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Abstract

In the last years, new tools have been developed to describe wave climate. In particular, wave hindcast models allow a very detailed

description in time and space. However, the data bases generated from these models require calibration with instrumental observations.

In this work, a methodology for spatial calibration of wave hindcast data bases is developed. It is based on an Empirical Orthogonal

Function decomposition and a non-linear transformation of the spatial–time modes. The method is applied to monthly long-term

distribution of significant wave height in the Western Mediterranean. The calibration (transformation of the modes) is carried out using

existing buoys in the area. After calibration, the validation with satellite data shows that this methodology is useful to better define wave

climate from hindcast data bases.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, in situations where a long-term buoy record is
not available, new wind wave data bases generated
numerically appear to be a good source to obtain the
wave climate at a particular site. However, from a
quantitative point of view, some differences are found
when comparing them with instrumental devices (see f.i.
Caires and Sterl, 2005; Cavaleri and Sclavo, 2006).
Moreover, near the coast and when the orography is
complex, the inaccuracy of the results is evident due to a
bad description of the wind field (Cavaleri and Bertotti,
2004). These wind wave numerical data bases usually
express their results in terms of the significant wave height
(Hs), the mean period and the mean direction in every
hourly (or 3-hourly) sea state.

Conscious of the limitations of the quantitative validity
of these hindcast data bases, several algorithms have been
e front matter r 2007 Elsevier Ltd. All rights reserved.
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developed to correct the values of Hs, which is one of the
key parameters to characterize wave climate. In the state-
of-the-art, we can find parametric corrections (Cavaleri
and Sclavo, 2006) as well as non-parametric approaches
(Caires and Sterl, 2005). One of the disadvantages of the
aforementioned techniques is that the calibration is applied
on a point-to-point basis, disregarding the spatial correla-
tion between adjacent nodes. In some particular locations,
usually close to some archipelago, spatial wave climate is
highly variable and the calibration using buoys or satellite
data is not possible. This occurs, for instance in the
Balearic Islands (Fig. 1), where the nodes from hindcast of
the southwest face of Mallorca island or the eastern coast
of Ibiza cannot be calibrated using point-to-point methods.
In those cases, a spatial spreading of the calibration
information is necessary and it might be good to consider
the spatial correlation between neighbour nodes.
Many times, the purpose of the data base is to spatially

characterize wave climate in terms of the (annual or
monthly) long-term distribution of Hs. One possibility is to
spatially analyse several Hs statistical parameters such as
the annual mean, the 90th, 95th or 99th percentiles.
Another option is to assume a given distribution (f.i.,
Weibull for minima, Log-Normal, Gamma) estimating the
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Fig. 1. Location of the study area and the data bases used in the analysis.

Fig. 2. Example of the Log-Normal distribution fit in Mahon position (buoy and hindcast data) for January and July.
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parameters of the distribution for every specific point.
The latter procedure is more flexible, since it allows the
definition of whatever percentile you are interested in. In
this work, we have assumed the monthly long-term
distribution of Hs to follow a Log-Normal distribution
(Massel, 1996; Holthuijsen, 2007). Several goodness-of-fit
tests were applied to monthly data confirming that our
hypothesis was adequate. The probability density function
for the Log-Normal distribution can be expressed as

f ðHÞ ¼
1

H
ffiffiffiffiffiffi
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� �2
" #
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where 0oHoN, m� and s� are the location and scale
parameters, respectively. It is usual to work with the mean,
m ¼ exp(m�+s�2/2), and the standard deviation, s2 ¼
exp(2m�+2s�2)�exp(2m�+s�2), of this random variable.
Therefore, the spatial monthly long-term distribution can
be characterized using m(x, t) and s(x, t), where x stands
for every particular location and t ¼ {1, y, 12} for every
month (for instance, for January, t ¼ 1). In Fig. 2, the Log-
Normal distribution fit to the buoy data (Mahon buoy, see
details in Fig. 1 and Table 1) and the hindcast data in this
position for January (t ¼ 1) and July (t ¼ 7) are shown.
In this work, we use a hindcast data base generated by

