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Abstract

In the last two decades, the Discrete Interaction Approximation (DIA) has been the only economically

feasible parameterization for nonlinear wave–wave interactions in operational wind wave models. Its major

drawback is its limited accuracy. Several improvements to the DIA have been suggested recently. The
present study summarizes these improvements and suggests some new modifications to the DIA. Using

inverse modeling techniques, where the potential of various DIAs is assessed by optimal fitting to exact

solutions, a comprehensive comparison of the potential of several such improvements is made. An in depth

analysis of the behavior of DIAs in full wave models will be the subject of a second study, to be reported

elsewhere. The major findings of this study are that: (i) An expanded definition of the representative

quadruplet with additional degrees of freedom is necessary for an accurate representation of the exact

interactions; (ii) Slowly varying the free parameters in such a DIA as a function of the spectral frequency f
results in a (mostly qualitative) improvement; (iii) A DIA with expanded quadruplet definition and with
four representative quadruplets is found to reproduce the exact source term accurately; (iv) Adding ad-

ditional tunable constants to the equation for the strength of the interactions has little impact on the quality

of the DIA.
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1. Introduction

Ocean waves generated by winds are conventionally described with an energy spectrum F ðf ; hÞ,
which describes the distribution of wave energy over spectral frequencies f and directions h. In its
simplest form, the evolution of such a spectrum is described by the following spectral balance
equation (Hasselmann, 1960):
DF
Dt

¼ Stot ¼ Sin þ Snl þ Sds; ð1Þ
where the total derivative includes effects of wave propagation, and Stot represents the net sources
and sinks of wave energy. The elementary sources and sinks of wave energy are the wind input
(Sin), the nonlinear interactions (Snl), and the dissipation (Sds) source terms.

The nonlinear interactions represent a mechanism for shifting wave energy to lower frequen-
cies, and are, therefore, critical in describing the growth of wind waves (e.g., Hasselmann et al.,
1973). The basic form of the interactions has been established more than 40 years ago (Phillips,
1960; Hasselmann, 1962, 1963a,b). Reviews of the interactions and their impact can be found, for
instance, in Masuda (1980), Phillips (1981), Young and Van Vledder (1993) or Komen et al.
(1994). The comprehensive wave model intercomparison performed in the Sea Wave Modeling
Project (SWAMP, SWAMP group, 1985) identified the need for numerical wave models to
evaluate Snl explicitly. Such a model with an explicit parameterization of Snl and without presumed
spectral shapes is known as a third-generation wave model.

The nonlinear interactions source term describes the resonant exchange of energy, momentum
and action between four spectral components (quadruplets) with wavenumber vectors~kk1 through
~kk4 and (radian) frequencies r1 through r4 (r ¼ 2pf ). The quadruplets exchange energy whenever
they satisfy the resonance conditions (Hasselmann, 1962, 1963a):
~kk1 þ~kk2 ¼~kk3 þ~kk4; ð2Þ
r1 þ r2 ¼ r3 þ r4: ð3Þ
The interactions are conventionally expressed in terms of the rate of change of the action spec-
trum n � F =r in terms of the wavenumber vector ~kk, as
@n1
@t

¼
Z Z Z

Gð~kk1;~kk2;~kk3;~kk4Þdkdr½n1n3ðn4 � n2Þ þ n2n4ðn3 � n1Þ�d~kk2 d~kk3 d~kk4; ð4Þ
where ni is the action density at component i, ni ¼ nð~kkiÞ, G is a complex coupling coefficient
(Webb, 1978; Herterich and Hasselmann, 1980), and dk and dr are delta functions corresponding
to the resonance conditions (2) and (3). Singularities in G and the sixfold integral in (4) make the
numerical solution of the latter equation (and hence of Snl) several orders of magnitude more
expensive than all other aspects of a numerical solution of Eq. (1) combined. It is therefore not
feasible to use such an algorithm in operational wave models.

With the development of the Discrete Interaction Approximation (DIA, Hasselmann et al.,
1985), it became possible for the first time to develop an economically feasible third-generation
wave model (WAM, WAMDIG, 1988). Details of the DIA, including ways in which the DIA
attains economical feasibility, will be presented in Section 2. For practical applications, all present
third-generation models still use some form of the DIA.
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At the introduction of the DIA, its shortcomings were well documented (Hasselmann et al.,
1985). Since then, several modifications to the DIA have been suggested to improve its perfor-
mance, as will be discussed in Section 2. Such methods generally are more computationally ex-
pensive than the original DIA, by up to an order of magnitude. With recent advances in computer
technology, such an increase in costs is rapidly becoming feasible for operational models, and
therefore acceptable.

