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Abstract

In ocean wave models, swell propagation at coarse spectral resolution leads to the disintegration of
continuous swell fields into discrete swell fields. This process is known as the Garden Sprinkler Effect
(GSE). An existing solution to the GSE consists of adding a diffusion tensor to the propagation equation.
Although this diffusion method has been proven successful, it is prohibitively expensive for models with
high spatial resolution. Two alternatives are presented here. The first is an averaging method. It shares
characteristics with the diffusion method, but is much cheaper for high resolution models. The second
method consists of adding divergence to the advection field. This divergence method is shown to be ac-
curate for idealized conditions, and requires less tuning, but is still too expensive to replace the other
methods in practical conditions. It is therefore suggested to replace the diffusion method with an averaging
method in operational models, and to investigate the divergence method further. � 2002 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Ocean wave models solve some form of the spectral energy or action balance equation, such as

DF
Dt

¼ S; ð1Þ

where F is a wind wave spectrum, and S represents source terms for spectral wave energy due to
the influence of wind, wave breaking (‘whitecapping’), nonlinear interactions, and additional
(mostly shallow-water) processes. In the spectral description used in Eq. (1), the spectrum F and
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source term S are functions of two parameters describing spectral space. Conventionally, these
have been the spectral frequency f and direction h. Although alternative descriptions have been
used, the differences are immaterial for the present study. The spectrum is furthermore a slowly
varying function of space~xx and time t (compared to the length and period of individual waves)

F ¼ F ðf ; h;~xx; tÞ; S ¼ Sðf ; h;~xx; tÞ: ð2Þ

In a conventional numerical wave model, spectral space ðf ; hÞ and physical space ~xx are dis-
cretized, while the solution is propagated with discrete time steps Dt. The need to discretize in four
dimensions makes it difficult to attain resolution and economy at the same time. In state-of-the-
art wave models like WAM (WAMDIG, 1988; Komen et al., 1994), WAVEWATCH III (Tolman
and Chalikov, 1996; Tolman, 1999), and SWAN (Booij et al., 1999; Ris et al., 1999), a typical
spectral resolution is 24 directions with Dh ¼ 15�, and a logarithmic frequency distribution

fiþ1 ¼ cfi; ð3Þ
where i is the discrete grid counter in f-space, and typically c ¼ 1:10. Better resolutions have been
used, but the parameterization of nonlinear interactions as used in these models (the Discrete
Interaction Approximation, DIA, Hasselmann et al., 1985), appears best suited for such a reso-
lution. Furthermore, this resolution appears sufficient to adequately describe (local) wave growth
(e.g., Tolman, 1992). With this spectral resolution, spatial resolution appears to have been mostly
dictated by economics, and to optimally use nominal resolutions of modelled wind fields em-
ployed to drive these models.

Whereas the above described common resolutions appear generally adequate in conditions of
active wave generation, problems occur when active wave generation stops, and wind seas become
swell. Such swells travel across the ocean, virtually without interacting with other wave groups
(e.g., Snodgrass et al., 1966). Due to continuous dispersion of swell energy with different fre-
quencies and directions, a swell field covers an increasingly large area. In numerical models,
however, the spectral frequency and direction are not continuous but discretized. Discrete swell
fields therefore travel in discrete directions with discrete speeds (i.e., discrete frequencies). If the
spectral resolutions are inadequate, this will result in a spurious disintegration of the continuous
swell field into discrete swell fields. This numerical problem is generally known as the Garden
Sprinkler Effect (GSE).

The GSE and possible solutions to it have been discussed in great detail by Booij and Hol-
thuijsen (1987, henceforth denoted as BH87). To illustrate the effects of the GSE, results of a test
case similar to theirs are presented here. In this test, propagation in deep water in a Cartesian
ðx; yÞ space is considered. Eq. (1) then reduces to

oF
ot

þ cx
oF
ox

þ cy
oF
oy

¼ 0; ð4Þ

where cx and cy are the group velocity components in the respective directions.
In an area of 4500 � 3500 km2, discretized with Dx ¼ Dy ¼ 100 km, an initial wave field is

placed at 500 km from the lower and left side (point ð0; 0Þ in all figures). The initial wave field has
a significant wave height Hs ¼ 2:5 m. The mean direction hm ¼ 30�, and the directional energy
distribution is of the cos2ðh � hmÞ type. The mean frequency fm ¼ 0:1 Hz, and the distribution of
energy in frequency space is Gaussian with a spread of 0.01 Hz. The distribution of wave energy in
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physical space is also Gaussian with a spread of 150 km. The model is run for five days to
propagate the swell field to the top and right edges of the area. Numerical results are obtained
using the ULTIMATE QUICKEST (UQ) scheme of Leonard (1979, 1991). Calculations are
performed with a test version of WAVEWATCH III. From the perspective of the present study,
the only relevant differences between the test version of this model and its presently distributed
version (Tolman, 1999) is the option to run the model on Cartesian instead of spherical spatial
grids, and the inclusion of new GSE alleviation methods as presented in the present study.

