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This paper presents a study of the temporal and spatial variability of the significant wave height (Hs) based on 
stationarity and correlation (spectral) analyses. A sea state is defined as a stationary state of a piecewise station- 
ary stochastic random wave process. Rupture detection, i.e., detection of abrupt changes in Hs, is used to identi- 
fy the stationary components of the wave process. A sea state is characterized by its energy (i.e., Hs ) and by its 
duration of stationarity (spatial analysis) and length of stationarity (temporal analysis). Intensive in situ measure- 
ments of H s and Geosat radar altimeter data are used to study the temporal and spatial H s scales at two loca- 
tions, in the North Sea and in the equatorial Ariantic. The stationarity analysis leads to the following results; (1) 
duration and length show a great variability and are distributed according to exponential probability laws, (2) 
H s is distributed according to a Gumbel probability law in both time and space, (3) energy and duration and en- 
ergy and length can be considered as statistically independent, and (4) the duration and length distributions 
present very similar nondimensional statistical characteristics. Stationary state detection can also be used to filter 
the high-frequency geophysical and/or instrumental noise from the H s variations. A spectral analysis is per- 
formed on the raw H s , the stationary states, and the residual. The salient features of the results are summarized 
as follows: (1) for both locations, the spectra of the filtered data are consistent with a power law dependence on 
the wavenumber or frequency, (2) the spectral dependence is nearly the same for time and space, which suggests 
a mean linear dispersion relation for H s , (3) the slope of the spectra are dose to the -5/3 turbulence cascade 
(-1.74 for the North Sea, -1.69 for the equatorial Atlantic), and (4) the residual spectrum is nearly a white noise 
spectrum indicating the quality of the stationary state detection filtering. 

1. INTRODUCTION 

The estimate of temporal and spatial variability of the mesoscale 
significant wave height (H s ) (1 hour to 3 days, 30 to 100 km) is 
critical not only for many studies of oceanic and atmospheric pro- 
cesses but also in the calibration/validation process of satellite- 
borne wave sensors as well as for the prediction of extreme values 
of environmental parameters. These temporal and spatial scales are 
necessary, when calibrating a wave sensor, to estimate the effects 
of the spatial and temporal separations between in situ and satellite 
measurements [Monaldo 1988, 1990; Challenor et al., 1986]. La- 
beyrie [1990, 1991] showed that they also have to be taken into ac- 
count when predicting extreme values of H s from in situ data sets. 
Monaldo [1988, 1990], using spectral and correlation analysis of 
Geosat and Seasat altimeter measurements and buoy data, estimat- 
ed the rms differences that can be expected from separation in time 
and space of two H s measurements. Challenor et al. [1986] 
showed that the H s variations in both time and space can be sepa- 
rated into two components: a low-frequency part, associated with 
meteorological synoptic events, and a high-frequency part. Using 
cubic spline functions to fit the low-frequency signal, they showed 
that the high-frequency can be treated as instrumental and/or geo- 
physical noise. 

These two studies are based on correlation analysis, and as 
Challenor et al. [1986] stated, correlations are not easy to interpret 
in terms of dominant scales. Correlation analysis assumes that the 
data are statistically stationary, which is generally true [Challenor, 
1983]. However, there are short distances over which the statistical 
characteristics of the wave process change rapidly and where the 
stationaritY hypothesis does not hold [Queffeulou, 1983' Challenor 

Methods have been developed to identify stationary states with- 
in stochastic random processes [Labeyrie, 1990, 1991; Lavielle 
and Rio, 1987]. They have been used to improve short- and long- 
term extreme value prediction from in situ H s measurements [La- 
beyrie, 1990]. This paper presents a scale analysis in both time and 
space of the H s variations based on stationarity and correlation 
analyses. 

In situ data from acquisition systems set up on two platforms, 
one in the Frigg oil field (60øN, 2øE, North Sea) and the other in 
the Palanca field (6øS, 12ø30'E, Angola coast) are used to study the 
time scales. Altimeter measurements from the Geosat satellite are 

used to study the space scales. Section 2 presents the significant 
wave height data sets used in the study. The method of identifica- 
tion of stationary states is then discussed in section 3, then in sec- 
tion 4 it is applied to the in situ and altimeter H s data sets to 
construct sequences of stationary (in time or space) sea states at the 
two different locations. The stationary state data sets are analyzed 
statistically in terms of dominant space and time scales in section 
4. Section 5 presents the results of the spectral analysis of the raw 
H s measurements, the stationary states and the residual. In the fi- 
nal section the results are summarized and analyzed. 

2. SIGNIFICANT WAVE HEIGHT DATA SET 

2.1. Geosat Data 

The U.S. Navy Geosat satellite was launched in March 1985 
and used a radar altimeter to estimate wind speed and significant 
wave height. The altimeter is a 13.5- GHz nadir-pointing radar that 
measures the range between the satellite and the ocean surface. 

et al., 1986]. An ideal scale analysis should combine stationarity Measurements of the return signal give the backscatter coefficient, 
and correlation analyses. and the received power as a function of time. The slope of the front 

edge of the received power signature is a function of the H s 
Copyfight 1993 by the American Geophy.sical Union. [Brown, 1979; Fedor and Bro•wn, 1982; McArthur et al., 1987]. 

Paper number 92JC02625. The instrument was designed to measure H s with a precision of 
9148-0227/9319ZIC-02625505.00 10% or 0.5 m (whichever is greater). Hs is computed on board via 
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an algorithm documented by Cole and May [1985]. The altimeter 
provides a H s estimate every second, or every 7 km, along the sat- 
ellite ground track. 

During the first 18 months after its launch, Geosat operated in a 
geodetic mapping mode. Then, on October 1, 1986, the satellite 
was put into a 17-day exact repeat orbit optimized for collecting 
oceanographic data. This constitutes the Exact Repeat Mission 
(ERM), which ended with the radar's "death" in September 1989. 

