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CNRS/INSU, MIO UMR 7294, IRD, MIO UMR235, 83957, La Garde CEDEX, France

(Received 30 September 2011; revised 4 April 2012; accepted 16 April 2012;
first published online 7 June 2012)

The dynamic pressure distribution on the bottom of a wave flume, due to the
interaction of water waves with a submerged structure, is investigated experimentally
and analytically, for both first- and second-order gravity waves of finite amplitude.
The dynamic pressure excess is found to be very important, even for incoming waves
propagating in deep water conditions. In this depth condition, a high pressure zone,
thirty times larger than the dynamic pressure excess expected in the absence of
the obstacle, is found in its vicinity. On the other hand, a low pressure zone is
observed in the vicinity of the submerged obstacle for incoming waves propagating
in smaller depth conditions. In any case, pressure gradients remain important. The
second-order disturbance is found to be larger than first order in deep water conditions,
for some specific conditions and locations. This result is interpreted in terms of
nonlinear coupling of first-order components, including local modes.

Key words: coastal engineering

1. Introduction
Although surface water waves have been widely studied during the last two hundred

years, they still raise interesting questions, from both physical and mathematical points
of view. This fact is especially well illustrated when considering the interaction
between waves and the seabed. Among other issues, the evaluation of the bottom
dynamic pressure excess due to surface waves is of major interest. Knowledge of this
pressure term, regardless of the hydrostatic pressure, has several motivations.

Among the applications, one may cite the prediction of seabed stability, which
is of central importance in coastal engineering (Silvester & Hsu 1989). Common
approaches aiming to predict seabed stability focus on the determination of
the Keulegan–Carpenter number (Sumer, Whitehouse & Torum 2001). This non-
dimensional number involves the fluid velocity at the bottom, and is independent
of the pressure forcing applied at the water–sediment interface. However, ever since
the work of Yamamoto et al. (1978) it has been known that the sediment should not
be treated as a rigid bed ruled by Darcy’s law. The oscillating pressure term on top
of the sediment layer, which corresponds to the boundary condition applied above the
poro-elastic media, has to be known. To estimate this pressure forcing, several authors
have suggested models based on the linear theory of water waves. One may cite

† Email address for correspondence: julien.touboul@univ-tln.fr

mailto:julien.touboul@univ-tln.fr


Bottom pressure distribution due to wave scattering 445

Tsai (1995) and Lee & Lan (2002), who considered counter-propagative modes in the
vicinity of a submerged breakwater. These authors suggested a stability criterion based
on that assumption. More recently, Lan et al. (2011) studied the interaction of surface
water waves with poro-elastic breakwaters, taking into account the linear propagative
components of water waves. All these studies neglected local modes, and second-order
nonlinear effects.

Another application for knowledge of the wave-induced pressure excess is the
measurement of surface water waves based on pressure data recorded under water.
The use of these transducers is of great interest, since they are less prone to damage
by human activities (Grace 1978). Several authors have discussed the ability of
linear theory to describe surface waves, since the pressure induced by surface waves
decreases with the depth of submersion of the transducer (Cavaleri 1980). Several
techniques overcoming this difficulty have been suggested (Wang, Lee & Garcia 1986;
Nielsen 1989). However, at the same time, Bishop & Donelan (1987) conducted a very
well-documented experiment demonstrating the ability of linear theory to reconstruct
surface elevation in shallow water and intermediate depth. More recently, Tsai et al.
(2005) have introduced a depth parameter correcting the linear transfer function.
Escher & Schlurmann (2008) obtained this depth parameter rigorously, assuming the
presence of propagative linear modes. Here again, none of these studies considered the
influence of local modes, which might be present once the transducer is located in the
vicinity of abrupt bathymetries or coastal structures.

Furthermore, the literature cited above only addresses waves propagating in shallow
water or in intermediate depths. This makes sense, since the pressure oscillations
associated with propagative modes, in linear theory, decrease exponentially with
depth. But surprisingly, water waves have long been suspected of inducing bottom
pressure disturbances in deep water (Wiechert 1904). The induced seismic noise,
called microseisms, is known to oscillate at twice the frequency of the waves.
This phenomenon remained unexplained until the experimental demonstration of this
correlation (Miche 1944). A realistic theory of this coupling was introduced by
Longuet-Higgins (1950), and extended to random waves by Hasselmann (1963). The
theory rests on the second-order nonlinear interaction of counter-propagative modes
on the surface, which results in a pressure term independent of depth. The first
detailed verification of this theory was performed by Kedar et al. (2008). Recently,
Ardhuin et al. (2011) introduced a model of seismic noise, based on the deterministic
simulation of water wave propagation. These authors distinguished three cases capable
of generating counter-propagative wave systems. They included the reflection of water
waves due to the presence of the coast. Several authors have tried to take advantage
of this property. We may cite Farrell & Munk (2008, 2010), who analysed the wind
wave spectrum from deep sea pressure records, or Molin et al. (2008), who suggested
that wave energy might be tapped using the Longuet-Higgins effect. Here again, none
of these studies took the role of local modes into account, since the only propagative
modes are assumed to be present at the sea surface.