The present study presents an assessment of the capability of various DIAs to represent the
exact nonlinear interaction source term Snl for selected test cases. This assessment is made by
means of inverse modeling, i.e., by optimization of the free parameters in each DIA. This opti-
mization results in an objective or quantitative error measure for each DIA. A subjective or
qualitative assessment proved important too, in particular to identify spurious elements in the
interactions. Most previously suggested DIAs will be considered, as well as some new modified
versions (see Section 2). Because Snl is mainly important in the context of wave growth, test cases
are limited to spectra that are representative for wind seas; additional swell fields will not be
considered here. For simplicity, only deep water will be considered. The test cases considered are
described in Section 3, and the corresponding results are presented in Section 4. For conciseness,
only selected results will be presented here. A complete accounting of all test results obtained for
this study is presented in Tolman (2003, henceforth denoted as T03). A discussion and conclusions
are presented in Sections 5 and 6, respectively.

Due to the highly nonlinear nature of the interactions, it is not guaranteed that accurate in-
teractions for a limited number of spectra will result in accurate model integration. Similarly,
inaccurate interactions for individual spectra do not automatically lead to unacceptable model
behavior. The latter was illustrated in Hasselmann et al. (1985), where the the original DIA with
its limited accuracy for test spectra resulted in acceptable wave model behavior. Similarly, a
simple time integration test presented in T03 shows that, contrary to common belief, a DIA that
more accurately describes interactions for selected spectra can actually result in unrealistic model
behavior. This illustrates the necessity of addressing the behavior of any interaction approxi-
mation as an integral part of a comprehensive wave model. The second part of this study, to be
presented elsewhere, will address this issue in depth. The present study is intended to make a first
selection of DIAs to be considered in more detail in the second study.
2. Discrete Interaction Approximations

In the original DIA of Hasselmann et al. (1985), a dramatic increase in computational speed
relative to the numerical solution of the full Eqs. (2)–(4) is achieved in two ways. First, the
multidimensional integration in Eq. (4) is replaced by the calculation of interactions for a single
representative quadruplet only. This quadruplet satisfies the resonance conditions (2) and (3), as
well as
~kk2 ¼~kk1
r2 ¼ r1

r3 ¼ ð1þ kÞr1

r4 ¼ ð1þ kÞr1

9>>=
>>;; ð5Þ
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where k is a constant. Separate nonlinear contributions dSnl are calculated for~kk1 corresponding to
each discrete spectral component. The full source term Snl becomes the composite of all contri-
butions. Note that for each~kk1, only two (mirror image) quadruplets satisfy Eqs. (2), (3) and (5).

Second, the DIA replaces the full integration in Eq. (4) with a discrete analogue (Hasselmann
et al., 1985, Eq. (5.4)). After the proper Jacobean transformations are applied, the conventional
DIA expression for contributions to dSnl for all components of the quadruplet become (see
Hasselmann et al., 1985; Van Vledder, 2001):
dSnl;1
dSnl;3
dSnl;4

0
@

1
A ¼

�2

1
1

0
@

1
ACg�4f 11

1 F 2
1

F3
ð1þ kÞ4

 "
þ F4
ð1� kÞ4

!
� 2F1F3F4
ð1� k2Þ4

#
; ð6Þ
where C is a constant, g is the acceleration of gravity, and F1 ¼ F ðf1; h1Þ, etc. A speed up is gained
here, because the complex coupling coefficient G with its singularities is no longer evaluated ex-
plicitly. Note that this expression implies a discrete spectral frequency grid where fjþ1 ¼ afj (with
typicality a ¼ 1:1), and that it is constructed assuming deep water conditions. The restriction to
deep water does not impact the present feasibility study, but needs to be addressed when a DIA is
implemented in a wave model.

The DIA retains the conservation properties of the exact interactions. The distribution of the
contributions dSnl;1 through dSnl;4 over the four components of the quadruplet in Eq. (6) guar-
antees the conservation of the total energy within the spectrum. If the conservation of energy is
thus assured, the resonance conditions implicit to the definition of the quadruplet in turn guar-
antee the conservation of momentum and action (e.g., Hasselmann, 1963a; Webb, 1978). This
implies that a DIA will have proper conservation properties regardless of the layout and number
of quadruplets, as long as each quadruplet satisfies the resonance conditions. This furthermore
implies that the conservation properties are retained regardless of the actual form of the common
factors and the term in square brackets at the right side of Eq. (6).

In Hasselmann et al. (1985) and in the WAMmodel, the two free parameters in the DIA are set
(by optimization) to k ¼ 0:25 and C ¼ 3	 107. Such a DIA defined by Eqs. (2), (3), (5) and (6)
will henceforth be denoted as the original DIA. Three types of modifications for the original DIA
have been suggested: (i) the use of more than one representative quadruplet; (ii) alternative def-
initions of the representative quadruplet; (iii) alternative versions of equation for the discrete
contributions (6).

