J/

vanishes, the integral itself has a finite value, at least if we suppose }> to vary continuously in the

immediate neighbourhood of the station. For if I becomes }>' when j^ becomes y + ir, we may
replace ^ under the integral sign by ^ — ^', and integrate from y^

= Q Xo y_
= -k, instead of integrating

^ _ ?' .^

from y = to Y = 27r, and the limiting value of —^ when
\J/

vanishes is 4
, which is finite.

. v a \1/

sin— '

2

To get the easterly displacement of the zenith, we have only to measure y from the west

instead of from the north, or, which comes to the same, to write \-V - for
y^, and continue to

measure y from the north. We get

seci .
— = — /"/"cos'— cosec — sin y.^dv/^dy (41)

dsr 2
'•'

2 2 -^ ^ '^ ^ '

29. The expressions (40) and (41) are not to be applied to points very near the station if ^

vary abruptly, or even very rapidly, about such points. Recourse must in such a case be had to

direct triple integration, because it is not allowable to consider the attracting matter as condensed

into a surface. If however vary gradually in the neigh Imurhooi! of the station, the expression

(40) or (41) may be used without further change. For if we modify (lo) in the way explained in

the preceding article, or else by putting the integral under the form /„"/„-' cos' — cosec ^ cos
j(

(S - l,)d\\,dy, where ^, denotes the value of I at the station, we sec that the part of the integral
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due to a very small area surrounding the station is very small. If S vary abruptly, in consequence

suppose of the occurrence of a cliff, we may employ the expressions (40), (41), provided the distance

of the cliff from the station be as much as three or four times its height.

These expressions shew that the vertical is liable to very irregular deviations depending on

attractions which are quite local. For it is only in consequence of the opposition of attractions in

opposite quarters that the value of the integral is not considerable, and it is of course larger in

proportion as that opposition is less complete. Since sin — is but small even at the distance of two

or three hundred miles, a distant coast, or on the other hand a distant tract of high land of con-

siderable extent, may produce a sensible effect; although of course in measuring an arc of the

meridian those attractions may be neglected which arise from masses which are so distant as to affect

both extremities of the arc in nearly the same way.

If we compare (40) or (41) with the expression for g' or g" , we shall see that the direction of

the vertical is liable to far more irregular fluctuations on account of the inequalities in the earth's

coatino- than the force of gravity, except that part of the force which has been denoted by g\ and

which is easily allowed for. It has been supposed by some that the force of gravity alters irregularly

along the earth's surface, and so it does, if we compare only distant stations. But it has been

already remarked with what apparent regularity gravity when corrected for the inequality g appears

to alter, in the direction in which we should expect, in passing from one station to another in a

chain of neighbouring stations.

30. There is one case in which the deviation of the vertical may become unusually large,

which seems worthy of special consideration.

For simplicity, suppose I to be constant for the land, and equal to zero for the sea, which

comes to regarding the land as of constant height, the sea as of uniform depth, and transferring

the defect of density of the sea with an opposite sign to the land. Apply the integral (40) to

those parts only of the earth's surface which are at no great distance from the station considered,

so that we may put cos — = 1, sin — = i = — , if « be the distance of the element, measured along
•' '^ 2 2 2 2a

a freat circle. In going from the station in the direction determined by the angle )^, suppose that

we pass from land to sea at distances «„ Sj, Sj,...and from sea to land at the intermediate distances

5,^ 4^ On goino- in the opposite direction suppose that we pass from land to sea at the distances

s-i, «_3, «-5, ..- and from sea to land at the distances «_,, s_,....Then we get from (40),

JTT

---- = a^/{logs, -log«_i - (logs, -log*.,) + log S3 -logs.3- ...} cos^-rfx-
0,1/

If the station be near the coast, one of the terms logSi, logs., will be large, and the zenith

will be sensibly displaced towards the sea by the irregular attraction. On account of the shelving

of the coast, the preceding expression, which has been formed on the supposition that I vanished

suddenly, would give too great a displacement ; but the object of this article is not to perform any

precise calculation, but merely to shew how the analysis indicates a case in which there would be

unusual disturbance. A cliff bounding a tract of table-land would have the same sort of effect as

a coast, and indeed the effect might be greater, on account of the more sudden variation of I. The

effect would be nearly the same at equal distances from the edge above and below, that distance

being supposed as great as a small multiple of the height of the cliff, in order to render the

expression (40) applicable without modification.

31. Let us return now to the force of gravity, and leaving the consideration of the connexion

between the irregularities of gravity and the irregularities of the earth's coating, and of the
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possibility of destroying the former by making allowance for the latter, let us take the earth such

as we find it, and consider further the connexion between the variations of gravity and the

irregularities of the surface of equilibrium which constitutes the sea-level.

Equation (12) gives the variation of gravity if the form of the surface be known, and conversely,

(8) gives the form of the surface if the variation of gravity be known. Suppose the variation of

gravity known by means of pendulum-experiments performed at a great many stations scattered

over the surface of the earth ; and let it be required from the result of the observations to deduce

the form of the surface. According to what has been already remarked, a series of Laplace's coefBcients

would most likely be practically useless for this purpose, unless we are content with merely the

leading terms in the expression for the radius vector ; and the leading character of those terms

depends, not necessarily upon their magnitude, but only on the wide extent of the inequalities

which they represent. We must endeavour therefore to reduce the determination of the radius

vector to quadratures.

For the sake of having to deal with small terras, let g be represented, as well as may be, by
the formula which applies to an oblate spheroid, and let the variable term in the radius vector be

calculated by Clairaut's Theorem. Let g^ be calculated gravity, r^ the calculated radius vector,

and put g=gc+ I^g, r = r^+ aH7i. Suppose Ag" and £\u expanded in series of Laplace's

coefficients. It follows from (12) that Ag' will have no term of the order 1 ; indeed, if this were not

the case, it might be shewn that the mutual forces of attraction of the earth's particles would have a

resultant. Moreover the constant term in Ag" may be got rid of by using a different value of G.

No constant term need be taken in the expansion of A^<, because such a term might begot rid of

by using a different value of a, and a of course cannot be determined by pendulum-experiments.

The term of the first order will disappear if r be measured from the common centre of gravity of

the mass and volume. The remaining terms in the expansion of A?< will be determined from those

in the expansion of Ag' by means of equations (8) and (l2).

Let Ag-= G{v., + 1)3 -i-t), -1- ...), (42)

and we shall have

/\u = v.. + \v.s + \Vi + (-13)

Suppose Ag* = GF{d, <p). Let \// be the angle between the directions determined by the angular

co-ordinates 6, (p and 9', (p'. Let (1 - 2^cos\^ -)- ^^)'' be denoted by R, and let Q,- be the coefficient

of t' in the expansion of R~' in a series according to ascending powers of ^. Then

~' ^
^-f:fo" ne', </)')«; sin e'de'd(j>',

Itt

and therefore if t be supposed to be less than I, and to become 1 in the limit, we shall have

IttAm = limit otl'l'Tiff, (p')(5(Q, + ^
^'Q,... + ^'

^ ^ ^'-'Qj + ...)sin e'dO'dfj)'. ... (44)
I - 1

Now assume

and we shall have

7=5?Q^+'rQ3-+'^r'-Q.

^=5Q,+7tQ3...+(2i+i)r'-'«.+-;

x^^r ^d- r* =r3Q^ +?'«:. ••.+r^*«. +•••= rH«-' -(i- t^ih

whence wc get, jjulting Z for R-' - Q„- (Qi, y = iif'('id .([^Z.

Vol. Vin. Pakt V. 4U
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Integrating by parts, and observing that "/ vanishes with ?', we get

The last integral may be obtained by rationalization. If we assume R = tv - ^, and observe

that Qj = I5 Qi = cos\^, and that w = 1 when ^ vanishes, we shall find

rtv-on, ,-/ , 1 '*" - cos \// , ,^ro-l , ,
w + 1H -ZdZ = cos \l/ . log '- - (1 + cosur) - 2 cos xL log .

;„^ andWhen ^=1 we have Z = (2 - 2 cos \|/)" ' - (1 + cos \//), to = 1 + 2 sin — , ai

fo^t-'Zd^ = - 2 sin
I (1

- sin |)
- cos x/, log fsin

|(^1
+ sin

|] |

.

Putting /(\|/) for the value of y when ^ = 1, we have

f(\^) = cosec — + 1 — 6 sin— — 5 cos \|/^ - 3 cos \|/ log |sin ^ 1+ sin --
I > (iS)

In the expression for A?<, we may suppose the line from which 9' is measured to be the radius

vector of the station considered. We thus get, on replacing F{9', <p') by G~^i\g, and employing

the notation of Art. 22,

^''=T^i:i''^s-M)''''^H'ix (*6)
47rCr

32. Let l^g = g + A'g'. Then A'g' is the excess of observed gravity reduced to the level of

the sea by Dr. Young's rule over calculated gravity ; and of the two parts g' and A'^ of which

A^ consists, the former is liable to vary irregularly and abruptly from one place to another, the

latter varies gradually. Hence, for the sake of interpolating between the observations taken at

different stations, it will be proper to separate Ag" into these two parts, or, which comes to the

same, to separate the whole integral into two parts, involving g' and A'g' respectively, so as to get

the part of Atf which is due to g' by our knowledge of the height of the land and the depth of

the sea, and the part which depends on i^'g by the result of pendulum-experiments. It may be

observed that a constant error, or a slowly varying error, in the height of the land would be of no

consequence, because it would enter with opposite signs into g' and i\'g.

It appears, then, that the results of pendulum-experiments furnish sufficient data for the

determination of the variable part of the radius vector of the earth's surface, and consequently for

the determination of the particular value which is to be employed at any observatory in correcting

for the lunar parallax, subject however to a constant error depending on an error in the assumed

value of a.

33. The expression for g'" in Art. 27 might be reduced to quadratures by the method of

Art. 31, but in this case the integration with respect to Y could not be performed in finite terms,

and it would be necessary in the first instance to tabulate, once for all, an integral of the form

Jo'/(C' '^"^V') ^K for 'values of \\r, which need not be numerous, from to ir. This table being

made, the tabulated function would take the place of /(\|/) in (iG), and the rest of the process

would be of the same degree of difficulty as the quadratures expressed by the equations (31)

and (4(5).

34. Suppose At* known approximately, either as to its general features, by means of the

leading terms of the series (43), or in more detail from the formula (46), applied in succession to a

great many points on the earth's surface. By interpolating between neighbouring places for which

Am has been calculated, find a number of points where A;* has one of the constant values
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— 2/3, — j3, 0, /3, 2/3 ..., mark these points on a map of the world, and join by a curve those

which belong to the same value of An. We shall thus have a series of contour lines representing

the elevation or depression of the actual sea-level above or below the surface of the oblate spheroid,

which has been employed as most nearly representing it. If we suppose these lines traced on a

globe, the reciprocal of the perpendicular distance between two consecutive contour lines will

represent in magnitude, and the perpendicular itself in direction, the deviation of the vertical from

the normal to the surface of the spheroid, or rather that part of the deviation which takes place on

an extended scale : for sensible deviations may be produced by attractions which are merely local,

and which would not produce a sensible elevation or depression of the sea-level ; although of course,

as to the merely mathematical question, if the contour lines could be drawn sufficiently close and

exact, even local deviations of the vertical would be represented.

Similarly, by joining points at which the quantity denoted in Art. 19 by V has a constant

value, contour lines would be formed representing the elevation of the actual sea-level above what

would be a surface of equilibrium if the earth's irregular coating were removed. By treating F,

in the same way, contour lines would be formed corresponding to the elevation of the actual sea-

level above what would be the sea-level if the solid portions of the earth's crust which are

elevated were to become fluid and to run down, so as to form a level bottom for the sea, which

would in that case cover the whole earth.

These points of the theory are noticed more for the sake of the ideas than on account of any

application which is likely to be made of them ; for the calculations indicated, though possible with

a sufficient collection of data, would be very laborious, at least if we wished to get the results

with any detail.

ii5. The squares of the ellipticity, and of quantities of the same order, have been neglected

in the investigation. Mr. Airy, in the Treatise already quoted, has examined the consequence, on

the hypothesis of fluidity, of retaining the square of the ellipticity, in the two extreme cases of a

uniform density, and of a density infinitely great at the centre and evanescent elsewhere, and has

found the correction to the form of the surface and the variation of gravity to be insensible, or

all but insensible. As the connexion between the form of the surface and the variation of gravity

follows independently of the hypothesis of fluidity, we may infer that the terms depending on the

square of the ellipticity which would appear in the equations which express that connexion would

be insensible. It may be worth while, however, just to indicate the mode of proceeding when the

square of the ellipticity is retained.

By the result of the first approximation, equation (l) is satisfied at the surface of the earth,

as far as regards quantities of the first order, but not necessarily further, so tliat the value of

r -I- ^7 at the surface is not strictly constant, but only of tlie form c + //, where H is a small

variable quantity of the second order. It is to be observed that V satisfies equation (.'i) exactly,

not approximately only. Hence we have merely to add to F a potential V which satisfies equation

(."ii outside the earth, vanishes at an infinite distance, and is equal to // at the surface. Now if

we suppose V to have the value // at the surface of a spliere whoso radius is a, instead of the

actual surface of the earth, we shall only conunit an error whicli is a small quantity of the first

order compared with J/, and // is itself of the second order, and therefore the error will be otdy

of the third order. But by this modification of one of the conditions which V is to satisfy, we

are enabled to find V just as V was found, and we shall thus have a solution which is correct to

the second order of ap])roxiniation. A repetition of the same process would give a solution

which would be correct to the third order, and so on. It ne(<l hartlly be remarked that in going

beyond the first order of approximation, we must distinguish in the small terms between the

direction of the vertical, and that of the radius vector.

G. G. STOKKS.
4u S



LI. On HegeVs Criticism of Newton's Principia. By W. Whewell, D. D.,

Master of Trinity College, Cambridge.

[Read May 21, 1849.]

The Newtonian doctrine of universal gravitation, as the cause of the motions which take place

in the solar system, is so entirely established in our minds, and tlie fallacy of all the ordinary

arguments against it is so clearly understood among us, tliat it would undoubtedly be deemed a

waste of time to argue such questions in this place, so far as physical truth is concerned. But

since in other parts of Europe, there are teachers of philosophy wliose reputation and influence

are very great, and who are sometimes refen-ed to among our own countrymen as the authors of

new and valuable views of truth, and who yet reject the Newtonian opinions, and deny the validity

of the proofs commonly given of them, it may he worth while to attend for a few minutes to the

declarations of such teachers, as a feature in the present condition of European philosophy. I the

more readily assume that the Cambridge Philosophical Society will not think a communication on

such a subject devoid of interest, in consequence of the favourable reception which it has given to

philosophical speculations still more abstract, which I have on previous occasions offered to it.

