Transformation of wave prefile ever a sloping bottom™

Masahide TOMINAGA™

Abstract : Changes of profiles of a solitary wave and a sine wave over a sloping beach were
considered theoretically, solving the linear equation by RIEMANN’s method. Validity of a linear
equation is confined to the case when the waves do not reach so shallow place as wave height
and wave steepness attain the same order of quantity compared with the water depth and
the bottom slope. In the case of a sine wave, the decrease in the wave length is great but
the wave height shows little change compared with the case of a solitary wave.

1. Proposition of the problem.

The equation of the non-linear shallow
water wave theory has been derived by J. J.
SToOKER, assuming that the horizontal velo-
city of water particles is independent of
vertical coordinate,t and the hydrostatical
pressure condition is applied. The equation
of motion is
where » means the elevation of water sur-
face from the mean level, and #« the x-com-
ponent of particle velocity, £ the accelera-
tion of gravity. The density of water is
assumed unity.

Now, let us consider water waves pro-
gressing shoreward (positive direciion of x
axis) on a sloping beach. The surface and
the bottom condiiion yield the formula,
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Fig. 1. =x-axis agrees with the mean water level,
7 means surface elevation from this level.

* Received July 26, 1956.

#* Tokyo University of Liberal Arts.

t According to the actual observation of the
breakers, this assumption is not always valid.
The horizontal velocity of water particles de-
creases to the bottom. (IVERSEN, 1952).
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Actual laboratory experiments of shallow
water waves (Rep. Trans. Tech, Res. Inst.)

show the validity of negrecting the term uea
. ou
compared with u: and gn. (#: means £V ete.),

for example, the maximum particle velocily
u i$ about 25 cm/sec, and . is 0.1 ¢.g.s., while
uy is 60 cm/sec, and g7n. in 39 c.g.s.® Then,
from (1.1)
Ur=—HN (13>

If we consider a wave whose surface
elevation » is small compared with depth A
and wave steepness 7. is also small compared
with beach slope k., we can get from (1.2}
and (1.3}
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By the shallow water wave theory on a
sloping beach, we cannot derive a lmearized
equation, unless the wave steepuess and 7
are small compared with the bottom slope
and the water depth respectively. In the
case of a tank observation (Rep. Trans. Tech.
Res. Inst.) carriedout by Transportation Tech-
nical Research Institute, the mean uniform
depth of water is 30em, and the surface ele-
vation due to wave motion is only a few cen-
timeter, and 7. (wave steepness) is about 0.04
while % is 1/10~1/15: we are allowed to use
the linearized equation (1.4) so far as water
over a sloping beach is not so shallow com-
pared with wave elevation.tt
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gh +gh e =0 (1.4)

Tt % sometimes becomes greater than beach slope,
especially near the breaking point.
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2. Solution of the fundamental equation.

If an initial wave profile is given, trans-
formation of the wave profile at time # over
a sloping beach can he obtained from (1.4),
using the RiEMANN’s integration method of
2 hyperbolic partial equation.

Because the equation (1.4 is hyperbolic,
the characteristic equation is given by

ghopst— =0, 2.1)
or,
-~ gh pu=cpr.
Introducing new independent variables,
E=plx, 1), } (2.3)
T=(x, #}

(1.4} is transformed into
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From (2.2) we can get
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where h=ho—ax. Putting these relations
into (2.4) we can get
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Fig. 2. t¢r-diagram.

or,

et (sn,) =0 2.7)
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because from (2.5), E++= N
D), T= o \/ g

If we denote a RiEMANN's function of
equation (2.7) by V, the adjoint equation® of
(2.7) is given by
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oFor  2(E+r) as Ermz 0
(2.8)
Putting
(X FT)HT+E v
a E+qr ’
E—X (T—r) _¢
(X+7) (T+E)
(2.8) is transformed into
K
§(1+§) dgg + (1+28)— C :0 (2.9)

where X and 7' mean values of £, 7 at P.
In the £r-diagram OBA is an initial line and
P represents a point (X, T) to any value of
x and t.