In coastal areas, however, local or evanescent modes are known to play a significant
role in the dynamics of water waves. This role was made evident through laboratory
experiments for water waves interacting with a doubly sinusoidal bed, particularly
near the subharmonic Bragg resonance (Guazzelli, Rey & Belzons 1992). For field
study applications, the role of local modes on water waves propagating over rapidly
changing bathymetries was discussed by Magne et al. (2007) through the analysis
of wave propagation over the Scripps Canyon. Field experiments were compared to
theoretical models such as the coupled-mode models (Athanassoulis & Belibassakis
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1999) and the stepwise model (Rey 1992), both of which include the influence of
evanescent modes. In the work of Magne et al. (2007), the comparison between the
experiments and the analytical model showed non-trivial behaviour for water waves,
and emphasized the role of local modes on the dynamics.

Regarding the bottom pressure excess, local modes might also be expected to
play an important role. Similarly to the Longuet-Higgins term, the velocity potential
associated with local modes does not vanish with depth. Although these modes are
widely used to analyse the forces exerted by waves on structures (Grue & Palm 1984;
Belibassakis & Athanassoulis 2006), the dynamic pressure excess they induce at the
bottom has never been analysed. Similarly, the effect of the horizontal oscillation of
water under a solid boundary (Guevel et al. 1986) has a velocity potential expression
that does not vanish with depth. It might also have an important effect on the dynamic
pressure distribution on the bottom, even in deep water conditions.

The purpose of this work is to describe the bottom pressure distribution in the
vicinity of a submerged obstacle interacting with incident monochromatic waves, and
to emphasize the role of local modes at first and second order in nonlinearity. The
experimental set-up is presented in § 2. In § 3, we present the model used to analyse
the results. This model is based on analytical solutions of the linear problem in
domains of constant depth. In its classical formulation, the model is forced by an
incident wave of fundamental frequency f . This formulation is useful to describe the
dynamic pressure distributions related to this frequency. However, following the results
of Miche (1944) and Longuet-Higgins (1950), it is plausible that the second-order
terms (related to the second harmonic of frequency 2f ) might make an important
contribution, and should be described. We thus suggest an extension of the model
to second order in nonlinearity. The interaction of incident and reflected waves,
corresponding to the term initially introduced by Longuet-Higgins (1950), is taken
into account here, together with the interaction of propagative and local modes. This
approach extends classical analytical integral formulations (e.g. Newman 1990), which
neglect the influence of local modes, and which are often used to describe the far-field
second-order harmonics radiated from a body, or wave forces exerted on a body.
Finally, experimental results obtained are compared with results predicted by the
model, and discussed in § 4.

2. Experimental set-up
The Ocean Engineering Basin (BGO) FIRST is designed to conduct ocean and

coastal engineering model studies. Its useful length is 24 m, while its effective width
is 16 m. The bottom of the basin is mobile, allowing the bathymetry to be adapted.
It can be inclined up to ±7 % for coastal engineering studies with variable bottom
topography. The maximum water depth is 5 m, although a 10 m depth pit, of diameter
5 m, can be used to study structures in deep water. Water waves can be generated by
means of a surface wavemaker, covering the entire width of the basin. The wavemaker
is composed of horizontally oscillating cylinders, allowing production of regular and
irregular waves in the presence of currents. The wave frequency extends from 0.3 to
1.4 Hz, while the maximum crest-to-trough wave height is 0.8 m. At the other end of
the basin, a parabolic permeable wave absorber of extend 7 m dissipates wave energy.
A carriage can be moved over the useful length of the entire basin. It allows the quick
installation and repositioning of the instrumentation.

The coordinate system is Cartesian. The (Ox) axis is parallel to the wave
propagation direction, along the basin, the origin being the upstream edge of the
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N◦ 1 2 3 4 5 6 7 8 9
T (s) 1.4 1.4 1.4 1.9 1.9 1.9 2.7 2.7 2.7
ai (mm) 44 54 65 60 99 117 37 71 98
kh 6.16 6.16 6.16 3.35 3.35 3.35 1.76 1.76 1.76
ε 0.09 0.11 0.13 0.07 0.11 0.13 0.02 0.04 0.06

TABLE 1. List of experiments conducted.