I will therefore proceed to make some remarks on the opinions concerning the Newtonian doctrine

of gravitation, delivered by the celebrated Hegel, of Berlin, than whom no philosopher in modern,

and perhaps hardly any even in ancient times, has had his teaching received with more reverential

submission by his disciples, or been followed by a more numerous and zealous band of scholars

bent upon diifusing and applying his principles.

The passages to which I shall principally refer are taken from one of his works which is called

the Encyclopcedia (Encyklop'adie), of which the First Part is the Science of Logic, the Second, the

Philosophy of Nature, the Third, the Philosophy of Spirit. The Second Part, with which I am
here concerned, has for an aliter title, Lectures on Natural Pliilosophy (Vorlesungen iiber Natur-

philosophie), and would through its whole extent offer abundant material for criticism, by referring

it to principles with which we are here familiar : but I shall for the present confine myself to that

part which refers to the subject which I have mentioned, the Newtonian Doctrine of Gravitation,

& 269, 270, of the work. Nor shall I, with regard to this part, think it necessary to give a con-

tinuous and complete criticism of all the passages bearing upon the subject ; but only such speci-

mens, and such remarks thereon, as may suffice to show in a general manner the value and the

character of Hegel's declarations on such questions. I do not pretend to offer here any opinion

upon the value and character of Hegel's philosophy in general : but I think it not unlikely tfiat

some impression on that head may be suggested by the examination, here offered, of some points in

which we can have no doubt where the truth lies ; and I am not at all persuaded that a like

examination of many other parts of the Hegelian Encyclopcedia would not confirm the impression

which we shall receive from the parts now to be considered.

Hegel both criticises the Newtonian doctrines, or what he states as such ; and also, not deny-

ing the truth of the laws of phenomena which he refers to, for instance Kepler's laws, offers his

own proof of these laws. I shall make a few brief remarks on each of these portions of the pages

before me. And I would beg it to be understood that where I may happen to put my remarks in

a short, and what may seem a peremptory form, I do so for the sake of saving time ; knowing
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that among us, upon subjects so familiar, a few words will suffice. For the same reason. I shall

take passages from Hegel, not in the order in which they occur, but in the order in which they

best illustrate what I have to say. I shall do Hegel no injustice by this mode of proceeding: for

I will annex a faithful translation, so far as I can make one, of the whole of the passages referred

to, with the context.

No one will be surprised that a German, or indeed any lover of science, should speak with

admiration of the discovery of Kepler's laws, as a great event in the history of Astronomy, and a

glorious distinction to the discoverer. But to say that the gloi-y of the discovery of the proof of

these laws has been unjustly transferred from Kepler to Newton, is quite another matter. This is

what Hegel says («*). And we have to consider the reasons which he assigns for saying so.

He says (6) that " it is allowed by mathematicians that the Newtonian Formula may be derived

from the Keplerian laws," and hence he seems to infer that the Newtonian law is not an additional

truth. That is, he does not allow that the discovery of the cause which produces a certain phe-

nomenal law is anything additional to the discovery of the law itself.

"The Newtonian formula may be derived from the Keplerian law." It was professedly so

derived ; but derived by introducing the Idea of Force, which Idea and its consequences were not

introduced and developed till after Kepler''s time.

" The Newtonian formula may be derived from the Keplerian law." And the Keplerian law

may be derived, and was derived, from the observations of the Greek astronomers and their

successors ; but was not the less a new and great discovery on that account.

But let us see what he says further of this derivation of the Newtonian " formula" from the

Keplerian Law. It is evident that by calling it a formula, he means to imply, what he also asserts,

that it is no new law, but only a new form (and a bad one) of a previously known truth.

How is the Newtonian " formula," that is, the law of the inverse squares of the central force,

derived from the Keplerian law of the cubes of the distances proportional to the squares of the

times .^ This, says Hegel, is the "immediate derivation." (c).—By Kepler's law, A being the dis-

A^ A . .

tance and T the periodic time, — is constant. But Newton calls — universal gravitation ; whence

it easily follows that gravitation is inversely as A^.

This is Hegel's way of representing Newton's proof. Beading it, any one who had never read

the I'rincipia might suppose that Newton defined gravitation to be ~ . We, who have read the

Principia, know that Newton proves that in circles, the central force (not the universal gravitation)

is as —;: that he proves this, by setting out from the idea of force, as that which deflects a body

from the tangent, and makes it describe a curve line : and that in this way, he pas.ses from Kepler's

laws of mere motion to his own law of Force.

But Hegel does not see any value in this. Such a mode of treating the subject he says (t)

" off'ers to us a tangled web, formed of the Lines of the mere geometrical construction, to wiiich a

piiysical meaning of independent forces is given." Tiiat a iiierisure of forces is fiioiU in such lines

as the sagitta of the arc described in a given time, (not such a metnmig arbitrarily given to them,)

is certainly true, and is very distinctly proved in Newton, and in all our elementary books.

But, says Hegel, as further shewing the artificial nature of the Newtonian formula;, (A) " .Analy-

sis has long Ijeen able to derive the Newtonian expression an<i the laws thcrowitli connected out of

the Form of the Keplerian Laws;" an assertion, to verify which he refers to I'oisson's Mccatiique.

• The»e Icllcm refer 10 p»M»gei In ihc Translntion annexed to this Alcnioir.
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This is apparently in order to shew that the "lines" of the Newtonian construction are superfluous.

We know very well that analysis does not always refer to visihle representations of such lines : hut

we know too, (and Francoeur would testify to this also,) that the analytical proofs contain equiva-

lents to the Newtonian lines. We, in this place, are too familiar with the substitution of analytical

for geometrical proofs, to be led to suppose that such a substitution affects the substance of the truth

proved. The conversion of Newton's geometrical proofs of his discoveries into analytical processes

by succeeding writers, has not made them cease to be discoveries : and accordingly, those who have

taken the most prominent share in such a conversion, have been the most ardent admirers of New-
ton's genius and good fortune.

So much for Newton's comparison of the Forces in different circular orbits, and for Hegel's power

of understanding and criticising it. Now let us look at the motion in different parts of tlie same

elliptical orbit, as a further illustration of the value of Hegel's criticism. In an elliptical orbit the

velocity alternately increases and diminishes. This follows necessarily from Kepler's law of the

equal description of the areas, and so Newton explains it. Hegel, however, treats of this acceleration

and retardation as a separate fact, and talks of another explanation of it, founded upon Centripetal

and Centrifugal Force (o). Where he finds this explanation, I know not; certainly not in Newton,

who in the second and third section of the Pri7icipia explains the variation of the velocity in a quite

different manner, as I have said; and nowhere, I think, employs centrifugal force in his explana-

tions. However, the notion of centrifugal as acting along with centripetal force is introduced in

some treatises, and may undoubtedly be used with perfect truth and propriety. How far Hegel
can judge when it is so used, we may see from what he says of the confusion produced by such an

explanation, which is, he says, a maximum. In the first place, he speaks of the motion being titii-

fornily accelerated and retarded in an elliptical orbit, which, in any exact use of the word imiformly,

it is not. But passing by this, he proceeds to criticise an explanation, not of the variable velocity

of the body in its orbit, but of the alternate access and recess of the body to and from the center.

Let us overlook this confusion also, and see what is the value of his criticism on the explanation.

He says (p), "according to this explanation, in the motion of a planet from the aphelion to the

perihelion, the centrifugal is less than the centripetal force ; and in the perihelion itself the centri-

petal force is supposed suddenly to become greater than the centrifugal;" and so, of course, the

body re-ascends to the aphelion.

Now I will not say that this explanation has never been given in a book professing to be scien-

tific ; but I have never seen it given ; and it never can have been given but by a very ignorant and

foolish person. It goes upon the utterly unmechanical supposition that the approach of a body to the

center at any moment depends solely upon the excess of the centripetal over the centrifugal force ; and
reversely. But the most elementary knowledge of mechanics shews us that when a body is moving
obliquely to the distance from the center, it approaches to or recedes from the center in virtue of this

obliquity, even if no force at all act. And the total approach to the center is the approach due to

this cause, plus the approach due to the centripetal force, minus the recess due to the centrifugal

force. At the aphelion, the centripetal is greater than the centrifugal force; and hence the motion

becomes oblique; and then, tlie body approaches to the center on both accounts, and approaches on

account of the obliquity of the path even when the centrifugal has become greater than the centri-

petal force, which it becomes before the body reaches the perihelion. This reasoning is so elemen-

tary, that when a person who cannot sec this, writes on the subject with an air of authority, I do

not see what can be done but to point out the oversight and leave it.

But there is, says Hegel ((/), another way of explaining the motion by means of centripetal

and centrifugal forces. The two forces are supposed to increase and decrease gradually, according

to different laws. In this case, there must be a point where they are equal, and in equilibrio ; and

this being the case, they will always continue equal, for there will be no reason for their going

out of equilibrium.
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This, which is put as another mode of explanation, is, in fact, the same mode; for, as I have
already said, the centrifugal force, which is less than the centripetal at the aphelion, becomes the
greater of the two before the perihelion ; and there is an intermediate position, at which the two forces

are equal. But at this point, is there no reason why, being equal, the forces should become unequal ?

Reason abundant : for the body, being there, moves in a line oblique to the distance, and so chanires

its distance ; and the centripetal and centrifugal force, depending upon the distance by different

laws, they forthwith become unequal.

But these modes of explanation, by means of the centripetal and centrifugal forces and their

relation, are not necessary to Newton's doctrine, and are nowhere used by Newton , and undoubtedly
much confusion has been produced in other minds, as well as Hegel's, by speaking of the centrifugal

force, which is a mere intrinsic geometrical result of a body's curvilinear motion round a center, in

conjunction with centripetal force, which is an extrinsic force, acting upon the body and urgino- it to

the center. Neither Newton, nor any intelligent Newtonian, ever spoke of the centripetal and centri-

fugal force as two distinct forces both extrinsic to the motion, which Hegel accuses them of doino-. hi)

I have spoken of the third and second of Kepler's laws ; of Newton's explanations of them,

and of Hegel's criticism. Let us now, in the same manner, consider the first law, that the planets

move in ellipses. Newton's proof that this was the result of a central force varyino- inversely as

the square of the distance, was the solution of a problem at which his contemporaries had laboured

in vain, and is commonly looked upon as an important step. " But," says Hegel, (rf) "the proof

gives a conic section generally, whereas the main point which ought to be proved is, tliat the path

of the body is an ellipse only, not a circle or any other conic section." Certainly if Newton had
proved that a planet cannot move in a circle, (which Hegel says he ought to have done), his

system would have perplexed astronomers, since there are planets which move in orbits hardly

distinguishable from circles, and the variation of the extremity from planet to planet shews that

there is notliing to prevent the excentricity vanishing and the orbit becoming a circle.

" But," says Hegel again, (e) " the conditions which make the path to be an ellipse rather than

any other conic section, are empirical and extraneous ;—the supposed casual strength of the im-

pulsion originally received." Certainly the circumstances which determine the amount of excen-

tricity of a planet's orbit arc derived from experience, or rather, observation. It is not a part of

Newton's system to determine u priori what the excentricity of a planet's orbit must be. A system

that professes to do this will undoubtedly be one very different from his. And as our knowledge

of the excentricity is derived from observation, it is, in that sense, empirical and casual. The
strength of the original impulsion is a hypothetical and impartial way of expressing this result of

observation. And as we see no reason why the excentricity should be of any certain magnitude,

we see none why the fraction which expresses tlie excentricity should not become as large as unity,

that is, why the orbit should not become a parabola ; and accordingly, some of the bodies which

revolve about the same appear to move in orbits of this form : so little is the motion in an ellipse,

as Hegel .says, (/) " the only thing to be proved."

But Hegel himself lias offered proof of Kepler's laws, to which, considering his objections to

Newton's proofs, we cannot help turning with some curiosity.

And first, let us look at tlie proof of the Proposition which we have been considering, that the

path of a planet is necessarily an ellipse. I will translate Hegel's language as well as I can ; but

without answering for the correctness of my translation, since it docs not appear to me to conform

to the first condition of translation, of being intelligible. The translation however, such as it is,

may help us to form some opinion of the validity and value of Hegel's proofs as compared with

.Newton's, (r)

" For absolutely uniform motion, the circle is tlie only palli . . .The circle is the line returning
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into itself in which all the radii are equal; there is, for it, only one determining quantity, the
radius.

"But in free motion, the determination according to space and to time come into view with
differences. There must be a difference in the spatial aspect in itself, and therefore the form requires
two determining quantities. Hence the form of the path returning into itself is an ellipse."

Now even if we could regard this as reasoning, the conclusion does not in the smallest degree
follow. A curve returning into itself and determined by two quantities, may have innumerable
forms besides the ellipse ; for instance, any oval form whatever, besides that of the conic section.

But why must the curve be a curve returning into itself ? Hegel has professed to prove this

previously (m) from "the determination of particularity and individuality of the bodies in general,

so that they have partly a center in themselves, and partly at the same time their center in another."
Without seeking to find any precise meaning in this, we may ask whether it proves the impossi-
bility of the orbits with moveable apses, (which do not return into themselves,) such as the planets

(affected by perturbations) really do describe, and such as we know that bodies must describe in all

cases, except when the force varies exactly as the square of the distance .i" It appears to do so : and
it proves this impossibility of known facts at least as much as it proves anything.

Let us now look at Hegel's proof of Kepler's second law, that the elliptical sectors swept by
the radius vector are proportional to the time. It is this : (s).

" In the circle, the arc or angle which is included by the two radii is independent of them. But
in the motion [of a planet] as determined by the conception, the distance from the center and the
arc run over in a certain time must be compounded in one determination, and must make out a whole.
This whole is the sector, a space of two dimensions. And hence the arc is essentially a Function
of the radius vector; and the former (the arc) being unequal, brings with it the inequality of the

radii."

As was said in the former case, if we could regard this as reasoning, it would not prove the
conclusion, but only, that the arc is some function or other of the radii.

Hegel indeed offers (t) a reason why there must be an arc involved. This arises, he says, from
"the determinateness [of the nature of motion], at one while as time in the root, at another while
as space in the square. But here the quadratic character of the space is, by the returning of the line

of motion into itself, limited to a sector."

Probably my readers have had a sufficient specimen of Hegel's mode of dealing with these
matters. I will however add his proof of JCepler's third law, that the cubes of the distances are as
the squares of the times.

Hegel's proof in this case (7/) has a reference to a previous doctrine concerning falling bodies,
in which time and space have, he says, a relation to each other as root and square. Falling bodies
however are the case of only half-free motion, and the determination is incomplete.

" But in the case of absolute motion, the domain of free masses, the determination attains its

totality. The time as the root is a mere empirical magnitude : but as a component of the deve-
loped Totality, it is a Totality in itself: it produces itself, and therein has a reference to itself.

And in tliis process, Time, being itself the diniensionless element, only comes to a formal identity
with itself and reaches the square : Space, on the other hand, as a positive external relation, tomes
to the full dimensions of the conception of space, that is, the cube. The Realization of the two
conceptions (space and time) preserves their original difference. This is the third Keplerian law,
the relation of the Cubes of the distances to the squares of the times."