2.2. In Situ Data 

Data from radar distancemeter measurements made from the 

quarter platform of the Frigg field and from a platform of the 
Palanca field are used extensively. The first platform (named Frigg 
hereinafter) is located in the North Sea between the Shetland Is- 
lands and Norway (60øN, 2øE) in nearly 100-m water depth. Palan- 
ca is located off the coast of Angola in the equatorial Atlantic (6øS, 
12øE). The water depth is 47 m. The measurements are under the 
responsibility of the platforms' operator, the Elf company. The sea- 
surface elevation data are recorded at a 2-Hz sampling frequency 
[ElfAquitaine Norge, 1981]. Continuous data have been collected 
from January 1, 1984 to December 12, 1984 at Frigg and from No- 
vember 11, 1984 to November 11, 1985 at Palanca. These data 

have been used to compute H s estimates from the variance of the 
20-min-long sea-surface elevation data records. 

3. DETECTION of STATIONARY STATES 

Lavielle and Rio [1987], Basseville [1988], De Cambry and La- 
beyrie [1985], and Labeyrie [1990] have proposed methods of 
identifying of stationary states in stochastic processes. The meth- 
ods that they proposed are based on the detection of ruptures or 
abrupt changes in the signal. The method presented by Lavielle 
and Rio [1987] and Labeyrie [1990] is used in this study. A de- 
tailed description is given in the papers by these authors and will 
thus only be outlined here. 

The sea-surface elevation is described as a stochastic process of 
the form X (t, A, co), where t is time, A is the location, and co is a 
random argument. X is assumed to be ergodic; i.e., the statistical 
measures attained by averaging a set of realizations at a given time 
(or location) are weakly equivalent to averaging a single realiza- 
tion for a sufficiently long interval of time (or space). Stationarity 
is considered here in the broad sense (or weakly stationary); i.e., a 
process is said to be stationary if its mean value is a constant and 
its correlation function is dependent only on the temporal (or spa- 
tial) displacement [cf. Bendat and PiersoL 1971]. For spatial anal- 
ysis, homogeneity should be used instead of stationarity; however, 
to simplify the text, stationarity will be used hereinafter for both 
analyses. 

A sea state is defined as a stationary state of the piecewise sta- 
tionary stochastic random wave process X. The significant wave 
height H s is used to described the magnitude of the sea state. If X 
has a zero mean, H s is closely related to the variance of the sea- 

2 ß ß 
surface elevation m 0 = E (X), i.e., to the potential energy of the 
sea-surface. For example, H s = 4din00 if X is assurned to be a 
zero-mean, narrow-band, Gaussian process [Longuet-Higgins, 
1952]. 

A method to identify in time (or space) the stationary compo- 
nent of the sea-surface elevation is to detect changes in H s . H s 
can be estimated from in situ measurements (buoy, distance meter, 
etc.) or from satellite borne radar altimeter measurements [Brown, 

1979]. H s is computed from 20-min-long in situ measurements of 
sea surface elevation (or pitch and roll). An altimeter provides an 
estimate of H s every 7 km (or every second) along the satellite 

ground track. For a typical wave period of 7-9 s, 15-20 min in time 
are roughly equivalent to 7 km in space [Challenor et al., 1986; 
Challenor, 1983]. Comparisons of Geosat altimeter-inferred esti- 
mates of H s with coincident in situ measurements done at the 
Frigg platform (60øN, 2øE) yield a mean difference of 0.2 m with a 
standard deviation of 0.47 m [Tournadre and Ezraty, 1990]. In a 
first-order approximation, Geosat data and 20-min sea surface ele- 
vation data can be considered as equivalent. A sea state is charac- 
terized by a mean value of Hstat and a duration of stationarity 
(Tstat) or a length of stationarity (Lstat). 

Let H s (i) be a sequence of H s estimates (spatial or temporal). 
Labeyrie [1990] proposed a method of detection of abrupt changes 
in the discrete process H s . As the process is stationary, there exists 
a constant value Hstat such that 

Hs(i) = Hstat+œ(i ) (1) 

where the œ (i) are independent random noise samples whose dis- 
tribution is Gaussian N (0, 62) (hypothesis Ho). A sea state 
change is mainly due to a significant change in the mean of œ (i). 
After a sea state change, œ (i) is N (g, •j2) distributed (hypothesis 
H 1 ), assuming the variation of 6 to be negligible. The noise pa- 
rmeters g and •J describing the noise under the normal distribu- 
tion assumption depend on measurement and statistical estimate 
uncertainties; g is taken in the form aristar + b and the results are 
proved robust both in time and space when simulating reasonable 
variations of a and b [Lavielle and Rio, 1987; Tournadre and 

Robin, 1990], and •J is of the form O•Hstat + •, where o• and • are 
iteratively estimated. This estimate of the variance has been cho- 
sen because the classical estimator, • 

•j = n--•i (H i -H) 2 (2) 
might fail for low sea states. 
The sequential detection algorithm is based on Hinkley's test 

[Willsky and Jones, 1976). The log-likelihood ratio process (•) is 
used as a statistic for the test. Let m 0 and m I be the likelihood of 
œ under the H 0 and H 1 hypotheses, ß is given by 

rn (œ)) •' (•) = •og (3) 
m0(•) 

which becomes 

• (e) = •-5 5 ) (4) 
because œ is normally distributed. Two statistical series 
X. • (g > 0) and X. 2 (g < 0) are computed in parallel to analyze ei- 
ther increasing or decreasing variations from Hstat. The X series 
is defined by 

1 

X 0 =0 

1 = Sup (Xln + tlJ (œ ), O) Xn+ 1 n+ 1 
(5) 

where Sup is defined by 

Sup (x, y) = x x > y (6) 
Sup (x, y) = y x < y 

The X 2 series is defined in the same manner for !.t < 0. The H 1 
1 (or Xn 2) is greater than a given hypothesis is accepted when X n 
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Fig. 1. Example of stationary state detection. Raw H s in situ 
measurement from the Frigg platform, solid line; stationary states Hsm, 
dashed line. 