Sensor W1 W2 W3 W4 W5 W6 W7 W8 W9
x (m) 2.985 3.785 4.285 6.085 6.685 6.985 7.150 7.450 7.750
z (m) 0 0 0 0 0 0 0 0 0

Sensor W10 W11 W12 W13 W14 W15 W16 W17 W18
x (m) 8.050 8.350 8.515 9.115 9.715 10.315 10.915 11.415 12.215
z (m) 0 0 0 0 0 0 0 0 0

Sensor P3 P4 P5 P6 P7 P8 P9 P10 P11
x (m) 4.285 6.085 6.685 6.985 7.150 7.450 7.750 8.050 8.350
z (m) −3 −3 −3 −3 −3 −3 −3 −3 −3

Sensor P12 P13 P14 P15 P16 P17 P18
x (m) 8.515 9.115 9.715 10.315 10.915 11.415 12.215
z (m) −3 −3 −3 −3 −3 −3 −3

TABLE 2. Location of the wave probes (Wn)n=1,...,18 and the pressure sensors (Pn)n=3,...,18.

mobile bottom. The (Oy) axis is parallel to the basin width, its origin being the axis
of symmetry of the basin. The (Oz) axis is vertical, oriented upwards. Its origin is the
still water level.

In the framework of this study, the mobile bottom was raised to maintain a constant
water depth of h1 = 3 m. The structure considered consists of a 1.53 m long plate,
0.1 m thick. The plate is located between X6 = 6.985 m (corresponding to wave probe
W6) and X12 = 8.515 m (corresponding to wave probe W12). Its topside immersion
depth is 0.5 m. To avoid three-dimensional effects, the plate extends over the complete
width of the basin. This structure was used in this configuration in a former work
(Rey & Touboul 2011), for the study of the hydrodynamical interaction with gravity
waves. Waves considered in the present experiment are monochromatic. Their periods
are T1 = 1.4 s, T2 = 1.9 s and T3 = 2.7 s, and three wave amplitudes are considered
for each case. The waves of period T1 correspond to waves propagating in deep water
conditions, while the waves of period T2 and T3 propagate in finite water. A list of the
experiments conducted is detailed in table 1. In the table, ai refers to the amplitude of
the incident water wave, while ε = aik is the corresponding wave steepness, given for
reference.

The synchronous instrumentation is composed of 18 wave probes (Wn)n=1,...,18 and
16 pressure sensors (Pn)n=3,...,18. The locations of the sensors are detailed in table 2,
while a sketch of the experimental set-up is given in figure 1. The wave probes
are resistive sensors, manufactured by HR Wallingford. They deliver a ±10 V
signal, allowing a precision of 10−3 m in determining the water elevation. The
pressure sensors are piezo-resistive sensors, manufactured by STS. The full scale
of measurement ranges from 0 to 400 mbar. Resolution of the pressure sensors is
0.2 mbar.

The evaluation of incident wave amplitude ai, and of reflected wave amplitude
ar is based on the method initially introduced by Goda & Suzuki (1976) and later
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FIGURE 1. Side view of the experimental set-up.

improved by Mansard & Funke (1980). The method is based on the variation of
surface elevation envelope, interpreted as the interaction of counter-propagating waves
between three probes. A limitation of the method due to spacing of wave probes is
studied in Rey, Capiobianco & Dulou (2002). The spacing of probes W1, W2 and W3

was chosen to overcome this drawback.

3. Analytical model
The stepwise model was initially introduced by Takano (1960) to describe water

waves propagating in the presence of a parallelepipedic submerged obstacle. This
approach was later used for obliquely incident waves propagating over a submerged
trench by Kirby & Dalrymple (1983). More recently, it was extended by Rey (1995)
to arbitrary topographies and submerged structures. All these works were based on the
linear approximation of the potential equations for free surface flows, in elementary
domains of constant depth.

3.1. Equations of the problem
It is entirely classical to solve water wave problems using potential theory. In this
approach, we seek solutions of the problem fulfilling the Laplace equation

1φ(x, z, t)= 0. (3.1)

In the framework of this theory, the fully nonlinear equations corresponding to free
surface kinematic and dynamic boundary conditions are given by

∂η

∂t
+ ∂φ
∂x

∂η

∂x
= ∂φ
∂z

on z= η, (3.2)

∂φ

∂t
+ ∇φ2

2
+ gη = 0 on z= η. (3.3)

These conditions have to be completed with a bottom condition,

∂φ

∂z
= 0 on z=−h. (3.4)

By using a perturbative approach, we might seek solutions of the form

φ = εφ1 + ε2φ2 + O(ε3) (3.5)
η = εη1 + ε2η2 + O(ε3), (3.6)

where ε is a small parameter corresponding to wave steepness. The equations
(3.1)–(3.4) might be simplified to become, to first order in ε,

1φ1 = 0, (3.7)
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∂2φ1

∂t2
+ g

∂φ1

∂z
= 0 on z= 0, (3.8)

∂φ1

∂z
= 0 on z=−h. (3.9)