Fig. 1(a) shows the initial conditions and final wave heights obtained with the conventional
spectral resolution Dh ¼ 15� and c ¼ 1:10. Fig. 1(b) shows the corresponding near-exact results as
obtained with a highly increased resolution of Dh ¼ 2:5�, c ¼

ffiffiffiffiffiffiffiffiffi
1:10

p
and Dx ¼ Dy ¼ 25 km.

Whereas the ‘exact’ solution shows the expected continuous swell dispersion, the conventional
model results show a clear GSE. Particularly, the discrete swell fields for individual discrete di-
rections are obvious. In frequency space discrete swell fields travel at different speeds in the same
direction. Because no clear separation of fields is obvious in the propagation direction, the fre-
quency resolution c ¼ 1:10 is apparently sufficient for the propagation distances and spatial extent
of the initial distribution considered here.

As already mentioned above, BH87 present solutions to the GSE. The obvious solution is to
increase spectral, in particular directional, resolutions. The required resolution, however
ðDh � 5�Þ, is not economically feasible in operational models. Alternatively, BH87 present a
modified propagation equation:

oF
ot

þ o

ox
cxF

�
� Dxx

oF
ox

�
þ o

oy
cyF

�
� Dyy

oF
oy

�
� 2Dxy

o2F
oxoy

¼ 0; ð5Þ

Dxx ¼ Dss cos2 h þ Dnn sin2 h; ð6Þ
Dyy ¼ Dss sin

2 h þ Dnn cos2 h; ð7Þ
Dxy ¼ ðDss � DnnÞ cos h sin h; ð8Þ

(a) (b)

Fig. 1. Significant wave height ðHsÞ for simple GSE test as described in text. (a) Initial conditions near ð0; 0Þ with

contours at 0.25 m intervals, and model results after 5 days with contours at 0.10 m intervals for conventional spectral

resolution with Dh ¼ 15� and c ¼ 1:10. (b) Near-exact results obtained with increased spatial and spectral resolution.

Axes in km.
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Dss ¼ ðDcgÞ2Ts=12; ð9Þ
Dnn ¼ ðcgDhÞ2Ts=12; ð10Þ

where Dss is the diffusion coefficient in the propagation direction of the discrete wave component,
and Dnn is the diffusion coefficient along the crest of the discrete wave component. Dxx, Dyy and Dxy

are the corresponding components of the diffusion tensor along the axes of the spatial grid. cg is
the group velocity with which the wave energy propagates in the direction h, and Dcg is the
discrete increment in cg corresponding to Df . Ts is the time elapsed since the generation of the
swell, or the ‘swell age’. Compared to Eq. (4), Eq. (5) adds a diffusion tensor. This diffusion
explicitly models sub-grid dispersion.

Formally, the evaluation of the diffusion requires the evaluation of Tsðf ; hÞ with a set of
equations similar to Eqs. (5)–(10) (see BH87 for details). This will obviously impact memory
requirements and run times of models seriously. It will also make evaluation of the stability of the
numerical scheme (see below) more complicated. BH87 suggest simplifying this approach by using
a single representative swell age Ts. This then becomes a tunable parameter, which needs to be
estimated for each model application separately based upon the travel time of typical swells across
the model domain. Figs. 2(a) and (b) show model results for the test case after 5 days for Ts ¼ 2
and 4 days, respectively. Results obtained with Ts ¼ 2 days (Fig. 2(a)) show a less pronounced, but
still obvious GSE. Results obtained with Ts ¼ 4 days (Fig. 2(b)) show a nearly complete removal
of the GSE. A further increase of Ts to 5 days would remove the last trace of the GSE (see similar
test in Tolman, 2001).