TABLE 1. Noise Parameters of the Stationary State Detection Algorithm 
used for the four Data Sets 

Data Set a, % b, m o[, % [1, m S 
, 

Frigg in Situ 10 0.05 4 -0.01 7 
Frigg Satellite 10 0.20 3 0.06 7 
Palanca in Situ 10 0.05 3 0.02 7 

Palanca Satellite 10 0.20 3 0.06 9 

S is the threshold used for the detection (see text). 

This noise behavior can cause an instability of the detection al- 
gorithm. Figure 3 presents the log-likelihood process "F used for 
the detection as a function of the noise (œ) for four different values 
of H s (Figure 3a) and as a function of H s for six different œ (Fig- 
ure 3b). If one considers a low sea state (< 1.5 m), since the noise 

threshold. This threshold, S, has been evaluated to a value of 7 to 9 

from a sensitivity study [Lavielle and Rio, 1987] in order to jointly 

minimize the probability of false alarm and the delay of detection 1.0 
(For more details about the theoretical law of the detector, see also 
Basseville and Benveniste [1983]). 

Figure 1 shows an example of stationary state detection for a se- 
quence of H s in situ measurements at Frigg. The detection algo- 0.8 
rithm has been applied to time series of H s estimates from in situ 
measurements of sea surface elevations and to space series from 
the Geosat radar altimeter. Two locations, Frigg and Palanca (for •0.6 • 
which continuous in situ measurements, one every 20 min, are E.• 
available), were considered. For each location, sequences of sta- 
tionary sea states were constructed from the times series and from 
the measurements along the Geosat track located within a zone 
surrounding the point. 
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4. STATIONAR1TY ANALYSIS 

• ++ +: 

The main problem of the detection algorithm is the choice of the 
estimators of the noise parameters (3 and Ix. As was stated previ- 
ously, the ot and It are iteratively estimated. A first estimate is giv- 
en by the linear regression coefficients of the H s standard 
deviation versus H s , where the standard deviation is computed 
from 20-sample-long running records of H s . The stationary states 
are then used to compute the standard deviation (3 of the œ (i) (see 
equation (1)). A linear regression of (3 versus Hstat gives the new 
estimates of ot and It. The method converges in two or three itera- 
tions. The variations of Hstat increase with Hstat [Lavielle and 
Rio, 1987; Tournadre and Robin, 1990]. The a and b coefficients 
are first fixed a priori so that Ix is between 0.20 m and 0.50 m. The 
results of the detection algorithm are then used to validate the hy- 
pothesis and to adjust the coefficients. For each data set, the results 
are robust when simulating reasonable variations of the coeffi- 
cients [Tournadre and Robin, 1990]. 

Table 1 summarizes the different noise parameters used for the 
four different H s data sets: the Frigg in situ and altimeter data sets 
and the Palanca in situ and altimeter data sets. It can be seen in Ta- 

ble 1 that the noise parameters are very similar. However, it ap- 
pears that the noise level of the H s altimeter measurements is 
higher than that for the in situ measurements. This is especially 
true for low sea states (<1.5 m). This can be easily seen in Figure 
2, which presents the standard deviation of H s (computed by run- 
ning mean on 20 consecutive samples) as a function of H s for both 
the Frigg in situ and altimeter data sets. Furthermore, for altimeter 
estimates, the noise level is higher for sea states below 1.5 m than 
for sea states between 1.5 m and 3 m. This behavior of the H s 
noise is mainly instrumental. 

0.0 
0 I 2 3 4 5 6 

Hs (m) 
Fig. 2. Scatterplot of the variance (j. as a function of H The variance is 
estimated from 20 sample mnnmg records for (bottom) in situ data and 
(top) satellite data. The dashed lines indicate the mean square fit of the data. 
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Fig. 3. Log-likelihood ratio ß (a) as function of œ for four different H s 
values and (b) AHs for six different œ values. The solid lines indicate the 
threshold S used for the detection. 

level is higher for the satellite estimates than for the in situ ones, it 
can be expected that œ (estimated as the difference between two 
consecutive H s estimates) will also be higher. It can be seen from 
Figure 3 that the algorithm might thus detect a rupture for the satel- 
lite data and not for the in situ data. This will result in the detection 

of shorter stationary low sea states from the satellite data than from 
in situ data. Furthermore, it can also be seen in Figure 3 that as the 
noise level is higher for 0 < H s <1.5 m than for 1.5 m <H s < 3 m, 
the algorithm might be unstable. For example, if one considers an 
œ of 0.4 m, detection will occur for H s = 1.5 m (see Figure 3b), 
and if one considers an œ of 0.3 m, detection will occur for 

H s = 0.75 m. Great qare must thus be taken when interpreting 
stationarity for low sea states. 

For both locations, Frigg and Palanca, the results of the detec- 
tion algorithm were used to build two stationary sea state data sets: 
the { Hstat, Tstat } ensemble of the sea states stationary in time and 
the { Hstat , Lstat } ensembl e of the sea states stationary in space. To 
insure consistency between the in situ and the satellite H s mea- 
surements, the Geosat altimeter data were considered in a box sur- 

rounding the location. The size of the box is a compromise 
between the local •sea state conditions and the minimum length of 
the H s altimeter records necessary for detection of the stationary 
state. Previous stud!es [Tournadre and Ezraty, 1990] have shown 
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Fig. 4. Geosat ground tracks near Frigg (FRI) during one cycl• of the 
Exact Repeat Mission (f7-day repeat cycle). 

that the H s statistics are consistent for about 200 km around Frigg 
and 300 m around Palanca. The stationary state detection algo- 
rithm was thus performed on all the Geosat altimeter records locat- 
ed within a 10øx10 ø box around Frigg and within a 15øx15 ø box 
around Palanca. Data from cycles 1 to 43 (from November 6, 1986 
to November 8,.1988) of the Exact Repeat Mission were used for 
the Frigg analysis and data from cycles 1 to 63 (from November 6, 
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-5 ø -5" 

.10 o _100 
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Fig. 5. Geosat ground tracks near Palanca ,(PAL) during one cycle of the 
Exact Repeat Mission. 
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1986 to September 13, 1989) were used for the Palanca analysis. temporal and spatial spectral characteristics, particularly the spec- 
Figures 4 and 5 present the Geosat ground tracks near Frigg and tral slopes, the time series of H s data were cut into 200-sample- 
Palanca, respectively. long records for Frigg and 300-sample-long records for Palanca. 