From this set of equations, the first-order elevation can be obtained from the first-order
velocity potential through the linearized kinematic boundary condition, which reads

∂η1

∂t
= ∂φ1

∂z
on z= 0. (3.10)

At the same time, considering terms of second order in ε leads to

1φ2 = 0, (3.11)

∂2φ2

∂t2
+ g

∂φ2

∂z
=−η1

∂

∂z

[
∂2φ1

∂t2
+ g

∂φ1

∂z

]
− ∂ (∇φ1)

2

∂t
on z= 0, (3.12)

∂φ2

∂z
= 0 on z=−h. (3.13)

3.2. Solution of the first-order problem
The linear problem corresponding to (3.7)–(3.9) might be solved by considering
elementary domains of constant depth hm in which the solutions are known. For
problems involving submerged obstacles, two cases must be distinguished. If the upper
boundary condition of the domain corresponds to a free surface, (3.8) has to be
verified. On the other hand, under the obstacle, a condition of impermeability of the
form (3.9) must be fulfilled.

For domains involving a free surface, these solutions are given by the real part of

φ1,m(x, z, t)=
(
φ±1p,mχm(z)eik±m x +

∞∑
n=1

φ±1e,n,mψn,m(z)ek±n,mx

)
e−iωt, (3.14)

where the subscript m refers to the number of the domain. In this equation, the first
term corresponds to propagating modes, in both directions (Ox) and (−Ox), and the
second term corresponds to local (or evanescent) modes, k±m and k±n,m being the related
wavenumbers. Wavenumbers k±m should be understood as k+m for k±m > 0, corresponding
to modes propagating in the (Ox) direction, and k−m for k±m < 0, corresponding to
modes propagating in the (−Ox) direction. Similarly, k±n,m > 0 should be understood as
k+n,m, and correspond to local modes decaying in the (−Ox) direction, while k±n,m < 0
should be understood as k−n,m, and correspond to local modes decaying in the (Ox)
direction. These wavenumbers are obtained by solving the dispersion relation

ω2 = gκ tanh(κhm), (3.15)

with κ = k±m for propagating modes, and κ = ik±n,m for evanescent modes. The functions
χm(z) and ψn,m(z) are given by

χm(z)= cosh(k+m(z+ hm))

cosh(k+mhm)
, (3.16)

ψn,m(z)=
cos(k+n,m(z+ hm))

cos(k+n,mhm)
, (3.17)
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allowing the solution (3.14) to satisfy the bottom condition for z = −hm. The
associated water elevation is thus given by the real part of solution

η1,m(x, t)=
(

iφ±1p,m

ω
χ ′m(z= 0)eik±m x +

∞∑
n=1

iφ±1e,n,m

ω
ψ ′n,m(z= 0)ek±n,mx

)
e−iωt. (3.18)

In the domains involving no free surface, the solutions given by (3.14) are no longer
valid, and might be replaced with

φ1,m(x, z, t)=
(
αmx+ γm +

∞∑
n=1

β±n,mψn,m(z)ek±n,mx

)
e−iωt, (3.19)

where kn,m allows satisfaction of the impermeability conditions on both top and bottom
conditions. Thus, if hm still refers to the depth of bottom boundary condition in the
mth domain, and if dm refers to the depth of the upper boundary condition in the mth
domain, the wavenumbers kn,m are given by k±n,m =±nπ/(hm − dm).

These equations (3.14) and (3.19) are solutions of the linear problem defined by
(3.7)–(3.9) in each subdomain m. Thus, the solutions should connect continuously at
the interface of the domains. To ensure this continuity, conditions of flux (∂φ/∂x)
and pressure (∂φ/∂t = −iωφ) conservation between domains m and m + 1 are
imposed. Specifically, in our case, four domains are defined. Domain 1 extends on
−∞ 6 x 6 X6 and −h1 6 z 6 0. Domain 2 corresponds to the fluid domain above
the plate, which spreads on X6 6 x 6 X12 and −h2 6 z 6 0. Domain 3 is the fluid
domain under the plate, and involves no free surface. This domain ranges from
X6 6 x 6 X12 and −h3 6 z 6 −d3. Finally, domain 4 is the domain down-wave of
the plate, extending from X12 6 x6∞ and −h4 6 z6 0.