Puertos del Estado with the WAM model (Hasselman
et al., 1998) in the Western Mediterranean (Ratsimandresy
et al., 2007) in the frame of the HIPOCAS European
project (Guedes Soares et al., 2002). It consists of a 44-year
(1958–2001) hourly time series of Hs, mean period and
mean direction. Spatial resolution is 0.1251. The area of
analysis (see Fig. 1) covers part of the Spanish Mediterra-
nean including the Balearic Sea and the coast of Valencia.
For this particular area, there are several buoys from the
Puertos del Estado network: four intermediate water depth
buoys (Valencia, Alicante, Cabo de Palos, Cap de Pera)
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Table 1

Description of the buoys used in the analysis

Period of measurement Longitude Latitude Water depth (m)

Valencia (VA) 1985–2001 00117.00W 39128.00N 20

Alicante (AL) 1985–2001 00125.00W 38115.00N 50

Cabo de Palos (PA) 1985–2001 00138.30W 37139.20N 67

Cap de Pera (PE) 1989–2001 03129.10E 39139.00N 48

Mahón (MH) 1993–2001 04125.90E 39143.70N 300
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and one deep water buoy in Mahon (see details in Fig. 1
and Table 1). As this wave hindcast provides information
in deep water (it was carried out switching off the
refraction process), we have developed a procedure to
back-propagate the buoy time series to deep water, thus
obtaining five deep water buoys in the domain area. Fig. 1
also shows another complementary data base from
TOPEX/POSEIDON satellite data (period 1995–2001)
which will be later used in the validation procedure.

Comparing the mean, m(x, t), and the standard devia-
tion, s(x, t), of the monthly long-term distribution of the
hindcast with the buoys (see Fig. 5: solid lines represent
data from hindcast and dots from the buoys), one can see
important discrepancies in the magnitude; the differences
depending on the specific location and also on the
variability within the year.

Therefore, the objective of this work is to spatially
calibrate the monthly long-term distribution of significant
wave height obtained from hindcast data. To achieve this
goal, we spatially and temporally transform the wave
hindcast trying to improve the fit at the buoys locations.
An important condition of this ‘‘transformation’’ is that it
must be able of extrapolating the information in space, not
loosing the correlation between adjacent nodes. We have
applied the methodology to the window selected in Fig. 1.
Buoy data from the Spanish network are used for the
calibration while satellite data from TOPEX/POSEIDON
mission are used for the validation procedure.

2. Methodology

2.1. Summary of the approach

Once the objective has been presented in the previous
section, the question to address is how to spatially and
temporally transform the fields m(x, t) and s(x, t) in order
to fit in the positions of the buoys while still preserving the
spatial correlation between adjacent nodes. Fig. 3 graphi-
cally shows the aim of the calibration, which consists of a
transformation of a spatial–temporal field to fit into the
locations of the instrumental data. One of the possibilities
is to split up every spatial–temporal field into a number
of modes using Empirical Orthogonal Function (EOF)
decomposition (Section 2.2). The spatial modes and their
temporal amplitudes (which explain a given percentage of
the variance, say, 99%) are afterwards transformed using a
non-linear parameterization (Section 2.3). The parameters
are obtained by minimizing an objective function trying to
reduce the errors at the locations of the buoys (Section 2.4).
A detailed explanation of the steps carried out in the
calibration applied to the study area follows.
2.2. Empirical Orthogonal Function decomposition

The EOFs technique is used to split up the spatial
monthly long-term distribution of Hs in the study area,
thus decomposing it into a series of q orthogonal functions
(Baldacci et al., 2001). For example, for a generic variable
z(x, t) (which could be m(x, t) or s(x, t)), the following
decomposition is obtained:

zðx; tÞ ¼ zMðxÞ þ f 1ðxÞg1ðtÞ þ f 2ðxÞg2ðtÞ

þ � � � þ f qðxÞgqðtÞ ð2Þ

where zM(x) is the time-averaged spatial mode, fi is the ith
spatial mode and gi is the ith time amplitude. For the study
area, the total number of modes is q ¼ 1342, which is
the number of nodes considered in the domain (see dots
in Fig. 1).
Fig. 4 shows, for the parameter m(x, t), the time-averaged