" And this," he adds, (y) with remarkable complacency, " represents simply and immediately the
reason of the fkhig :—vihile on the contrary, the Newtonian Formula, by means of which the Law
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is changed into a Law for the Force of Gravity, shews the distortion and inversion of Reflexion,
which stops half-way."

I am not able to assign any precise meaning to the Reflexion, which is here used as a term of
condemnation, applicable especially to the Newtonian doctrine. It is repeatedly applied in the

same manner by Hegel. Thus he says, {g) "that what Kepler expresses in a simple and sublime
manner in the form of Laws of the Celestial Motions, Newton has metamorphosed into the Reflexion-
Form of the Force of Gravitation."

Though Hegel thus denies Newton all merit with regard to the explanation of Kepler's laws
by means of the gravitation of the planets to the sun, he allows that to the Keplerian Laws
Newton added the Principle of Perturbations (k). This Principle he accepts to a certain extent,

transforming the expression of it after his peculiar fashion. " It lies," he says, {I) " in this : that

matter in general assigns a center for itself: the collective bodies of the system recognize a reference

to their sun, and all the individual bodies, according to the relative positions into which they are

brought by their motions, form a momentary relation of their gravity towards each other."

This must appear to us a very loose and insufficient way of stating the Principle of Perturb-
ations, but loose as it is, it recognises that the Perturbations depend upon the gravity of the

planets one to another, and to the sun. And if the Perturbations depend upon these forces, one
can hardly suppose that any one who allows this will deny that the primary undisturbed motions

depend upon these forces, and must be explained by means of them
; yet this is what Hegel denies.

It is evident, on looking at Hegel's mode of reasoning on such subjects, that his views approach

towards those of Aristotle and the Aristotelians ; according to which motions were divided into

natural Sind unnatural;—the celestial motions were circular and uniform in their nature; and

the like. Perhaps it may be worth while to shew how completely Hegel adheres to these ancient

views, by an extract from the additions to the Articles on Celestial Motions, made in the last edition

of the Encyclopedia. He says (w),

" The motion of the heavenly bodies is not a being pulled this way and that, as is imagined

(by the Newtonians). They go along, as the ancients said, like blessed gods. The celestial con-

formity is not such a one as has the principle of rest or motion external to itself. It is not right

to say because a stone is inert, and the whole earth consists of stones, and the other heavenly

bodies are of the same nature as the earth, therefore the heavenly bodies are inert. This conclusion

makes the properties of the whole the same as those of the part. Impulse, Pressure, Resistance,

Friction, Pulling, and the like, are valid only for other than celestial matter."

• There can be no doubt that this is a very different doctrine from that of Newton.

I will only add to these specimens of HegeFs physics, a specimen of the logic by which he

refutes the Newtonian argument which has just been adduced ; namely, that the celestial bodies

are matter, and that matter, as we see in terrestrial matter, is inert. He says (.v),

" Doubtless both are matter, as a good thought and a bad thought are both thoughts ; but the

bad one is not therefore good, because it is a thought."

Tbinity Lodge,

May 2, 1849.

k
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Hegel. Encydopmdia (2nd Ed. 1827) Part xi., p. 250.

C Absolute Mechanics.

§ 269.

Gravitation is the true and determinate conception of material Corporeity, which (Conception)

is realized to the Idea (zur Idee). General Corporeity is separable essentially into particular

Bodies, and connects itself with the Element of Individuality or subjectivity, as apparent (phe-

nomenal) presence in the Motion, which by this means is immediately a system of several Bodies.

Universal gravitation must, as to itself, be recognised as a profound thought, although it was

principally as apprehended in the sphere of Reflexion that it eminently attracted notice and con-

fidence on account of the quantitative determinations therewith connected, and was supposed to

find its confirmation in E.Tperiments (Erfahrung) pursued from the Solar System down to the phe-

nomena of Capillary Tubes.—But Gravitation contradicts immediately the Law of Inertia, for in

virtue of it (Gravitation) matter tends out of itself to the other (matter) In the Conception of

Weight, there are, as has been shewn, involved the two elements—Self-existence, and Continuity,

which takes away self-existence. These elements of the Conception, however, experience a fate,

as particular forces, corresponding to Attractive and Repulsive Force, and are thereby apprehended

in nearer determination, as Centripetal and Centrifugal Force, which (Forces) like weight, act

upon Bodies, independent of each other, and are supposed to come in contact accidentally in a

third thing. Body. By this means, what there is of profound in the thought of universal weight

is again reduced to nothing ; and Conception and Reason cannot make their way into the doctrine

of absolute motion, so long as the so highly-prized discoveries of Forces are dominant there. In

the conclusion which contains the Idea of Weight, namely, [contains this Idea] as the Con-

ception which, in the case of motion, enters into external Reality through the particularity of the

Bodies, and at the same time into this [Reality] and into their Ideality and self-regarding Re-

flexion, (Reflexion-in-sich), the rational identity and inseparability of the elements is involved,

which at other times are represented as independent. Motion itself, as such, has only its meaning

and existence in a system of several bodies, and those, such as stand in relation to each other

according to different determinations.

§ 270.

As to what concerns bodies in which the conception of gravity (weight) is realized free by itself,

we say that they have for the determinations of their different nature the elements (momente) of

their conception. One [conception of this kind] is the universal center of the abstract reference

[of a body] to itself. Opposite to this [conception] stands the immediate, extrinsic, centreless

Individuality, appearing as Corporeity similarly independent. Those [Bodies] however which are

particular, which stand in the determination of extrinsic, and at the same time of intrinsic relation,

are centers for themselves, and [also] have a reference to the first as to their essential unity.

The Planetary Bodies, as the immediately concrete, are in their existence the most complete.

Men are accustomed to take the Sun as the most excellent, inasmuch as the understanding

prefers the abstract to the concrete, and in like manner the Fixed stars are esteemed higher

than the Bodies of the Solar System. Centreless Corporeity, as belonging to externality,

naturally separates itself into the opposition of the lunar and the cometary Body. The laws

of absolutely free motion, as is well known, were discovered by Kepler ;—a discovery of
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immortal fame. Kepler has proved these laws in this sense, that for the empirical data he
found tiieir general expression. Since then, it has become a common way of speaking to say

(a) that Newton first found out the proof of these Laws. It has rarely happened that fame has
been more unjustly transferred from the first discoverer to another person. On this subject I

make the following remarks.

1. That it is allowed by Mathematicians that the Newtonian Formula may be derived

(6) from the Keplerian Laws. The completely immediate derivation is this : In the third Kep-

(c) lerian Law, — is the constant quantity. This being put as -~^, and calling, with Newton,

— universal Gravitation, his expression of the effect of gravity in the reciprocal ratio of the

square of the distances is obvious.

(d) 2. That the Newtonian proof of the Proposition that a body subjected to the Law of
Gravitation moves about the central body in an Ellipse, gives a Conic Section generally,
while the main Proposition which ought to be proved is that the fall of such a Body is not a

Circle or any other Conic Section, but an Ellipse only. Moreover, there are objections which
may be made against this proof in itself; (Princ. Math. 1. 1. Sect. ii. Prop, l.) and althouo-h

(e) it is the foundation of the Newtonian Theory, analysis has no longer any need of it. The
conditions which in the sequel make the path of the Body to a determinate Conic Section, are
referred to an empirical circumstance, namely, a particular position of the Body at a deter-

mined moment of time, and the casual strength of an impulsion which it is supposed to have

(/) received originally; so that the circumstance which makes the Curve be an Ellipse, which
alone ought to be the thing proved, is extraneous to the Formula.

3. That the Newtonian Law of the so-called Force of Gravitation is in like manner only
proved from experience by Induction.

(g) The sum of the difference is this, that what Kepler expressed in a simple and sublime
manner in the Form of Laws of the Celestial Motions, Newton has metamorphosed into the

Reflexion-Form of the Force of Gravitation. If the Newtonian Form has not only its con-

venience but its necessity in reference to the analytical method, this is only a difference of the

(Ji) mathematical formula; ; Analysis has long been able to derive the Newtonian expression, and
the Propositions therewith connected, out of the Form of the Keplerian Laws ; (on this subject

I refer to the elegant exposition in Francoeur's Traite Elem. de Mecanique, Liv. ii. Ch. xi.

(j) n. iv.)—The old method of so-called proof is conspicuous as offering to us a tangled web,

formed of the Lines of the mere geometrical construction, to which a physical meaning of

independent Forces is given ; and of empty Reflexion-determinations of the already men-

tioned Accelerating Force and Vis InerticB, and especially of the relation of the so-called

gravitation itself to the centripetal force and centrifugal force, and so on.

The remarks which are here made would undoubtedly have need of a further explica-

tion to shew how well founded they are: in a Comjjendiuni, projjositions of tliis kind which

do not agree with that which is assumed, can only have the shape of assertions. Indeed,

since they contradict such high authorities, they must appear as something worse, as pre-

sumptuous assertions. I will not, on this subject, support myself by saying, by the bye,

that an interest in these subjects has occupied me for S.") years ; but it is more precisely to

the purpose to remark, that the distinctions and determinations which Mathematical Analysis

introduces, and the course wiiicii it must take according to its nietliod, is nltogctiier did'crent

from that which a pliysical reality must have. Tlie Presuppositions, the (.'oursc, and tlie

Results, which the Analysis necessarily has and gives, remain quite extraneous to tlie considera-

tions which determine the physical value and the signification of those determinatiuns and of

4. x'2
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that course. To this it is that attention should be directed. We have to do with a conscious-

ness relative to the deluging of physical Mechanics with an mco7icewable (unsaglichen)

Metaphysic, which—contrary to experience and conception—has those mathematical deter-

minations alone for its source.

It is recognized that what Newton—besides the foundation of the analytical treatment,

the developement of which, by the bye, has of itself rendered superfluous, or indeed rejected

much which belonged to Newton's essential Principles and glory—has added to the Keplerian

Laws is the Principle of Perhtrbations,—a Principle whose importance we may here accept

thus far ; (hier in sofern anzufuhren ist) ; namely, so far as it rests upon the Proposition that

(k) the so-called attraction is an operation of all the individual parts of bodies, as being material. It

(/) lies in this, that matter in general assigns a center for itself, (sicli das centrum setzt), and the

figure of the body is an element in the determination of its place ; that collective bodies of the

system recognize a reference to their Sun, (sich ihre Sonne setzen) but also the individual

bodies themselves, according to the relative position with regard to each other into which

they come by their general motion, form a momentary relation of their gravity (schwere)

towards each other, and are related to each other not only in abstract spatial relations, but at

the same time assign to themselves a joint center, which however is again resolved [into the

general center] in the universal system.

As to what concerns the features of the path, to shew how the fundamental determina-

tions of Free Motion are connected with the Conception, cannot here be undertaken in a

satisfactory and detailed manner, and must therefore be left to its fate. The proof from reason

of the quantitative determinations of free motion can only rest upon the determinations of

Conceptions of space and time, the elements whose relation (intrinsic not extrinsic) motion is.

(m) That, in the first place, the motion in general is a motion returning into itself, is founded

on the determination of particularity and individuality of the bodies in general (^ 269), so that

partly they have a center in themselves, and partly at the same time their center in another.

These are the determinations of Conceptions which form the basis of the false representatives

(«) of Centripetal Force and Centrifugal Force, as if each of these were self-existing, extraneous

to the other, and independent of it ; and as if they only came in contact in their operations and

consequently externally. They are, as has already been mentioned, the Lines which must

be drawn for the mathematical determinations, transformed into physical realities.

Further, this motion is utiiformly accelerated, (and—as returning into itself—in turn

uniformly retarded). In motion as free, Time and Space enter as different things which are

to make themselves effective in the determination of the motion, (§ 266, note.) In the so-

(0) called Explanation of the uniformly accelerated and retarded motion, by means of the

alternate decrease and increase of the magnitude of the Centripetal Force and Centrifugal

Force, the confusion which the assumption of such independent Forces produces is at its

{p) greatest height. According to this explanation, in the motion of a Planet from the Aphelion

to the Perihelion, the centrifugal is less than the centripetal force, and on the contrary, in

the Perihelion itself, the centrifugal force is supposed to become greater than the centripetal.

For the motion from the Perihelion to the Aphelion, this representation makes the forces pass

into the opposite relation in the same manner. It is apparent that such a sudden conversion

of the preponderance which a force has obtained over another, into an inferiority to the other,

cannot be anything taken out of the nature of Forces. On the contrary it must be concluded,

that a preponderance which one Force has obtained over another must not only be preserved,

but must go onwards to the complete annihilation of the other Force, and the motion must

either, by the Preponderance of the Centripetal Force, proceed till it ends in rest, that is, in

the Collision of the Planet with the Central Body, or till by the Preponderance of the Centri-
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(9) fugal Force it ends in a straight line. But now, if in place of the suddenness of the conversion,

we suppose a gradual increase of the Force in question, then, since rather the other Force ought
to be assumed as increasing, we lose the opposition wliich is assumed for the sake of the ex-

planation ; and if the increase of the one is assumed to be different from that of the other,

(which is the case in some representations,) then there is found at the mean distance between
the apsides a point in which the Forces are in equiUhrio And the transition of the Forces
out of Equilibrium is a thing just as little without any sufficient reason as the aforesaid

suddenness of inversion. And in the whole of this kind of explanation, we .see that the

mode of remedying a bad mode of dealing with a subject leads to newer and greater confu-

sion A similar confusion makes its appearance in the explanation of the phienomenon that

the pendulum oscillates more slowly at the equator. This pha?nomenon is ascribed to the

Centrifugal Force, which it is asserted must then be greater ; but it is easy to see that we
may just as well ascribe it to the augmented gravity, inasmuch as that holds the pendulum
more strongly to the perpendicular line of rest.

§ 240.

(r) And now first, as to what concerns the Form of the Path, the Circle only can be conceived

as the path of an absulutely uniform motion Conceivable, as people express it, no doubt it

is, that an increasing and diminishing motion should take place in a circle. But this con-

ceivableness or possibility means only an abstract capability of being represented, which leaves

out of sight that Determinate Thing on which the question turns.

The Circle is the line returning into itself in which all the radii are equal, that is, it is

completely determined by means of the radius. There is only 07ie Determination, and that

is the whole Determination.

But in free motion, in which the Determinations according to space and according to time

come into view with Differences, in a qualitative relation to each other, this Relation appears

in the spatial aspect as a Difference thereof in itself, which therefore requires two Deter-

minations. Hereby the Form of the path returning into itself is essentially an Ellipse.

(») The abstract Determinateness which produces the circle appears also in this way, that the

arc or angle which is included by two Radii is independent of them, a magnitude with reo-ard

to them completely empirical. But since in the motion as determined by the Conception, the

distance from the center, and the arc which is run over in a certain time, must be compre-

hended in one determinateness, [a?iti] make out a whole, this is the sector, a space-deter-

mination of two dimensions : in this way, the arc is essentially a Function of the Radius

vector; and the former (the arc) being unequal, brings with it the inequality of the Radii.