Thus, the boundary conditions between domain 1 and domains 2 and 3 are imposed
on x= X6, and read

∂φ1,1

∂x
= ∂φ1,2

∂x
and φ1,1 = φ1,2 for − h2 6 z6 0, (3.20)

∂φ1,1

∂x
= 0 for − d3 6 z6−h2, (3.21)

∂φ1,1

∂x
= ∂φ1,3

∂x
and φ1,1 = φ1,3 for − h3 6 z6−d3. (3.22)

Similarly, for x = X12, boundary conditions between domains 2 and 3 and domain 4
are given by

∂φ1,2

∂x
= ∂φ1,4

∂x
and φ1,2 = φ1,4 for − h2 6 z6 0, (3.23)

∂φ1,4

∂x
= 0 for − d3 6 z6−h2, (3.24)

∂φ1,3

∂x
= ∂φ1,4

∂x
and φ1,3 = φ1,4 for − h3 6 z6−d3. (3.25)
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To take advantage of the orthogonality of the eigenfunctions χm and ψn,m, these
boundary conditions should be written in their integral form, leading to∫ 0

−h1

∂φ1,1

∂x
(X6, z) χ1(z) dz =

∫ −d3

−h3

∂φ1,3

∂x
(X6, z) χ1(z) dz

+
∫ 0

−h2

∂φ1,2

∂x
(X6, z) χ1(z) dz, (3.26)∫ 0

−h1

∂φ1,1

∂x
(X6, z) ψn,1(z) dz =

∫ −d3

−h3

∂φ1,3

∂x
(X6, z) ψn,1(z) dz

+
∫ 0

−h2

∂φ1,2

∂x
(X6, z) ψn,1(z) dz (n= 1, . . . ,∞) (3.27)

for the flux conservation, and∫ 0

−h2

φ1,1(X6, z) χ2(z) dz=
∫ 0

−h2

φ1,2(X6, z) χ2(z) dz, (3.28)∫ 0

−h2

φ1,1(X6, z) ψn,2(z) dz=
∫ 0

−h2

φ1,2(X6, z) ψn,2(z) dz (n= 1, . . . ,∞), (3.29)∫ −d3

−h3

φ1,1(X6, z) χ3(z) dz=
∫ −d3

−h3

φ1,3(X6, z) χ3(z) dz, (3.30)∫ −d3

−h3

φ1,1(X6, z) ψn,3(z) dz=
∫ −d3

−h3

φ1,3(X6, z) ψn,3(z) dz (n= 1, . . . ,∞) (3.31)

for the pressure conservation. Similarly, on x = X12, the boundary conditions are given
by their integral form∫ 0

−h4

∂φ1,4

∂x
(X12, z) χ4(z) dz =

∫ −d3

−h3

∂φ1,3

∂x
(X12, z) χ4(z) dz

+
∫ 0

−h2

∂φ1,2

∂x
(X12, z) χ4(z) dz, (3.32)∫ 0

−h4

∂φ1,4

∂x
(X12, z) ψn,4(z) dz =

∫ −d3

−h3

∂φ1,3

∂x
(X12, z) ψn,4(z) dz

+
∫ 0

−h2

∂φ1,2

∂x
(X12, z) ψn,4(z) dz (n= 1, . . . ,∞) (3.33)

for the flux conservation, and∫ 0

−h2

φ1,4(X12, z) χ2(z) dz=
∫ 0

−h2

φ1,2(X12, z) χ2(z) dz, (3.34)∫ 0

−h2

φ1,4(X12, z) ψn,2(z) dz=
∫ 0

−h2

φ1,2(X12, z) ψn,2(z) dz (n= 1, . . . ,∞), (3.35)∫ −d3

−h3

φ1,4(X12, z) χ3(z) dz=
∫ −d3

−h3

φ1,3(X12, z) χ3(z) dz, (3.36)∫ −d3

−h3

φ1,4(X12, z) ψn,3(z) dz=
∫ −d3

−h3

φ1,3(X12, z) ψn,3(z) dz (n= 1, . . . ,∞) (3.37)
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T Rabsorber Labsorber

1.4 0.01 27.1
1.9 0.15 26.4
2.7 0.12 19.5

TABLE 3. Parameters used to model the influence of the wave absorber.

for the pressure conservation. For numerical implementation, the number of local
modes considered is not infinite, but is truncated to a number N. Thus, the system
above provides a linear system of 6(N + 1) equations, allowing us to obtain the
6(N + 1) unknowns of the problem, which correspond to the complex amplitudes of
each mode in each domain. Namely, the unknowns of the problem read (φ−1p,1; φ+1e,n,1),
(φ±1p,2; φ±1e,n,2), (α3, γ3; φ±1e,n,3), (φ+1p,4; φ−1e,n,4), (n = 1, . . . ,N). In this study, the number
of local modes was truncated, e.g. to N = 50.

Furthermore, as has been discussed in previous work (Rey & Touboul 2011), the
influence of the wave absorber can be introduced in the model by considering
the presence of a wave propagating in the (−Ox) direction in the last domain.
This component amplitude is assumed to be a fraction Rabsorber of the transmitted
component (φ+1p,4), allowing us to keep the number of unknowns constant. The two
propagating modes are assumed to be in phase in a location Labsorber . These parameters
can be understood as reflection at the wave absorber, and its effective location. The
parameters used in the present study are detailed in table 3.

