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Abstract. A main issue in nonstationary, compressible magnetohydrodynamic (MHD) simu-
lations is controlling the divergence of the magnetic flux. This paper presents a general procedure
showing how to modify the intercell fluxes in a conservative MHD finite volume code such that the
scheme becomes locally divergence preserving. That is, a certain discrete divergence operator van-
ishes exactly during the entire simulation, which results in the suppression of any divergence error.
The procedure applies to arbitrary finite volume schemes provided they are based on intercell fluxes.
We deduce the necessary modifications for numerical methods based on rectangles and triangles and
present numerical experiments with the new schemes.

The theoretical justification of the schemes is given in two independent ways. One way starts
with the discrete divergence operator that has to be preserved and modifies the fluxes accordingly.
The second way uses a finite element reconstruction via Nedelec elements. Both methods lead to
equivalent numerical methods.
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1. Introduction. The magnetic flux density B in magnetohydrodynamic (MHD)
simulations is subject to the constraint divB = 0. This expresses the fact that there
are no magnetic monopoles. In the analytical solutions of the equations this diver-
gence constraint has to be imposed only on the initial conditions. Afterwards, the
evolution equation takes care that the divergence will be preserved for later times.
This divergence preservation is an inherent analytical property of the evolution op-
erator of the magnetic field. In numerical discretizations the preservation property
is not attained in general. Thus, one major task in the design of numerical meth-
ods for magnetohydrodynamics is the control of the divergence errors. Especially
in compressible MHD calculations, divergence errors are generated and amplified by
possible discontinuities; see, e.g., [5]. These errors usually accumulate and lead to a
breakdown of classical numerical schemes, making it impossible to calculated MHD
solutions with those methods.

Most applications of magnetohydrodynamics is found in astrophysics, e.g., in
solar physics [9] or space weather prediction [12]. MHD flows are also of interest in
the investigation of electric propulsion devices, e.g., in [23]. Industrial applications
are given in the simulation of electric arcs, e.g., in current breakers [17].

The construction of divergence-free methods for magnetohydrodynamics is dis-
cussed extensively in the literature. We may distinguish between three major ap-
proaches. The first one, originally described by Brackbill and Barnes in [5], uses
a classical numerical method but cleans the field of the magnetic flux density after
every time step or after a certain number of time steps. The cleaning is obtained
by solving an elliptic equation for a scalar field whose gradient will correct B such
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that div B = 0. This method leads to solenoidal fields during the calculation and
avoids divergence errors. However, the method is expensive due to the solution of a
global elliptic equation. Moreover, inspection of the analytical equation shows that
the preservation of the divergence is not connected to an elliptic problem. Analyt-
ically, the divergence is locally preserved, and it should be possible to construct a
locally divergence-preserving numerical method as well.

The second approach constructs divergence-free methods by special discretization
of the evolution equation of B. Originally described by Evans and Hawley in [13],
these ideas were used and further developed by Balsara and Spicer [4], as well as
by Dai and Woodward [8]. Again, in those methods a correction step follows each
time step of a classical numerical method. This correction step provides a divergence-
preserving evolution for the magnetic flux density on a staggered grid. The correction
character and the staggered grid appear as disadvantages since they leave the cell
average approach in the finite volume method. In [34] Toth showed that the staggered
grid may be eliminated by explicit extrapolation and interpolation. The apparent
restriction of the staggered approach to structured meshes is relaxed by De Sterck in
[11] and in a very recent paper [3] by Balsara.

The third approach is due to Powell [30], who constructed a modified analytical
MHD system based on the assumption that div B �= 0. This new system contains
additional terms which advect the divergence errors out of the computational domain.
Dedner et al. [10] and Munz et al. [27] improve and generalize Powell’s ideas for MHD
as well as for electrodynamics on unstructured grids.

This paper will construct conservative finite volume methods for compressible
magnetohydrodynamics that are locally divergence-preserving on rectangular and tri-
angular grids. We consider only the ideal equations since they usually represent the
building block also for dissipative MHD simulations. We concentrate on the cell av-
erage approach of conservative finite volume schemes. The conservation in the sense
of volume integrals is a crucial property of numerical methods for conservation laws
since it assures the approximation of the right weak solutions. For the incorpora-
tion of the local divergence preservation we use the flux distribution framework given
in [33]. Flux distributions are piecewise constant basis shape functions in the grid
for which a given discrete constraint vanishes. The update in a numerical scheme
has to be built out of linear combinations of such flux distributions in order to pro-
vide constraint preservation. We demonstrate the flux distributions for divergence
preservation and give the necessary modifications for finite volume fluxes. Hence, the
divergence preservation will be incorporated directly into the fluxes of the scheme,
reproducing the analytical preservation properties of the evolution. As a result the
values of the discrete divergence operator given later in (12) will stay exactly the same
during the entire calculation. Since the scheme is based only on special distributions
of intercell fluxes, any finite volume scheme can be modified into a locally divergence-
preserving scheme. Several numerical examples demonstrate the capabilities of the
modified schemes on rectangular and triangular grids. A special case of the scheme
obtained on rectangular grids can be related to a staggered grid method used in [4]
and [34].

Additionally, we will present an alternative construction of the presented scheme,
which was inspired by the work of De Sterck in [11]. It uses a special projection
of a finite element reconstruction of the residual in the numerical method. The key
issue is the use of the Stokes formulation of the evolution equation for B and Nedelec
or face elements for reconstruction. Surprisingly, this deduction leads to the same
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divergence-preserving schemes as the modification of the flux distributions. However,
the construction via so-called Nedelec averaging does not provide the knowledge of
an exactly preserved discrete divergence operator on the cell averaged values.

Though the numerical schemes in this paper are constructed for magnetohydro-
dynamics, the result may be interesting for other fields of computational physics
where evolution equations with constraints are present. In the vorticity method for
calculating incompressible flows, e.g., in [18], or in climatological flows, e.g., in [25],
staggered schemes are used for constraint preservation. In general relativity the Ein-
stein equations are subject to constraints which are important to control in numerical
simulations; see, e.g., [7] and [1]. However, the constraints of Einstein’s equations
are nonlinear, a case which is not covered by this paper. Numerical methods for
vorticity-preserving equations are also discussed in [26].

The remainder of the paper is organized as follows: After we briefly introduce the
equations of magnetohydrodynamics in section 2, the general ideas of flux distribu-
tions are summarized in section 3. In the next two sections, possible flux distributions
for rectangular (section 4) and triangular (section 5) grids are presented. Further-
more, in these sections we construct the modifications of finite volume schemes for
the respective grids and provide numerical experiments. Section 6 is devoted to the
alternative construction of the presented schemes by finite element tools.

2. MHD equations. The equations of ideal magnetohydrodynamics consider
the conservative variables density ρ, momentum density ρv, energy density E, and
magnetic flux density (also magnetic field, for short) B to describe the flow of a
plasma. As a system of field equations, we have

∂tρ + div ρv = 0,

∂tρv + div

(
ρv vT +

(
p +

1

2
B2

)
I − BBT

)
= 0,

∂tE + div

((
E + p +

1

2
B2

)
v − BBT v

)
= 0,

∂tB + div
(
BvT−vBT

)
= 0,

(1)

that is, the balance laws of mass, momentum, and energy and the induction equation.
The system is closed by the equation of state of an ideal plasma E = 1

γ−1p+ 1
2ρv

2 +
1
2B

2, where γ is the adiabatic coefficient of the plasma. The system (1) forms a
hyperbolic system of conservation laws (see, e.g., [20] for hyperbolic properties), a
fact which suggests using a conservative finite volume scheme in nonstationary MHD
flow simulations.

The difficulty of such simulations lies in handling the intrinsic constraint which
follows from rewriting the induction equation (1)4 with a curl, so that we have

∂tB+ curl (B × v) = 0 ⇒ div B = const in time.(2)

This means that the divergence of the magnetic flux density remains untouched during
the evolution. Since the magnetic flux density has to be solenoidal in the initial con-
ditions, it follows that it will be divergence-free for all times. However, the solenoidal
magnetic flux density should not be seen as the main issue. It is the update or residual
in the numerical method that has to be divergence-free. Thus, the main problem is to
construct numerical methods that preserve the divergence during the evolution irre-
spective of the actual divergence of the field that is evolved. The solenoidal magnetic
flux density, then, is a problem only for the initial data.
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This paper deals mainly with the numerical representation of the induction equa-
tion (2). Nevertheless, we should think of this equation as being embedded in a finite
volume scheme, and we should keep in mind that, e.g., intercell fluxes are defined and
calculated only for the complete system (1).