A detailed statistical analysis of the four stationary states en- The stationary state detection algorithm was then applied to each 
sembles is presented in the appendix. This analysis reveals that for record using the noise parameters presented in Table 1. The results 
both locations, the height of stationarity (Hstat) is distributed ac- were used to compute Hst and the noise œ (equation (7)). Then a 
cording to a Gumbel law in both time and space and that the dura- discrete Fourier transform was perform on each data record, and 

the results were squared to produce an estimate of the energy spec- tion (Tstat) and the length (Lstat) of stationarity present a very 
large dispersion and are exponentially distributed. Because of this tram as a function of the frequency v or the spatial wavenumber k. 
very large dispersion, no scale can be considered as predominant. Before examination of the average energy spectra, the spectra 
In both cases, the duration and length distribution present very E (ki) or E (v i) for each data record were scaled by the variance 
similar nondimensional statistical characteristics. As expected to produce normalized energy spectra EN(ki) or EN(V: ) or va- 
from what is know about the Palanca and Frigg wave climate (see nance spectra (k i and v i are the t wavenumber and frequency 
appendix), the mean duration and length of stationarity are more band, respectively). The normalized energy spectrum is defined by 
than twice as large at Palanca (6 hours and 189 km) as at Frigg (3 the following relation: 
hours and 63 km). 

In the Frigg case, where wind waves are predominant, the 
heights and duration of stationarity as well as the height and the 
length can be considered as statistically independent, and no rela- 

E(t) 

i 

(9) 

tion exists between the energy level (Hstat) and the duration and where E N (ki) is the normalized spectral density in the wave- 
length of stationarity. In the Palanca case, where swell predomi- number (or frequency) band i, E (ki) is the raw spectral density in 
nates, the length and duration of stationarity decrease when the en- band i, and the sum in the denominator is the overall variance. 
ergy increases (see appendix). Elimination of the variance in the spectral characteristics allows 

5. SPECTRAL ANALYSIS 

To complete the stationarity analysis of the significant wave 
height time and space series a spectral analysis was performed for 
both locations. S tationarity analysis can also be viewed as a low 
pass filter and can be used to filter the high-frequency noise (geo- 
physical and/or instrumental) and to isolate the low-frequency 
component of the H s variations. In contrast to curve fitting (such 
as cubic spline functions) used in previous studies [Challenor et 
al., 1986] to approximate the low-frequency signal, the stationarity 
analysis can be considered to have some physical meaning. 

The approximation of the H s (in time or space) by the station- 
ary states can be expressed as follows: there exists real numbers 

{ti} i= 1 .... N a partition of [0,T] and { ai} i= 1 .... N such that 
N 

H s (t) = • a i x HAt ' (t- to,) + œ (t) = Hst (t) + œ (t) (7) 
i=l 

where the Ilat • are rectangular window functions of width 
Ati = (ti+ 1 - ti)/2 centered at t• = (ti+ 1 + ti)/2, œ is a Gaus- sian noise (N(0, o)) and H st is e stationary component of the 
signal. Each rectangular window is a low-pass filter whose cutoff 
frequency depends on the window width and on the time delay. In- 

deed, the Fourier transform of the window function rI,•q (t-t0? 
is defined by 

TF (II,% (t- t0? ) = 2Atisinc (2•Ativ) exp (-2rdto•vAt) (8) •.. 
The cutoff frequency of the stationarity analysis will depend on 

the mean width of the windows, i.e., the mean duration (or length) 
of stationarity. Here, œ (t) can be considered as consisting of geo- 
physical and/or instrumental noise. The spectral analysis was per- 
formed on the raw data (H s ) and on the low-frequency signal 
(Hst) as well as on the residual (œ). 

To insure consistency with the time analysis, only the Geosat 
records located within a 15øx15 ø box centered at Ffigg or Palanca 
were considered. The Geosat ground tracks of data were then bro- 
ken into contiguous data records of 200 points for Frigg and 300 
points for Palanca. The 200-point limit for Frigg was imposed by 
the width of the North Sea. Similarly, to allow comparison of the 

comparison of spectral shapes from individual realizations. The 
normalized spectra were then ensemble averaged to produce a 
mean spectrum. This spectrum possesses a high statistical reliabili- 
ty, having 23/degrees of freedom (dot) if N is the number of 
records. An individual spectrum has --2 dof [Bendat and Piersol, 
1971; Bath, 1974]. 