Finally, once the linear system is inverted, the amplitude of every mode in every
domain is known. The bottom pressure distribution is obtained by evaluating the time
derivative of the velocity potential at z=−hm in every domain

p(x,−hm, t)

ρ
=−∂φ1,m

∂t
(x,−hm, t). (3.38)

3.3. Solution of the second-order problem

By considering the set of equations (3.11)–(3.13), one can see that it admits
solutions depending on the first-order solutions. Since the first-order solutions are
real, the complex conjugate should not be omitted while deriving the set of
equations (3.11)–(3.13). Thus, the solutions of this problem involve oscillatory terms
relative to the frequency 2ω (e2iωt, e−2iωt), and time-independent terms (eiωt−iωt = 1).
The latter terms are ignored here, since they are not our concern. The remaining
solutions might be understood as interactions of two waves.

Indeed, if considering the interaction of the solution of the first-order problem
propagating in the (0x) direction with itself, the solutions are given by the real part of

φ++2,m(x, z, t)= 3iω3 (φ+1p,m)
2

8 g2

cosh(2k+1,m(z+ h))

sinh4(k+1,mh)
e2ik+1,mxe−2iωt, (3.39)

where k+1,m is the solution of (3.15) corresponding to waves propagating in the (Ox)
direction in the mth domain. This term is the well-known second-order Stokes’ wave
solution. Symmetrically, we identify the solution corresponding to the interaction of
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waves propagating in the (−Ox) direction, and it becomes

φ−−2,m(x, z, t)= 3iω3 (φ−1p,m)
2

8g2

cosh(2k−1,m(z+ h))

sinh4(k−1,mh)
e2ik−1,mxe−2iωt. (3.40)

Here again, the solution is given by considering the real part of expression (3.40). The
interaction of waves propagating in the (Ox) direction and the (−Ox) direction leads
to the second-order term

φ+−2,m(x, z, t)=− iω3(φ+1p,m × φ−1p,m)

4g2

2 cosh(2k+1,mh)− 1

sinh2(k+1,mh)
e−2iωt. (3.41)

This term, originally introduced by Longuet-Higgins (1950), is surprising since it does
not depend on z. It will lead to a pressure disturbance oscillating at a frequency 2ω,
and propagating independently of the depth.

Following Longuet-Higgins’ approach, we might take into account the interaction of
propagative modes together with local modes. This leads to the derivation of a term
given by

φe+
2,m(x, z, t)= ω

3(φ+1p,m × φ±1e,n,m)

g2

× sinh2(k+1,mh)− sin2(k±1,n,mh)− 4i sinh(k+1,mh) sin(k±1,n,mh) cosh((k+1,m + ik±1,n,m)h)

sinh2(k+1,m − ik±1,n,m)h)+ 4i sinh(k+1,mh) sin(k±1,n,mh) cosh((k+1,m − ik±1,n,m)h)

× cosh((k+1,m − ik±1,n,m)(z+ h))

sinh(k+1,mh) sin(k±1,n,mh)
e(ik
+
1,m+k±1,n,m)x−2iωt

, (3.42)

for the interaction of waves propagating in the (Ox) direction with local modes, or

φe−
2,m(x, z, t)= ω

3(φ−1p,m × φ±1e,n,m)

g2

× sinh2(k−1,mh)− sin2(k±1,n,mh)− 4i sinh(k−1,mh) sin(k±1,n,mh) cosh((k−1,m + ik±1,n,m)h)

sinh2(k−1,m − ik±1,n,m)h)+ 4i sinh(k−1,mh) sin(k±1,n,mh) cosh((k−1,m − ik±1,n,m)h)

× cosh((k−1,m − ik±1,n,m)(z+ h))

sinh(k−1,mh) sin(k±1,n,mh)
e(ik
−
1,m+k±1,n,m)x−2iωt

, (3.43)

for the interaction of waves propagating in the (−Ox) direction with local modes.
Here again, one should keep in mind that the real part of this expression has to be
considered.

Finally, by taking account of local modes interacting together, we obtain a solution
of the form

φee
2,m(x, z, t)= iω3(φ±1e,n,m × φ±1e,l,m)

4g2

× sin2(k±1,n,mh)+ sin2(k±1,l,mh)+ 4 sin(k±1,n,mh) sin(k±1,l,mh) cos((k±1,n,m − k±1,l,m)h)

sin2((k±1,n,m + k±1,l,m)h)− 4 sin(k±1,n,mh) sin(k±1,l,mh) cos((k±1,n,m + k±1,l,m)h)

× cos((k±1,n,m + k±1,l,m)(z+ h))

sin(k±1,n,mh) sin(k±1,l,mh)
e(k1,n,m+k1,l,m)xe−2iωt. (3.44)
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Thus, the velocity potential

φ2,m,forced(x, z, t)= φ++2,m + φ−−2,m + φ+−2,m +
N∑

n=1

(
φe+

2,m + φe−
2,m

)+ N∑
n=1

N∑
l=1

φee
2,m (3.45)

is the solution of the set of equations (3.11)–(3.13), and is known as soon as the
first-order problem is solved.