We restrict ourselves to the two-dimensional case. The extension of the presented
algorithms to three dimensions is possible; see section 6. In two dimensions the
divergence of the magnetic flux density is influenced only by the components B(x) and
B(y). Hence, the evolution of B(z) is not of interest for the divergence preservation.
Still, the component B(z) need not be zero in a two-dimensional calculation. This is
sometimes referred to as 2.5 dimensions. The important part of the induction equation
reduces to the system

∂tB
(x) + ∂y(B

(x)v(y) −B(y)v(x)) = 0,
∂tB

(y) − ∂x(B(x)v(y) −B(y)v(x)) = 0,
(3)

whose fluxes are governed by the single function

f (B,v) = B(x)v(y) −B(y)v(x).(4)

Here we have used v = (v(x), v(y), v(z)) for the components of the velocity. Compari-
son with Maxwell’s equations shows that f (B,v) represents the z-component of the
electric field present in the plasma.

3. General framework. In [33] conservative finite volume methods for con-
strained advection in the form (2) have been developed that preserve discrete diver-
gence operators exactly. Unfortunately, these methods cannot be used directly to
obtain divergence preservation in the context of standard finite volume schemes. In
[24] a variant the method of [33] was used in an MHD simulation based on the method
of transport; see [14], [15], and [29].

However, the basic ideas developed in [33] also guide the way to constructing a
locally divergence-preserving method based on a standard finite volume method. The
focus on a finite volume description is important in obtaining a conservative method
(in the sense of volume integrals) which additionally is locally divergence preserving.
Conservation in the sense of volume integrals is the main condition for a method in
order to converge to the true weak solution of a conservation law, as stated by the Lax–
Wendroff theorem; see [16]. In the following, we summarize the general framework
given in [33] in order to provide the necessary concepts.

We consider a domain Ω ⊂ R
D and a time-dependent vector field u : R

+×Ω → R
D

(D: space-dimension) obeying a generic evolution

∂tu + F (u) = 0(5)

with transport operator F . The generic constraint C is assumed to be intrinsic for
(5); that is, the relation

C (F (u)) ≡ 0(6)

holds, which directly implies C (u) = const in time for any solution of (5). We assume
that the constraint is linear, which is fortunately the case in most applications, e.g.,
in magnetohydrodynamics. The case of nonlinear constraints needs special investi-
gation. The computational domain Ω is covered by a grid T = {Ki}i=1,2,... with
polygonal, nonoverlapping cells Ki whose diameter is bounded by h. The set N (K)
gives all neighboring cells of the cell K joining a common face, edge, or vertex. A
time discretization by ∆t leads to a cellwise constant grid function ũm : T → R

D

which approximates u after m time steps by cell mean values.
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3.1. Constraint-preserving schemes. The central quantity of constraint-
preserving schemes is the so-called “flux distribution.” It is the structure of the
flux distribution that determines whether a certain scheme is constraint preserving or
not.

Definition 3.1 (flux distribution). Given the space of vector-valued grid func-
tions denoted by V =

{
g : T → R

D
}
, we define a “flux distribution” ΦK : V → V

which is attached to a grid cell K and maps the grid function ũ into another grid
function

ΦK (ũ) : T → R
D,(7)

with supp ΦK (ũ) ⊆ {K}∪N (K). The evaluation ΦK (ũ)|K̂ gives the change of ũ at

cell K̂ caused by cell K, namely, the flux.
A flux distribution is assigned to each cell of the grid and depends on the solution

ũ in a local manner. The definition is more general than that of usual intercell
fluxes, since it admits fluxes to any neighboring cell, especially across corners. This
incorporates multidimensionality from the very beginning. Global conservation of
ũ may be expressed by the statement that the integral of ΦK (ũ) over its support
vanishes.

A certain form of the flux distribution and its dependency on ũ is usually con-
structed from consistency with the transport equation under consideration. Once the
flux distribution is defined, an explicit evolution scheme follows by simply collecting
contributions of all flux distributions of all cells, that is,

ũm+1
∣∣
K

= ũm|K +
∑

K̂∈{K}∪N (K)

ΦK̂ (ũm)
∣∣
K
.(8)

Here the value of ũ in a cell K is updated by contributions of all neighboring cells.
The contributions are given by evaluations of flux distributions. The resulting scheme
may be considered as a conservative finite volume scheme. Note that virtually any tra-
ditional finite volume scheme can be written in the form (8), and the flux distribution
may then be identified; see also [33].

Since the constraint is assumed to be linear, we expect a discretization which may
be written as matrix operation C (u)|K = C̃K ·ũ+O (hn) on the grid function ũ, which
follows from projection of u. If preservation of the constraint should be achieved for
scheme (8), then, as was shown in [33], we have to look for shape functions Φ̂ for flux
distributions satisfying

C̃K · Φ̂K̂ = 0 ∀K, K̂(9)

as a purely geometric condition. To some extent this is a discrete analogy to (6),
which states that the constraint is intrinsic. See also [19], where discrete analogues of
vector-analytic relations are considered.

As system (9) is homogeneous, we generally hope for a solution space from which

we consider only an appropriate basis set of shape functions {Φ̂(g)
K } with g = 1, 2, . . . ,

all of which are constraint preserving. These shape functions form an appropriate
basis for the solution space of (9). The final flux distribution has to be assembled
from these solutions via

ΦK (ũ) =
∑

g
ϕ

(g)
K (ũ) Φ̂

(g)
K(10)
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with unknown coefficients ϕ
(g)
K , which give the amplitudes of the flux distributions.

The representation (10) gives rise to the interpretation of Φ̂
(g)
K as a shape function.

Note that the choice of ϕ
(g)
K does not affect the preservation of the constraint; see [33].

The expression for ΦK enters scheme (8), and the remaining coefficients ϕ
(g)
K have to

follow from consistency.

4. Rectangular grids. We proceed now with constructing divergence-preserving
schemes for magnetohydrodynamics on rectangular grids. Hence, the constraint is
C(·) = div(·). The cells are denoted by K = (i, j) with positions (xi, yj) and size ∆x×
∆y. The geometry factor of the grid α = ∆x

∆y shall be bounded from above and stay

away from zero. In cases of accuracy considerations, we refer to h = max (∆x,∆y).
Cell averages of B at time level n are denoted by Bn

i,j , omitting the tilde.
In what follows we will consider only flux distributions for the inner cells of the

computational domain. In the numerical experiments boundaries are incorporated
by extending the computational domain with ghost cells. This strategy turns out
to be reliable. In principle, the boundary cells need a special treatment in which we
consider one-sided divergence operators and construct divergence-preserving one-sided
flux distributions. However, this remains for future work.

4.1. Discrete divergence operators. The possible flux distributions resulting
from (9) depend on the form of the discrete operator C̃. Hence, the crucial task in
designing constraint-preserving numerical methods is the choice of the operator C̃.

In [33] it was shown that the classical divergence operator on a rectangular grid

div(0) B
∣∣∣
i,j

=
B

(x)
i+1,j −B

(x)
i−1,j

2∆x
+

B
(y)
i,j+1 −B

(y)
i,j−1

2∆y
(11)

admits only a single flux distribution, which does not give rise to practical schemes.
However, there exists a three-parametric family of second-order divergence operators
with a 3×3 stencil. The so-called extended operator div(�) given by

div(�) B
∣∣∣
i,j

=
{B(x)

i+1,j}y − {B(x)
i−1,j}y

2∆x
+

{B(y)
i,j+1}x − {B(y)

i,j−1}x
2∆y

(12)

is singled out in this family as having the most compact flux distributions and a
minimal error constant; see [33]. Here, curled brackets stand for

{ψi,j}y =
1

4
(ψi,j+1 + 2ψi,j + ψi,j−1) ,

{ψi,j}x =
1

4
(ψi+1,j + 2ψi,j + ψi−1,j) ,

(13)

i.e., averaging between vertical or horizontal cells. Like the classical operator, div(�) B
gives a second-order approximation to the divergence on cell (i, j) using a 3×3 stencil.
The difference lies only in the second-order residual terms. Taylor expansion around
the cell (i, j) leads to

div(0) B+
1

8
∂2
xy(∆y2∂yB

(x) + ∆x2∂xB
(y)) = div(�) B + O

(
h3

)
.(14)

It follows that the operators are equivalent up to second order for smooth solutions.
Note that for nonsmooth solutions the operators (12) and (11) still yield a result
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Fig. 1. Sketches of the four possible flux distributions Φ
(1,2,3,4)
K of a cell K that preserve the

extended discrete divergence operator div(�) on a rectangular grid. Any change of the magnetic
field in the grid must be represented by linear combinations of these flux distributions. Note that
the flux distributions approximate closed curves, a fact that mirrors the physical interpretation of a
vanishing divergence.

consistent with the divergence in the distributional sense. Viewed as distribution,
the divergence of a vector field maps a test function ϕ ∈ D to the real number
ϕ 
→

∫
Ω

B gradϕ. Given a test function and an evaluation of the divergence operators

div(�,0) on a possibly discontinuous vector field B, we have consistency in the form

lim
h→0

∫
Ω

ϕ div(�,0) B =

∫
Ω

B gradϕ ∀ϕ ∈ D.(15)

Hence, it is still reasonable to control a discrete divergence like (12) in the case of
nonsmooth solutions.