That the determination with regard to the space by means of the time appears as a Deter-

mination of two Dimensions,—as a Superficies-Determination,—agrees with what was said

(/) before (^ 26(5) respecting Falling Bodies, with regard to the exposition of the same Deter-

minateness, at one while as Time in the root, at another while as Space in the square. Here,

however, the Quadratic character of the space is, by the returning of the Line of motion into

itself, limited to a Sector. These are, as may be seen, the general principles on which the

Keplerian Law, that in equal times equal sectors are cut off", rests.

This Law becomes, as is clear, only the relation of the arc to the Radius Vector, and the

Time enters there as the abstract Unity, in which the different Sectors are compared, because

as Unity it is the Determining Element. But the further relation is that of the Time, not

as Ilmty, but as a Quantity in general,—as the time of Revolution—to tile magnitude of the

Path, or, what is tile same tiling, the distance from the center. As R( ot and Siiuarc, we saw

that Time and Space had a relation to each other, in the case of Falling Bodies, the case of

half-free motion— because that [inotion\ is determined on one side by the conception, on the
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other by external [conditions]. But in the case of absolute motion—the domain of free

(u) masses—the determination attains its Totality. The Time as the Root is a mere empirical

magnitude ; but as a component (moment) of the developed Totality, it is a Totality in

itself,—it produces itself, and therein has a reference to itself;— as the Dimensionless

Element in itself, it only comes to a formal identity with itself, the Square ; Space, on the

other hand, as the positive Distribution (aussereinander) [comes] to the Dimension of the

Conception, the Cube. Their Realization preserves their original difference. This is the

(u) third Keplerian Law, the relation of the Cubes of the Distances to the Squares of the

Times ; a Law which is so great on this account, that it represents so simply and imme-

diately Reason as belonging to the thing : while on the contrary the Newtonian Formula, by

means of which the Law is changed into a Law for the Force of Gravity, shews the Distortion,

Perversion and Inversion of Reflexion which stops half-way.

Additions to new Edition. | 269.

The center has no sense without the circumference, nor the circumference without the center.

This makes all physical hypotheses vanish which sometimes proceed from the center, some-

times from the particular bodies, and sometimes assign this, sometimes that, as the original

[cause of motion]... It is silly (liippisch) to suppose that the centrifugal force, as a tendency to

fly off in a Tangent, has been produced by a lateral projection, a projectile force, an impulse

which they have retained ever since they set out on their journey (von Haus aus). Such

casualty of the motion produced by external causes belongs to inert matter ; as when a stone

fastened to a thread which is thrown transversely tries to fly from the thread. We are not

to talk in this way of Forces. If we will speak of Force, there is one Force, whose elements

{w) do not draw bodies to different sides as if they were two Forces. The motion of the heavenly

bodies is not a being pulled this way or that, such as is thus imagined ; it is free motion : they

go along, as the ancients said, as blessed Gods (sie gehen als selige Gotter einher). The

celestial corporeity is not such a one as has the principle of rest or motion external to itself.

Because stone is inert, and all the earth consists of stones, and the other heavenly bodies are of

the same nature,—is a conclusion which makes the properties of the whole the same as those of

the part. Impulse, Pressure, Resistance, Friction, Pulling, and the like, are valid only for

(j) an existence of matter other than the celestial. Doubtless that which is common to the two is

matter, as a good thought and a bad thought are both thoughts; but the bad one is not

therefore good, because it is a thought.



LI I. Discussion of a Differential Equation relating to the breaking of Railway Bridges.

B)j G. G. Stokes, M. A., Fellow of Pembroke College, Cambridge.

[Read May 21, 1849.]

To explain the object of the following paper, it will be best to relate the circumstance which
gave rise to it. Some time ago Professor Willis requested my consideration of a certain differential

equation in which he was interested, at the same time explaining its object, and the mode of ob-

taining it. The equation will be found in the first article of this paper, which contains the sub-

stance of what he communicated to me. It relates to some experiments which have been

performed by a Royal Commission, of which Professor Willis is a member, appointed on the

27th of August, 184.7, " for the purpose of inquiring into the conditions to be observed by eno-ineers

in the application of iron in structures exposed to violent concussions and vibration." The object

of the experiments was to examine the effect of the velocity of a train in increasing or decreasing

the tendency of a girder bridge over which the train is passing to break under its weight. In order

to increase the observed effect, the bridge was purposely made as slight as possible : it consisted in

fact merely of a pair of cast or wrought iron bars, nine feet long, over which a carriage, variously

loaded in different sets of experiments, was made to pass with different velocities. The remarkable

result was obtained that the deflection of the bridge increased with the velocity of the carriage,

at least up to a certain point, and that it amounted in some cases to two or three times the central

statical deflection, or that which would be produced by the carriage placed at rest on the middle

of the bridge. It seemed highly desirable to investigate the motion mathematically, more especially

as the maximum deflection of the bridge, considered as depending on the velocit)' of the carriage,

had not been reached in the experiments*, in some cases because it corresponded to a velocity

greater than any at command, in others because the bridge gave way by the fracture of the bars

on increasing the velocity of the carriage. The exact calculation of the motion, or rather a cal-

culation in which none but really insignificant quantities should be omitted, would however be

extremely difficult, and would require the solution of a partial differential equation with an ordinary

differential equation for one of the equations of condition by which the arbitrary functions would

have to be determined. In fact, the forces acting on the body and on any element of the bridge

depend upon the positions and motions, or rather changes of motion, both of the body itself and

of every other element of the bridge, so that the exact solution of the problem, even when the de-

flection is supposed to be small, as it is in fact, appears almost hopeless.

In order to render the problem more manageable, Professor Willis neglected tiic inertia of tl)o

bridge, and at the same time regarded the moving body as a heavy particle. Of course the masses

of bridges such as are actually used must be considerable; but the mass of the bars in the ex-

periments was small comjiared with that of the carriage, and it was reasonable to expect a near

accordance between the tlieory so sini])lified and experiment. Tliis simplification of tlie pnil)leni

reduces the calculation to an ordinary (Hdrrential ecjuation, whicii is that which has Ijcen already

mentioned ; and it is to tiie discussion of this equation that the present pajier is mainly devoted.

This equation cannot apparently be integrated in finite terms, except for an infinite number

of particular values of a certain constant involved in it ; but I have investigated rapidly con-

vergent .series whereby numerical results may lie obtained. Hy merely altering the scale of the

The detail* of the cxpcrimentN will be found in the Keport nt' the Comiulniion, to wliicli ihc renter in rcrorrcd.
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abscissfB and ordinates, the differential equation is reduced to one containing a single constant /3,

which is defined by equation (5). The meaning of the letters which appear in this equation will

be seen on referring to the beginning of Art. 1. For the present it will be sufficient to observe

that j3 varies inversely as the square of the horizontal velocity of the body, so that a small value

of ;8 corresponds to a high velocity, and a large value to a small velocity.

It appears from the solution of the differential equation that the trajectory of the body is

unsymmetrical with respect to the centre of the bridge, the maximum depression of the body
occurring beyond the centre. The character of the motion depends materially on the numerical

value of j3. When /3 is not greater than ^, the tangent to the trajectory becomes more and more

inclined to the horizontal beyond the maximum ordinate, till the body gets to the second extremity

of the bridge, when the tangent becomes vertical. At the same time the expressions for the central

deflection and for the tendency of the bridge to break become infinite. When fi is greater than

^, the analytical expression for the ordinate of the body at last becomes negative, and afterwards

changes an infinite number of times from negative to positive, and from positive to negative.

The expression for the reaction becomes negative at the same time with the ordinate, so that in

fact the body leaps.

The occurrence of these infinite quantities indicates one of two things: either the deflection

really becomes very large, after which of course we are no longer at liberty to neglect its square

;

or else the effect of the inertia of the bridge is really important. Since the deflection does not

really become very great, as appears from experiment, we are led to conclude that the effect of the

inertia is not insignificant, and in fact I have shewn that the value of the expression for the vis

viva neglected at last becomes infinite. Hence, however light be the bridge, the mode of approx-

imation adopted ceases to be legitimate before the body reaches the second extremity of the bridge,

although it may be sufficiently accurate for the greater part of the body's course.

In consequence of the neglect of the inertia of the bridge, the differential equation here dis-

cussed fails to give the velocity for which T, the tendency to break, is a maximum. When j8 is

a good deal greater than 1, T" is a maximum at a point not very near the second extremity of the

bridge, so that we may apply the result obtained to a light bridge without very material error.

Let Tj be this maximum value. Since it is only the inertia of the bridge that keeps the tendency

to break from becoming extremely great, it appears that the general effect of that inertia is to

preserve the bridge, so that we cannot be far wrong in regarding T, as a superior limit to the

actual tendency to break. When /3 is very large, T'l may be calculated to a sufficient degree of

accuracy with very little trouble.

Experiments of the nature of those which have been mentioned may be made with two distinct

objects ; the one, to analyze experimentally the laws of some particular phenomenon, the other, to

apply practically on a large scale results obtained from experiments made on a small scale. With
the former object in view, the experiments would naturally be made so as to render as conspicuous

as possible, and isolate as far as might be, the effect which it was desired to investigate ; with the

latter, there are certain relations to be observed between the variations of the different quantities

which are in any way concerned in the result. These relations, in the case of the particular problem

to which the present paper refers, are considered at the end of the paper.

1. It is required to determine, in a form adapted to numerical computation, the value of y' in

terms of x, where y' is a function of w' defined by satisfying the differential equation

with the particular conditions

dx" " (2cx' -w''y' ^ '

dy
«' = 0, ~7 = 0, when « =0, (2)

dx
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the value of y' not being wanted beyond the limits and 2c of as . It will appear in the course

of the solution that the first of the conditions (2) is satisfied by the complete integral of (l), while

the second serves of itself to determine the two arbitrary constants which appear in that integral.

The equation (1) relates to the problem which has been explained in the introduction. It was

obtained by Professor Willis in the following manner. In order to simplify to the very utmost the

mathematical calculation of the motion, regard the carriage as a heavy particle, neglect the inertia

of the bridge, and suppose the deflection very small. Let m
, y be the co-ordinates of the moving

body, x' being measured horizontally from the beginning of the bridge, and y vertically downwards.
Let M be the mass of the body, V its velocity on entering the bridge, 2c the length of the bridge,

g the force of gravity, S the deflection produced by the body placed at rest on the centre of the

bridge, R the reaction between the moving body and the bridge. Since the deflection is very

small, this reaction may be supposed to act vertically, so that the horizontal velocity of the body
will remain constant, and therefore equal to V. The bridge being regarded as an elastic bar or

plate, propped at the extremities, and supported by its own stiffness, the depth to which a weight

will sink when placed in succession at different points of the bridge will vary as the weight

multiplied by {9.cx' - x'^Y, as may be proved by integration, on assuming that the curvature is

proportional to the moment of the bending force. Now, since the inertia of the bridge is neglected,

the relation between the depth y to which the moving body has sunk at any instant and the

reaction R will be the same as if R were a weight resting at a distance x from the extremity of

the bridge ; and we shall therefore have

y' = CRiZcx -*'-)',

C being a constant, which may be determined by observing that we must have y = S when R = Mg
and x' = c ; whence

^^Jjg?'
We get therefore for the equation of motion of the body

rfV_ gc'y'

df ^ S(ficx'-w'y'

da)'
which becomes on observing that —- = V

dt

dx' V V-S (2ca/ - x'y
'

which is the same as equation (l), a and b being defined by the equations

a = — , 6= — (3)

2. To simplify equation (l) put

y = 2cx, y' = IficVfc-'y, b = -tc'/S,

which gives

'^=/3--^^^ (4.)

dx' ^ {.v-ai'y ^
'

It is to be observed that w denotes the ratio of the distance of the body from the luginning of

the bridge to the lengtli of tiie bridge ; y denotes a quantity from which the depth of the boily

below the horizontal plane in which it was at first moving may be obtained by multiplying by

I')C*a/>"' or \C) S \ and (i, on the value of which depends the form of the body's path, is a constant

defined by the equation

Vol.. VIII. Paut V. 4Y
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3. In order to lead to the required integral of (4), let us first suppose that .r is very small.

Then the equation reduces itself to

(6)

of which the complete integral is

(id

and (7) is the approximate integral of (4) for very small values of x. Now the second of equations

(2) requires that A = 0, B = 0,* so that the first term in the second member of equation (7) is

the leading term in the required solution of (4).

4. Assuming in equation (4) y = {w - x')- z, we get

d-

da^
{{x - xyz] +(iz==l3. (8)

Since (4) gives y = {x - ar'y when fi = os , and (5) gives /3= 05 when F= 0, it follows that x

is the ratio of the depression of the body to the equilibrium depression. It appears also from

Art. 3, that for the particular integral of (8) which we are seeking, z is ultimately constant when ,r

is very small.

To integrate (8) assume then

z= A^ + Aix + J.,x- + ... = S^,*"', (9)

and we get

2 (i + 2) (i + 1) JiX' - 22 (J + 3){i + 2) A^x'*' + 2 (i + 4) (i + 3) A^x'*' + /32^,y = /3,

or

2
I
[(J + 1) (i + 2) + jS] ^; - 2 (j + 1) (i + 2) Ai_, + (J + 1) {i + 2) Ai.,\ x' = /3, ... (lO)

where it is to be observed that no coefficients A^ with negative suffixes are to be taken.

Equating to zero the coefficients of the powers 0, 1, 2. ..of a? in (10), we get

(2 + /3) ^„ = /3,

(6 + /3) ^, - 12^0= 0, &c.

and generally

{(i+ l)(J + 2) +/3}^,-2(i + l)(j+2)^i_, + (J + l)(i + 2) Ji.„=0 (11)

The first of these equations gives for A^ the same value which would have been got from (7)-

The general equation (11), which holds good from i = I to i = eo , if we conventionally regard

A^i as equal to zero, determines the constants Ai, A.,, A^... one after another by a simple and

uniform arithmetical process. It will be rendered more convenient for numerical computation by

putting it under the form

^.= K-.H-A^,,.}{i-
(,^,^(f^,^^^|; m

' When (3> J , the la.st two terms in (7) take the form jt | Ccos

(7logj) + i)sm(9logj)}; and if yi denote this quantity we cannot

in strictness speak of the limiting value of -^ when a*= 0. If we

give X a small positive value, which we then suppose to decrease

indefinitely, -j-^ will fluctuate between the constantly increasing

limits ±j;-«Vl(JC + 9Z))' + (ii)-?C)M, or ±x->^l\ii(C^

+ Z)-)5 , since ysVC/S-j). But the body is supposed to enter

the bridge horizontally, that is, in the direction of a tangent, since

the bridge is supposed to be horizontal, so that we must clearly

have C^ + Z)= = 0, and therefore C = 0, D = 0. When /3 = J the

last two terms in (7) take the form j-* ( £ + / log .»•), and we must

evidently have E = <S, F = 0.
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for it is easy to form a table of differences as we go along ; and when i becomes considerable, the
quantity to be subtracted from ^,.., + A^;_, will consist of only a few figures.