Using a number of representative interaction configurations instead of exactly one, represents a
natural way to increase the versatility of the DIA. It appears that approaches with two repre-
sentative layouts for the quadruplet have been considered when developing the WAM model, and
for other early third-generation wave models, but no formal documentation to corroborate this
has been found by the present author. Recent approaches with multiple representative quadru-
plets are reported by Ueno and Ishizaka (1997), Van Vledder et al. (2000), and Hashimoto and
Kawaguchi (2001). If Snl;jðf ; hÞ represents the DIA contribution for representative quadruplet j,
and N is the total number of representative quadruplets, such a multiple DIA can be defined as
Snlðf ; hÞ ¼
1

N

XN
Snl;jðf ; hÞ: ð7Þ
j¼1
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The factor 1=N is not strictly necessary and is omitted by previous authors. It assures that a
multiple DIA composed of identical components becomes identical to its component, and thus
results in a more transparent transition from single to multiple DIAs.

The representative quadruplet defined by the single parameter k in Eq. (5) is restrictive, because
it allows for only a small subset of possible quadruplet geometries. Van Vledder (2001) suggests an
alternative quadruplet layout defined by three parameters, that can reproduce any possible layout
of the quadruplet (see also T03 for details). In the present study, a new two-parameter quadruplet
layout has been used, defined as
~kk1 þ~kk2 ¼~kk3 þ~kk4 ¼ 2~kk

r1 ¼ ð1þ lÞr
r2 ¼ ð1� lÞr
r3 ¼ ð1þ kÞr
r4 ¼ ð1� kÞr

9>>>>>>=
>>>>>>;
; ð8Þ
where k and l, are the free parameters defining the layout of the quadruplet, and which is
evaluated for each ð~kk;rÞ of the discrete spectral grid. Four solutions satisfy Eq. (8), whereas only
two satisfy Eq. (5). Note that this quadruplet definition is less versatile than the definition of Van
Vledder (2001). However, because it proved sufficiently versatile in the numerical experiments, it
was deemed adequate for the present study.

The third published modification (Ueno and Ishizaka, 1997) adds individual constants to se-
lected terms in the square brackets in Eq. (6). The corresponding equation for contributions to Snl,
including multiple representative quadruplets, and accounting for the new quadruplet definition
(8), becomes (see T03 for details):
dSnl;1

dSnl;2

dSnl;3

dSnl;4

0
BBBB@

1
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; ð9Þ
where the normalization takes place with a factor 2N instead of N , because the new quadruplet
has 4 rather than 2 solutions. C0

1 through C0
4 are constants to be chosen by optimization. With

l ¼ 0, N ¼ 1 and
C0
1 ¼ C0

2 ¼ C0
3 ¼ C0

4 ¼ C; ð10Þ
this expanded DIA defined by Eqs. (2), (3), (8) and (9) reduces to the original DIA. The
Ueno and Ishizaka (1997) form of the term in square brackets in Eq. (9) is reproduced by
choosing
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C0
3 ¼ C0

4 ¼ C1; C0
1 ¼ C0

2 ¼ C2: ð11Þ

Webb (1978) makes a distinction between a �pumping� and a �diffusion� term in the nonlinear
interactions. Tuning these terms individually corresponds to choosing
C0
1 ¼ C0

3 ¼ C3; C0
2 ¼ C0

4 ¼ C4: ð12Þ

This approach has not been used before. There seems to be no justification in literature or theory
to separately define all four constants C0

i .
In essence, the above extensions to the original DIA are taken from literature. A new approach

is also introduced here. All DIAs retain their basic conservation characteristics within the local
contributions for each discrete spectral component considered (as discussed below Eq. (6)).
Without loss of these characteristics, it is therefore possible to vary the free parameters in the DIA
in spectral space. It is well known that dominant wavenumber scales of interactions vary
throughout the spectrum (e.g., Hasselmann, 1963b; Hasselmann and Hasselmann, 1985), par-
ticularly with frequency f . This suggests that optimum values of k and l should at least be a
function of f . It then is only logical to also allow C to vary. The approach where parameters
defining the DIA are allowed to vary in spectral space will henceforth be denoted as the Variable
DIA.

Using the above rationale, a plethora of single, multiple and variable DIAs can be constructed.
However, the optimal DIA needs to have a balance between economy and accuracy. Potential
economy can therefore be used to select possibly useful DIAs.

Obviously, the most economical DIAs will be optimized DIAs with a single representative
quadruplet, and with tunable constants that are constant in spectral space. Similar DIAs with
several representative quadruplet configurations are also economically feasible on modern com-
puter hardware (Hashimoto and Kawaguchi, 2001; Van Vledder, 2001, and corresponding oral
presentations at the 2002 WISE meeting). To distinguish these DIAs from the above defined
original DIA, they will be denoted here as Multiple DIAs (MDIA), with the understanding that
this group of MDIAs includes optimized DIAs with a single component (N ¼ 1).