The possible flux distributions of div(�) follow from conditions given in (9); see
[33] for details. We obtain four possible flux distributions for cell K. Their support
consists of only four cells. The nonvanishing values of the first flux distribution are
given by

Φ̂
(1)
i,j

∣∣∣
i+1,j+1

= (−∆x,∆y), Φ̂
(1)
i,j

∣∣∣
i,j+1

= (−∆x,−∆y),

Φ̂
(1)
i,j

∣∣∣
i,j

= (∆x,−∆y), Φ̂
(1)
i,j

∣∣∣
i+1,j

= (∆x,∆y),
(16)

and the others follow by translation as indicated in Figure 1. Note that the flux
distributions are conservative in the sense of volume integrals, since the integral over
the grid gives zero. From the flux distributions we conclude that the fluxes from one
cell into another are no longer independent if we want to control the divergence. The
sketch in Figure 1 demonstrates how the fluxes are coupled. A flux from K into its
right neighbor, i.e., a change of the magnetic flux density in that cell, immediately
implies a flux into, e.g., the upper right corner. If this coupling is not respected, the
divergence preservation is not guaranteed.

Thus, the update in a numerical method which is constraint preserving must be
built out of linear combinations of flux distributions as in (16). Once such a scheme

is constructed the local value of the discrete divergence operator div(�) in (12) will
remain completely unchanged during the time steps. The values of the operator given
by the discrete initial conditions will be exactly preserved.

4.2. Identification of flux distributions. Equipped with the information of
the last section, we will now modify a generic finite volume scheme (see, e.g., [16])
for magnetohydrodynamics such that it becomes locally divergence preserving. It is
sufficient to consider only the part of the scheme updating the magnetic flux density,
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Fig. 2. Left: The flux distribution attached to an edge in a classical finite volume scheme. This
flux distribution is not divergence preserving. Middle and right: The modified flux distribution,
which consists of the superposition of two flux distributions sketched in Figure 1. Hence, this flux
distribution will preserve the discrete divergence div(�).

given by

Bn+1
i,j = Bn

i,j +
∆t

∆x
(Fi− 1

2 ,j
− Fi+ 1

2 ,j
) +

∆t

∆y
(Gi,j− 1

2
− Gi,j+ 1

2
),(17)

where F and G are magnetic field components of intercell fluxes, which are obtained
for the full set of conservative variables. These intercell fluxes are assumed to be
given by any Riemann solver (e.g., HLLE or Roe). These fluxes depend on all MHD
variables on both sides of the edge under consideration. However, this dependency is
suppressed in this and the following sections. Since the type of Riemann solver remains
unspecified, the following modifications may be applied to virtually any finite volume
scheme.

As a first step the flux distributions Φ(class) of the classical scheme given in (17)
are identified. Due to the curl-structure of the induction equation (2), the flux F in
the x-direction changes only the y-component of the magnetic flux density, and vice
versa for the flux G. Furthermore, the amplitude of both intercell fluxes is given by
a single scalar function f , and hence we write

Fi+ 1
2 ,j

= −fi+ 1
2 ,j

(
0
1

)
and Gi,j+ 1

2
= fi,j+ 1

2

(
1
0

)
.(18)

The flux distributions are most easily defined when attached to the cell interfaces.
The definition

Φ
(class)

i+ 1
2 ,j

∣∣∣
i,j

= fi+ 1
2 ,j

(
0

∆y

)
, Φ

(class)

i+ 1
2 ,j

∣∣∣
i+1,j

= fi+ 1
2 ,j

(
0

−∆y

)
,(19)

Φ
(class)

i,j+ 1
2

∣∣∣
i,j

= fi,j+ 1
2

(
−∆x

0

)
, Φ

(class)

i,j+ 1
2

∣∣∣
i,j+1

= fi,j+ 1
2

(
∆x
0

)
(20)

leads to the equivalent flux distribution formulation

Bn+1
i,j = Bn

i,j +
∆t

∆x∆y

(
Φ

(class)

i+ 1
2 ,j

+ Φ
(class)

i− 1
2 ,j

+ Φ
(class)

i,j+ 1
2

+ Φ
(class)

i,j− 1
2

)∣∣∣
i,j

(21)

of the scheme (17). So far nothing has happened except a reformulation of the finite
volume scheme. One flux distribution of the classical scheme is depicted at the left-
hand side of Figure 2. Note that the evaluation of the divergence on neighboring cells
in the sense of (9) will not vanish using the operator div(0) or div(�); hence, the classical
scheme (17) does not preserve these divergence operators in general. Furthermore, if
we consider the entire family of second-order 3×3 divergence operators given in [33],
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none of these operators will be preserved in general. Still, the operators could be
preserved in special situations like essentially one-dimensional grid aligned flows or
due to lucky cancellations.

A divergence-preserving scheme may be established by modifying the flux dis-

tributions such that they form linear combinations of the flux distributions Φ
(1,2,3,4)
i,j

given in the previous section. The difficulty lies in obtaining a consistent method. We
suggest the use of

Φ
(div)

i+ 1
2 ,j

= −1

4
fi+ 1

2 ,j

(
αΦ

(1)
i,j + β Φ

(4)
i,j

)
(22)

as the divergence-preserving flux distribution. The coefficients α and β are weighting
coefficients which sum up to unity. The nonvanishing values of this distribution are
given by

Φ
(div)

i+ 1
2 ,j

∣∣∣
i,j+1

=
α

4
fi+ 1

2 ,j

(
∆x
∆y

)
, Φ

(div)

i+ 1
2 ,j

∣∣∣
i+1,j+1

=
α

4
fi+ 1

2 ,j

(
∆x
−∆y

)
,

Φ
(div)

i+ 1
2 ,j

∣∣∣
i,j

=
1

4
fi+ 1

2 ,j

(
(β − α)∆x

∆y

)
, Φ

(div)

i+ 1
2 ,j

∣∣∣
i+1,j

=
1

4
fi+ 1

2 ,j

(
(β − α)∆x

−∆y

)
,

Φ
(div)

i+ 1
2 ,j

∣∣∣
i,j+1

=
β

4
fi+ 1

2 ,j

(
−∆x
∆y

)
, Φ

(div)

i+ 1
2 ,j

∣∣∣
i+1,j+1

=
β

4
fi+ 1

2 ,j

(
−∆x
−∆y

)
,

(23)

and its sketch may be found on the right-hand side of Figure 2. The flux distribution

Φ
(div)

i,j+ 1
2

is built analogously with weights γ and δ. These flux distributions use the same

amplitude of the intercell fluxes as the classical distribution except they distribute this
flux on more cells. This larger support results in a more lengthy formulation of the
scheme, since the value Bn+1

i,j is influenced by intercell fluxes of neighboring cells. The
scheme with divergence-preserving flux distributions reads

Bn+1
i,j = Bn

i,j +
∆t

∆x∆y

(
Φ

(div)

i+ 1
2 ,j

+ Φ
(div)

i− 1
2 ,j

+ Φ
(div)

i,j+ 1
2

+ Φ
(div)

i,j− 1
2

)∣∣∣
i,j

+
∆t

∆x∆y

(
Φ

(div)

i+ 1
2 ,j+1

+ Φ
(div)

i− 1
2 ,j+1

+ Φ
(div)

i+1,j+ 1
2

+ Φ
(div)

i+1,j− 1
2

)∣∣∣
i,j

(24)

+
∆t

∆x∆y

(
Φ

(div)

i+ 1
2 ,j−1

+ Φ
(div)

i− 1
2 ,j−1

+ Φ
(div)

i−1,j+ 1
2

+ Φ
(div)

i−1,j− 1
2

)∣∣∣
i,j

.