It has to be mentioned that the double summation in (3.45) is found to be diverging
as N→∞, which is consistent with the asymptotic behaviour of k±1,n,m, when n→∞.
As a result, these local mode couplings correspond to a singularity which should
be properly extracted. This result is not really surprising, since these modes are not
solutions to the problem on the interfaces of the domains. However, the weight of the
local modes in the solution is known to be rapidly decreasing. Thus, we assumed the
same behaviour for their nonlinear interaction, and we decided to neglect this term in
the following.

Once the solution imposed by first order is known, one has to keep in mind that
each elementary domain m still admits linear solutions of (3.7)–(3.9), relative to the
frequency 2ω,

φ2,m(x, z, t)=
(
φ±2p,mχm(z)eik±m x +

∞∑
n=1

φ±2e,n,mψn,m(z)ek±n,mx

)
e−2iωt, (3.46)

where k±m and k±n,m are now obtained by solving the linear dispersion relation

4ω2 = gκ tanh(κhm). (3.47)

A linear system very similar to that obtained for the first-order problem can be
obtained by imposing the continuity conditions of velocity and pressure. However, the
velocity potential (3.45) obtained by considering the nonlinear interaction of first-order
terms is involved in these new boundary conditions. The solution of this linear system
provides the amplitude of each second-order mode, and the associated bottom pressure
is given by

p(x,−hm, t)

ρ
=−

(
∂φ2,m

∂t
+ ∂φ2,m,forced

∂t
+ ∇φ2

1,m

2

)
(x,−hm, t). (3.48)

In the following, computations are obtained with a truncation of evanescent modes,
e.g. to N = 50.

4. Results and discussion
Results obtained experimentally and analytically are presented in figures 2–4. These

three figures represent various depth conditions for incident water waves. Waves of
period T1 = 1.4 s have a depth parameter kh= 6.18, those of period T2 = 1.9 s have a
depth parameter kh= 3.36, while waves of period T3 = 2.7 correspond to kh= 1.77. In
these figures, the dynamic pressure excess is normalized by

PN = ρgai

cosh(kh)
, (4.1)

which corresponds to the dynamic pressure amplitude on the bottom associated with
the incident wave at frequency f .
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FIGURE 2. Pressure distribution on z = −h obtained experimentally (symbols) and
analytically (lines) for incident water waves of period T1 = 1.4 s. The related steepness is
given by ε1 = 0.09, ε2 = 0.11, and ε3 = 0.13. H, �, and N represent first-order pressure
disturbances obtained experimentally with waves of steepness ε1, ε2 and ε3 respectively.
The solid line represents the associated first-order theory. •, �, and ? represent second-
order pressure disturbances obtained experimentally with waves of steepness ε1, ε2 and ε3
respectively. The dotted lines represent the associated second-order theory. The dash-dotted
line represents the second-order theory that might be obtained with incident waves of limit
steepness εmax = 0.44.

Experimental pressure oscillations at the fundamental frequency, which are described
by the first-order theory, are plotted as symbols (H, �, N). The associated first-
order model is shown by solid lines. The figures clearly show very good agreement
between theory and experiments. We observe that the dynamic pressure excess due
to the presence of the obstacle is significant in the deep water case, and decreases
with the depth parameter. Pressure oscillations observed for waves propagating in
the deep water case are up to thirty times larger than in the absence of submerged
structure. For the intermediate depth parameter, the dynamic pressure excess is up
to 3.5, and the disturbance associated with the smallest depth parameter is rather a
low pressure (P/PN = 0.2). The choice of the normalization made here is interesting,
since it emphasizes the role of the structure as compared to the wave-induced bottom
pressure in its absence. However, it is interesting to notice that this effect is significant,
as compared to the free surface deformation. These bottom pressure variations are
significant in each case since they correspond respectively to 13, 25 and 7 % of ρgai,
for kh= 6.18, kh= 3.36 and kh= 1.76.