5.1. Time Analysis 

Figure 6a presents the normalized spectra for Frigg. A total of 
84 records were used for the computations. As H s is sampled ev- 
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Fig. 6. Spectral analysis in time of the Frigg in situ data from January 1, 
1984, to December 31, 1984. (a) Average normalized Spectra of Ha (Raw), 
Hat (Sta), and residual œ (Res) (see Equation (9)). (b) Average 
umiormalized Spectra of H• (Raw),//.•t (Sta), and residual œ (Res). The 
dashed lines show the mean-s•quare fit ofihe Hat spectra. 
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TABLE 2. Slope of the Mean Normalized and Unnotmalized H•t and H, Spectra 
for the Different Data Sets 

Data Set 

Degrees 

of 

Freedom 

Stationary Data Raw Data 

Normalized Unnormalized Normalized Unnormalized 

Frigg in Situ 168 
Fdgg Satellite 1166 
Palanca in Situ 106 

Palanca Satellite 1378 

-1.65 -1.74 -1.21 -1.28 

-1.72 -1.75 -1.39 -1.52 

-1.69 -1.69 - - 

-1.69 -1.63 -1.21 -1.08 

ery 20 min and as the record length is 66.67 hours (2.8 days), the 
frequencies that can be examined range from 9.5 rad h -1 to 
0.0935 rad h -1 . As it can be expected from the hypothesis made in 
the detection algorithm on the distribution of the noise e, its spec- 
trum is almost flat, denoting a white noise. This shows the good 
quality of the filtering using the stationary state detection algo- 
rithm. The Hst spectrum is very nearly linear when plotted in a 
log-log space. The spectrum appears to follow a simple power law 
dependence on frequency. The least squares estimate of the spec- 
tral slope is -1.65 (see Table 2). The raw spectral slope is dose to - 
1.21. 

Figure 6b presents the unnormalized spectra for Frigg. The 
shape of these spectra is similar to that of the normalized ones. The 
estimated slope of the Hst spectrum is -1.74. Comparison of the 
H s and Hst spectra shows that the filtering is important for fre- 
quencies over 2 rad h -1, i.e., for periods over 3.2 hours which is 
roughly the mean duration of stationarity for Frigg. 

The normalized spectra estimated for Palanca are presented in 
Figure 7a, fifty-three 300-sample-long records were considered. 
The frequencies range from 9.5 rad h -1 to 0.063 rad h -1 . The 
noise level is important for high frequencies and may result from a 
low number of dof. The Hst spectrum presents a power law depen- 

dence on the frequency. The estimated slope is -1.69. Figure 7b 
presents tile unnormalized spectra. The slope of the Hst spectrum 
is -1.69. The filtering is important for frequencies over 1 rad h -1 , 
i.e., for periods over 6.3 hours. This value is close to the mean du- 
ration of stationarity. The H s spectrum exhibits a high level of 
high-frequency noise, and the dependence on the frequency does 
not follow the same power law for all frequencies. 

5.2. Space Analysis 
As the resolution is ~ 7 Pan and as the length of the record is ~ 

1400 Pan (~2000 Pan for Palanca), the wavelengths that can be ex- 
amined range from - 14 km to 1400 Pan (2000 Pan). The average 
normalized energy spectra for H s , H star, and • for Frigg are pre- 
sented in Figure 8a. A total of 583 data records were used for the 
computation. As compared with the time analysis, the space spec- 
tra, having a higher number of dof are smoother. Regardless, the 
shapes of the spectra are very similar in both domains and the Hst 
spectrum is very nearly linear when plotted on a log-log scale. The 
spectrum appears to follow a simple power law dependence on 
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wavenumber. The least squares estimate of the spectral slope is - 
1.72, to be compared with -1.65 for the time spectral slope. For the 
raw spectrum of Hs, the slope is close to -1.39. This value is al- 
most identical to the one presented by Monaldo [1990], i.e., 
-1.3867 for a similar analysis. 

Figure 8b presents the unnormalized energy spectra. The shapes 
of the normalized and unnormalized spectra are very similar, and 
the slopes are very close. The comparison of the H s and Hst spec- 
tra shows that the filtering is important for wavenumbers greater 
than 0.1xl0-1radkm -1 i.e., approximately the inverse of the 
mean length of stationarity. The slope is -1.75, which is very close 
to the value found for the normalized spectrum and to the value of 
the time spectral slope (-1.74). 

An identical analysis was performed for Palanca. A total of 689 
data records were considered. Figure 9a presents the normalized 
spectra. As compared with the time analysis, the high-wavenumber 
noise (>1 x10- rad km -• ) in the space domain is lower than the 
high-frequency noise (>2tad h -1). This might result from the 
large difference in number of dof between the time and space spec- 
tra (see Table 2). As in the case of Frigg, the Hst spectrum is al- 
most linear when plotted on a log-log scale, indicating a power law 
dependence on the wavenumber. The mean square estimate of the 
slope is -1.63. The raw spectrum (H s ) slope estimate is close to - 
1.21. Figure 9b presents the average spectra (unnormalized). They 
are similar in shape to the normalized ones. The estimate of the 
Hst spectral slope is -1.69. 

$.3. Comparison of Time and Space Analysis 
For both locations the spectral analysis shows that the filtered 

spectra present a simple power law dependance on the frequency 
or the wave number. For Frigg the slopes of the H st time and 

space spectra are -1.74 and -1.75, respectively, and for Palanca, - 
1.69 and -1.69. It appears that the power laws are almost identical 
in time and space. This suggests a linear dispersion relation for 
H s . Furthermore, for Frigg, the time and space spectra are respec- 
tively 

S(v) = 1.56v -1'74 

S (k) = 0.007k -1'75 
(10) 

The value of the slope is close to the -5/3 of the enstrophy cas- 
cade of the two dimensional isotropic turbulence. If we suppose 
isotropy in space, if we consider a first order approximation that 
S (v) = S (k) (even if the time periods considered for the two 
analyses are different) and if we assume that the dispersion relation 
is of the form v = C k where C is the wave group velocity (be- 
cause Hs is related to g the energy g of the waves), we find a group 
velocity of 6.2 m s-1. As the water depth is about 100 m at Frigg 
and as the mean wave period, computed from the sea-surface ele- 
vation data, is 7.7 s, the deep water approximation can be consid- 
ered as valid for the propagation of the observed waves. In this 
approximation, the phase velocity is 12.4 m s -• . The water depth 
at Frigg is 100 m. In a first order approximation, the deep water 
propagation relation, T = 2nC/g, can be used to compute a mean 
H s period. We find a period of 7.6 s which is very close to the 
7.7-s period computed from the sea surface elevation data at Frigg 
in 1984. 