This scheme is a conservative finite volume method, and hence approximation of
the true weak solutions is assured by the Lax–Wendroff theorem. Obviously the new
scheme has a larger stencil and is expected to introduce slightly more diffusion into
the numerical solution. However, the extension of the stencil does not apply to the
variables other than the magnetic field. Correspondingly, a decrease of resolution has
not been observed in the numerical experiments; see also Figure 6. The shocks are
smoothed out across the same number of cells. It is also important to note that preser-
vation of the divergence requires the coupling of the changes in the neighboring cells
and leads necessarily to a larger stencil. For the same reason the preserving scheme
appears with a multidimensional flavor. It becomes evident that multidimensionality
is a key issue in controlling the divergence constraint.

The weighting parameters α and β have remained unspecified so far. They corre-
spond to the weights used in [33] to activate different flux distributions in an advection
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scheme. The special case α = β = 1
2 leads to a symmetric method. This method is

equivalent to the staggered grid method of [4], where the intercell fluxes are utilized
to update the edge centered values of B. The equivalence becomes evident if the aver-
aging formulas given in [34] for the staggered grid schemes are used. In [34] formulas
similar to (26) and (27) may be found, but derived from staggered grid schemes. The
formulas differ by some signs, but follow the same spirit of a direct finite volume
update.

The freedom in the weights makes the present scheme more powerful, and we
are able to incorporate additional upwinding into the scheme. One possibility is to
consider an estimate of the fastest and slowest characteristic velocity in the y-direction,

λ
(y)
N and λ

(y)
1 , at the interface (i + 1

2 , j). The weights are then calculated by

α =

(
λ

(y)
N

)
+(

λ
(y)
N

)
+

+
(
−λ

(y)
1

)
+

, β =

(
−λ

(y)
1

)
+(

λ
(y)
N

)
+

+
(
−λ

(y)
1

)
+

,(25)

where (a)+ gives max (a, 0). Analogous expressions may be found for the edge (i, j+ 1
2 )

by considering the characteristics in the x-direction. This approach follows the ideas
of [33], where the weighting is shown to be crucial for the stability of the scheme.
In the case of a supersonic, i.e., superfast, MHD flow in the y-direction, we have
either λ1, λN > 0 ⇒ α = 1, β = 0 or λ1, λN < 0 ⇒ α = 0, β = 1. Hence, only a
single flux distribution in one of the corners, as shown in Figure 1, will be activated.
This additional upwinding also reduces the stencil of the magnetic field update, which
results in sharper resolution of superfast shock waves (see below). In [4] there is also
an additional upwind weighting discussed in the case of a staggered grid method.
However, the authors do not consider characteristic information for the weighting,
but rather use gradient evaluations. Their ideas could also be incorporated into the
present scheme to specify different weights α and β.

Remark on the implementation. The formulation through flux distributions is an
auxiliary concept used in order to construct the preservation of the divergence and
the conservation in the sense of volume integrals. In fact it is not needed for the
implementation of the scheme. An existing finite volume scheme for magnetohydro-
dynamics may be modified appropriately by adding only a few lines. During the
classical update (17) implemented by running through the edges, one has to identify
the amplitudes fi+ 1

2 ,j
and fi,j+ 1

2
from the intercell fluxes and to update the neighbors

across the corners, as indicated in Figure 2 or in (23).

4.2.1. Consistency.To show the consistency of the divergence-preserving scheme,
we first consider the case α = β = γ = δ = 1

2 and make the flux distributions in (24)
explicit. After rearranging the resulting terms, we obtain the equivalent formulation

Bn+1
i,j = Bn

i,j + ∆t

(
1

∆y (〈fi,j− 1
2
〉 − 〈fi,j+ 1

2
〉)

1
∆x (〈fi+ 1

2 ,j
〉 − 〈fi− 1

2 ,j
〉)

)
,(26)

where the angular brackets stand for the averaging

〈fi,j+ 1
2
〉 =

1

8
(2fi,j+ 1

2
+ fi+1,j+ 1

2
+ fi−1,j+ 1

2
+ fi− 1

2 ,j
+ fi+ 1

2 ,j
+ fi− 1

2 ,j+1 + fi+ 1
2 ,j−1),

〈fi+ 1
2 ,j

〉 =
1

8
(2fi+ 1

2 ,j
+ fi+ 1

2 ,j+1 + fi+ 1
2 ,j−1 + fi,j− 1

2
+ fi,j+ 1

2
+ fi+1,j− 1

2
+ fi−1,j+ 1

2
)

(27)



1176 MANUEL TORRILHON

of the neighboring intercell fluxes. Assuming that the intercell flux amplitudes fi+ 1
2 ,j

are at least second-order approximations to the exact values, e.g., by linear recon-
struction, we proceed with a Taylor expansion of the above given scheme. Finally this
leads to the statement(

1
∆y (〈fi,j− 1

2
〉 − 〈fi,j+ 1

2
〉)

1
∆x (〈fi+ 1

2 ,j
〉 − 〈fi− 1

2 ,j
〉)

)
=

(
−∂yf
∂xf

)
i,j

+ O(h2),(28)

which shows second-order consistency in space with the induction equation (2). Sec-
ond order in time may now be obtained by Runge–Kutta integration of the residual.

The case of weights different from 1
2 but constant in the grid may be considered

analogously. However, in general, the weights are varying in the grid, and additional
terms have to be included in (26) in order to obtain full second order; see also [33].
The elaboration of this issue remains for future work.

4.3. Numerical examples. In this section we investigate the capabilities of the
new divergence-preserving scheme in comparison to the classical scheme by numerical
experiments. Both schemes were implemented using linear reconstruction, dimen-
sional Strang splitting, and Heun integration in time. Second-order consistency is
shown by considering a smooth solution, while the divergence preservation is demon-
strated using the discontinuous solutions of a Riemann problem. For all computations
in this paper, the adiabatic coefficient was set to be γ = 5

3 , which represents the re-
alistic case of a monatomic plasma.

4.3.1. Empirical order of convergence. For the empirical order of conver-
gence, we consider the computational domain [−1, 1]2 with periodic boundary condi-
tions and the smooth initial conditions

ρ0 (x, y) =
3

2
+

1

2
sin(π x) +

1

4
cos(π y), p0(x, y) =

1

4
,

v0 (x, y) =

(
1 + 1

2 sin(π y) + 1
4 cos(π x)

1 + 1
4 sin(π x) + 1

2 cos(π y)

)
, B0(x, y) =

(
1
2
1

)
,

(29)

with v(z) = B(z) = 0. Simulations with both the classical finite volume scheme (17)
and the modified scheme (24) with symmetric weighting were conducted up to an
end time t = 0.2. In both cases the intercell fluxes were obtained by use of the
HLLE Riemann solver for magnetohydrodynamics as described, e.g., in [31] or [36].
The maximal Courant number was 0.9, and both schemes used an adaptive time step
algorithm. The linear reconstruction was limited by the well-known weighted ENO
(WENO) limiter [21]. In order to derive empirical orders of convergence, we calculate
a reference solution on a fine grid (1200×1200 cells) with the divergence-preserving
scheme. It is interesting to note that it was not possible to obtain a reference so-
lution with the classical scheme. On grids with resolutions beyond 1000×1000 the
classical scheme fails due to divergence errors. On very fine meshes these errors ac-
cumulate during the calculation, though the solution remains smooth. This failure is
not present for the coarse grids considered in Figure 3. However, the failure illustrates
how urgently a divergence control is needed for MHD calculations.

The errors of the magnetic energy 1
2B

2 compared to the reference solution are
shown in Figure 3 for grids with resolutions up to 200×200. Both schemes, the classical
and the divergence-preserving, exhibit second order for this problem. The errors of
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Fig. 3. Comparison of the empirical order of convergence of the classical scheme and the
modified divergence-preserving scheme. Both schemes attain second order. The plot shows only the
error of the magnetic energy 1

2
B2. For the “exact” solution, a reference solution obtained on a

1200 × 1200 grid was used.

the divergence-preserving schemes are smaller, which might also be explained by the
fact that the reference solution was obtained by the divergence-preserving scheme
as well. The second order is present in all fields of the MHD variables. The errors
of all other variables, except those of the magnetic field, obtained with the classical
and the divergence-free scheme are almost indistinguishable. Therefore we skip the
presentation of these errors.