From the above tests, it is obvious that the BH87 solution for the GSE is effective. Operational
WAVEWATCH III wave models as run at the National Centers for Environmental Prediction
(NCEP), have shown both the need for GSE removal, and the success of the BH87 in doing so for
practical conditions. This will be illustrated in the following sections. However, this practical
experience has also illustrated a problem with the BH87 solution. For simple advection as in Eq.
(4), the maximum allowed numerical time step Dtmax;a for explicit numerical schemes scales with
the grid increment

(a) (b)

Fig. 2. Like panel (b) of Fig. 1 for UQ scheme with BH87 GSE correction and Ts ¼ 2 days (panel (a)) or Ts ¼ 4 days

(panel (b)).
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Dtmax;a /
Dx
cg

: ð11Þ

For explicit schemes for the diffusion as in Eq. (5), however, the maximum time step Dtmax;d

scales with the diffusion coefficient (and therefore with T�1
s ) and the square grid size (Tolman,

1999, p. 33)

Dtmax;d / ðDxÞ2

ðcgDhÞ2Ts

: ð12Þ

Thus, for increasing spatial resolution (decreasing Dx), the diffusion will eventually dictate the
numerical time step for Eq. (5), or alternatively, the time step will limit the maximum Ts attainable.

For NCEP’s operational global wave model (Chen et al., 1999) with a spatial resolution of
about 100 km, Ts was set to 4 days. This choice is based on the test results of Tolman (1995). With
the given spatial resolution, this choice of Ts does not influence the required time step, and the
GSE correction increases the computing time for the model by a modest 15%. For NCEP’s re-
gional models, however, the spatial resolution is typically 25 km. To obtain necessary swell ages of
about 3 days (based upon practical experience with the North Atlantic Hurricane model), the
propagation time step of the model needs to be reduced by a factor of 3, compared to a model
with advection only. This increases the necessary computational time by about 75%. Even though
this increase is manageable in NCEP’s operational environment, it is sufficiently large to justify
the start of a search for alternative GSE alleviation methods. Furthermore, future wave model
implementations are expected to require even higher resolution, further compounding the present
negative effect of the BH87 approach on overall model run times.

Methods other than BH87 have been used or suggested to cope with the GSE. Some models
rely on numerical diffusion inherent to the spatial propagation scheme to mask the GSE. Such
numerical diffusion, however, by definition has major axes associated with the physical ðx; yÞ grid.
Eq. (5), on the other hand, indicates that the major axes of the diffusion need to be lined up with
the spectral direction h. Consequently, there is little hope for numerical diffusion in physical space
to effectively remove the GSE. Nevertheless diffusive propagation schemes do mask the GSE to
some extend. Accurate schemes like the UQ scheme used in WAVEWATCH III tend to highlight
the GSE.

Another method is presented by Lavrenov and Onvlee (1995). Instead of adding diffusion in
physical space, they add averaging in h-space. Their test case indicates some success in removing
the GSE, but is less taxing than the present test due to the much larger spatial scale of the initial
condition. The directional averaging for a given discrete location and frequency is defined as

F nþ1ðhjÞ ¼ �½F nðhj�1Þ þ F nðhjþ1Þ� þ ð1 � 2�ÞF nðhjÞ; ð13Þ
where n and j are discrete counters in time and direction, and � is a small number scaling with cgDt.
Such an averaging has the disadvantage that some, albeit little, energy is rapidly spread over all
directions, and will hence spread through the entire model domain. Conversely, the BH87 ap-
proach retains all energy in the dominant propagation direction, spreading energy in physical
space with a process that still is dominated by the mean advection. Such a method is much more
selective in spreading energy throughout a model. Therefore, GSE solutions confined to physical
space appear preferable.
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In the present study, two such GSE alleviation methods will be presented. The first uses a
spatial averaging technique, and is discussed in Section 2. The second adds divergence to the
advection velocity, and is discussed in Section 3. The effectiveness of both methods is assessed
using the test case of Fig. 1. Impact of the GSE in practical conditions, as well as the corre-
sponding success of GSE alleviation methods, is illustrated in Section 4. A final discussion and
conclusions are presented in Sections 5 and 6.