5. When i becomes indefinitely great, it foUows from (11) or (12) that the relation between
the coefficients Jj is given by the equation

di - 2^,.., + ^,_2 = 0, (13)

of which the integral is

Ai = C + a (14)

Hence the ratio of consecutive coefficients is ultimately a ratio of equality, and therefore the
ratio of the (i + l)th term of the series (9) to the ith is ultimately equal to w. Hence the series is

convergent when x lies between the limits - 1 and + l ; and it is only between the limits and 1

of X that the integral of (S) is wanted. The degree of convergency of the series will be ultimately
the same as in a geometric series whose ratio is x\

6. When *• is moderately small, the series (9) converges so rapidly as to give z with little

trouble, the coefficients J„ A,... being supposed to have been already calculated, as far as may be
necessary, from the formula (12). For larger values, however, it would be necessary to keep in a
good many terms, and the labour of calculation might be abridged in the following manner.

When i is very large, we have seen that equation (12) reduces itself to (13), or to A°^ _.. = 0,

or, which is the same, AM,- = 0. When i is large, AM,- will be small; in fact, on substituting

in the small term of (12) the value of J; given by (14), we see that A^^,- is of the order i-'. Hence
A^^j, A"*^, ... will be of the orders i"^, ^-^.., so that the successive differences of 4,. will rapidly

decrease. Suppose i terms of the series (9) to have been calculated directly, and let it be required

to find the remainder. We get by finite integration by parts

2.4;^?' = const. +Ai _ - i\Ai- — + A'J;;^ rs"---.w - I {x - \y (a? - 1)^

and taking the sum between the limits i and os we get

J;*' + 4;+.«' + ' + ...to mt = x'-' L.-^+ A^i (-f-.\\ A^f-^] + ... l; ...(1.5)

z will however presently be made to depend on series so rapidly convergent that it will hardly be
worth while to employ the series (15), except in calculating the series (9) for the particular value i

of X, which will be found necessary in order to determine a certain arbitrary constant*.

7. If the constant term in equation (4) be omitted, the equation reduces itself to

dx' {x — x-y

The form of this equation suggests that there may be an integral of the form y = x'" {\ - ,r)".

Assuming this expression for trial, we get

(Pv
(x - cT-T ~ = x" (\ - x)' {m (ill - 1) (1 - xf - »mnx (1 - x) + n (n - 1) .ti-'J

dx'

= y \m{m - I) - 2m {iii + w - 1) x ^ (in + n) (m + n - 1) .i''{

.

The second member of this equation will be proportional to y, if

TO + w - I = 0, (17)

,+ ,..;
", = (16)

• A mode of calculating the value of z for .c -
.5 will prcHcntly be given, which ii easier than that here nientioiied, unlciia ji he very

large. Sec equation (12) at the end of thi» pai)tT.

4 Y 2
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and will be moreover equal to - /3y, if

m' - m 4- li = (18)

It appears from (17) that m, n are the two roots of the quadratic (18). We have for the

complete integral of (l6)

y = Ax"' (1 -«)" + B3)°{l - a)"" (19)

The complete integral of (4) may now be obtained by replacing the constants J, B by functions

R, S of ,r, and employing the method of the variation of parameters. Putting for shortness

a."" (1 - x)" = u, w" (1 - wY = V,

we get to determine R and .S" the equations

dR dS
U-J-+V-- =0,

dsc ax

du dR dv dS
da dx dx dx

du dv , , ,

Since V — - u — = rw — n, we get from the above equations
dx dx

dR (iv dS /3?«

dx m — n dx m — n

whence we obtain for a particular integral of (4)

y = —^ L" (1 - xY I
af (1 - xY dx - a?" (1 - a;)"' / x'" (1 - «)" dx\ ; (20)

m -n
[ Jo Jo J

and the complete integral will be got by adding together the second members of equations (ip),

(20). Now the second member of equation (20) varies ultimately as x^, when x is very small,

and therefore, as shewn in Art. 3, we must have A = 0, B = 0, so that (20) is the integral we want.

When the roots of the quadratic (18) are real and commensurable, the integrals in (20) satisfy

the criterion of integrability, so that the integral of (4) can be expressed in finite terms without

the aid of definite integrals. The form of the integral will, however, be complicated, and y may

be readily calculated by the method which applies to general values of /3.

8. Since /J F (x) dx = Jl F (x) dx - j\-' F {l - x) dx, we have from (20)

y ^ - {x- (1 - xY fl x'il - xY dx- x'il- x)'" fl X'" ( 1 - xf dx\,
m — n

+ —^ \af (1 - xY SI" (1 - i^Y .r" dx - x" (I - x)" fl-' - «)" x'" dx].
m-n

If we put f{x) for the second member of equation (20), the equation just written is

equivalent to

f(.co)=f{\-x) + (p{x), (21)

where

fb{x)=-^{x'"{\-xY!l!i:'{\ -xYdx-x-^l -xYPo'V"'{i - xY dx] ...(22)
' m — n

Now since m + n = 1,

s^ ds
fx" (1 - xY dx = fx («-' - l)"" dx = - /«)-' (w - 1)'" to-' dw = -f .
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At the limits x = and x = 1, we have w = cc and w = l, « = co and s = 0, whence if /denote
the definite integral,

We get by integration by parts

r s'"ds s-" m rs^-'ds

J + sf
"

2(1 +sy
"*"

i" J (1 + sf'

and again by a formula of reduction

Now fi being essentially positive, the roots of the quadratic (18) are either real, and comprised

between and I, or else imaginary with a real part equal to ^. In either case the expressions

which are free from the integral sign vanish at the limits s = and s = oo , and we have therefore,

on replacing m (1 — m) hy its value /3,

^^^ roo s"'-'ds

2 J^ 1 + s

The function (p (x) will have different forms according as the roots of (18) are real or imaginary.

First suppose the roots real, and let ?» = A + r, w = 1 — r, so that

r = yTZr^. (23)

In this case /» is a real quantity lying between and 1, and we have therefore by a known formula

fCCs'"~'ds TV -K , ^

I
= -. = , (2*)

Jo 1 +« sinniTT cosrTT

whence we get from (22), observing that the two definite integrals in this equation are equal to each

other,

^(.,= ^z_^^^J(^y. (^y] (25)
' 4rc()srir t.\l - x] \1 - xl )

This result might have been obtained somewhat more readily by means of the properties of the

first and second Eulerian integrals.

When /3 becomes equal to 1, r vanishes, the expression for (p{x) takes the form
JJ,

and we

easily find

^W = J\/.i^-«''l°g7T^ ^^"^^

When (i>\, the roots of (18) become imaginary, and r becomes p \/ - \, where

^=v//3^ (27)

The formula (25) becomes

(f)(x) = \/x - x" sin n log
^^ ^ pie"" + e-"')^ V ® 1 -*;

(28)

If /(,r) be calculated from a? = to a? = ^, equation (21) will enable us to calculate it readily

from X •= ^ to «• = 1, since it is easy to calculate (p^v).

9. A series of a simple form, which is more ra])idly convergent than (i)) when .i a|)i)r()aciics

the value J, may readily be investigated.
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Let X = i(l + tv) ; then substituting in equation (8) we get

i£.l(i-'''OM+/3^ = /3 (29)

Assume
z= B^ + B, tv- + B.w* ... =25iW^ (30)

then substituting in (29) we get

S5,{2j(2J - i)w''-^- 2(2i + 2) (2t + l)w-'+ (2j + 4)(2i + 3)w'' + = + ifiw-'} = 4/3,

2{2(2j -l)5,-2[i(2i- l)-^]fi;_,+ j(2j- l)5,_„}w'*-= = 2j3.

amThis equation leaves B^ arbitrary, and gives on dividing by i (2 i - 1), and putting in succession

8 = 1, j = 2, &c.,

B. -2 (l -
j^) 5„=2^, (31).

B,-2
(^1

-
^J£,

+ fi„ = 0,&c.;

and generally when i > 1

,

g. = g,,.+ Ag,_,- ^
^^ g,_. (32).

t (2j — I )

The constants 5,, B.,,... being thus determined, the series (30) will be an integral of equation

(29), containing one arbitrary constant. An integral of the equation derived from (29) by replacing

the second member by zero may be obtained in just the same way by assuming sr = C,, w + C, ?<'^ + ...

when Oi, C2... will be determined in terms of C,, which remains arbitrary. The series will both be

convergent between the limits w = - 1 and w = I, that is, between the limits x = and .r = 1.

The sum of the two series will be the complete integral of (29), and will be equal to (x — x'')~^f{x)

if the constants B„ Co be properly determined. Denoting the sums of the two series by F,, (««),

/"„ {w) respectively, and writing a {x) for (a; - x^)'^f{x), so that sr = o- (x), we get

<7 {x) = F, (w) + F„ (tv), o- (1 - x) = F^ (w) - F„ (w) ;

and since 2F^ (w) = a (x) - cr (l - x) = (x - x^)-^ (p (x) by (21), we get

ff{x) =F,(w) +X(a!-x^)-^<{)(x), o-(l -x) = F,(w) - ^ix - x")-- (p (x) (33).

To determine Bo we have

5o=<7(i), (34).

which may be calculated by the series (9).

10. The series (9), (30) will ultimately be geometric series with ratios x, w", or x, (2,» — 1)-,

respectively. Equating these ratios, and taking the smaller root of the resulting quadratic, we
get « = 5^. Hence if we use the series (9) for the calculation of ct (.r) from .j? = to .r = ^, and

(30) for the calculation of a (x) from .r = 1 to » = -|, we shall have to calculate series whicli are

ultimately geometric series with ratios ranging from to t.

Suppose that we wish to calculate tr (x) or z for values of x increasing by .02. The process

of calculation will be as follows. From the equation (2 + (i) J„= (3 and the general formula (12),

calculate the coefficients A^,, J,, A.,,., as far as may be necessary. From the series (9), or else from

the series (9) combined with the formula (15), calculate a (^) or B„, and then calculate 5,, B2...

from equations (31), (32). Next calculate ct (x) from the series (9) for the values .02, .04,. ...26

of X, and F^ (w) from (30) for the values .04, .08..., .44 of w, and lastly (x - aP)'^^ {x) for the

values .52, .54..., .98 oi x. Then we have o- (a') calculated directly from a; = to .r = .26 ; equa-
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tions (33) will give cr (a;) from a; = .28 io a; = .72, and lastly the equation a (x) = o- - x)

+ (.c - ,v')~-(p (x) will give a (.r) from .r = .74 to a; = 1.

11. The equation (21) will enable us to express in finite terms the vertical velocity of the

body at the centre of the bridge. For according to the notation of Art. 2, the horizontal and

vertical coordinates of the body are respectively 2c.r and i6Sy, and we have also —^— = V,
dt

whence, if v be the vertical velocity, we get

d.lGSijdx %SV ,

But (21) gives/' (^) = \ <p' (g)) whence if v^ be the value of v at the centre, we get

i-rrSVfi:' SttSVB-
V, = , or =—^

, (35)
ccosrir c {e'"' + e''") ^ '

according as /3 < > ^.

In the extreme cases in which V is infinitely great and infinitely small respectively, it is evi-

dent that v^ must vanish, and therefore for some intermediate value of V, v^ must be a maximum.
Since V oz (i~i when the same body is made to traverse the same bridge with different velocities,

Uj will be a maximum when p or </ is a minimum, where

p = 2/3-icosr7r, q = (i'^- {^''+ £-<"").

Putting for cos rir its expression in a continued product, and replacing r by its expression in

terms of /3, we get

1 - 4/3n / I - i(i\. .f 1 - 4/a\ / I - 4«\

whence

dlogp 11 1

"d^= "i^ + iT¥^ ^?:7T^"^ ^
'

The same expression would have been obtained for ^ . Call the second member of equa-

tion (36) F (/3), and let - iV, P be the negative and positive parts respectively of F {(i). When

/3 = 0, iV= ec , andP= -+ —-... = l, and therefore F (/3) is negative. When /3 becomes

infinite, the ratio of P to jV becomes infinite, and therefore F (/3) is positive when /3 is sufficiently

large; and F (/3) alters continuously witli fi. Hence the equation F (/3) = must have at least

one positive root. But it cannot have more than one ; for the rates of proportionate decrease of

• • »r ^ I dN I dP
the quantities A, /*, or - — — ,

, are respectively^ Ndfi P dfi
'^ '

!_ (1 .2 + l3)-'+i2.3 + (iy'+...

/3' (1.2 + /i)-' + (2.3 + ^)-' + ...'

and the several terms of the denominator of the second of these expressions are equal to those of

the numerator multiplied by 1 .2 + ft, 2 . 3 + (i,... respectively, and therefore tlie denominator is

equal to the numerator multiplied by a quantity greater than 2 + /3, and therefore greater than /3

;

so that the value of the expression is less than -. Hence for a given infinitely small increment of

ft the change - dN in N bears to iV a greater ratio than - dP bears to P, so that when A' is

greater than or equal to P it is decreasing more rapidly than P, and tlicreforc after having once
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become equal to P it must remain always less than P. Hence v^ admits of but one maximum

or minimum value, and this must evidently be a maximum.

When /3 = - N = 2, and P< h H ... or < 1, and therefore P i(i) has the same sign

as when /3 is indefinitely small. Hence it is q and not p which becomes a minimum. Equating

— to zero, employing (27), and putting 2irp = log,^, we find

dfi

^—-^HX + ^'^^-sX)-'-

The real positive root of this equation will be found by trial to be 36.3 nearly, which gives

p = .5717, /3 = J + p° = .5768. If F, be the velocity which gives v, a maximum, u, the maximum

value of v^, U the velocity due to the height S, we get

/7^ c U
,

87r/3= S ,^ ,

c

V, = .4655 ^U, v,= .6288 U.

12. Conceive a weight W placed at rest on a point of the bridge whose distance from the

first extremity is to the whole length as x to 1. Tlie reaction at this extremity produced by fV will

be equal to (1 - x)W, and the moment of this reaction about a point of the bridge whose abscissa

2ca?, is less than 2cx will be 2c(l - x) a!,W. This moment measures the tendency of the bridge to

break at the point considered, and it is evidently greatest when », = .?, in which case it becomes

2c{l- x)xW. Now, if the inertia of the bridge be neglected, the pressure R produced by the

movino- body will be proportional to (.r? - a")'"'!/, and the tendency to break under the action of a

weight equal to R placed at rest on the bridge will be proportional to (1 - .v) x •< (x -x')~~y, or to

(x - ,r/')x. Call this tendency T, and let T be so measured that it may be equal to 1 when the moving

body is placed at rest on the centre of the bridge. Then T = C (x - x^)z, and 1 = C" (1 - 1), whence

T=i {x - x^) «.