In a Variable DIA, a massive amount of flexibility can be added in spectral space. If such a DIA
cannot produce good results for single component DIAs, a MDIA as suggested above is probably
more reasonable to use than a Multiple Variable DIA. Hence, only single component Variable
DIAs will be considered. Such a DIA will be denoted as a VDIA.
3. Numerical experiments

Two groups of numerical experiments have been performed. In the first set of tests, a single test
spectrum is considered, to intercompare the potential of several MDIAs and VDIAs. The test
spectrum consists of a standard JONSWAP spectrum (Hasselmann et al., 1973), with a peak
enhancement factor c ¼ 2, and with the directional distribution of Hasselmann et al. (1980) (see
T03 for details). The test spectrum is normalized, so that the peak frequency fp ¼ 1, the peak
direction hp ¼ 0�, and the spectral density F ðfp; hpÞ ¼ 1. The spectral space is discretized using 36
directions (Dh ¼ 10�) and with a relative frequency increment of 7%. The frequency space is
described with 31 discrete frequencies ranging from 0.48 to 3.6 (normalized).



H.L. Tolman / Ocean Modelling 6 (2004) 405–422 411
For this test spectrum, the �exact� nonlinear source term Snl is calculated according to the
Webb–Resio–Tracy (WRT) method (Webb, 1978; Tracy and Resio, 1982; Resio and Perrie, 1991),
using version 4 of the portable Snl package developed by Van Vledder (2002). For the various
DIAs, optimal parameters are estimated by minimizing the rms error �,
Table

Summ

V1–5

Cas

M1

M2

M3

M4

V1

V2

V3

V4

V5
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ Z
ðXnlðf ; hÞ � Snlðf ; hÞÞ2 df dh

s
; ð13Þ
where Xnl represent the exact source term, and Snl represents the approximation by the DIA
considered. Details of the optimization techniques can be found in Appendices A and B of T03.
The resulting error of each optimized DIA is normalized with the corresponding error of the
original DIA. This normalized error is denoted as �n. As will be illustrated below, this quantitative
measure for accuracy does not always paint a complete picture of the quality of a DIA. Therefore,
visual inspection of all resulting source terms is also important.

The inverse modeling experiments with the MDIA consider increasingly complex configura-
tions, as identified in Table 1, focusing on the incremental benefit of increasingly complex con-
figurations. The inverse modeling experiments with the VDIA start from complex configurations,
to first establish that the VDIA indeed can produce arbitrary accuracy. After this has been es-
tablished, the allowed variability of the free parameters in the VDIA is incrementally reduced, to
assess the potential of more practical VDIAs. A full account of all test results can be found in T03.
For conciseness, only selected results are presented here.

At the conclusion of the first set of tests, the most promising MDIA and VDIA are selected. In
the second group of tests, these parameterizations are applied to a set of 20 test cases. These test
cases are generated by varying the parameters defining the spectrum and directional distribution
of the first test. Furthermore, some spectra with the bimodal directional distribution of Ewans
(1998), and with a directional shear are added. Details of these 20 cases can be found in T03. Two
versions of the selected MDIA and VDIA are applied to this set of test cases. The first is the
version of the parameterization as obtained for the first test. These versions are denoted as the
1

ary of inverse modeling experiments performed in the first set of tests. Cases M1–4 consider the MDIA. Cases

consider the VDIA. [l] identifies that l is either optimized or 0

e N Optimize Remarks

1 k, ½l�, C
2–5 k, ½l�, C
1 k, ½l�, ðC1;C2Þ or ðC3;C4Þ
2–5 k, ½l�, ðC1;C2Þ or ðC3;C4Þ

Cðf ; hÞ unconstrained k ¼ 0:25, l ¼ 0

Cðf Þ unconstrained k, ½l� from M1

Cðf Þ as polynomial of order 1–4 k, ½l� from M1

kðf Þ, ½lðf Þ� unconstrained
Cðf Þ constant or 2nd order polynomial

kðf Þ, ½lðf Þ� as Pade functions.

Cðf Þ constant or 2nd order polynomial
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�frozen� MDIA or VDIA. The second is an MDIA or VDIA as optimized for the test case under
consideration (denoted as the optimized MDIA or VDIA). There are two reasons for performing
the second set of experiments. First, they can be used to assess if the first test case is representative.
Second, they can identify if dynamical estimates of parameters can be beneficial for an MDIA or a
VDIA.
4. Results

4.1. Single test case

The spectrum and exact (WRT) nonlinear source term Snlðf ; hÞ for the first test are presented in
Fig. 1a and b, respectively. The corresponding one-dimensional source term Snlðf Þ ¼

R
Snlðf ; hÞdh

is shown as the solid or green line in Fig. 1c. The latter figure shows the trademark positive–
negative–positive signature for low, intermediate, and high frequencies, respectively. Fig. 1b
furthermore shows a tendency of the exact source term to broaden the directional distribution of
(a) (b)