2. Spatial averaging

As discussed above, the GSE occurs due to the inability of typical Eulerian propagation
schemes to describe spectral dispersion within discrete spectral bins. A simple solution would be to
try and account for the variability of the advection velocity ðDcg;DhÞ within the numerical scheme
by averaging. This approach, however, is doomed to fail. In general, a Eulerian scheme for one-
dimensional propagation can be written as

F nþ1
l ¼

XM
m¼�M

amF n
lþm; ð14Þ

where l is the discrete grid counter, m is a secondary grid counter in the same space, and M
represents the so-called ‘stencil width’ of the numerical scheme. The coefficients am are a function
of the advection velocity, grid spacing and time step. If the advection velocity is allowed to vary to
describe variability within the spectral bin, this only affects the coefficients am in Eq. (14). The
subsequent averaging will also only affect the coefficients. In a linear perturbation approach, the
coefficients after averaging will simply return the coefficient values of the mean of the spectral bin.
Hence, straightforward averaging of an Eulerian scheme to the first order has no influence on the
scheme, and can therefore not alleviate the GSE.

In a Lagrangian, or semi-Lagrangian approach, a direct averaging method will be similarly
unsuccessful. In such a scheme, the spectral density at the next time step is estimated from the
energy density at the previous time step with spatial offset �~ccgDt (� in Fig. 3). The energy density
at this target point is estimated using some kind of interpolation from the discrete spatial grid.

Fig. 3. The GSE from a Lagrangian or semi-Lagrangian perspective: , discrete spatial grid points; �, ‘target’ point of

scheme.
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This interpolation can be written in a general two-dimensional version of Eq. (14). If the dis-
persion within the spectral grid box is considered, the target point is replaced by a target area
around the target point, defined by DcgDt and Dh. Averaging of the interpolation over the area
will again simply return the mean value (in a linearized approach), and hence will not avoid the
GSE. This is particularly obvious in the case where the target area in Fig. 3 is completely sur-
rounded by four grid points. Only in cases where the averaging results in the inclusion of addi-
tional spatial grid points, some residual effect of averaging will occur.

There appears to be a paradox in Fig. 3; the GSE occurs because spatial averaging is not
performed, yet including spatial averaging within the numerical Eulerian or Lagrangian scheme
does not help. A simple solution to this apparent paradox is to separate the averaging from the
propagation scheme in a separate fractional step. In one of the steps, an arbitrary numerical
scheme is used to propagate the solution. In the other step the averaging is performed. If the
averaging is performed separately, the averaging needs to be done relative to the grid points ðÞ
rather than target points ð�Þ. Using a simple linearization, the extent of the averaging in the
propagation ð~eesÞ and normal ð~eenÞ directions become

�asDcgDt~ees; �ancgDhDt~een; ð15Þ
where as and an are constants. Ideally, as ¼ an ¼ 0:5. Varying these constants leaves room for
some tuning of such a GSE alleviation method. Note that this kind of averaging with dominant
directions~ees and~een is similar to the BH87 diffusion method, that uses the same main directions.
The averaging method, however, never influences the time step, because it is completely separated
from the actual propagation. Moreover, if explicit schemes are used with typically cgDt=Dx < 1, it
is obvious that the averaging over the area as defined in (15) will generally require information at
directly neighboring spatial grid points only.

Clearly, the resulting scheme depends on the averaging scheme used. Considering the similarity
with the tensor-like solution of BH87, it appears important to use a full nine-point stencil around
the grid points, rather than stencils along the main spatial grid axes only. This naturally lends
itself to an ‘octant type’ interpolation to get the field values at the edges of the averaging area.
This is illustrated in Fig. 4. The hatched area in this figure represents the averaging area. Energies
F at the corner points of this area are obtained by linear interpolation from F at the central point

Fig. 4. Graphical depiction of spatial averaging technique used here. Solid circles and dotted lines represent the spatial

grid. Hatched area represent averaging area to be considered. Corner point values are obtained from central grid point

and gray points. The latter values are obtained by interpolation from adjacent grid points.
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and F at the border of the stencil (gray points). The values for F at the latter points are obtained
by linear interpolation from the adjacent grid points. Details of the averaging can be found in
Appendix A.

Fig. 5 shows test results after 5 days for the UQ scheme augmented with spatial averaging for
several values of as and an. With this choice of tuning parameters, the results are virtually identical
to those of the BH87 solution as presented in Fig. 2. Results obtained with as ¼ an ¼ 0:75 (Fig.
5(a)) show a less pronounced, but still obvious GSE. Results obtained with as ¼ an ¼ 1:50 (Fig.
5(b)) show a nearly complete removal of the GSE. Setting as ¼ an ¼ 2:00 would remove the last
trace of the GSE (see comparable test in Tolman, 2001). Note that even with the relatively large
values of a used here, the averaging area is still well within the nine-point stencil.