For Palanca, the spectra are respectively 

S (v) = 0.218v -1'69 

S (k) = 0.003 k -1'69 
(11) 

The slopes are identical, which suggests a linear dispersion rela- 
tion. However, it is difficult to estimate a mean H s period because 
the water is only 47 m deep at Palanca. The computation of the 
mean period using the same method as for the Frigg case gives 5 s, 
to be compared with a mean period of 9.7 s computed from the in 
situ data. For a period of 9.7 s the critical depth for the deep water 
approximation is 73 m (using the d/k = 0.5 criterion where d is 
the water depth and k is the wavelength). At this depth, the deep 
water approximation is no longer valid at least for long sea states 
such as long swell. The effect of depth on the phase and group ve- 
locities being nonlinear in respect to the period, an estimate of the 
mean period using a linear dispersion relation cannot be valid. 

6. SUMMARY AND DISCUSSION 

Altimeter measurements and in situ data from radar distance 
meter have been used to determine the temporal and spatial vari- 
ability of significant wave height (H s ) on scales from 1 hour to 3 
days and 20 km to 1500 km. Previous studies [Queffeulou, 1983; 
Challenor et al., 1986] have shown that the H s variations in both 
time and space can be split into a low-frequency part, associated 
with meteorological synoptic events, and a high-frequency noise 
component, instrumental and/or geophysical. They have also 
shown that there exist short distances over which the statistical 
characteristics of the H s process change rapidly, i.e., where H s is 
no longer stationary. This leads us to a scale analysis that combines 
stationarity and correlation analysis. 

The stationarity analysis is based on the method proposed by 
Lavielle and Rio [ 1987] and Labeyrie [1990]. A sea state is defined 
as a stationary state of a piecewise stationary random wave pro- 
cess. A sequential method for change detection in the H s process 
is used to identify the stationary states which are defined by their 
energy (H s ) and their duration or length of stationarity. Four data 
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sets were analyzed: two of intensive in situ measurements (one H s 
estimate every 20 min) and two of Geosat altimeter measurements, 
corresponding to two locations, one in the North Sea (60øN, 2øE) 
and one in the equatorial Atlantic (6øS, 12øE). 

For both locations the stationary analysis shows that in both 
time and space the duration and length of stationarity have large 
dispersion and are exponentially distributed. No scale can thus be 
considered as predominant. The duration and length of stationarity 
present very similar nondimensional statistical characteristics, in- 
dicating identical behavior in both the time and space domains. As 
expected, from what is known about the wave climate in the North 
Sea and in the equatorial Atlantic, the mean duration and length of 
stationarity are more than twice as large for the equatorial location 
(7 hours20 min., 189 km) as for the North Sea location (2 hours 50 
min., 63 kin). For the North Sea location, where the wave climate 
results mainly from the action of the wind, H s and the duration of 
stationarity, as are stochastically independent H s and the length of 
stationarity. For the equatorial Ariantic location, where the wave 
climate is dominated by the propagation of swell, the duration or 
length of stationarity decreases as the energy increases. In the dol- 

cation, where the water depth permitted the use of the deep water 
approximation, the estimated mean wave period was 7.6 s. This 
value is very close to the 7.7 s found from in situ measurements. 

The slopes of the filtered spectra are close to the -5/3 turbulence 
cascade. However, the interpretation of significant wave heights in 
terms of turbulence is not easy. A possible way to investigate this 
behavior of H s could be the following. As the waves results main- 
ly from the wind action, H s , i.e., the potential energy, could be 
viewed as a tracer of the wind. By analogy with passive tracer such 
as temperature in the atmosphere, the wave propagation could be 
interpreted as a diffusive process. Under these hypotheses, using 
turbulence models, it is possible to relate the tracer spectrum to the 
wind kinetic energy spectrum. For example, in two-dimensional 
homogeneous isotropic turbulence, the theory predicts that a k -5/3 

law for a passive tracer in the inverse -energy-cascadke•3nge of the wind where the kinetic energy spectrum follows a law [Le- 
sieur and Herring, 1985]. This theory is attractive for the interpre- 
tation of the H s spectra: however, the results found so far on the 
wind variability at mesoscale do not con•m the theory of two-di- 
mensional turbulence models for the wind, especially in the in- 

drums regions, low sea states are associated with long periods of verse-energy-cascade range. Indeed, using Seasat scatterometer 
very calm weather and thus with long time or length of stationarity. 
Higher sea states result from either swell propagation or convec- 
tive events. 

The stationary state detection can also be view as a low-pass fil- 
ter and can be used to isolate the low-frequency component of H s 
associated with meteorological events. The low-frequency signal 
is defined as the stationary component of H s . The spectra of the 
residual, i.e., the difference between the raw H s and the low-fre- 
quency signal, are almost fiat, denoting white noise and showing 
the good quality of the filtering. 

The spectral analysis of both in situ and altimeter data sets and 
of both filtered and raw H s records reveals that the spectra of the 
filtered H s have similar shapes in the time and space domains for 
both locations. They also have similar shapes in the two locations. 
They are found to obey simple power law dependencies on fre- 
quency or wavenumber. In the North Sea, spectra in time and space 
decayed approximately as k -1'74, while in the equatorial Atlantic 
the falloff is a slightly less steep k -1'69. Comparison of the raw and 
filtered spectra shows that the filtering is important for periods and 
wavelength greater than the mean duration or length of stationari- 
ty. The spectral slopes found for the raw spatial spectra are very 
similar to the one presented by Monaldo [ 1990] for Seasat H s data 
record. 

The near equality of the temporal and spatial spectral slope sug- 
gests a mean linear relation of dispersion for the H s propagation at 
mesoscale, i.e. for the propagation of potential energy at the sea- 
surface. Assuming isotropy in space, it is possible to estimate a 
mean wave group velocity, using the deep water approximation for 
the wave propagation it is then possible to compute a mean wave 

data, Freilich and Chelton [1986] found a wind kinetic energy 
wavenumber dependence of the order of k -2 for wavelengths from 
200 to 2200 km. Refined models of near-surface atmospheric tur- 
bulence, better knowledge of air-sea interaction, and comparison 
of wind and H s spectra will be necessary in order to understand 
the H s space and time variability. 