The tendency to break is actually liable to be somewhat greater than T, in consequence of the

state of vibration into which the bridge is thrown, in consequence of which the curvature is alternately

greater and less than the statical curvature due to the same pressure applied at the same point. In

considering the motion of the body, the vibrations of the bridge were properly neglected, in con-

formity with the supposition that the inertia of the bridge is infinitely small compared with that of

the body.

The quantities of which it will be most interesting to calculate the numerical values are z,

which expresses the ratio of the depression of the moving body at any point to the statical depression,

T, the meaning of which has just been explained, and y, the actual depression. When is has been

calculated in the way explained in Art. 10, T will be obtained by multiplying by i{x - x"), and

then ^ will be got by multiplying 7" by 4 {x - x').

o

13. The following Table gives the values of these three quantities for each of four values of /3,

namely ^^, J, J, and f , to which correspond r = 1, r = 0, p = ^, p== 1, respectively. In performing

the calculations I have retained five decimal places in calculating the coefficients J„, A^, A,... and S„,

Bi, B, ... and four in calculating the series (9) and (30). In calculating (p (x) I have used four-

figure logarithms, and I have retained three figures in the result. The calculations have not been

re-examined, except occasionally, when an irregularity in the numbers indicated an error.
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14. Let us first examine the progress of the numbers. For the first two values of /3, z
increases from a small positive quantity up to oo as j; increases from to 1. As far as the

table goes, « is decidedly greater for the second of the two values of /3 than for the first. It

is easily proved however that before oj attains the value 1, z becomes greater for the first value

of /3 than for the second. For if we suppose x very little less than 1, f(\ - x) will be ex-

tremely small compared with <p{x), or, in case (p^oc) contain a sine, compared with the coefli-

cient of the sine. Writing Wi for I - x, and retaining only the most important term in /(*),
we get from (21), (25), (26), and (28)

/(x) = ^\
4r cosrTr

-a^r - — x} log -
32

/3'

a?i p(e + 6"
-.r,Jsin(^^logi-j (37)

according as /3 < |:, /3 = ^, or /3 > :j;
; and ;:; will be obtained by dividing f{x) by V nearly.

Hence if ^ > /32>/3i >0, sr is ultimately incomparably greater when ji = (ii than when fi = (ii,

and when /3 = ^, than when /3 = 1 Since /(O) =J„ = j3(2 + ^)-' = (2/3"' + 1) "', /(O) increases

with /3, so that f{x) is at first larger when /3 = ^2 than when /3 = /3„ and afterwards smaller.

When /3 > ^, sr vanishes for a certain value of x, after which it becomes negative, then
vanishes again and becomes positive, and so on an infinite number of times. The same will be
true of T. If p be small, f(x) will not greatly differ, except when x is nearly equal to 1,

from what it would be if |0 were equal to zero, and therefore /(,?;) will not vanish till x is nearly

equal to 1. On the other hand, if p be extremely large, which corresponds to a very slow velocity,

z will be sensibly equal to 1 except when x is nearly equal to 1, so that in this case also f{x)
will not vanish till x is nearly equal to 1. The table shews that when /3 = i,/(.i') first vanishes
between x = .9$ and x = 1, and when

fi
= ^ between x = . 94 and x = .96. The first value of x

for which /(») vanishes is probably never much less than 1, because as /3 increases from ^ the

denominator ,u(e'''' + e'f^) in the expression for (p(x) becomes rapidly large.

15. Since when (i>^, T vanishes when x = 0, and again for a value of x less than 1, it must
be a maximum for some intermediate value. When /3 = ^ the table appears to indicate a maximum
beyond x = . 98. When /3 = |, the maximum value of T is about 2.61, and occurs when x = . 86
nearly. As /3 increases indefinitely, the first maximum value of T approaches indefinitely to 1,

and the corresponding value of x to i. Besides the first maximum, there are an infinite number
of alternately negative and positive maxima ; but these do not correspond to the problem, for a
reason which will be considered presently.

16. The following curves represent the trajectory of the body for the four values of /J con-
tained in the preceding table. These curves, it must be remembered, correspond to the ideal

limiting case in which the inertia of the bridge is infinitely small.

In this figure the right line JB represents the bridge in its position of equilibrium, and
at the same time represents the trajectory of the body in the ideal limiting case in which

/3 = or K = CO . AeeeB represents what may be called the equilibrium trajectory, or the
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curve the body would describe if it moved along the bridge with an infinitely small velocity.
The trajectories corresponding to the four values of /3 contained in the above table are marked
by 1, 1, 1, 1 ; 2, 2, 2 ; 3, S, 3 ; 4, 4, 4, * respectively. The dotted curve near B is meant to repre-
sent the parabolic arc which the body really describes after it rises above the horizontal
line JB*. C is the centre of the right line AB : the curve AeeeB is symmetrical with respect
to an ordinate drawn through C.

17. The inertia of the bridge being neglected, the reaction of the bridge against the body, as

Cv
already observed, will be represented by — , where C depends on the length and stiffness of

(x — wy °

the bridge. Since this expression becomes negative with y, the preceding solution will not be
applicable beyond the value of x for which y first vanishes, unless we suppose the body held down
to the bridge by some contrivance. If it be not so held, which in fact is the case, it will quit the
bridge when y becomes negative. More properiy speaking, the bridge will follow the body, in

consequence of its inertia, for at least a certain distance above the horizontal line AB, and will exert
a positive pressure against the body : but this pressure must be neglected for the sake of con-
sistency, in consequence of the simplification adopted in Art. I, and therefore the body mav be
considered to quit the bridge as soon as it gets above the line AB. The preceding solution shews
that when /3>|; the body will inevitably leap before it gets to the end of the bridge. The leap

need not be high ; and in fact it is evident that it must be very small when ^ is very large. In
consequence of the change of conditions, it is only the first maximum value of T which corresponds

to the problem, as has been already observed.

18. According to the preceding investigation, when (i<\ the body does not leap, the tangent

to its path at last becomes vertical, and T becomes infinite. The occurrence of this infinite value

indicates the failure, in some respect, of the system of approximation adopted. Now tlie inertia

of the bridge has been neglected throughout; and, consequently, in the system of the bridge and

the moving body, that amount of labouring force which is requisite to produce the ms viva of the

bridge has been neglected. If ^, ij be the coordinates of any point of the bridge on the same scale

on which ,r, y represent those of the body, and ^ be less than x, it may be proved on the supposition

that the bridge may be regarded at any instant as in equilibrium, that

y \x 1 — xj X' (1 - x)
(38)

When X becomes very nearly equal to \, y varies ultimately as (l —x)i'', and therefore i; contains

terms involving (l - x)' i'', and \-^] i and consequently (— I, contains terms involving

(1 — w)'''^'. Hence the expression for the vis viva neglected at last becomes infinite; and there-

fore however light the bridge may be, the mode of approximation adopted ceases to be legitimate

before the body comes to the end of the bridge. The same result would liave been arrived at if

ft had been supposed equal to or greater than ^.

19. There is one practical result which seems to follow from tlie very imperfect solution of

the problem which is obtained when the inertia of the bridge is neglected. Since this inertia is

the main cause which prevents the tendency to break from becoming enormously great, it would

seem that of two bridges of equal length and equal strength, liut une(jual mass, the lighter would

• The clotted curve ou^ht to have been drawn wholly outnide the full curve. The lw{( curves touch cuch other nt the point

where they are cut by the line ACB^ as is reprcACnted in the lif^ure.

4 Z2
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be the more liable to break under the action of a heavy body moving swiftly over it. The eflPect

of the inertia may possibly be thought worthy of experimental investigation.

20. The mass of a rail on a railroad must be so small compared with that of an engine, or

rather with a quarter of the mass of an engine, if we suppose the engine to be a four-wheeled one,

and the weight to be equally distributed between the four wheels, that the preceding investigation

must be nearly applicable till the wheel is very near the end of the rail on which it was moving,

except in so far as relates to regarding the wheel as a heavy point. Consider the motion of the

fore wheels, and for simplicity suppose the hind wheels moving on a rigid horizontal plane. Then

the fore wheels can only ascend or descend by the turning of the whole engine round the hind axle,

or else the line of contact of the hind wheels with the rails, which comes to nearly the same thing.

Let M be the mass of the whole engine, I the horizontal distance between the fore and hind axles,

h the horizontal distance of the centre of gravity from the latter axle, k the radius of gyration

about the hind axle, x, y the coordinates of the centre of one of the fore wheels, and let the rest of

the notation be as in Art. 1. Then to determine the motion of this wheel we shall have

de \il {2cx-x'Y

M
whereas to determine the motion of a single particle whose mass is — we should have had

M d^y _M Cy
4, dt' 4 (2ca; - ar'y

Now h must be nearly equal to -
, and k' must be a little greater than 1/*, say equal to 1 P, so

that the two equations are very nearly tlie same.

Hence, /3 being the quantity defined by equation (5), where S denotes the central statical

Mg
deflection due to a weight —-

, it appears that the rail ought to be made so strong, or else so
4

short, as to render jS a good deal larger than ^. In practice, however, a rail does not rest merely

on the chairs, but is supported throughout its whole length by ballast rammed underneath.

21. In the case of a long bridge, /3 would probably be large in practice. When ji is so large

/3V
that the coefficient —-——

, or ir d^e"^^* nearly, in <b(a:) may be neglected, the motion of

the body is sensibly symmetrical with respect to the centre of the bridge, and consequently T, as

well as y, is a maximum when a; = 1. For this value of a: we have 4 (x — or) = 1, and therefore

!s = T = y. Putting Ci for the (i + l)"" term of the series (9), so that d = Ji2~', we have

for x = ^
r=C„+ C, + Co+ {39)

'here Cp = ^ ,
, C,

and generally,

2 + li'
' 6+/i'

(i + l)(i + 2)

whence T is easily calculated. Thus for /3 = 5 we have tt/S^ e"^^* = .031 nearly, which is not large,

and we get from the series (39) 7"= 1.27 nearly. For /3 = 10, the approximate value of the
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coefficient in (p (.v) is .0048, whicli is very small, and we get T = 1.14. In these calculations the

inertia of the bridge has been neglected, but the effect of the inertia would probably be rather to

diminish than to increase the greatest value of T.

22. The inertia of a bridge such as one of those actually in use must be considerable : the bridge

and a carriage moving over it form a dynamical system in which the inertia of all the parts ought to

be taken into account. Let it be required to construct the same dynamical system on a different

scale. For this purpose it will be necessary to attend to the dimensions of the different constants on

which the unknown quantities of the problem depend, with respect to each of the independent units

involved in the problem. Now if the thickness of the bridge be regarded as very small compared
with its length, and the moving body be regarded as a heavy particle, the only constants which enter

into the problem are M, the mass of the body, M', the mass of the bridge, 2c, the length of the

bridge, iS*, the central statical deflection, V, the horizontal velocity of the body, and g, the force of

gravity. The independent units employed in dynamics are three, the unit of length, the unit of

time, and the unit of density, or, which is equivalent, and which will be somewhat more convenient

in the present case, the unit of length, the unit of time, and the unit of mass. The dimensions of

the several constants M, M', &c., with respect to each of these units are given in the following

table.
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To take a numerical example, suppose that we wished, by means of a model bridge five feet
long and weighing 100 ounces, to investigate the greatest central deflection produced by an engine
weighing 20 tons, which passes with the successive velocities of 30, 40, and 50 miles an hour over
a bridge 50 feet long weighing 100 tons, the central statical deflection produced by the engine
being one inch. We must give to our model carriage a weight of 20 ounces, and make the small
bridge of such a stiffness that a weight of 20 ounces placed on the centre shall cause a deflection
of Jyth of an inch; and then we must give to the carriage the successive velocities of 3-s/lO,
4\/l0, Sy/lO, or 9.49, 12.65, 15.81 miles per hour, or 13.91, 18.55, 23.19 feet per second. If
we suppose the observed central deflections in the model to be .12, .16, .18 of an inch, we may
conclude that the central deflections in the large bridge corresponding to the velocities of 30, 40, and
50 miles per hour would be 1.2, 1.6, and 1.8 inch.

G. G. STOKES.

Addition to the preceding Pajjer.

Since the above was written. Professor Willis has informed me that the values of ji are much
larger in practice than those which are contained in Table I, on which account it would be interesting

to calculate the numerical values of the functions for a few larger values of /3. I have accordingly
performed the calculations for the values 3, 5, 8, 12, and 20. The results are contained in Table II.

In calculating s from « = to a; = .5, I employed the formula (12), with the assistance occasionally

of (15). I worked with 4 places of decimals, of which 3 only are retained. The values of z for

a = .5, in which case the series are least convergent, have been verified by the formula (42) given
below : the results agreed within two or three units in the fourth place of decimals. The remaining

values of z were calculated from the expression for {x - x") '^(p{x). The values of T and - were

deduced from those of z by merely multiplying twice in succession by ix (l - ,r). Professor Willis

has laid down in curves the numbers contained in the last five columns. In laying down these

curves several errors were detected in the latter half of the Table, that is, from x = .55 to x .95.

These errors were corrected by re-examining the calculation ; so that I feel pretty confident that the

table as it now stands contains no errors of importance.
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TABLE II.

X
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y'

that it will be sufficient to suppose a? = .5. The value of z, T, or — for sc = .5 may be readily
S

calculated by the method explained in Art. 21. I have also obtained the following expression for

this particular value

;

= ^^ - ^'^ir^ - iTT^ -^ 3-iT^ -4 .(42)

When j8 is small, or only moderately large, the series (42) appears more convenient for

numerical calculation, at least with the assistance of a table of reciprocals, than the series (39), but

when /3 is very large the latter is more convenient than the former. In using the series (42), it will

be best to sum the series within brackets directly to a few terms, and then find the remainder from

the formula

W* - Mx+l + W*+^ - ••• = i"r - i Am, + 1 A'^M, - ...

The formula (42) was obtained from equation (20) by a transformation of the definite integral.

In the transformation of Art. 8, the limits of s will be 1 and 03 , and the definite integral on which

the result depends will be

X 1 + ds.

The formula (42) may be obtained by expanding the denominator, integrating, and expressing

m in terms of jS.

In practice the values of /3 are very large, and it will be convenient to expand according to

inverse powers of/3. This may be easily effected by successive substitutions. Putting for shortness

jc — x"- = X, equation (4) becomes by a slight transformation

aw

and we have for a first approximation y = X', for a second y = X'- - /3~'X^
^

, and so on. The
0/31

result of the successive substitutions may be expressed as follows

:

y = X^-l^-^X^f^X^^^-^X^±^X^§-^X^-Uc., (43)

where each term, taken positively, is derived from the preceding by differentiating twice, and then

multiplying by j3"'^".