3. Divergent advection

With the existing solution of BH87, and the general origin of the GSE, averaging techniques as
described in the previous section form a logical approach to alleviating the GSE. In the previous
section, Eq. (4) was also shown to not reproduce dispersion within the spectral bin by means of
direct averaging of the equation. However, if this equation is written in the more general flux form

oF
ot

þ ocxF
ox

þ ocyF
oy

¼ 0 ð16Þ

it is clear that spatial dispersion of energy F can be achieved by adding divergence to the normally
homogeneous advection field ~ccg ¼ ðcx; cyÞ. Such an approach is not only possible, but also
physically sound. Consider again, that the energy at a given bin ðfi; hjÞ in fact contains wave
energy in a band ðDf ;DhÞ. After a wave field has propagated for some time the spatial dispersion
pattern of the energy for this bin will reflect the fact that propagation of energy in a spectral band
is considered. Wave energy to the left of the discrete propagation direction in fact travels more in
that direction than in the mean direction for the bin, etc. Thus, the actual advection pattern is not
homogeneous, but looks as illustrated in Fig. 6.

(a) (b)

Fig. 5. Like panel (b) of Fig. 1 for UQ scheme with averaging technique and an ¼ as ¼ 0:75 (panel (a)) or

an ¼ as ¼ 1:50 (panel (b)).
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To establish a dispersion pattern as in Fig. 6, the spatial extent and location of individual swell
fields needs to be evaluated. In principle, additional evolution equations for location and size of
discrete swell fields could be established. Although perhaps cumbersome to evaluate, such
equations will require relatively little additional computational effort, because only a small
number of parameters need to be evaluated per discrete wave field. In contrast, the evolution
equation for Ts in BH87 is required for each discrete spectral and spatial bin. From a modelling
perspective, a direct and instantaneous method to evaluate the necessary divergence appears more
simple and, therefore, preferable for initial tests.

A simple algorithm can be constructed as follows. First the center of a discrete swell field for the
spectral bin ðfi; hjÞ is defined by the location of the maximum energy density F ðfj; hjÞmax. Sec-
ondly, the extent of the swell field in the propagation ðhÞ direction, rs;max, and in the normal di-
rection, rn;max are estimated by evaluating whether

F ðfj; hj; x; yÞ < b0F ðfj; hjÞmax: ð17Þ

Ideally, b0 ¼ 0. From general numerical considerations, b0 should be a small number of the
order 0.01–0.1. Assuming a linear correction of advection speed and direction with the actual
propagation ðrsÞ and normal ðrnÞ distances to the center of the discrete swell field, the advection
speed cg and direction h, relative to their original bin-mean values cg;0 and h0 become

cg ¼ cg;0 þ bs~rrsDcg; ð18Þ
h ¼ hg;0 þ bn~rrnDh; ð19Þ

where Dcg ¼ 0:5ðc � c�1Þcg;0 and ~rrs and ~rrn are distances, normalized with rs;max and rn;max, re-
spectively. To avoid aphysical corrections for trace energy, the normalized distances have been
limited to j~rrsj < 2 and j~rrnj < 3. Ideally, bs ¼ bn ¼ 0:5. Alternatively, these factors can be treated as
tuning parameters.

For the present test case, the above algorithm is easily implemented. Fig. 7 shows results after
five days for b0 ¼ 0:01 and bs ¼ bn ¼ 0:5 in panel (a), and for b0 ¼ 0:05 and bs ¼ bn ¼ 0:6 in panel
(b). Even for essentially theoretical settings of the b parameters (Fig. 7(a)), most of the GSE has
been removed. For slightly higher values of the b parameters (Fig. 7(b)), the results closely re-
semble the ‘exact’ solution of Fig. 1(b).

Computational costs are increased for two reasons. First, the maximum advection velocity of
Eq. (18) is increased by a factor

Fig. 6. Graphical depiction of actual dispersion pattern of discrete wave field.
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cg;max

cg;0

¼ 1 þ bsðc � c�1Þ ð20Þ

or typically 10–15%. This will require a similar reduction of the numerical time step. Due to the
dynamically adjusted time steps for propagation in WAVEWATCH III, and due to the fact that
this does not influence the time steps used in the integration of the source terms S on the right side
of Eq. (1), the effective increase in computational time of the entire model due to this increased
advection velocity is much less, typically of the order of 3–5%.

A second source for increased computational effort is the evaluation of the corrections of the
advection velocity. For the present test, this proved simple, because only a single wave field is
present for each spectral bin F ðfi; hjÞ. For practical applications, as discussed in the following
section, by definition multiple wave fields exist for virtually any F ðfi; hjÞ. For initial testing of this
method in practical conditions, a simple generalized algorithm as described in Appendix B has
been implemented in WAVEWATCH III.