APPENDIX: STATISTICAL ANALYSIS OF TI-IE STATIONARY 
STATE ENSEMBLES 

This appendix presents the statistical analysis of the 
{Hstat, Tstat } and {Hstat, Lstat } ensemble of the sea states sta- 

tionary in time and space, respectively, for the Frigg and Palanca 
locations Table A1 presents the statistical characteristics of the 
four data sets, i.e., the mean value (Hstat and Tstat or Lstat ), the 
standard deviation o, the skewness Skew, and the kurtosis Kur, i.e. 
the third and fourth order non-dimensional central moments. 

A1. Frigg 

AI.1. Heights and duration of stationarity. Figure A1 presents 
the histograms of (a) the height (i.e., energy) and of (b) the dura- 
tion. The high value of the kurtosis found for the duration shows 
that the distribution has very large dispersion and that the duration 
is exponentially distributed. This can be easily seen in Figure A1. 
The exponential probability density function (pdf) is of the form 

P (x) _lex p ( x- u) = --• X>U 

a a (A1) 
P(x) =0 x<u 

For such a distribution, the mean value is a - u and the standard 
phase velocity and thus a mean wave period. For the North Sea 1o- deviation is a. 

Data Set 

Frigg in Situ 
Frigg Satellite 
Palanca in Situ 

Palanca Satellite 

TABLE A1, Statistical Characteristics of the Temporal and Spatial Stationary Data Sets 

H atat Data Set Tatat or L a•at Data Set 

Hatat, •3H, Skew Kur TamiLam •3 Skew 
m m 

2.4 1.41 0.90 3.42 2 hours, 50 rain 2 hours, 45 rain 2.38 
1.9 1.22 1.10 4.16 63 km 71 km 2.57 
1.3 0.40 0.56 2.88 7 hours, 20 rain 8 hours, 31 min 2.66 
1.3 0.34 0.86 4.18 189 km 252 km 2.20 

Kur 

11.36 

11.70 

12.51 

12.23 
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Fig. A 1. Histograms of (a) height Hstat and (b) time of stationarity Tstat 
for Frigg, in situ data. Temporal aria--l•rsis from November 1, 1984-•6 
December 31, 1984 (2681 sea states). 
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Fig. A 2. Conditional expectation function (a) of Hstat and (b) of Tstat for 
Frigg in situ stationary states; 2861 sea states. 

Because of the very large dispersion of the distribution, no dura- 
tion can be considered as predominant. It should b e noted that the 
mean duration of stationarity is close to 3 hours, which is generally 
considered as the time of stationarity of a sea state in mid-latitudes. 
The lower bound for rstat is 20 min, wh{ch is the length of the re- 
cording time. The concept of stationarty as defined in the previous 
section cannot be analyzed for shorter records with current data. 

The statistical characteristics of the height distribution show 
that it is distributed according to a Gumbel pdf of the form 

1 ( x-u x-u) P(x) - -exp -•)exp(-exp(-• ) x>u 
a a a (A2) 

P(x) = 0 x<u 

The mean value for a Gumbel probability density function is 
0.5722a + u and the standard deviation is •;a/6. 

The dependence (or independence) of Hstat and Tstat can be 
studied by the conditional expectation function (cef), i.e., the mean 
value of one parameter as a function of the other. Figure A2 pre- 
sents the cef of the duration given the time (Figure A2a) and the 
cef of the height given the duration (Figure A2b). As can be seen, 
the cef of the duration and height are almost constant. This indi- 
cates that no relationship exists between the energy level of a sea 
state and its duration of stationarity. 

Another way to study the •nterdependence of Hstat and Tstat is 
to analyze the probability laws of Hstat and Tstat for different 
classes of Tstat •d Hs•at. Tables A2 and A3 present the coeffi- 
cients of the mathematical laws • fitting the empirical probabilities 
iLe. the cumulative histograms) of Hstat and Tstat for different 
classes of Tstat and Hstat. The probability of Tstat is modeled by 
exponential laws, and the probability of Hstat , by Gumbel laws. 
The modeling was done using the method presented by Labeyrie 
[1985]. Th,e distribution of H star is independent of the duration of 
the sea state. The distribution of the duration can also be consid- 
ered as independent of the height. The coefficients of the exponen- 
tial laws-are almost constant, except for the last class, which 
contains few sea states (<100). This shows that Hstat and Tstat are 
statistically independent: 

Figure A3 presents th• mean of the random jumps (AH s ) be- 
tween consecutive sea sta•es given as a function of H s . The stan- 
dard deviation o (i.e., the noise level) is also presented in the 
figure and is computed from the classical estimator 

J 1 n 0 = n_--•- f •] (H s -Hstat) 2 -- i 
(A3) 

TABLE A2. Coefficients of the Pareto Laws Modeling the probability oi' T.tat or L.tat for 
Different H•t Classes and for the Four Different Data Sets 

Data Set Parameter Coefficient 
Hstat Class, m 

-: 

u -0.5 -0.7 -0.4 -0.5 -0.7 Frigg in Situ Tstat 
a 3.3 3.4 3.0 2.3 3.2 

u -4.5 1.7 8.7 8.5 4.0 Frigg Satellite L stat 
a 81 82 87 87 82 

Palanca in Situ T•t u -3.0 -7.0 -2.2 - -3.6 
a 12.3 7.8 3.0 - 7.0 

Palanca Satellite L,tat u -249 - 115 - 174 - - 168 
a 123 247 225 - 137 

0-2 2z4 4-6 >6 Total 
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TABLE A3. Coefficients of the Gumbel Laws Modeling the Probability of Hatst for Different Tatst 
or Lstst Classes 