For such large values of (i, we need attend to nothing but the value of ar for x = ^, and this

maybe obtained from (43) by putting a' = ^, after differentiation, and multiplying by l6. It will

however be more convenient to replace x by i(l + w), which gives —— = 4-—-; X^ = ^yv,

where ir = (l - w'f. We thus get from (43)

a = Ff - {i^Y'Wp, W + (i^y^W^^ W-p, W- ...
,aw dw dw

where we must put w = after differentiation, if we wish to get the value of sr for a? = ^. This

equation gives, on performing the differentiations and multiplications, and then putting w = 0,

« = 1 + /3-' + I/3-' + 13/3-'+ (44)

In practical cases this series may be reduced to 1 + /3"'. The latter term is the same as would

be got by taking into account the centrifugal force, and substituting, in the small term involving

that force, the radius of curvature of the equilibrium trajectory for the radius of curvature of the
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actual trajectory. The problem has already been considered in this manner by others by whom it

has been attacked.

My attention has recently been directed by Professor Willis to an article by Mr. Cox On the

Dynamical Deflection and strain of Railway Girders, which is printed in The Civil Engineer
and Architects Journal for Septenrber, 184S. In this article the subject is treated in a very
original and striking manner. Tiiere is, however, one conclusion at which Mr. Cox has arrived

which is so directly opposed to the conclusions to which I have been led, that I feel compelled to

notice it. By reasoning founded on the principle of vis viva, Mr. Cox has arrived at the result

that the moving body cannot in any case produce a deflection greater than double the central

statical deflection, the elasticity of the bridge being supposed perfect. But among the sources of

labouring force which can be employed in deflecting the bridge, Mr. Cox has omitted to consider

the vis viva arising fiom the horizontal motion of the body. It is possible to conceive beforehand

that a portion of this vis viva should be converted into labouring force, which is expended in

deflecting the bridge. And this is, in fact, precisely what takes place. During the first part of

the motion, the horizontal component of the reaction of the bridge against the body impels the

body forwards, and therefore increases the vis viva due to the horizontal motion ; and the labouring

force which produces this increase being derived from the bridge, the bridge is less deflected than

it would have been had the horizontal velocity of the body been unchanged. But during the

latter part of the motion the horizontal component of the reaction acts backwards, and a portion

of the vis viva due to the horizontal motion of the body is continually converted into labouring

force, which is stored up in the bridge. Now, on account of the asymmetry of the motion, the

direction of the reaction is more inclined to the vertical when the body is moving over the

second half of the bridge than when it is moving over the first half, and moreover the reaction

itself is greater, and therefore, on both accounts, more vis viva depending upon the horizontal

motion is destroyed in the latter portion of the body's course than is generated in the former

portion ; and therefore, on the whole, the bridge is more deflected than it would have been hai

the horizontal velocity of the body remained unchanged.

It is true that the change of horizontal velocity is small; but nevertheless, in this mode of

treating the subject, it must be taken into account. For, in applying to the problem the principle

of vis viva, we are concerned with the square of the vertical velocity, and we must not omit any

quantities which are comparable with that square. Now the square of the absolute velocity of

the body is equal to the sum of the squares of the horizontal and vertical velocities ; and the

change in the square of the horizontal velocity depends upon the product of the horizontal velocity

and the change of horizontal velocity ; but this product is not small in comparison witli the square

of the vertical velocity.

In Art. 22 I have investigated the changes which we are allowed by the general principle of

homogeneous quantities to make in the parts of a system consisting of an elastic bridge and a

travelling weight, without aff'ecting the results, or altering anytliing but the scale of the system.

These changes are the most general that we are at liberty to make by virtue merely of that general

principle, and without examining the particular equations which relate to the particular problem

here considered. But when we set down these equations, we shall see that there arc some further

changes which we may make without affecting our results, or at least without ceasing to be able to

infer the results which would be obtained on one .system from those actually obtained on another.

inIn an apparatus recently constructed by Professor Willis, which will be described in detai

the report of the commission, to which the reader has already been referred, the travelling weiglit

moves over a single central trial bar, and is attached to a horizontal arm which is moveable, with as

little friction as possible, about a fulcrum carried by the carriage. In this form of the experiment,

the carriage serves merely to direct the weight, and moves on rails quite inde])cndrnt of the trial bar.

Vol.. VIII. Paut V. •' A
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For the sake of greater generality I shall suppose the travelling weight, instead of being free, to

be attached in this manner to a carriage.

Let M be the mass of the weight, including the arm, k the radius of gyration of the whole

about the fulcrum, h the horizontal distance of the centre of gravity from the fulcrum, / the hori-

zontal distance of the point of contact of the weight with the bridge, w, y the coordinates of that

point at the time t, f, rj those of any element of the bridge, R the reaction of the bridge against

the weight, M' the mass of the bridge, R', R" the vertical pressures of the bridge at its two extremi-

ties, diminished by the statical pressures due to the weight of the bridge alone. Suppose, as

before, the deflection to be very small, and neglect its square.

By D'Alembert's principle the effective moving forces reversed will be in statical equilibrium

with the impressed forces. Since the weight of the bridge is in equilibrium with the statical pres-

sures at the extremities, these forces may be left out in the equations of equilibrium, and the only

impressed forces we shall have to consider will be the weight of the travelling body and the reactions

M'
due to the motion. The mass of any element of the bridge will be — rf^ very nearly ; the

horizontal effective force of this element will be insensible, and the vertical effective force will be

^d^, and this force, being reversed, must be supposed to act vertically upwards.

The curvature of the bridge being proportional to the moment of the bending forces, let the

reciprocal of the radius of curvature be equal to K multiplied by that moment. Let A, B be the

extremities of the bridge, P the point of contact of the bridge with the moving weight, Q, any point

of the bridge between A and P. Then by considering the portion A Q of the bridge we get, taking

moments round Q,

-$-'l'''f4'rS'<f-f>4 <*"

»)' being the same function of ^' that ij is of ^. To determine K, let S be tlie central statical

deflection produced by the weight Mg resting partly on the bridge and partly on the fulcrum, which

is equivalent to a weight - Mg resting on the centre of the bridge. In this case we should have

Integrating this equation twice, and observing that — = when ^ = c, and »; = when ^ = 0, and

that S is the value of t) when ^ = c, we get

" K--^^ (46)
Mgh c^

Returning now to the bridge in its actual state, we get to determine R', by taking moments about 5,

B'.2c-/? (2c-,r) + — /" ~ (2c- f) df = (47)
^c\ df ^ s / v>

Eliminating B' between (4-5) and (47), putting for K its value given by (46), and eliminating t

. div
by the equation -— = V, we get

d'ri Sis I, ^,„ M' V- r

,

„ r^rfS;' , ,„ rf-''^^^', yi.,^r\\ , ,
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This equation applies to any point of the bridge between A and P. To get the equation

which applies to any point between P and B, we should merely have to write 2c - ^ for f,
2 c — a; for x.

If we suppose the fulcrum to be very nearly in the same horizontal plane with the point of

contact, the angle through wiiich the travelling weight turns will be - very nearly ; and we shall

have, to determine the motion of this weight,

Mk'V'-~^=Mghl - Rl- (49)

We have also the equations of condition,

»} = when x = 0, for any value of ^ from to 2 c

;

r] =y when ^ = uV, for any value of x from to 2c

;

»7 = when 5=Oor=2c;y=0 and — = when x = oA
ax

(50)

Now the general equations (-ts), (or the equation answering to it which applies to the portion

PB of the bridge,) and (49), combined witli the equations of condition (50), whether we can

manage them or not, are sufficient for the complete determination of the motion, it being under-

stood that ») and — vary continuously in passing from AP to PB, so that there is no occasion for-

mally to set down the equations of condition which express this circumstance. Now the form of

the equations shews that, being once satisfied, they will continue to be satisfied provided r] <x. y,

^ az X az c, and

V ISR ISM'V'y V

d' Mghc^ Mffhc' & "

These variations give, on eliminating the variation of R,

y-'^U-hVM-l^ (^')

Although g is of course practically constant, it has been retained in the variations because it

may be conceived to vary, and it is by no means essential to the success of the method that it

should be constant. 'J'he variations (51) shew that if we have any two systems in which the

ratio of Ml^ to M'P is the same, and we conceive the travelling weights to move over tile two

bridges respectively, with velocities ranging from to oo , the trajectories described in tlie one

case, and the deflections of the bridge, correspond exactly to the trajectories and deflections in the

other case, so that to pass from the one to the other, it will be sufficient to alter all horizontal

lines on the same scale as the length of the bridge, and all vertical lines on the same scale as the

central statical deflection. The velocity in tiie one system which corresponds to a given velocity in

the other is determined by the second of tiie variations (51).

We may pass at once to the case of a free weight by putting h = k = I, wiiicii gives

J/cc.S', r'S-^gd\ M az M' (52)

The second of these variations shews that corresponding velocities in the two systems are those

which give the same value to the constant /i. When S '^ < we get P<x^'-c, whicii agrees with

Art. 22.

In consequence of some recent experiments of I'rofessor Willis's, from which it appeared that

the deflection j)roduced by a given weight travelling over the trial bar with a given velocity wan

5 a2
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in some cases increased by connecting a balanced lever with the centre of the bar, so as to increase

its inertia without increasing its weight, while in other cases the deflection was diminished, I have

been induced to attempt an approximate solution of the problem, taking into account the inertia of

the bridge. I find that when we replace each force acting on the bridge by a uniformly distributed

force of such an amount as to produce the same mean deflection as would be produced by the actual

force taken alone, which evidently cannot occasion any very material error, and when we moreover

neglect the difference between the pressure exerted by the travelling mass on the bridge and its

weight, the equation admits of integration in finite terms.

Let the notation be the same as in the investigation which immediately precedes ; only, for

simplicity's sake, take the length of the bridge for unity, and suppose the travelling weight a heavy

particle. It will be easy in the end to restore the general unit of length if it should be desirable.

It will be requisite in the first place to investigate the relation between a force acting at a given

point of the bridge and the uniformly distributed force which would produce the same mean de-

flection.

Let a force F act vertically downwards at a point of the bridge whose abscissa is ,r, and let

y be the deflection produced at that point. Then, ^, r) being the coordinates of any point of the

bridge, we get from (.S8)

"' ' ^ 2 I 4(1 - .r)|

To obtain f}tid^, we have only got to write 1 - .r in place of x. Adding together the results,

F
and observing that, according to a formula referred to in Art. 1, »/ = Id S

.

. «^ (1 - a;)^ we
Mg

obtain

zSF
f^'"'^^ =

iJTgT
<*(' -'"^ +.v'il-.vY] ; (53)

and this integral expresses the mean deflection produced by the force F, since the length of the

bridge is unity.

Now suppose the bridge subject to the action of a uniformly distributed force F'. In this case

we sliould have

-^=^i4^'^-/of(e-r)^''^n=iA'/"(e-f).

Integrating this equation twice, and observing that —p = when ^ = ^, and r/ = when ^ = 0;

4-S S*

and that (46) gives, on putting I = h and c = i, K = , we obtain
^ Mg

2SF'

"^-Jli^^--^"^^'^
('*>

This equation gives for the mean deflection

., ,,. 2SF'

^'""^^JWg' (''>

and equating the mean deflections produced by the force F acting at the point whose abscissa is x,

and by the uniformly distributed force F', we get F' = uF, where

u = 5!t> (1 - a?) + 5x' (1 -x)- (56)

Putting fx for the mean deflection, expressing F' in terms of /i, and slightly modifying the form
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of the quantity within parentheses in (54), we get for the equation to the bridge when at rest

under the action of any uniformly distributed force

') = 5M|?(l-D+f(l -DM— (57)

If D be the central deflection, >/ = Z) when f = ^ ; so that D : ix :: 25 : l6.

Now suppose the bridge in motion, with the mass M travelling over it, and let x, y be the
coordinates of M. As before, the bridge would be in equilibrium under the action of the force

M Ig - Y^j
acting vertically downwards at the point whose abscissa is .r, and the system of forces

rf%
.

such as M'd^. —-acting vertically upwards at the several elements of the bridge. According

to the hypothesis adopted, the former force may be replaced by a uniformly distributed force the
value of which will be obtained by multiplying by u, and each force of the latter system may be
replaced by a uniformly distributed force obtained by multiplying by u', where u is what u
becomes when f is put for x. Hence if F, be the whole uniformly distributed force we have

^^=''[^-'^)-'''C^^^'^^ (-)

Now according to our hypothesis the bridge must always have the form which it would assume
under the action of a uniformly distributed force ; and therefore, if m be the mean deflection at

the time t, (57) will be the equation to the bridge at that instant. Moreover, since the point (.r, y)
is a point in the bridge, we must have ri = y when ^ = .v, whence y = /lU. We have also

dV dt' Jo dt- - dt' Jo ^ 126 dt-

5MeWe get from (55), F^ = -—^ M- Making these various substitutions in (.08), and replacing

d d— by V— , we get for the diff^erential equation of motion

—r— 11 = Mgn - MV^ u M V (5g)
2^ *

d!c' 126 dx' ^ '

Since
fj.

is comparable with S, the several terms of this equation are comparable with

Big, Mg, 3TV'S, M'V'S,

respectively. If then V^ S be small compared with ^, and likewise 71/ small compared witli xV,

we may neglect the third term, while we retain the others. This term, it is to be observed, ex-

presses the difference between the pressure on the bridge and the weight of the travelling mass.

V^ S 1

Since c = i, we have =—-r, which will be small when fi is large, or even moderately large.

g l6(i

Hence the conditions under which we are at liberty to neglect the difference between the pressure

on the bridge and the weight of the travelling mass are, first, that /3 be large, secondly, that the

mass of the travelling body be small compared with the mass of the bridge. If /3 be large, but

M be comparable with ISl', it is true that the third term in (59) will be small comjiared with the

loading terms; but then it will be comparable witii tlie fourth, and the np|)ro\imiition ado])te(l in

neglecting the third term alone would be faulty, in this way, that of two small terms comparable

with each other, one would be retained while the other was neglected. Hence, although the ab-

solute error of our results would be but small, it would be comparable with the difference between

the results actually obtained and those which would be obtained on the supposition that the

travelling mass moved with an infinitely small velocity.
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Neglecting the third term in equation (59), and putting for u its value, we get

where

—4 + 9V = 2g'-'5'GT - 2.r3 + x% (60)
ax

„ _ 63 Mg 1008 M^
' " iXM'VS "

31 M~ ^'''^

The linear equation (60) is easily integrated. Integrjiting, and determining the arbitrary con-

stants by the conditions that |U = 0, and — = 0, when x = 0, we get

„f . , 12.r' / 12\ I sinoa?N 24 1

^='iShxr - ici? ~ + ( 1 + ^) (•'' ^—\ + -^(1 - cos9,r)l;... (62)

and we have for the equation to the trajectory

y = 5m (a; - 2*' + a^') = 5/x (^ + X% (63)

where as before X = x (\ — ,n).

