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Freak waves are generated numerically by means of modulational instability. Their interaction with
wind is investigated. Wind is modeled as Jeffreys’ sheltering mechanism. Contrary to the case
without wind, it is found that wind sustains the maximum of modulation due to the Benjamin-Feir
instability. The general kinematic behavior observed for freak waves due to dispersive focusing is
recovered here, even if the underlying physics are different in both cases. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2374845�

Extreme wave events such as rogue waves correspond to
large-amplitude waves occurring suddenly on the sea sur-
face. In situ observations provided by oil and shipping indus-
tries and capsizing of giant vessels confirm the existence of
such events. Up to now there is no definitive consensus about
a unique definition of a rogue wave event. The definition
based on height criterion is often used. When the height of
the wave exceeds twice the significant height it is considered
as a rogue wave. Owing to the non-Gaussian and nonstation-
ary character of the water wave fields on the sea surface, it is
a very tricky task to compute the probability density function
of rogue waves. So, the approaches presented herein are
rather deterministic than statistical. Recently, Refs. 1 and 2
provided reviews on the physics of these events when the
direct effect of the wind is not considered. Rogue waves can
occur far away from storm areas where wave fields are gen-
erated. In that case huge waves are possible on quasi-still
water.

There are a number of physical mechanisms producing
the occurrence of rogue waves. Extreme wave events can be
due to refraction �presence of variable currents or bottom
topography�, dispersion �frequency modulation�, wave insta-
bility �Benjamin-Feir instability�, soliton interactions, etc.
that may focus the wave energy into a small area. All these
different mechanisms can work without direct effect of wind
on waves. More details can be found in Refs. 2 and 3.

Among the mechanisms that generate extreme wave
events, is the modulational instability or the Benjamin-Feir
instability. Numerical simulations of the fully nonlinear
equations have been performed by Refs. 4–6. Due to a reso-
nant four wave interaction, the uniform wave trains suffer
modulation-demodulation cycles �the Fermi-Pasta-Ulam re-
currence�. At the maximum of modulation a frequency
downshift is observed and very steep waves occur.

Several experimental and theoretical studies have con-
cerned the wind action on the modulational instability.7–10

Herein we used a different theory based on the Jeffreys shel-
tering mechanism to describe the air flow separation over
very steep waves.

Recently, the authors in Ref. 11 took interest in the in-
teraction of wind and freak waves due to dispersive focusing.

They found a weak amplification of the freak waves under
the action of wind, and a significant increase of their life-
time. Those observations were explained by means of
Jeffreys’ sheltering mechanism. The purpose of this Brief
Communication is to extend those results to freak waves due
to modulational instability.

The fluid is assumed to be inviscid and the motion irro-
tational, such that the velocity u may be expressed as the
gradient of a potential ��x ,z , t� :u=��. If the fluid is as-
sumed to be incompressible, the equation that holds through-
out the fluid is the Laplace’s equation.

The waves are supposed to propagate in infinite depth,
and the bottom condition writes

�� → 0 when z → − � . �1�

The kinematic requirement that a particle on the sea surface,
z=��x , t�, remains on it is expressed by
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Since surface tension effects are ignored, the dynamic
boundary condition which corresponds to pressure continuity
through the interface, can be written
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where g is the gravitational acceleration, pa is the pressure at
the sea surface, and �w is the density of water. The atmo-
spheric pressure at the sea surface can vary in space and
time.

By introducing the potential velocity at the free surface
�s�x , t�=��x ,��x , t� , t�, Eqs. �2� and �3� write
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where
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Equations �4� and �5� are given in dimensionless form. Ref-
erence length, reference velocity and reference pressure are

1/k0, �g /k0, and �wg /k0 respectively.
The numerical method used to solve the evolution equa-

tions is based on a pseudo-spectral treatment with a fourth-
order Runge-Kutta integrator with constant time step, similar
to the method developed by Ref. 12. More details can be
found in Ref. 13.