(d)(c)

Fig. 1. First test case. (a) Spectrum, logarithmic scaling with factor 2 increment between contours, highest contour at

0.5. (b) Exact interactions according to WRT method. Logarithmic scaling with factor 2 increment, lowest absolute

contour value at ±70, blue shading or dashed contours identify negative values. (d) Corresponding results of DIA. (c)

One-dimensional interaction Snlðf Þ, normalized with maximum of Snlðf Þ for WRT method. Solid or green lines rep-

resent WRT, dashed or red lines represent DIA.
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the spectrum for high frequencies (Snl < 0 for f > 1 and h � 0�, Snl > 0 for f > 1 and angles away
from 0�), as has been observed for many other test spectra.

The nonlinear interaction source term Snl according to the DIA (Fig. 1d) deviates significantly
from the exact interactions (Fig. 1b). First, the DIA results in interactions that are too strong.
Second, the positive lobe at low frequencies is too broad in frequency space, particularly away
from h ¼ 0�. Third, the positive lobes at high frequencies are shifted in frequency space. Note that
the one-dimensional source term (Fig. 1c) describes the positive lobe at low frequencies reason-
ably well. Hasselmann et al. (1985) chose k and C to achieve this, because this part of Snl is be-
lieved to be crucial for wave growth.

Fig. 2 shows selected cases of the MDIA tests M1 through M4. These illustrations have been
selected to highlight shortcomings and potential of several approaches. Fig. 2a shows results of an
MDIA with 4 components (N ¼ 4), with the original layout of the quadruplet (l � 0), and with a
single constant C (from experiment M2). This approach shows a massive improvement over the
original DIA, reducing its error by more than a factor of 5 (�n ¼ 18:6%). The positive lobe at low
frequencies is much narrower in frequency space for h close to 0�, than for the original DIA
(compare Fig. 1d). However, this approach retains some qualitative shortcomings. For directions
away from the mean directions (e.g., h ¼ �45�), this positive lobe at low frequencies remains
(a)

(c)

(b)

(d)

Fig. 2. Nonlinear interaction source term according to selected MDIAs for the first test case. (a) MDIA with four

components, original quadruplet definition (l � 0) and single constant as in Eq. (10). (b) MDIA with one representative

quadruplet, k, l, and C optimized (cf. Eq. (10)). (c) Like panel (a) but with separate constants C1 and C2 as in Eq. (11).

(d) MDIA with four components, expanded quadruplet definition (k and l, optimized) and single constant as in Eq.

(10). Resulting optimum parameters as in Table 2. Legend as in Fig. 1b. Normalized error �n in upper right corner of

each panel.
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unrealistically broad in frequency space, when compared to the exact solution (Fig. 1b). This
spurious horseshoe shape of the positive lobe of Snlðf ; hÞ at low frequencies remains when the
number of components in this MDIA is increased, as long as the original layout of the quadruplet
is used (l � 0).

The shape errors for the positive lobe at low frequencies disappear if the new quadruplet layout
is used. This is illustrated in Fig. 2b, which shows results of a single MDIA (N ¼ 1), with the
expanded quadruplet definition (l 6¼ 0), and with a single constant C (Eq. (10), experiment M1).
Thus, even if only one component is used in this MDIA, the qualitative description of the source
term is better than for the four component MDIA with the traditional definition of the quadruplet
(compare with Fig. 2a). Even quantitatively, the latter one-component MDIA is nearly as ac-
curate as the former four-component MDIA. Consequently, it appears crucial to expand the
definition of the quadruplet.

Fig. 2c shows results of an MDIA with 4 components (N ¼ 4), with the original layout of
the quadruplet (l � 0), and with separate constant C1 and C2 (Eq. (11), experiment M4). With the
exception of the use of C1 and C2, this MDIA is identical to the MDIA presented in Fig. 2a. The
introduction of additional tunable constants C1 and C2 has a moderate impact on the accuracy of
this MDIA, reducing the relative error �n from 18.6% in the case with a single constant C (Fig. 2a),
to 16.1% in the corresponding case with constants C1 and C2 (Fig. 2c). The increase of accuracy
appears to be accompanied by a more noisy representation of Snl. For some cases, this even leads
to spurious wiggles at low frequencies (see T03). The moderate quantitative improvement,
combined with a negative qualitative impact, does not seem to justify the complications intro-
duced in the MDIA by adding more tunable constants Cn.

Fig. 2d shows results of an MDIA with four components, an expanded definition of the
quadruplet, and a single constant C as in Eq. (10). The corresponding values of coefficients are
presented in Table 2. A comparison with Fig. 1b shows an excellent reproduction of the exact
interactions, with a reduction of the error compared to the original DIA of a factor of 17
(�n ¼ 5:74%). Adding more components has been found to have only a small impact on the error
�n. Moreover, the optimization will then results in quadruplets with nearly identical layout (k and
l), but with large values of C with opposing signs.