Solving {2.9)
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metric function. Therefore, the RIEMANN'S
function is given by

ETT
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(2.10)

Thus, 7 at P can be solved as an expres
sion,
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where the initial condition is expressed by

n=f1(x), *z: =f2(x) at =0, and
X= 2'\/7’;;&55-—1-, T:——?"—— _@2':qz+t_
o g

The value of V expressed by (2.10) being
inserted in this equation, we get
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If «=0 (non sloping beach), L \x

=8 P/ glho—am)

) fl(h; —gf- TZ) and f1(%)-—-iq*XZ) show

progressing and retreating waves to the posi-
tive direction of x axis respectively.”

Now, we consider a progressing wave only,
namely the wave pushes from the offing
toward the shore over sloping hottom, whose
energy propagates entirely with the indivi-
dual wave velocity not by group velocity.
The term corresponding to the progressing

becomes x4/ ghot,

wave is f1( ho gt T2) in (2.12),

X+T

therefore the elevation of the water surface
at any time and position due to the progress
ing wave can be represented as follows:

* When «=0, sum of the first and second term
of right hand members of expression (2,12)

becomes fi(x—~/ ghot) +fi(x-++/ghoty, and the

1 40/ Ghot
third term becomes -, —== f 4
1 '\/ gho oSG f2 (() (

Remaining terms reduce to 0.
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Here, non dimensional variablss were in-
troduced like that,

(2.14)
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3. Numerical examples.
(a) Solitary wave.
Let us consider the transformation of the
profile of a solitary wave represented by
equations,

n=f1(x) =A sechz—xw

2B (3.1)
on -
of =f2(x) =
at time #=0, where A is an amplitude and
o® (A+ho)

Bt= 0 being water depth in the

3A ’
uniform bottom region. We assume that at
time #=0 the wave crest situated at the
end of the slope where the origin of x-axis

Now, taking a= 1 ho=30cm and

10°

A=8.7cm, consequently B=36.5cm, wave
profiles at #=0.5sec and #=1.0sec computed
from (2.13) are given in Fig. 3. Ahout 1sec
after since the wave entered into sloping re-
gion the wave heights are not always small
compared with water depth, therefore the
linear theory cannot be applicable. The wave

exists.

%= LaMB, “‘Hydrodynamics”, 6th Ed., p. 425
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height increases gradually little greater than
that of given by Airv’s theory in which the
slope of beach was not taken into account.
Computed wave heights and those of given
by Airy’s theory are contained in Table 1.
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Fig. 3. Change of solitary wave profile =_8.7 sech?
(0.0137x) ; =0 progressing to the positive direction
1
of x-axis. Beach slope is 0
level agrees with x-axis.

and the mean water

(b) Sine wave.
The initial wave character follows :*

wave amplitude A=32cm
wave length A=110cm
beach slope a=1/15
uniform water depth  20=30cm
n:f1(x):ASin2:x (—A<x<0)

=0 (x>0 and x<—)\)
on _
ot =0

(x,#) is given from (2.13) and (2.14) like
that
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TABLE 1
1 wave ,W ave water
e s SO by S
{cm) ory {(cm)
0.0 8.70 8.70 30.0
0.5 9.44 0.42 21.8
1.0 10.40 16.33 15.1

#* This wave example is one of the tank experi-
ment carried out by Transportation Technical
Research Institute.

The change of profile during the time =0
and ¢=0.67 sec (£H=0.572) computed from

(3.2) is given in Fig. 4, where the
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Fig. 4. Profiles of sine wave at f==0 and £==0.67sec;

x’= . (xp=110 cm) is taken as an abscissa, and
0

n’:;; (ho=30 cm) an ordinate. Beach slope is
0

1
15

abscissa is x =\ and the ordinate 7'=

7

’7()'
Decrease in the wave length during (.67 sec
is from 110 cm to about 80 cm, while increase

in the wave amplitudz is from 3.2cm to about

3.72¢m.  (Fig. 5)
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vancing over the sloping beach (slope = 11.-)
bel

toward positive x direction.

Fig. 5. Sine wave »=3.2sin ad-
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