It is well known that the uniformly traveling wave train
of the Stokes’ waves are unstable to the Benjamin-Feir insta-
bility, or modulational instability, which results from a quar-
tet resonance, that is, a resonance interaction between four
components of the wave field. This instability corresponds to
a quartet interaction between the fundamental component
k0 counted twice and two satellites k1=k0�1+ p� and
k2=k0�1− p� where p is the wave number of the modulation.
Instability occurs when the following resonance conditions
are fulfilled:

k1 + k2 = 2k0, �7�

�1 + �2 = 2�0, �8�

where �i with i=0,1 ,2 are frequencies of the carrier and
satellites. A presentation of the different classes of instability
of the Stokes waves is given in the review paper by Dias and
Kharif.14

The procedure used to calculate the linear stability of the
Stokes waves is similar to the method described by Kharif
and Ramamonjiarisoa.15 Let �= �̄+�� and �= �̄+�� be the
perturbed elevation and perturbed velocity potential where
��̄ , �̄� and ��� ,��� correspond, respectively, to the unper-
turbed Stokes wave and infinitesimal perturbative motion
�����̄ ,����̄�. Following Ref. 16, the Stokes wave of am-
plitude a0 and wave number k0 is computed iteratively. This
decomposition is introduced in the boundary conditions �4�
and �5� linearized about the unperturbed motion, and the fol-
lowing form is used:

�� = exp��t + ipx��
−�

�

aj exp�ijx� , �9�

�� = exp��t + ipx��
−�

�

bj exp�ijx + � jz� , �10�

where �, aj, and bj are complex numbers and where � j = �p
+ j�. An eigenvalue problem for � with eigenvector
u= �aj ,bj�t : �A−�B�u=0 is obtained, where A and B are
complex matrices depending on the unperturbed wave steep-
ness of the basic wave. The physical disturbances are ob-
tained from the real part of the complex expressions �� and
�� at t=0.

References 17 and 18 showed that the dominant instabil-
ity of a uniformly traveling train of Stokes’ waves in deep

water is the two-dimensional modulational instability,
or class I instability, as soon as its steepness is less than
	=0.30.

In our simulations, the initial condition is a Stokes wave
of steepness 	=0.11, disturbed by its most unstable pertur-
bation which corresponds to p�0.20=1/5. The fundamental
wave number of the Stokes wave is k0=5 and the dominant
sidebands are k=4 and k=6 for the subharmonic and super-
harmonic part of the perturbation, respectively. There exists
higher harmonics present in the interactions which are not
presented here. The normalized amplitude of the perturbation
relative to Stokes wave amplitude is initially taken to be
equal to 10−3. The order of nonlinearity is M =6, and the
number of mesh points is N
 �M +1�kmax, where kmax is the
highest harmonic taken into account in the simulation. The
latter criterion concerning N is introduced to avoid aliasing
errors. To compute the long time evolution of the wave
packet the time step �t is chosen to be equal to T /100, where
T is the fundamental period of the basic wave. This temporal
discretization satisfies the CFL condition.

Previous works on the rogue wave have not considered
the direct effect of wind on their dynamics. It was assumed
that they occur independently of wind action, that is far away
from storm areas where wind wave fields are formed. Herein
the Jeffreys’ theory �see Ref. 19� is invoked for the model-
ling of the pressure, pa. Jeffreys suggested that the energy
transfer was due to the form drag associated with the flow
separation occurring on the leeward side of the crests. The
air flow separation would cause a pressure asymmetry with
respect to the wave crest resulting in a wave growth. This
mechanism can be invoked only if the waves are sufficiently
steep to produce air flow separation. Reference 20 has shown
that separation occurs over near breaking waves. For weak or
moderate steepness of the waves this phenomenon cannot
apply and the Jeffreys’ sheltering mechanism becomes irrel-
evant.

Following Ref. 19 the pressure at the interface
z=��x , t� is related to the local wave slope according to the
following expression:

pa = �as�U − c�2��

�x
, �11�

where the constant, s is termed the sheltering coefficient, U
is the wind speed, c is the wave phase velocity, and �a is the
atmospheric density. The sheltering coefficient, s=0.5, has
been calculated from the experimental data. In order to apply
the relation �11� for only very steep waves we introduce a
threshold value for the slope ��� /�x�c. When the local slope
of the waves becomes larger than this critical value, the pres-
sure is given by Eq. �11�, otherwise the pressure at the inter-
face is taken to be equal to a constant which is chosen to be
equal to zero without loss of generality. This means that
wind forcing is applied locally in time and space.