Fig. 3 shows selected cases of the VDIA tests V1 through V5. As in Fig. 2, these illustrations
have been selected to highlight shortcomings and potential of several approaches. In the first
VDIA experiment (V1), C is allowed to vary in full spectral space without constraints for a given k
and l (see Table 1). This test was performed to confirm that such a VDIA can reproduce the exact
interactions with negligible error, and to assess the structure of the resulting Cðf ; hÞ. Such a VDIA
indeed can reproduce the exact interactions (see T03, Fig. 3.9). However, the complexity of the
resulting Cðf ; hÞ is similar to the complexity of the actual interactions. This approach therefore
Table 2

Optimum parameter settings for four component MDIA (N ¼ 4) in first test

Component k l C

1 0.075 0.023 8.36· 107
2 0.219 0.127 7.28· 107
3 0.299 0.184 3.34· 107
4 0.394 0.135 2.57· 106



(c)

(b) (b)

(a) (a)

(c)

Fig. 3. Nonlinear interaction source term according to selected VDIAs for the first test case, with k, l and C as a

function of the frequency f only. (a) k ¼ 0:248, l ¼ 0:127 and Cðf Þ optimized without constraints. (b) kðf Þ and lðf Þ
optimized without constraints, C constant but optimized. (c) kðf Þ and lðf Þ as Pade functions, C constant, all optimized

(see Table 3). Left panels show kðf Þ as short dashed (green) line, lðf Þ as long dashed (red) line, and 108 Cðf Þ as solid
(blue) line. Right panels show resulting source term, with legend as in Fig. 1b. Normalized error �n in upper right corner

of right panels.
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does not provide a practical alternative to calculate Snl. For a practical VDIA, it is necessary to
limit the variability of k, l and C. A first step in this direction is to allow these parameters to vary
with the spectral frequency f only, as justified in the Section 2. Fig. 3 presents a few selected
results from several such VDIAs.

Fig. 3a shows results of a VDIA where Cðf Þ is optimized without constraints, and k and l, are
taken from the corresponding MDIA with N ¼ 1 in Table 1 and Fig. 2b (MDIA experiment Ml
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and VDIA experiment V2). Allowing Cðf Þ to vary without constraint reduces the error of the
resulting DIA by a factor of 2.5 (from �n ¼ 20:3% for a constant C to 7.95% for Cðf Þ). However,
the qualitative improvement is less impressive, because the resulting source term Snl is clearly noisy
(Fig. 3a). Moreover, Cðf Þ itself (solid blue line in left panel of Fig. 3a) displays large variability,
and hence shows little promise for practical modeling of Snl.

Fig. 3b shows results of a VDIA in which Cðf Þ is an optimized constant, and kðf Þ and lðf Þ are
optimized without constraints (experiment V4). This VDIA shows marginally better quantitative
behavior than the previously discussed VDIA, with an improvement of the normalized error of a
factor of 16.5 compared to the original DIA, and a factor of 3.3 compared to the corresponding
optimum single component MDIA of Fig. 2b. However, the improvement is again not as large in
a qualitative sense, due to the noisy character of Snl (right panel of Fig. 3b). Nevertheless, kðf Þ and
lðf Þ in this VDIA are much better behaved than Cðf Þ in the previously discussed VDIA for most
of the frequency range (compare left panels in Fig. 3a and b). This suggests that a simple func-
tional description of kðf Þ and lðf Þ could result in a systematic improvement of the VDIA
compared to the corresponding MDIA. The advantages of such an approach are that first, the
corresponding VDIA is more feasible, due to a smaller number of free parameters, and second,
that smooth estimates of kðf Þ and lðf Þ are tentatively expected to result in a less noisy repre-
sentation of Snl. Fig. 3c show the results obtained by using a representation based on a Pade
function approach for kðf Þ and lðf Þ. The functional description chosen here for the Pade
function representation is given by
Table

Optim

Par

k
l
C

P ðf Þ ¼ a0 þ a1f
1þ a2f

; ð14Þ
where a0 through a2 are the tunable constants. The corresponding VDIA with a single constant C
is shown in Fig. 3c, and its coefficients are presented in Table 3. This VDIA shows only a
moderate quantitative improvement over the corresponding MDIA of Fig. 2b (�n ¼ 17:3% vs.
20.3%,). However, the qualitative improvement is notable, and this version of the VDIA does not
show the noisy behavior as is displayed for the unconstrained k and l in Fig. 3b. This VDIA can
probably be improved by choosing a more appropriate functional description of kðf Þ and lðf Þ, as
will be discussed in Section 5. However, for the present feasibility study, the Pade description will
be considered adequate to assess the concept of this VDIA.
4.2. Multiple test cases

A fairly representative example of the results of the second set of test cases is presented in Fig.
4. The test spectrum (case 19 of T03) is mildly sheared, with an asymmetric bimodal directional
3

um Pade coefficients of Eq. (14) for VDIA in the first test

ameter a0 a1 a2

0.202 0.0323 )0.0170
0.0681 0.0506 )0.00377
2.007· 107 0 0



(a)

(c)

(e) (f)

(g)

(d)

(b)

Fig. 4. Nonlinear interaction source term according to several algorithms for case 19 of second sets of test.