4.3.2. Upwind weighting. In order to present the capabilities of the upwind
weighted scheme, we consider an MHD shock wave from the fast characteristic family
in diagonal grid direction (1, 1)T . The acoustic Mach number of the inflow is chosen
to be M0 = 4.5, which corresponds to the Mach number of the shock. A diagonal
velocity of v = 1.2 is superposed such that the shock wave is not stationary but
travels slowly across the grid. This setting can be interpreted as part of an evolving
bow shock simulation.

Due to the superfast diagonal velocity, the weighting in (25) activates only the flux
distribution Φ(1) for both the y- and x-intercell flux. This results in a minimal stencil
which still preserves the extended divergence operator div(�) locally for every time
step. The simulation is conducted on a 100 × 100 grid, and approximately 500 time
steps are calculated. To focus on the effect of the weighting, the calculations did not
use linear reconstruction, and the Strang splitting was substituted by simple additive
splitting, which restricts the Courant number � 0.5. Figure 4 shows the shock profiles
for the magnetic field components B(x) and B(y). Additionally, the plots show the
results with the symmetric weights (larger stencil) and with the uncorrected, classical
method. In the case of the classical method, divergence errors are created and the
shock profile becomes oscillatory. The profile is resolved within 3–5 grid cells. In
the upwind part of the profile, the weighted scheme shows a significant increase in
resolution in comparison with the symmetrically weighted scheme.

4.3.3. Riemann problem. The control of the divergence becomes a most im-
portant issue if discontinuous solutions have to be calculated. Divergence errors occur
at the discontinuities and contaminate the rest of the computational domain. In such
cases it is also interesting to compare the different divergence operators given in the
previous sections. As a test case we consider the two-dimensional Riemann problem
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Fig. 4. Plots of the magnetic flux density component B(x) (left) and B(y) (right) for a fast
MHD shock wave traveling in diagonal grid direction with acoustic Mach number M0 = 4.5. The
solid line shows the result of the scheme with upwind weighted flux distributions (minimal stencil).
The dotted line is obtained with the symmetric scheme. The result of the classical uncorrected
scheme is shown with a dashed line. The upwind weighted scheme gives the best resolution of the
shock.

Fig. 5. Behavior of the discrete divergence. The plot shows results for the classical (both upper
curves) and the divergence-preserving (lower curve) schemes in the case of the Riemann problem
given in (30) at time t = 0.1 on different grids. For the divergence-preserving scheme, the operator

div(�) gives exactly zero, while div(0) grows very slowly if the grid is refined. For the classical
scheme, evaluations of both operators explode and the calculation fails to reach t = 0.1 on grids
larger than 500 × 500.

given by the initial conditions

ρ0 (x, y) =

{
10 x < 0, y < 0,
1 else,

p0 (x, y) =

{
15 x < 0, y < 0,
1
2 else,

(30)

with B0 = 1/
√

2(1, 1, 0)T and v0 ≡ 0. The computational domain was chosen
to be [−0.4, 0.4]2 and the end time is t = 0.1. Again, we used CFL = 0.9 and an
adaptive time step. The boundaries are extended with ghost cells filled with constant
extrapolation of the values of the inner cells.

We calculated the problem with the classical scheme and the new divergence-
preserving scheme for different grid resolutions. Once t = 0.1 has been reached, the
discrete divergence is evaluated using the classical operator (11) and the extended
operator (12). The infinity norm of these evaluations is depicted in Figure 5 for the
different grids. As expected, the divergence of the classical scheme grows rapidly
independent of the operator. Furthermore, this growth yields a failure of the scheme
at high resolutions.

In the calculation with the divergence-preserving scheme, the evaluation of div(�)
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Fig. 6. Comparison of the classical (top) and the modified divergence-free (bottom) schemes in
the case of the Riemann problem (30) on a rectangular grid at t = 0.1. The figure shows the contours

of the magnetic flux component B(y) and of the classical discrete divergence div(0). The extended
divergence div(�) gives exactly zero in the case of the divergence-free scheme and a similar plot as
div(0) for the classical scheme. The calculation with the classical scheme fails at higher resolutions.

gives zero for the entire calculation in accordance with the theoretical result that
this operator is exactly preserved. The operator div(0), however, gives nonvanishing
results due to the discontinuities present in the solution. This will be discussed in the
following paragraphs.

Figure 6 shows the result of the Riemann problem at t = 0.1 obtained with
300×300 cells. Note that the number of cells given in the figure corresponds to the
reduced domain which is shown. Besides the contours of B(y) the figure shows the
contours of the absolute value of div(0) B for the classical (upper row) and the new
divergence-free (lower row) schemes. The divergence is significantly disturbed when
using the classical scheme, resulting in a nonphysical solution of B(y) and also of all
other variables due to the coupling of the equations.

The divergence-preserving scheme gives a clearly resolved solution for the mag-
netic flux density B(y). Furthermore, the operator div(0) gives a nonvanishing value
only in the vicinity of oblique shocks. This represents the fact that the classical oper-
ator differs from the extended operator by some cross derivatives as given in (14). In



1180 MANUEL TORRILHON

smooth domains of the solutions, these cross derivatives are finite and give rise only
to a second-order difference between the classical and the extended operator, which
is exactly zero. Additionally, these cross derivatives vanish in the case of coordi-
nate aligned and diagonal shocks, and in these cases the preservation of the extended
operators entails a vanishing classical operator. This is also visible in Figure 6. How-
ever, in oblique shocks these cross derivatives become large; hence, div(0) will give
a finite value. The plot in Figure 6 demonstrates that these values stay attached to
the shocks and in the limit the operator div(0) will give zero almost everywhere. At
the resolution 500×500 (∆x = 0.0016) the maximal value of the classical operator is

div(0) B ≈ 14. By comparison with the residual expression in (14), this value shows
that the cross derivatives have an order of magnitude O(∆x−2), resulting in a finite

value of div(0) B.

5. Triangular grids. The construction of locally divergence-preserving schemes
is not restricted to rectangular grids. This section considers triangular grids. The goal
is to construct constraint-preserving methods on triangular grids in a way analogous
to that of the previous section. We will use the results of the rectangular case and
give an appropriate divergence operator and the according flux distribution directly.
This yields a scheme completely analogous to the rectangular case. In the next section
an alternative deduction of the preserving methods is presented which will provide
additional understanding of the presented methods.

The triangular grid consists of vertices pi which combine into triangles or cells,
e.g., Ki,j,k built from pi, pj , and pk. For the barycenter of cell K we write cK . The cell
Ki,j,k is bounded by oriented edges ei,j , ej,k, and ek,i, ordered following a positive
orientation of the boundary of the cell. The edge ei,j points from vertex pi to pj .
The neighboring cell to the right of the edge ei,j is denoted by Ni,j . For accuracy
considerations we refer to h = maxK diamK. Finally, it is convenient to introduce
the notation (x, y)

⊥
= (y,−x) for the orthogonal counterpart of a two-dimensional

vector. Similar to the rectangular case, we will consider only inner cells and use ghost
cells in the numerical experiments.