Coefficient 

Classes 

1 2 3 4 5 6 Total 

Frigg in Situ 
T•at, hours 0-2 2-4 4-6 6-8 8-10 > 10 

u 1.7 1.7 1.6 1.7 1.7 1.7 1.8 
a 1.1 1.1 1.1 1.2 1.1 1.1 1.0 

Frigg Satellite 
L star, km 0-21 21-42 42-63 63-84 84-105 >105 

u 1.2 1.5 1.7 1.8 1.8 1.8 1.3 
a 1.0 1.1 1.0 1.1 0.9 0.9 1.0 

Palanca in Situ 

Tatat , hours 0-3 3-6 6-9 9-12 12-15 >15 
u 1.3 1.1 1.0 1.0 1.0 0.9 1.1 
a 0.3 0.3 0.3 0.3 0.2 0.2 0.3 

Palanca Satellite 

Lstst , km 0-21 21-42 42-63 63-84 84-105 > 105 
u 0.9 1.0 1.0 1.1 1.2 1.3 1.0 
a 0.5 0.4 0.4 0.4 0.4 0.4 0.4 

It can be seen in the figure that the AH s and 0 variations are 
almost linear. The mean square linear fits for these two parameters 
are 

AH s = 0.08H s + 0.05 o = 0.04H s -0.02 
These values are close to the ones chosen as input to the detec- 

tion algorithm which shows the stability of the detection algo- 
rithm. 

A1.2. Heights and lengths of stationarity. Figure A4 presents 
the Hstat and Lstat histograms. As for the time analysis, the height 
and length are distributed according to a Gumbel and exponential 
distributions, respectively. No length can therefore be considered 
as predominant. It should be noted that the nondimensional statisti- 
cal characteristics of the Lstat and Tstat ensembles are very similar 
(see Table A1). This indicates the same kind of behavior in the 
time and space domains. 

The cef of Hstat given the length of stationarity is approximate- 
ly constant (see Figure A5). The cef of Lstat is almost constant for 
H star greater then 1.5 m. For lower sea states the mean length of 
stationafity is lower. This results from the H s noise behavior 
which leads to the instability of the detection algorithm (see sec- 
tion 4). Tables A2 and A3 present the coefficients of the probabili- 

1.0 

(B) AH= 0.047 + 0.085 *H s 

(A) o=-0.018 + 0.044 *H s 
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•0.4 

• 0.2 • _ .... 
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Fig. A 3. Mean jumps (AH s ) and variance O H for the Frigg temporal 
stationary state analysis. 

ty law (estimated from the cumulative histograms) for H stat and 
Lstat for different classes of Lstat and Hstat. From Table A2, it can 
be seen that the standard deviation within each class is almost con- 

stant. The variation of u reflects the variation of the mean T 
star 

value. Thus except for low sea states, the distribution of L star is 
quite independent of Hstat. Reciprocally, the Hstat distributions 
are almost independent of the length of stationarity. This shows the 
independence of the Hstat and Lstat variables. If 7 km in space are 
considered to be equivalent to 20 min in time (see section 3), then 
the mean length of stationarity (63 km) is roughly equivalent to 3 
hours, i.e., the mean duration of stationarity. This suggests a linear 
dispersion relation for the propagation of H s . 
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Fig. A 4. Histograms of (a) height Hst•t and (b) length of stationarity Lint 
for Frigg, satellite data. Space analysis for cycles 1 to 43 of the Geo-s-•/t 
Exact Repeat Mission, from November 6, 1986, to November 8, 1988 
(8293 sea states). 
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Fig. A 5. Conditional expectation function of (a) Hst•t and of (b) Lstat for 
Frigg spatial stationary states. 
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Fig. A 7. Conditional expectation function (a) of Hstat and (b) of Tstat for 
Palanca in situ stationary states. 

A2. Palanca 

Compared to Frigg, the Palanca sea state data set is character- 
ized by the predominancy of swell [Tournadre and Ezraty, 1990] 
which propagates either from the South Ariantic or from the North 
Atlantic (see, for example, the study of Cartwright et al. [1977] for 
Saint Helena Island). 

A2.1. Duration and height. Figure A6 shows the height and du- 
ration histograms. As it can be expected from what is known about 
the wave climate in equatorial oceans (swell predominancy), the 
mean duration of stationarity is more than twice as large as in the 
Frigg case (see Table A1). However, the nondimensional statistical 
characteristics of the distribution (skewness and kurtosis) are very 
close to those found for Frigg. The duration is exponentially dis- 

tributed and has a large dispersion. The height is distributed ac- 
cording to a Gumbel law. 

Figure A7 presents the cef of the duration given the height as 
well as the cef of the height given the duration. The cef of the dura- 
tion decreases as the height increases. Palanca being located in the 
doldrums region, there exist long periods of very calm weather 
during which the wind is almost null. Low sea states (<1 m) can 
therefore be expected to be associated with long duration. Larger 
sea states (>1.5 m) are associated with either convective events or 
swell propagation and can thus be expected to be characterized by 
shorter duration. 

It can be seen in Tables A2 and A3 that the rstat distribution de- 
pends on the energy level, which confirms what has been said pre- 
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viously. The Hstat distribution is less dependent on the duration of 
station arty. 

A2.2. Length and "height. Figure A8 presents the height and 
length histograms. The length is exponentially distributed and the 
hbight follows a Gumbel law. The mean length of stationarity is al- 
most 3 times larger than that found in the Frigg case. Some sea 
states are stationary over more than a thousand kilometers. They 
can be associated with the propagation of swell trains. Figure A9 
shows the cef of the length given the height and the cef of the 
height given the length. For sea states greater than 1 m, the length 
of stationarity decreases as the height increases. As for Frigg, low 
sea states (<1 m) are associated with short lengths of stationarity. 
This results again from an instability of the detection method be- 
cause of a high noise level fer low sea states. 
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