(a) Spectrum, (b) exact (WRT) source term, (c) frozen MDIA, (d) optimal MDIA, (e) frozen VDIA, (f) optimal VDIA,

(g) original DIA. Legend as in Fig. 1a and b. Note that scaling differs from Fig. C.19 of T03. Normalized errors �n in
upper right corner of panels.
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distribution. The frozen MDIA (Fig. 4c), closely resembles the exact solution (Fig. 4b). The
optimized MDIA (Fig. 4d) is significantly more accurate, and, for all practical purposes, repro-
duces the exact interactions. The frozen VDIA (Fig. 4e) is less accurate, but represents a major
improvement over the original DIA, reducing the error by a factor of more than 5. The optimized
VDIA (Fig. 4f) shows marginally more accurate results. A main qualitative shortcoming of the
VDIA is the lack of asymmetry for higher frequencies (f > 1:5). The VDIA appears to share this
deficiency with the original DIA. The original DIA (Fig. 4g) has all quantitative and qualitative
shortcomings that were identified in the first test.

Fig. 5 summarizes the results of all test cases. Panel (a) presents the normalized error �n of the
optimized models as a function of the corresponding errors of the frozen models, for all cases, and
for both the MDIA and the VDIA. Panel (b) shows the relative improvement of the MDIA and
VDIA due to the case-by-case optimization as a function of the errors of the frozen model. Several
conclusions can be drawn from this figure.

First, both the MDIA and VDIA generally behave significantly better than the original DIA,
with virtually all errors �n < 1, and most errors �n � 1 (Fig. 5a). Although no comparison be-
tween the MDIA and VDIA is presented on a case-by-case basis, it is also obvious from Fig. 5
that the MDIA systematically produces better results that the VDIA (i.e., smaller errors �n).

Second, for three outlying cases, the VDIA shows only marginal improvement over the original
DIA, even in its optimized form (�n > 0:6, Fig. 5a). As can be seen in the individual test results
presented in T03, these cases all consider sharply peaked spectra. In these cases, the qualitative
improvement provided by the VDIA appears more significant than the quantitative improvement
(see T03). Furthermore, the reduction in error by optimizing the VDIA is generally small, with a
corresponding reduction of the error by less than 20% for 15 of the 20 cases (Fig. 5b). Since 2 of
the 5 cases with larger impact consider sharply peaked spectra which are poorly treated by the
VDIA, and 1 such case is already accurately depicted by frozen VDIA, it appears that there is
little benefit in dynamically estimating free parameters of the present VDIA.
(a)

(b)

Fig. 5. Resulting normalized errors �n for all test cases, (a) Error of optimized model as a function of the error of the

frozen model. (b) Relative change in error defined as error of optimized model normalized with error of frozen model,

as a function of the latter. MDIA: open green circles. VDIA: solid red circles. (Fig. 4.1 from T03.)
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Third, the optimized MDIA shows a large improvement over the original DIA with �n < 0:3
for all cases, and �n < 0:1 for 14 out of 20 cases (Fig. 5a). Furthermore, the impact of the op-
timization is much larger for the MDIA than for the VDIA, with an error reduction due to the
optimization of more than 25% for 10 cases, and more than 50% for 5 cases (Fig. 5b). Hence, the
MDIA has a much higher potential to benefit from dynamical estimation of parameters than
the VDIA.
5. Discussion

The present study investigates the potential of several previously published Discrete Interaction
Approximations (DIAs) for the nonlinear interactions in wind wave spectra. Inverse modeling,
where the free parameters in the different DIAs are objectively estimated by fitting the DIA to the
exact solution, indicates that the accuracy of the original DIA is mostly constrained by the limited
flexibility of the layout of its representative quadruplet. In the original approach of Eqs. (2), (3),
and (5), only one free parameter governs the layout of the representative quadruplet. Van Vledder
(2001) suggests an alternative layout of the quadruplet using three free parameters. This definition
of the quadruplet can reproduce any possible quadruplet. In the present study a two-parameter
quadruplet layout is suggested (Eq. (8)), which retains some, but not all, of the versatility of Van
Vledder�s approach. Results presented here indicate that this expanded flexibility of the repre-
sentative quadruplet is essential for a DIA to be able to accurately reproduce the exact interac-
tions. The new two-parameters quadruplet appears to have sufficient flexibility for accurate
representation of exact interactions for individual spectra.