spatial mode, mM(x), and the first three spatial modes (f1(x),
f2(x), f3(x)) with their respective time amplitudes (g1(t),
g2(t), g3(t)). One can see how mM(x) is higher in open
waters, indicating that the intensity of the wave climate is
stronger in offshore areas. Although the decomposition in
EOFs is a statistical technique without physical meaning,
the first modes usually explain some kind of climatic
behaviour. For instance, the modulation of the first time
amplitude g1(t) indicates seasonality (waves are higher in
winter than in summer). The second mode can also help to
detect intense sea states in the North of the Balearic Islands
in October and November and near Cabo de Palos in May
and June.
These patterns can also be observed in the EOF

decompositions for s(x, t) (not shown) where sM(x) is
more variable in open waters, which also represents
the winter–summer fluctuations in the wave climate
variability.
For the initial q modes, we selected the first p modes that

explain at least 99% of the variability of the variable
z(x, t)�zM(x). For our study area, we obtained p ¼ 4
modes (for both m(x, t) and s(x, t)). Consequently, z0(x, t)
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Fig. 3. Example of the transformation of a spatial–temporal field to fit in the locations of instrumental data available (dots).

Fig. 4. Example of the time-averaged spatial mode for m(x, t) and the first three spatial modes along with their respective time amplitudes.
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Table 2

Set of parameter estimates for mC(x, t) and sC(x, t)

â0 â1 b̂0 b̂1 b̂2 b̂3 b̂4

mC(x, t) 0.49 1.47 1.25 0.41 2.40 2.49 1.15

sC(x, t) 0.72 1.03 1.09 1.13 0.68 0.35 1.01
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is considered to be a close approximation of z(x, t):

z0ðx; tÞ ¼ zM ðxÞ þ f 1ðxÞg1ðtÞ þ f 2ðxÞg2ðtÞ

þ f 3ðxÞg3ðtÞ þ f 4ðxÞg4ðtÞ ð3Þ

Thus, the monthly long-term distributions are now,
m0(x, t) and s0(x, t), split up in one time-average mode
and four spatial–temporal modes that explain, at least,
99% of the variance. Note that the purpose of main-
taining the spatial correlation is achieved using this EOF
decomposition.

2.3. Time–space transformation. Vector parameter

We propose a possible transformed (calibrated) spatial
and temporal field zC(x, t) using a combination of linear
and potential parameterizations as

zCðx; tÞ ¼ b0zM ðxÞ
a0 þ b1f 1ðxÞg1ðtÞ g1ðtÞ

�� ��a1�1
þ b2f 2ðxÞg2ðtÞ þ b3f 3ðxÞg3ðtÞ

þ b4f 4ðxÞg4ðtÞ ð4Þ

where | | means absolute value. The parameters b0, b1, b2, b3
and b4 are the linear coefficients that increase (if they are
larger than 1) or decrease (if they are smaller than 1) each
of the terms of zC(x, t). To spatially transform zC(x, t), the
non-linear coefficient a0 is introduced into the time-
averaged spatial field zM(x). For the transformation in
time, a non-linear coefficient a1 is introduced into the time
amplitude term of the first mode g1(t) (the first mode
explains more than 95% of data variability). We tried
different parameterizations not obtaining a significance
improvement in the fitting. The set of parameters can be
packed into a vector parameter y ¼ {a0, a1, b0, b1, b2, b3,
Fig. 5. Time evolution of m and s in the
b4}. All the coefficients were negative and positive bounded
(between 0.3 and 2.5) to avoid a too large transformation.