5.1. Discrete divergence operators. As in the rectangular case our first task
is to look for discrete divergence operators on triangular grids. If we consider only the
direct neighbors of a triangle (neighbors joining a common edge), the triangular grid
leaves only a little freedom in constructing divergence operators. The only consistent
operator which takes into account only the three direct neighbors of a cell is given by

div(0) B
∣∣∣
Ki,j,k

≈
BNj,k

·(cNi,j− cNk,i
)⊥ + BNk,i

·(cNj,k
− cNi,j )

⊥ + BNi,j
·(cNk,i

− cNj,k
)⊥

1
2 (cNj,k

− cNi,j ) · (cNk,i
− cNi,j )

⊥ ,

(31)

which follows by requiring first-order consistency with the divergence in the barycenter
of Ki,j,k. A second-order operator which uses only the direct neighbors of a general
triangular cell does not exist since there is not enough freedom for eliminating the
coefficients in the Taylor expansion. The rigorous evaluation of the generic statement
(9) in order to obtain flux distributions for (31) is very difficult for a general triangular
grid. Several flux distributions with different shapes have been assumed and tested
by evaluation of the operator (31). None of the flux distributions turned out to be
divergence preserving. It could well be that the operator (31) does not permit any
sufficiently local flux distributions.
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If we consider divergence operators which take into account all neighbors of a
cell (also across a vertex), there is much more freedom for divergence approximations
than in the rectangular case. Again, the construction and analysis of a general class
of operators is very complicated. Instead, we construct a divergence operator which
evaluates all neighboring cells, as the extended operator does for the rectangular case
(12). This operator for a triangle may be written as

div(�) B
∣∣∣
Ki,j,k

=
1

3

(
div(×) B

∣∣∣
i
+ div(×) B

∣∣∣
j
+ div(×) B

∣∣∣
k

)
(32)

using three evaluations of the divergence at the vertices of Ki,j,k given by

div(×) B
∣∣∣
i
=

3

2

∑
all adjacent Ki,l,m

BKi,l,m
· e⊥l,m∑

all adjacent Ki,l,m

|Ki,l,m| .(33)

Using Taylor expansion the operator (32) can be shown to be first-order consistent
with the divergence of B in the barycenter of Ki,j,k. Note that the rectangular

operator div(�) can be written using (similar to (32), (33)) an averaging of divergence
operators located in the vertices.

Surprisingly, neither (31) nor (32) is used in other works on divergence controlling
on triangular grids. The authors of [10] use the operator

div(+) B
∣∣∣
Ki,j,k

=
BNi,j

· e⊥i,j + BNj,k
· e⊥j,k + BNk,i

· e⊥k,i
|Ki,j,k|

,(34)

which is consistent only if all triangles have the same edge-lengths. Indeed on arbi-
trary grids this operator does not show pointwise convergence to the exact divergence.
Essentially, the operator (34) measures the jump of the normal components of the
magnetic field across edges.

For a divergence-preserving scheme on triangular grids, we will consider the oper-
ator (32). It provides flux distributions which are equivalent to the flux distribution
of the rectangular case. The aim is to construct flux distributions Φi that give ex-
actly zero for (32). In the construction we do not follow the generic statement (9),
which would be too cumbersome. We rather use the rectangular result and try to
find analogous flux distributions that bend around a vertex; see Figure 1. Promising
candidates may then easily be tested by application of the operator (32). In that way
we obtain flux distributions that are attached to vertices, and their support consists of
all cells around that vertex. Two of these flux distributions are depicted in Figure 7.
Evaluation of the flux distribution in one of the adjacent cells gives

Φi|Ki,j,k
=

ej,k
|Ki,j,k|

.(35)

The application of the operator (33) to such a flux distribution vanishes for any vertex;
hence the evaluation of the operator (32) will give zero in any cell. This establishes
the condition (9) needed for divergence preservation. The vanishing of (33) for these
flux distributions becomes clear by use of the relation e⊥i,j · ek,j = 2 |Ki,j,k| in the
evaluation.

Note that the flux distribution in (35) is built such that the normal component
across edges is constant, a property not shared by the rectangular flux distribution.
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Fig. 7. Sketches of two possible flux distributions that preserves the discrete divergence div(�)

in case of a triangular grid. In each flux distribution the jump of the normal component between
adjacent cells vanishes. Note the optical similarity with the flux distributions in the rectangular case.
Again the flux distributions approximate closed curves according to a divergence-free field.

This property represents the solenoidality in a weak sense. Furthermore, the evalua-
tion of the operator (34) applied to the flux distribution (35) gives zero for all cells
as well.

As in the rectangular case a numerical scheme built with the flux distributions Φi

will exactly preserve the local values of div(�) B, and the classical operator (31) will

not be preserved. However, since both operators div(�) and div(0) are consistent, the
operator div(0) will stay bounded in any smooth region of the solution. According to
the last paragraph, it will also exactly preserve the local values of div(+) B, and it will
not affect the jumps in the normal components across edges. That is, the scheme will
not introduce additional jumps but preserve the jumps given by the initial conditions.
This additional preservation property is restricted to triangular grids.

5.2. Identification of flux distributions. Knowledge of the possible flux dis-
tributions enables us to construct a divergence-preserving finite volume scheme. A
finite volume update for the magnetic flux density on triangles is written in the form
(see, e.g., [32])

Bn+1
Ki,j,k

= Bn
Ki,j,k

− ∆t

|Ki,j,k|
∑

l,m edge
of Ki,j,k

|el,m| H
(
Bn

Ki,j,k
,Bn

Nl,m
, el,m

)
,(36)

where H (BK ,BN , e) gives the magnetic part of the intercell flux across an edge e.
This intercell flux can be obtained by any Riemann solver and is here assumed to be
given. The dependency of H on the other conservative variables is suppressed in (36).
From the curl-structure of the induction equation in (2) it becomes evident that the
amplitude of the flux H is given by a single scalar function f , while its direction is
always parallel to the edge under consideration. Hence, if we define a flux distribution

Φ
(class)
i,k attached to the edge ei,k by

Φ
(class)
i,k

∣∣∣
Ki,j,k

= fi,k
ek,i

|Ki,j,k|
, Φ

(class)
i,k

∣∣∣
Ki,k,l

= fi,k
ei,k

|Ki,k,l|
,(37)

then the classical scheme (36) has the form

Bn+1
Ki,j,k

= Bn
Ki,j,k

+ ∆t
(
Φ

(class)
i,j + Φ

(class)
j,k + Φ

(class)
k,i

)∣∣∣
Ki,j,k

.(38)

Here, fi,k gives the amplitude (possibly negative) of the intercell flux through edge
ei,k from left to right. The left-hand side of Figure 8 shows the shape of the flux

distribution Φ
(class)
i,k for a positive fi,k. As in the rectangular case this flux distribution
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Fig. 8. Left: The flux distribution of a classical finite volume scheme for the induction equation.
The discrete divergence is not preserved. Right: The flux distribution of the new divergence-free
scheme which results from superposition of two flux distributions around vertex i and k. The vectors
in Ki,j,k and Ki,k,l follow from the average in (39).

does not preserve any discrete divergence operator. Following the ideas of the previous
section, we modify the flux distribution such that it becomes a linear combination of
the Φi’s given in (35) and Figure 7.

The definition

Φ
(div)
i,k =

1

2

(
fi,k
#pi

Φi +
fi,k
#pk

Φk

)
(39)

gives a flux distribution as shown on the right-hand side of Figure 8. The symbol
#pi denotes the number of edges emerging from the vertex pi. Obviously this flux
distribution is divergence preserving since it is a linear combination of divergence-
preserving flux distributions. As in the rectangular case it is possible to weight the
flux distributions differently. Here, we restrict ourselves to the symmetric scheme.

Note that the values of Φ
(div)
i,k in Ki,j,k and Ki,k,l are not parallel to ei,k if #pi �= #pk

as indicated in the sketch of Figure 8. In the resulting scheme the magnetic flux
density in one cell is not only influenced by the direct neighbors but also by neighbors
across vertices. The scheme reads

Bn+1
Ki,j,k

= Bn
Ki,j,k

+ ∆t
(
Φ

(div)
i,j + Φ

(div)
j,k + Φ

(div)
k,i

)∣∣∣
Ki,j,k

+ ∆t
∑

l or m
∈ (i,j,k)

Φ
(div)
l,m

∣∣∣
Ki,j,k

.

(40)

In analogy to the method on rectangular grids, this scheme is a conservative finite
volume method. It possesses a larger stencil to account for the control of the discrete
divergence.

Remark on the implementation. Again the formulation with flux distributions is
not necessary in the implementation. A finite volume program which runs through all
edges updating the neighboring cells with the intercell flux may easily be modified.
Once the amplitude f is obtained from the intercell flux, this flux has to be distributed
to all neighbors sharing the same vertices as the edge (see Figure 8 right).