Ueno and Ishizaka (1997) advocate the addition of more proportionality constants C0
i to the

original DIA, cf. Eq. (9). The present study indicates that this modification of the DIA has a
limited quantitative impact on the accuracy of the DIA. It furthermore appears to add noise to the
resulting source term Snl. Consequently, this modification does not appear justified based on
quantitative measures, and may even be detrimental in a qualitative sense.

Considering the above, the optimal form of the DIA includes the new quadruplet layout of Eq.
(8), and a single proportionality constant as in Eqs. (9) and (10). This DIA benefits greatly from a
multiple DIA (MDIA) approach with more than one representative quadruplet. Using four rep-
resentative quadruplets, the resulting source term Snl (Fig. 2d) becomes virtually indistinguishable
from the exact source term (Fig. 1b). Adding more than four quadruplets has a limited incremental
impact on the accuracy of the MDIA (T03, Table 3.1). Moreover, for larger numbers of qua-
druplets in the MDIA near-identical quadruplets (i.e., k and l) are found with constants C with
opposite signs. Hence differences between (near-identical) contributions rather than individual
contributions of quadruplets start to dominate the incremental improvement. It is not likely that
such contributions can result in systematic model improvement for arbitrary spectra. It therefore
appears that the presentMDIA, where the quadruplet layout is allowed to vary without restrictions
in the optimization, may be expected to show optimal results for approximately four components.

Fig. 5 indicates that the above MDIA with four components might benefit significantly from a
dynamic estimate of its free parameters, based on characteristics of the actual spectrum consid-
ered. Such results might be anticipated because Hashimoto and Kawaguchi (2001) have already
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shown that the optimum parameters for a single MDIA are a distinct function of the shape of the
spectrum.

The present study introduces the concept of a Variable DIA, where the parameters k and l,
defining the quadruplet, as well as the proportionality constant C are allowed to vary in spectral
space. Such an approach in general can produce accurate estimates of the source term Snl, but
tends to do so at the expense of noise in Snl. Furthermore, these parameters themselves tend to
show significant variability, limiting the practical applicability of such an approach.

To obtain a practical VDIA, k, l and C are allowed to vary with the spectral frequency f only.
This is consistent with the observation that the dominant scale of interactions typically is a
function of f , as is discussed in Section 2. Experiments with unrestrained optimization of Cðf Þ
result in a noisy optimal C (Fig. 3a), with little hope for a practical parameterization. A practical
VDIA should therefore use a constant and optimized C. Such a VDIA with unrestrained kðf Þ and
lðf Þ, results in fairly well behaved optimum parameters (Fig. 3b), which could be described with
simple functions. A first practical VDIA then was obtained with a constant C, and with Pade
functions describing k and l. Such a VDIA proved qualitatively about 15% more accurate than
the corresponding MDIA with one component. More importantly, it appears qualitatively more
sound (Fig. 3c).

A close comparison of Fig. 3b and c reveals that the Pade description of k and l results in a
spurious shift of the positive lobes at high frequencies to lower frequencies. This deficiency is
shared with the single MDIA (Fig. 2b). In this frequency range, the unrestrained k and l are well
behaved, and differ clearly from the Pade estimates. It may therefore be expected that alternatives
to the Pade description, which follow the unrestrained estimates more closely, would significantly
improve the behavior of this VDIA at higher frequencies. The Pade based VDIA furthermore
underestimates the magnitude of the positive lobe at low frequencies. In this frequency range, the
unrestrained k and l show great variability. It is therefore not expected that alternatives to the
Pade function can improve the behavior of the VDIA for low frequencies.

Application of the Pade function based VDIA to a larger set of test cases, shows that this VDIA
is not particularly accurate for sharply peaked spectra. A positive attribute of this VDIA is that it
benefits little from optimization for individual cases. This implies that the �frozen� VDIA is more
generally applicable than other versions of the DIA considered in this study.
6. Conclusions

The present study investigates the potential of previously suggested and some new Discrete
Interaction Approximations (DIAs) for nonlinear interactions for wind waves to accurately depict
the corresponding source term Snl for selected wind wave spectra. It is shown that it is crucial to
expand the definition of the representative quadruplet to gain accuracy. Adding more constants to
the calculation of the strength of discrete interactions has insufficient positive impact to justify this
complication of the algorithm. A Multiple DIA (MDIA) with an expanded quadruplet definition
and about four representative quadruplets is shown to reproduce the exact source term ade-
quately. This MDIA would benefit from a dynamic estimation of its free parameters as a function
of characteristics of the spectrum such as the spectral shape. A new Variable DIA (VDIA) is
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introduced, where the free parameters in the representation are allowed to vary as a function of
the spectral frequency f . This new VDIA is less accurate but cheaper than the MDIA.
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