2.4. Minimization of error

The objective is to determine the vector parameter
estimates of ŷ that minimizes the error between the
calibrated field zCðx; t; ŷÞ and the correct values at the posi-
tions of the buoys, zB(xi, t), where xi refers to the position
of every buoy. This results in an optimization problem in
which the objective function to be minimized J(y) must be
defined. This function can be defined as

JðyÞ ¼
Xnb

i¼1

X12
j¼1

zBðxi; tjÞ � zCðxi; tj; yÞ
z̄BðxiÞ

� �2
wðxi; tjÞ (5)

where nb is the number of buoys, z̄BðxiÞ is the time-averaged
value, z̄BðxiÞ ¼

P12
j¼1zBðxi; tjÞ=12, and w(xi, tj) is a weight-

ing term that assigns the importance of every buoy and
every month in the objective function. In this work, we
have assumed a constant value w(xi, tj) ¼ 1.
The minimization of Eq. (5) is carried out using a widely

used optimization tool for highly dimensional non-linear
problems, the shuffled complex evolution method SCE-UA
(Duan et al., 1992), obtaining the parameter estimates ŷ.
Table 2 shows the set of parameters obtained for the
buoys located in the calibrated area.
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calibration of mC(x, t) and sC(x, t) for our particular study
area.
3. Results

Fig. 5 represents the evolution over time (12 months) of
the two parameters (m and s) for the five buoys located in
the area. It is shown that in all the cases, the parameters
calibrated for the numerical data base reproduce almost
perfectly those determined by the obtained buoy data.
One can observe how the goodness-of-fit is similar in all the
buoys (not depending on the degree of activity of the wave
climate on each buoy). The annual winter–summer
fluctuation in the Log-Normal parameters of the distribu-
tion can also be noted, or what is the same, the evolution
over time of the monthly long-term distribution (Ochi,
1998). This same fluctuation is always present in the time
Fig. 6. Spatial evolution of m(x, t) and s(x, t) in the calibrated area, fo
amplitude of the first mode (g1(t)) of the EOF decomposi-
tion of both parameters.
Using the spatial calibration, the monthly long-term

distribution can be defined for the entire study area. Fig. 6
shows the spatial distribution of the parameters mC(x, t)
and sC(x, t) in the area, not only for the mean time of the
monthly long-term distribution but also for the monthly
long-term distribution for January (month 1) and July
(month 7). Note how the waves in January (winter) are
larger and more variable than in July (summer). It is also
remarkable how the transformation works are slightly
modifying the shape of the wave fields.
4. Validation

The last part of the methodology aims to validate with
satellite data from altimeters the results obtained in the
r its time-averaged fields and for the months of January and July.
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Fig. 7. Comparison between the calibrated wave fields mC(x, t) and sC(x, t) and the 11� 11 spatial-averaged values from TOPEX satellite.
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calibration using five buoys. Measurements of Hs in the
study area between May 1995 and December 2001 from
the TOPEX/POSEIDON mission are used. This data
base was obtained from the Physical Oceanography

Distributed Active Archive Center (PO.DAAC) of the
NASA Jet Propulsion Laboratory (http://podaac.jpl.nasa.
gov/). Following Krogstad and Barstow (1999) we have
corrected this data base using the expression Hn

s ¼

1:1Hs � 0:165 ðmÞ.
The satellite obtained Hs data base does not suffice to

define the long-term distribution in every particular point,
due to which the data is aggregated in a 11� 11 square grid.
Fig. 7 represents the annual values of m and s from the
TOPEX satellite for every 11� 11 square. It can be seen
that the calibrated wave fields reproduce, very adequately,
the values obtained from satellite data, confirming the
ability of the methodology. The root-mean-square relative
error of the hindcast (compared with the satellite data)
has been reduced from 28% (before calibration) to 5%
(after calibration) for the mean and from 20% to 8% for
the standard deviation.

5. Conclusions

A spatial calibration methodology for wave hindcast
has been developed. To do this, the space–time fields of
the monthly long-term distribution of Hs are decomposed
into modes, utilizing Empirical Orthogonal Functions, and
transforming them to obtain the best match possible with
buoy observations. The difference between the observed
and transformed long-term distribution is minimized with
the SCE-UA method.

The calibration method has been applied to the
significant wave height of the HIPOCAS data base for an
area in the Mediterranean Sea which covers Valencia
and the Balearic Islands, using the buoy registered data
base to carry out the calibration. Validation of the
calibration has been based on satellite-registered data from
TOPEX/POSEIDON, obtaining very satisfactory results.
This methodology can be extended to any other data base
of geophysical variables, for instance wind fields and storm
surge fields, obtained from hindcast models. This is
considered to be an important tool to be able to use these
data bases from a quantitative point of view.
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