This extremum of pressure excess is observed in the vicinity of the plate location
(6.985 < X < 8.515). This phenomenon is due to the influence of both the evanescent
modes and the horizontally oscillating water column under the structure. It is
interesting to note the wide extent of this pressure excess deviation, relative to the
extent of the plate (1.53 m). This must be compared with the evanescent wavenumber.
Further away from the plate, the pressure envelope is found to be oscillating in space.
This is due to the presence of the partially standing wave. The associated reflection
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FIGURE 3. Pressure distribution on z = −h obtained experimentally (symbols) and
analytically (lines) for incident water waves of period T2 = 1.9 s. The related steepness is
given by ε1 = 0.07, ε2 = 0.11, and ε3 = 0.13. H, �, and N represent first-order pressure
disturbances obtained experimentally with waves of steepness ε1, ε2 and ε3 respectively.
The solid line represents the associated first-order theory. •, �, and ? represent second-
order pressure disturbances obtained experimentally with waves of steepness ε1, ε2 and ε3
respectively. The dotted lines represent the associated second-order theory. The dash-dotted
line represents the second-order theory that might be obtained with incident waves of limit
steepness εmax = 0.44.

coefficients are found to be R = 0.13 for kh = 6.18, R = 0.46 for kh = 3.36 and
R = 0.24 for kh = 1.76, respectively. For wave periods T2 = 1.9 s and T3 = 2.7, the
reflection coefficients of the wave absorber are significant, and slightly dependent on
the wave steepness. Indeed, a slight vertical shift is observed in both figures 3 and 4,
since we decided to keep these parameters constant for the calculation at each given
frequency (see table 3).

Pressure oscillations at the second harmonic frequency 2f are described by the
second-order theory. In figures 2, 3 and 4, the experimental results are plotted with
symbols (•, �, ?), while the second-order theory is shown by dotted lines. In addition
to these lines, a dashed line is plotted to represent the limit case, associated with an
incident wave of steepness ε = 0.44. In every case, the theoretical results are in good
agreement with the experimental data. Here again, we observe that the second-order
pressure disturbance due to the presence of the obstacle is significant in the deep
water case, and decreases with the depth parameter. Since this nonlinear effect is
proportional to the wave steepness, relative pressure variations might reach values up
to 26 for the deep water case, 5 for the intermediate water case, and 0.2 for the
shallowest water conditions.

In every case, the maximum value is observed up-wave, far from the plate. This
fact tends to emphasize the relative importance of the propagative–propagative mode
interaction (e.g. the Longuet-Higgins term). Down-wave, between the plate and the
wave absorber, the asymptotic value is lower than up-wave. This is explained by the
low value of the absorber reflection. For the shallowest case, a relatively important
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FIGURE 4. Pressure distribution on z = −h obtained experimentally (symbols) and
analytically (lines) for incident water waves of period T2 = 2.7 s. The related steepness is
given by ε1 = 0.02, ε2 = 0.04 and ε3 = 0.06. H, �, and N represent first-order pressure
disturbances obtained experimentally with waves of steepness ε1, ε2 and ε3 respectively.
The solid line represents the associated first-order theory. •, �, and ? represent second-
order pressure disturbances obtained experimentally with waves of steepness ε1, ε2 and ε3
respectively. The dotted lines represent the associated second-order theory. The dash–dotted
line represents the second-order theory that might be obtained with incident waves of limit
steepness εmax = 0.44.

value is also observed under the plate, which tends to emphasize the role of the
propagative–evanescent mode interaction in the nonlinear forcing.

5. Concluding remarks
In this work, the distribution of the dynamic pressure excess due to wave scattering

on a submerged horizontal plate was investigated for various wave steepnesses ε and
water depth conditions kh. This case study was of particular theoretical interest, since
it involved partially standing wave conditions, evanescent modes, and a horizontally
oscillating water column.

The first-order bottom distribution of the pressure excess, corresponding to the
fundamental frequency f of the incident wave, was found to be significant even for
incoming waves in deep water conditions. In the case of waves presenting a depth
parameter kh = 6.16, the bottom dynamic pressure excess was, surprisingly, found to
be thirty times larger than expected in the absence of the plate. This behaviour is
explained via the role of evanescent modes and a horizontally oscillating water column
under the plate. Indeed, these local modes still exist whatever the water depth, as
shown by (3.14) and (3.19). Thus, similar phenomena at first order might be observed
under floating bodies (free or fixed), near steep slopes, or for any other configuration
leading to the generation of these local modes.

The bottom pressure distribution oscillating at the frequency 2f , and corresponding
to second order in nonlinearity, was also found to be important. In some cases,
it was found to be of the same order as first-order distribution. It was interpreted
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as the forcing due to the nonlinear interaction between the wave components. The
relative value of the second-order dynamic pressure excess distribution decreases with
decreasing kh. This behaviour cannot be fully ascribed to the rate of the standing wave,
since important reflection coefficients are observed for waves in relative water depth
conditions kh= 1.76.

However, variations of the wave-induced bottom pressure distribution were found to
be significant depending on wave conditions. In addition, such gradients in dynamic
pressure distributions may have a significant impact on the dynamics of sandy beds, or
wave energy tapping devices. Further studies on locally induced sediment transport due
to near-bed oscillations of the fluid are in progress.
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