5.2.1. Consistency. Taylor expansion of the classical finite volume scheme (38)
leads to (

Φ
(class)
i,j + Φ

(class)
j,k + Φ

(class)
k,i

)∣∣∣
Ki,j,k

=
fi,j ei,j + fj,k ej,k + fk,i ek,i

|Ki,j,k|

=

(
−∂yf
∂xf

)
Ki,j,k

+ O(h)(41)
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if the approximations of the intercell fluxes f are assumed to be at least first order.
The same assumption and some rearranging of the expressions in the divergence-
preserving scheme (40) yields the similar statement(

Φ
(div)
i,j + Φ

(div)
j,k + Φ

(div)
k,i

)∣∣∣
Ki,j,k

+
∑

l or m∈ (i,j,k)

Φ
(div)
l,m

∣∣∣
Ki,j,k

=
〈 fi,j 〉 ei,j + 〈 fj,k 〉 ej,k + 〈 fk,i 〉 ek,i

|Ki,j,k|

=

(
−∂yf
∂xf

)
Ki,j,k

+ O(h).(42)

Here the averages of neighboring intercell fluxes

〈 fi,j 〉 =
1

2

⎛
⎜⎜⎝ ∑

edges i,k
around pi

fi,k
#pi

+
∑

edges l,j
around pj

fl,j
#pj

⎞
⎟⎟⎠(43)

arise, which have the same structure as the averages used in (27) in the rectangular
case. Indeed, if (43) is evaluated for edges in a rectangular grid instead of a triangular
one, we obtain exactly (27) after renaming the intercell fluxes. This completes the
analogy of both the rectangular and triangular schemes.

Usually, classical methods on unstructured grids like in (36) are extended formally
to second order by linear reconstruction and Runge–Kutta integration in time; see,
e.g., [32], [36]. The divergence-preserving flux modification given in (40) is perfectly
adapt to such a setting, since it uses the intercell fluxes directly. Furthermore, a
Runge–Kutta integration may be viewed as successive evaluations of Euler time steps
like in (40); hence the divergence will be preserved at every stage and in the final
update.

5.3. Numerical example. Both schemes, the classical (36) and the divergence-
preserving (40), have been implemented to examine test cases. As in the rectangular
case the well-known HLLE flux, as described in [31] or [36] for magnetohydrodynamics,
has been used to calculate the intercell fluxes. The implementation is restricted to
first order for implementational convenience and purely designed to demonstrate the
divergence preservation. However, the scheme (40) is expected to work as well for
second order obtained by linear reconstruction and Runge–Kutta integration. Future
work includes the incorporation of the modifications into existing codes, as in [10], as
well as the comparison of the present modifications to other approaches of divergence
corrections.

The Riemann problem given by (30) is considered as a test example. Here, we use
the end time t = 0.3 and the computational domain [−1, 1]2 covered by an unstruc-
tured triangular mesh. At the edges of the boundary of the domain the fluxes are
obtained from the solution of a Riemann problem with the same values for the left-
and right-hand states which corresponds to the use of zero-order extrapolated ghost
cells. The mesh was generated using the routines of “pdetool” provided in MATLAB.
The mesh was obtained first by generating a mesh with prescribed maximal edge-
length and two successive regular and uniform refinements, yielding 105,568 triangles
with a maximal edge-length ≈ 0.001. The grid was unstructured both regarding the
shape of the cells and the number of cells around a vertex. The implementation of
the scheme was done in plain C.



DIVERGENCE-PRESERVING FINITE VOLUME SCHEMES FOR MHD 1185

Fig. 9. Time evolution of the discrete divergence div(�) in the Riemann problem (30) in the
case of the classical and the divergence-preserving schemes on a unstructured grid with 105,568 cells.
For the classical scheme the divergence grows in an uncontrolled manner, and the scheme stops at
t = 0.224 due to a vanishing time step. Depending on the resolution and structure of the mesh,
the failure occurs at different times. For the divergence-preserving scheme the discrete divergence
vanishes for all times and coincides with the coordinate axis.

Fig. 10. Contours of the magnetic energy 1
2
B2 and the magnetic flux component B(y) for the

Riemann problem (30) at t = 0.3. The contours are spoiled from a poor boundary procedure but are
free from divergence errors.

Figure 9 shows the time evolution of the divergence operator (32) during the
calculation with the classical and the divergence-preserving schemes. Initially this
operator gives exactly zero in every cell. Only for the divergence-preserving scheme
does this hold also for the entire calculation. In contrast, the divergence grows ex-
ponentially with time for the classical scheme, as can be seen in Figure 9. Indeed,
the classical calculation fails before the calculation reaches the end time t = 0.3. As
expected, it follows that a divergence control is mandatory for such a calculation.

The results for the Riemann problem (30) calculated with the divergence-preser-
ving method are depicted in Figure 10. The figure shows the contours of the magnetic
energy 1

2B
2 and of the magnetic flux density component B(y) at time t = 0.3. Note

the self-similarity of the problem, which becomes apparent by comparison to Figure 6,
where the result for t = 0.1 is shown. The plots in Figure 10 show less resolution of
the discontinuities due to the first-order scheme. The calculation suffers from errors
due to a poor boundary procedure for the fluxes. However, the calculation stays free
of divergence errors.
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6. Alternative construction. The finite volume methods of the previous sec-
tions were constructed by constraining their fluxes to preserve certain divergence
operators from the very beginning. In the following we will present an alternative
construction based on a finite element representation of the residual. Both ways pro-
vide different insights into the properties of the schemes. The following approach was
inspired by the work [11]. A very recent paper [3] considers a similar approach in the
context of staggered grids.

6.1. Stokes formulation. No doubt, the system of magnetohydrodynamics (1)
is built from conservation laws, and only a conservative method based on fluxes will
give reliable numerical approximations. Such schemes consider cell volume averages
of the conservative variables. However, unlike the balance equations of mass, momen-
tum, and energy, the weak formulation of the induction equation (2) is more naturally
formulated on surfaces rather than in volumes.

The Stokes formulation in three dimensions is given by

d

dt

1

|A|

∫
A

B· dA = − 1

|A|

∫
A

curlB × v · dA = − 1

|A|

∫
∂A

B × v · de,(44)

which represents an evolution equation for a surface average of the magnetic flux
density B. Note that the preservation of the divergence follows immediately in the
form

d

dt

1

|A|

∮
A

B· dA = 0,(45)

since a closed surface has no boundary. In the following subsections we construct
a numerical method by approximating the evolution equation (44), which, however,
must be linked to a finite volume approach of the other equations in the MHD system
(1). As in the previous sections we restrict ourself to the two-dimensional case in
which (44) reduces to

d

dt

1

|e|

∫
e

B · de⊥ = − 1

|e| [ f ]
1
0(46)

for line segments. Hereafter, all vectors are two-dimensional, and f is given by (4).
The basic approximation considers (46) for edges of cells of the computational

domain. At first these cells shall be arbitrary polygons. The edge average on the left-
hand side of (46) gives a mean normal component be of the edge under consideration.
The evolution equation then reads

d

dt
bei,j = −fj − fi

|ei,j |
(47)

for an edge ei,j pointing from vertex pi to pj . Here, the divergence preservation is
automatically incorporated since the integral of the mean normal components around
a cell border will remain constant. We have

d

dt

∑
e
(K)
i,j edges
around K

∣∣∣e(K)
i,j

∣∣∣ be(K)
i,j

= 0;(48)

hence, the residual in (47) is divergence preserving. The method in (47) is related
to the correction scheme used in [4], [8], and [13] on a staggered grid to provide a
solenoidal magnetic flux density on rectangular grids.
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6.2. Face elements. In order to incorporate (47) into a finite volume approach,
where cell averages play the major role, we only need to project the edge normal
components to cell averages. This was also pointed out by De Sterck in [11]. We
proceed by elaborating his approach.

De Sterck proposes using face elements, also called Nedelec elements [28], for
this projection. These elements are well known in the finite element simulations of
electrodynamics; see, e.g., [22], [6]. Face elements are basis functions that combine
given mean normal components on the faces of a cell to a linear reconstruction of the
field inside the cell. They are suited for the evolution of the mean fluxes across faces
in (44). In two dimensions the reconstruction of a generic field Ψ reads

Ψ|K (x) =
∑

edges of K

ψei,j
W

ei,j

K (x) ,(49)

where W
ei,j

K are the face element. They are suited for the evolution (47). In two
dimensions the face elements are attached to the edges as degenerate faces and corre-
spond to Raviart–Thomas elements. The property of W

ei,j

K justifying the reconstruc-
tion in (49) is

e⊥k,l · Wei,j (x)|ek,l
=

{
|ek,l| if ek,l = ei,j ,
0 other edges;

(50)

that is, taking the mean normal component along an edge in (49) will yield an identity.
The symbol ()⊥ again denotes the orthogonal counterpart. Furthermore, the normal
component of the reconstructed function is constant along the edge, at least in the
triangular and rectangular cases. For more properties, see [22] or other textbooks on
finite elements. Face elements may be constructed for triangles and quadrilaterals in
two dimensions and for tetrahedrons and hexahedrons in three dimensions.