The initial condition described previously is propagated
numerically with the high order spectral method. Both cases
with and without wind are studied and compared.

For the case without wind, the time histories of the nor-
malized amplitude of the carrier, lower sideband and upper
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sideband of the most unstable perturbation are plotted in Fig.
1. Another perturbation which was initially linearly stable
becomes unstable in the vicinity of maximum of modulation
resulting in the growth of the sidebands k3=3 and k4=7. The
nonlinear evolution of the two-dimensional wave train exhib-
its the Fermi-Pasta-Ulam recurrence phenomenon. This phe-
nomenon is characterized by a series of modulation-
demodulation cycles in which initially uniform wave trains
become modulated and then demodulated until they are
again uniform. Herein one cycle is reported. At t�360 T the
initial condition is more or less recovered. At the maximum
of modulation t=260 T, one can observe a temporary fre-

quency �and wave number� downshifting since the subhar-
monic mode k1=4 is dominant. At this stage a very steep
wave occurs in the group.

Figure 2 is similar to Fig. 1, except that now water
waves evolve under wind action. Wind forcing is applied
over crests of slopes larger than ��� /�x�c=0.405. This con-
dition is satisfied for 256 T� t�270 T, that is during the
maximum of modulation which corresponds to the formation
of the extreme wave event. When the values of the wind
velocity are too high numerical simulations fail during the
formation of the rogue wave event, due to breaking. During
the breaking wave process the slope of the surface becomes
infinite, leading numerically to a spread of energy into high

FIG. 2. Time histories of the amplitude of the fundamental, k0=5 �solid
line�, subharmonic, k1=4 �dashed line�, and superharmonic, k2=6 �dotted
line�, modes with wind action �U=1.75c�. The two lowest curves �dashed-
dotted lines� correspond to the modes k3=3 and k4=7.

FIG. 3. Numerical maximum elevation normalized by the initial wave am-
plitude �amplification factor� as a function of time without wind �solid line�
and with wind �dotted line� for U=1.75c.

FIG. 4. Surface wave profile at t=270T: without wind �solid line� and with
wind �dotted line�.

FIG. 1. Time histories of the amplitude of the fundamental, k0=5 �solid
line�, subharmonic, k1=4 �dashed line�, and superharmonic, k2=6 �dotted
line�, modes without wind action. The two lowest curves �dashed-dotted
lines� correspond to the modes k3=3 and k4=7.
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wave numbers. This local steepening is characterized by a
numerical blowup. In order to avoid a too early breaking
wave, the wind velocity is fixed at U�1.75c. Owing to the
weak effect of the wind on the phase velocity of the crests on
which it acts, the phase velocity is computed without wind.
The effect of the wind reduces significantly the demodulation
cycle and thus sustains the rogue wave event. This feature is
clearly shown in Fig. 3. The amplification factor A is the
maximal wave height of the packet normalized by the initial
wave height of the Stokes wave. It is stronger in the presence
of wind and the rogue wave criterion A
2 is satisfied during
a longer period of time. Figure 4 displays the water wave
profile at t=170 T in the vicinity of the maximum of modu-
lation with and without wind. The solid line corresponds to
waves propagating without wind while the dotted line repre-
sents the wave profile under wind action. This figure shows
that the wind does not significantly modify the phase veloc-
ity of the very steep waves while it increases their height.

To summarize the results, it appears that extreme wave
events generated by modulational instability in the presence
of wind behaves similarly to those due to dispersive spatio-
temporal focusing discussed in Ref. 11 at least from a kine-
matic point of view. An amplification of the freak wave event
and a significant increase of its lifetime are found. The be-
havior observed here is correlated with the change in the
Fermi-Pasta-Ulam recurrence.
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