When F= 0, g = jo , and we get from (62), (63), for the approximate equation to the equi-

librium trajectory,

y= 105'(^+ X'-Y; (64)

whereas the true equation is

y = \Q,SX' (65)

Since the forms of these equations are very different, it will be proper to verify the assertion

that (64) is in fact an approximation to (65). Since the curves represented by these equations are

both symmetrical with respect to the centre of the bridge, it will be sufficient to consider values of

X from to i, to which correspond values of X ranging from to i. Denoting the error of the

formula (64), that is the excess of the y in (64) over the y in (65), by S^, we have

1= - 6X^ + 20^3 + WX\
^° , ., ,,,^ -^dX-—= 4(- 3 + 15^+ 10^-).^-;—.
dx dx

Equating —— to zero, we get .^ = 0, j? = 0, ^ = 0, a maximum; .^=.1787, .r = .233,

^ = - .067, nearly, a minimum ; and *' = ^, 5 = — .023, nearly, a maximum. Hence the greatest

error in the approximate value of the ordinate of the equilibrium trajectory is equal to about the

one-fifteenth of S.

Putting |u = Mo + y"i) 2/ = 2/o + 2/i' where mq, y„ are the values of fi, y foT q = os , we have

{12
/l 12N 24 1— xCl - x) - — H- — Sin g a; + -7(1 - cosoa?) > (66)

T W ffl q J

y, = 5a;(l - x)\\ + x (\ - x)] y^
.". (67)

The values of mi and y, may be calculated from these formula for different values of q, and

they are then to be added to the values of Moj .%> respectively, which have to be calculated once

for all. If instead of the mean deflection « we wish to employ the central deflection Z), we have

only got to multiply the second sides of equations (62), {66) by |-|, and those of {63), (67) by 1|-,

and to write D for fi. The following table contains the values of the ratios of D and y to S for ten

different values of q, as well as for the limiting value 7=00, which belongs to the equilibrium

trajectory.



TABLE 111.

a;

.00

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

55
.60

.65

.70

75
.80

.85

90
95

1.00

Values of ^ when 'J is equal to

.000

.004

.009

.017

.025

.041

.056

.070

.100

.134

.169

.213

.256

.306

•359

.419

.475

.533

.586

.646

699

.000

.004

.013

.028

.052

.093

.144

.214

.300

399
.516

.640

.776

.913

1.050

1.181

1.296

1.399

1.476

1.525

1.540

.000

.005

.022

.048

•099

.177

.282

.418

.578

.757

.947

1.139

1.321

1.482

1.609

1.691

1.717

1.681

1.588

1.402

1.158

.000

.006

.027

.075

.159

.285

.451

.650

.870

1.097

1.310

1.491

1.619

1.681

1.663

1.560

1.371

1.106

.776

.400

.000

.000

.007

.037

.108

.231

.406

.626

.871

1.115

1.332

1.492

1.574

1.562

1.454

1.257

.990

.677

.350

.037

-.234

-.446

.000

.008

.053

.146

.309

.531

.787

1.045

1.265

1.412

1.460

1.403

1.250

1.027

.769

.517

.303

.149

.064

.025

.019

.000

.014

.081

.234

.469

.746

1.003

1.180

1.238

1.178

1.036

.870

.739

.682

.695

.746

.777

.733

.579

.321

.000

10

.000

.019

•117

.327

.607

.871

1.031

1.052

•967

.859

.812

.860

969
1.054

1.031

•S69

.604

.325

.117

.021

.001

12

.000

.025

.158

.412

.696

.884

.915

.845

.796

.856

1.004

1.127

1.115

•948

.718

.549

.499

.516

.477

.296

•.001

16

.000

.041

.239

.530

.707

.707

689

.814

1.017

1.097
1

.991

.862

.872

959
.924

.707

.472

.384

.385

.276

.000

.000

.156

.307

.449

.580

.696

.794

.873

930

.965

.977

.965

.930

.873

.794

.696

.580

.449

.307

.1.56

.000

X

.00

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

•75

.80

.85

.90

.95

1.00

Values of S^ when —' is equal to

.000

.001

.003

.008

.015

.029

.045

.063

.096

.133

.169

.210

.244

.274

.292

.298

.2S2

.245

.184

.103

.000

.000

.001

.004

013

.031

•056

•117

.191

•285

.39i

.516

.632

•739

.816

.85J.

.842

.770

.644

.463

.243

.000

.000

.001

.007

.022

.059

.126

.230

.374

.550

.748

•947

1.126

1.258

1..'325

1.308

1.205

1.020

.774

.498

.224

.000

.000

.001

.008

.034

.095

.203

.366

.581

.828

1.085

1.310

1.473

1.542

1 .502

\.35i

i.ni

.814

.509

.244

.064

.000

.000

.001

.012

.050

.137

.290

.509

.778

1 .062

1.316

1.492

1.555

1.487

1 .300

1.022

.705

.402

.161

.012

-.037

.000

.000

.001

.017

.067

.184

.378

.640

.934

1.205

1.395

1.460

l..'i87

1.191

.917

.626

369
.180

.(Kif)

.020

.004

.0111)

.000

.002

.025

.108

.279

.532

.814

1.054

1.178

1.164

1.036

.860

.704

.609

.565

.532

.462

..3,'J7

.182

.051

.000

10 12 IC

.000

.003

.037

.150

.360

.621

.839

9iO

.921

.849

.812

.850

.923

.912

.839

.619

.359

.149

.037

.003

.000

.000

.004

.050

• 1.90

.414

.630

.744

.755

.759

.840

1.004

1.114

1.062

.848

.584

.391

.297

.237

.150

•01-

.(/(JO

.000

.006

.075

.244

.420

.504

.560

.727

.969

r.084

.991

.8,'JO

.857

.752

.488

.280

.178

.121

.041

.000

.000

.025

.O9C

.207

.344

.496

.646

.780

.886

..954

•977

.954

.880

.780

.016

.196

.344

.207

.096

.025

.000
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The numerical results contained in Table III. are represented graphically in figs. 2 and 3 of the

accompanying plate, where however some of the curves are left out, in order to prevent confusion in

the figures. In these figures the numbers written against the several curves are the values of—
to which the curves respectively belong, the symbol co being written against the equilibrium

curves. Fig. 2 represents the trajectory of the body for different values of q, and will be understood

without further explanation. In the curves of fig. 3, the ordinate represents the deflection of the

centre of the bridge when the moving body has travelled over a distance represented by the abscissa.

Fig. 1, which represents the trajectories described when the mass of the bridge is neglected,

is here given for the sake of comparison with fig. 2. The numbers in fig. 1, refer to the

values of /3. The equilibrium curve represented in this figure is the true equilibrium trajectory

expressed bv equation (65), whereas the equilibrium curve represented in fig. 2 is the approximate

equilibrium trajectory expressed by equation (64). In fig. 1, the body is represented as flying

off near the second extremity of the bridge, which is in fact the case. The numerous small

oscillations which would take place if the body were held down to the bridge could not be properlv

represented in the figure without using a much larger scale. The reader is however requested

to bear in mind the existence of these oscillations, as indicated by the analysis, because, if the ratio

of M to il/' altered continuously from co to 0, they wo iH probably pass continuously into the

oscillations which are so conspicuous in the case of the h ger values of q in fig. 2. Thus the

consideration of these insignificant oscillations which, strictly speaking, belong to fig. 1, aids us in

mentally filling up the gap which corresponds to the cases in which the ratio ofM to M' is neither

very small nor very large.

As everything depends on the value of q, in the approximate investigation in which the inertia

of the bridge is taken into account, it will be proper to consider further the meaning of this constant.

In the first place it is to be observed that although ilf appears in equation (6l), q is really indepen-

dent of the mass of the travelling body. For, when M alone varies, /3 varies inversely as S, and .9

varies directly as M, so that q remains constant. To get rid of the apparent dependance of q on M,
let iSi be the central statical deflection produced by a mass equal to that of the bridge, and at the

same time restore the general unit of length. It' a) continue to denote the ratio of the abscissa of

the body to the length of the bridge, q will be numerical, and therefore, to restore the general unit

of length, it will be sufficient to take the general expression (5) for /3. Let moreover t be the

time the body takes to travel over the bridge, so that 2c = Vt ; then we get

'-S^; ••••; '«)

If we suppose t expressed in seconds, and Si in inches, we must put g — 32.2 x 12 = 386,

nearly, and we get,

28 T

'=V^ ''''

Conceive the mass M removed ; suppose the bridge depressed through a small space, and then

left to itself. The equation of motion will be got from (59) by putting M = 0, where M is not

divided by S, and replacing — , by — , and V -— by — . We thus get
o S\ dw dt

d- M 63^
-TV + ^ /u = ;

dt- 31 St

and therefore, if P be the period of the motion, or twice the time of oscillation from rest to rest,

P= 2^ '^^' '^^ -""¥ ^^"^

Hence the numbers 1, 2, 3, &c., written at the head of Table III. and against the curves of
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figs. 2 and 3, represent the number of quarter periods of oscillation of the bridge which elapse

during the passage of the body over it. This consideration will materially assist us in under-

standing the nature of the motion. It should be remarked too that q is increased by diminishing

either the velocity of the body or the inertia of the bridge.

In the trajectory 1, fig. 2, the ordinates are small because the body passed over before there was

time to produce much deflection in the bridge, at least except towards the end of the body's course,

where even a large deflection of the bridge would produce only a small deflection of the body.

The corresponding deflection curve, (curve I, fig. 3,) shews that the bridge was depressed, and

that its deflection was rapidly increasing, when the body left it. When the body is made to move
with velocities successively one half and one third of the former velocity, more time is allowed for

deflecting the bridge, and the trajectories marked 2, 3, are described, in which the ordinates are far

larger than in that marked 1. The deflections too, as appears from fig. 3, are much larger than

before, or at least much larger than any deflection which was produced in the first case while the

body remained on the bridge. It appears from Table III, or from fig. 3, that the greatest de-

flection occurs in the case of the third curve, nearly, and that it exceeds the central statical

deflection by about tliree-fourths of the whole. When the velocity is considerably diminished, the

bridge has time to make several oscillations while the body is going over it. These oscillations

may be easily observed in fig. 3, and their effect on the form of the trajectory, which may indeed

be readily understood from fig. 3, will be seen on referring to fig. 2.

When q is large, as is the case in practice, it will be sufficient in equation (66) to retain onlv

the term which is divided by the first power of q. With this simplification we get

-O, 25^, 25 .

y=T6:^ = -8-^^'"9-^-.- (.»

so that the central deflection is liable to be alternately increased and decreased by the fraction

25— of the central statical deflection. By means of the expressions (Gl), (6y), we get
Sq

25 / M' ^S, , ,— = -55 VtTTS = -"2 ^^—^ (72)

It is to be remembered that in the latter of these expressions the units of space and time are

an inch and a second respectively. Since the difference between the pressure on the bridge and

weight of the body is neglected in the investigation in which the inertia of the bridge is considered,

it is evident that the result will be sensibly the same whether the bridge in its natural position be

straight, or be slightly raised towards the centre, or, as it is technically termed, cambered. The

increase of deflection in the case first investigated would be diniinislied by a camber.

In this paper the problem has been worked out, or worked out a])pr(iximately, only in the two

extreme cases in which the mass of the travelling body is infinitely great and infinitely small res|)ect-

ively, compared with the mass of the bridge. The causes of the increase of deflection in these two

extreme cases are quite distinct. In the former case, the increase of deflection depends entirely on the

diff'erence between the pressure on tiie bridge and the weight of the body, and may be regarded as

depending on the centrifugal force. In the latter, the effect depends on tlie manner in which the force,

regarded as a function of the time, is ap|>lie<l to the bridge. In practical cases the masses of the

body and of the bridge are generally comparable with eiuh other, and the two effects are mixed

up in the actual result. Nevertheless, if we find that each effect, taken separately, is insensil)le, or

so small as to be of no practical importance, we may conclude without much fear of error that

Vol.. VIII. Part V. S«
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the actual effect is insignificant. Now we have seen that if we take only the most important terms,

1 25
the increase of deflection is measured by the fractions — and — of S- It is only when these fractions

are both small that we are at liberty to neglect all but the most important terms, but in practical

cases they are actually small. The magnitude of these fractions will enable us to judge of the

amount of the actual effect.

To take a numerical example lying within practical limits, let the span of a given bridge be a
feet, and suppose a weight equal to ^ of the weight of the bridge to cause a deflection of 1 inch.

These are nearly the circumstances of the Ewell bridge, mentioned in the report of the com-
missioners. In this case, Si = ^ x .2 = .15; and if the velocity be a feet in a second, or 30 miles an

hour, we have t = 1, and therefore from the second of the formula; (72),

25 TT— = .0434, q = 72.1 = 45.9 x - •

Sq 4

The travelling load being supposed to produce a deflection of .2 inch, we have j8 = 127, - = .0079.

Hence in this case the deflection due to the inertia of the bridge is between 5 and 6 times as great as

that obtained by considering the bridge as infinitely light, but in neither case is the deflection

important. With a velocity of 60 miles an hour the increase of deflection .0434^ would be

doubled.

In the case of one of the long tubes of the Britannia bridge ^ must be extremely large ; but on

account of the enormous mass of the tube it might be feared that the eff'ect of the inertia of the tube

itself would be of importance. To make a supposition every way disadvantageous, regard the tube

as unconnected with the rest of the structure, and suppose the weight of the whole train collected at

one point. The clear span of one of the great tubes is 460 feet, and the weight of the tube 1400

tons. When the platform on which the tube had been built was removed, the centre sank 10

inches, which was very nearly what had been calculated, so that the bottom became very nearly

straight, since, in anticipation of the deflection which would be produced by the weight of the tube

itself, it had been originally built curved upwards. Since a uniformly distributed weight produces

the same deflection as ^ ths of the same weight placed at the centre, we have in this case 6"! = # x 10

= 16 ; and supposing the train to be going at the rate of 30 miles an hour, we have t = = 10.5,
44

25
nearly. Hence in this case — = .043, or Jg- nearly, so that the increase of deflection due to the

Sq '''

inertia of the bridge is unimportant.

In conclusion, it will be proper to state that this "Addition" has been written on two or three

different occasions, as the reader will probably have perceived. It was not until a few days after

the reading of the paper itself that I perceived that the equation (l6) was integrable in finite terms,

and consequently that the variables were separable in (4). I was led to try whether this might not

be the case in consequence of a remarkable numerical coincidence. This circumstance occasioned

the complete remodelling of the paper after the first six articles. I had previously obtained for the

calculation of z for values of x approaching 1, in which case the series (g) becomes inconvenient, series

proceeding according to ascending powers of 1 — x, and involving two arbitrary constants. The
determination of these constants, which at first appeared to require the numerical calculation of five

series, had been made to depend on that of three only, which were ultimately geometric series with a

ratio equal to ^.
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The fact of the integrabih'ty of equation (4) in the form given in art. 7, to which I had myself been

led from the circumstance above mentioned, has since been communicated to me by Mr. Cooper,

Fellow of St John's College, through Mr. Adams, and by Professors Malmsten and A. F. Svanbcrg of

Upsala through Professor Thomson ; and I take this opportunity of thanking these mathematicians

for the communication.

G. G. STOKES.

Pembroke College,

Oct. 22, 1849.
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