Since the normal components on the edges are reproduced in (49), the recon-
struction of the field of the entire computational domain will give a piecewise linear
function with continuous normal components across cells. Additionally, we have∑

edges of K

ψei,j |ei,j | = 0 in K ⇒ div Ψ = 0 in K;(51)

that is, if the closed integral of the given mean normal components on the boundary of
a cell gives zero, the reconstructed field in this cell will be solenoidal. This property
predestinates face elements for the reconstruction of fields given by the right-hand
side of (47).

6.3. Averaging.

6.3.1. General approach. Since we are only interested in cell averages, each
face element is integrated to give its cell average

W
ei,j

K :=
1

|K|

∫
K

W
ei,j

K (x) dx.(52)

Using this averaged face element, we average the reconstruction (49) to obtain

ΨK =
∑

edges of K

ψei,j W
ei,j

K(53)
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for a generic field Ψ. This averaging using Nedelec reconstruction is called Nedelec
averaging in what follows. It represents the required projection, which turns the
evolution equation (47) into an equation for cell averages, that is,

∂tBK =
∑

edges of K

fi − fj
|ei,j |

W
ei,j

K ,(54)

where BK is the cell average of the magnetic flux density. As mentioned earlier in
this paper, the divergence-preserving property is needed primarily for the residual
of the evolution equation. It is the residual which has to be solenoidal in order to
provide a divergence-preserving update. The vanishing divergence of the magnetic
flux density does not play a major role. Indeed, if the left-hand side in (54) was not
divergence-free, e.g., an electric field, we still would need to proceed the same way
since it is the curl-character of the residual which has to be matched.

It remains to specify the evaluations of the function f given by (4) at the vertices
in (54). In [11] this had been done by a residual distribution scheme. Here, we will
try to stay close to a finite volume approach for the entire MHD system (1). In order
to use the information obtained by intercell fluxes, we define

fi =
∑

edges i,j
around pi

fi,j
#pi

(55)

for the vertex evaluations. As in the previous sections fi,j is the amplitude of the
magnetic intercell flux and #pi gives the number of edges at vertex pi. This definition
will become more justified in the following two subsections. There, it yields numerical
methods equivalent to the symmetrically weighted schemes given before in (24) and
(40), which were constructed directly upon modifications of the intercell flux. One
may think of some weighted definition for fi which will result in weighted schemes.
In [11] a residual distribution scheme was used to calculate the vertex flux.

The scheme (54) describes the divergence-preserving method on general grids.
The same construction is possible for the three-dimensional equations (44) yielding
a three-dimensional scheme. We proceed by specifying (54) for triangular and rec-
tangular grids. Note that the averaging using Nedelec elements does not give any
information about preservation properties on the primary grid of cell mean values.
We will uncover the preservation properties by identifying the resulting schemes with
the schemes of the previous sections.

6.3.2. Example: Triangles. The scheme (54) is valid for any kind of grid for
which averaged face elements are known. In this section we will consider triangles. If
Pi denotes the piecewise linear hat function that gives unity at vertex pi and zero at
all other vertices, then the face element W

ei,j

Ki,j,k
has the representation

W
ei,j

Ki,j,k
= |ei,j |

(
Pi (gradPj)

⊥ − Pj (gradPi)
⊥
)∣∣∣

Ki,j,k

.(56)

By writing the gradients explicitly, we obtain

W
ei,j

Ki,j,k
(x, y) =

|ei,j |
2 |Ki,j,k|

(Pi (x, y) ek,i − Pj (x, y) ej,k) ,(57)
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which directly leads to the averages

W
ei,j

Ki,j,k
=

|ei,j |
6 |Ki,j,k|

(ek,i − ej,k) .(58)

Using this in (54) results in the scheme

∂tBKi,j,k
= − (fi ej,k + fj ek,i + fk ei,j)

2 |Ki,j,k|

=

(
fj+fk

2 ej,k + fk+fi
2 ek,i +

fi+fj
2 ei,j

)
|Ki,j,k|

,(59)

which is identical to the scheme given in (40). In (59) the relation ei,j +ej,k +ek,i = 0
has been used to rearrange the terms. The equivalence to (40) becomes more evident

by looking at the residual in (42) and the observation that
fi+fj

2 = 〈fi,j〉 with 〈fi,j〉
given in (43).

Since both schemes (59) and (40) are equivalent, we conclude that the scheme (59)
shares the preservation properties of the flux distribution scheme (40). The scheme
obtained by Nedelec averaging for triangles will exactly preserve the local values of
the operators div(�) and div(+) given in (32) and (34).

6.3.3. Example: Rectangles. For rectangles, the averaged face elements are
given by

W
i+ 1

2
i,j =

(
1
2
0

)
, W

i− 1
2

i,j =

(
− 1

2
0

)
, W

j+ 1
2

i,j =

(
0
1
2

)
, W

j− 1
2

i,j =

(
0
− 1

2

)
(60)

for the four edges of the cell. The resulting averaging formulas have also been used in
[4], [8], and [13] to obtain cell centered values of the magnetic flux density from the
staggered variables.

From (54) follows the evolution scheme for the cell averages, which reads

∂tBi,j =
1

2∆x∆y

(
fi+ 1

2 ,j+
1
2

(
∆x
−∆y

)
+ fi− 1

2 ,j+
1
2

(
∆x
∆y

)

+fi− 1
2 ,j−

1
2

(
−∆x
∆y

)
+ fi+ 1

2 ,j−
1
2

(
−∆x
−∆y

))
,

(61)

where fi+ 1
2 ,j+

1
2

is given by (55), i.e., averaging of the intercell fluxes of the four

adjacent edges. This method is the same as that of (24), which can be seen after
making the averages fi+ 1

2 ,j+
1
2

explicit.

The scheme in (24) exactly preserves the extended divergence operator (12);
hence, as in the triangular case, this preservation holds also for the scheme based
on Nedelec averaging. This leads to the conclusion: Assume that mean normal field
components on edges in a rectangular grid are given and closed integrals over these
normal components on the edges vanish; i.e., the premise in (51) is fulfilled. Then the

evaluation of the extended divergence operator div(�) given in (12) on cell averages of
the field found by Nedelec averaging (53) gives exactly zero. The analogous statement
holds also for a triangular grid. This fact is an additional property of face element
reconstructions, which is hard to obtain by the averaging formula (53) alone. Hence,
if the Nedelec averaging approach is solely used to derive similar schemes for, say,
quadrilateral grids, one would lack the knowledge of the precise divergence operator
that is preserved.



1190 MANUEL TORRILHON

7. Conclusion. New flux modifications have been presented that turn an arbi-
trary MHD finite volume method into a locally divergence-preserving finite volume
scheme. That scheme belongs to the broad class of cell centered conservative (in the
sense of volume integrals) schemes but additionally preserves the value of a certain
discrete divergence operator in each volume cell and keeps the calculation free of
divergence errors, as demonstrated in the numerical experiments. We deduced the
necessary modifications for rectangular and triangular grids in two dimensions using
the flux distribution framework presented in [33]. Special upwind weighting derived
from characteristic information assure compact stencils, which results in sharper shock
resolution. A special case of the schemes may be related to a staggered grid scheme,
as presented in [4] and [34]. Additionally, an alternative construction uncovered the
close relation between finite element method reconstruction with Nedelec elements
and the newly derived divergence-preserving schemes. The construction via so-called
Nedelec averaging provides also the possibility of extending the methods most easily
to quadrilateral grids and three dimensions.

The advantages of the new schemes are clear: They mimic the analytical prop-
erties of the induction equation by preserving the divergence in each time step. The
divergence preservation is built directly into the fluxes. Hence, there is no need for
a staggered grid and/or a cleaning procedure after each time step. Furthermore,
the original MHD equations are solved without artificial production terms, and the
upwind weighting produces sharper shock wave resolutions.

The next step could be to incorporate the method into an adaptive framework on
rectangular grids. In [2] and [35] restriction and prolongation formulas are given for
the magnetic flux density stored in a staggered grid. In our case there is need for sim-
ilar formulas which, however, use cell averages and preserve the extended divergence
operator given in (12).
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