4. Practical applications

So far, both the importance of, and solutions to the GSE have been discussed in the framework
of a highly idealized test case. For practical conditions, the importance of the GSE has been il-
lustrated by Bidlot et al. (1997) and Tolman (2001). Here we will use some practical illustrations
to address the capability of different methods to alleviate the GSE.

The GSE is expected to be most prominent in cases with poor spectral resolution, and with
strong forcing with small spatial scales. In NCEP’s operational models, those with specific hur-
ricane forcing are therefore most sensitive to the GSE. Results of the North Atlantic Hurricane
(NAH) model (Chao and Tolman, 2000, 2001; Chao et al., 2001) will therefore be used as an
illustration here.

In practical conditions, multiple wave fields generally coexist. The swell field that is most
sensitive to the GSE is generally not the major source of local wave energy. The GSE is therefore

(a) (b)

Fig. 7. Like panel (b) of Fig. 1 for UQ scheme with divergent advection and b0 ¼ 0:01, bs ¼ bn ¼ 0:5 (panel (a)) or

b0 ¼ 0:05, bs ¼ bn ¼ 0:6 (panel (b)).
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rarely obvious in overall significant wave heights Hs. Peak wave periods Tp, defined as the wave
period corresponding to the highest value in the local one-dimensional energy spectrum F ðf Þ,
tend to concentrate more on the dominant swell field. This parameter is therefore a better indi-
cator of the GSE. It is furthermore particularly important, because dominant swells are relevant
for offshore operations and safety.

As an example, peak periods Tp of hurricane Alberto from the NAH model are used to examine
the GSE effect. In particular, four different model versions have been run to illustrate the oc-
currence and alleviation of the GSE. The first uses the UQ scheme without GSE alleviation. The
second is the standard NAH model, i.e., using an UQ scheme with the BH87 GSE correction and
Ts ¼ 3 days (computations with Ts ¼ 1 day, not influencing time steps, are performed for timing
purposes only). The third uses the UQ scheme with the averaging algorithm and as ¼ an ¼ 2:00.

Fig. 8. Peak periods Tp for the swell field generated by hurricane Alberto in NCEP’s NAH model for August 9, 2000, 12

GMT. Contours at 1 s intervals starting at Tp ¼ 9 s. Light gray shading identifies 11 < Tp < 13 s, dark gray identifies

Tp > 13 s. (a) Model with UQ scheme without GSE alleviation. (b) UQ scheme with BH87 diffusion terms and Ts ¼ 3

days. (c) UQ scheme with spatial averaging and as ¼ an ¼ 2:0. (d) UQ scheme with divergent advection and b0 ¼ 0:10,

bs ¼ 0:50, and bn ¼ 0:75.
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The final model version uses the UQ scheme with the divergent advection and b0 ¼ 0:10,
bs ¼ 0:50, bn ¼ 0:75. Considering Eq. (20) and the choice of bs, the maximum propagation time
step was reduced by 10%. An additional example from the same model runs for hurricane
Florence can be found in Tolman (2001).

Alberto roamed the North Atlantic from August 4–23, 2000. On August 6, Alberto intensified
around 15�N and 35�W, and started sending out a distinct swell field. The swell field becomes
apparent in the peak periods Tp on August 7, and remains a distinct feature of the peak period
fields for the next 4–5 days. It started displaying the GSE in the plain UQ version of the model on
August 8. On August 9, the GSE is well developed as is illustrated in Fig. 8(a). Clearly visible are
the ‘spokes’ of large periods, radiating out from roughly 15�N and 35�W.

Normal dispersion along these spokes would show longer waves (larger Tp) lead shorter waves,
with contours perpendicular to the propagation direction. Instead, in these spokes, areas with
given Tp appear systematically rotated in Fig. 8(a). This is most likely due to an interaction be-
tween the GSE and a change of direction of waves following great circles rather than straight
lines. This behavior should therefore be considered an additional numerical propagation error
related to the GSE.

The wave field in Fig. 8(a) is more complex than the wave field in the previous test, because it
consists of many swell fields. For instance, around 22�N and 47�W another swell field can be
observed that does not display signs of the GSE. Furthermore, it should be noted that the Tp field
by definition is discontinuous, as the instantaneous peak of the spectrum is displayed. ‘Holes’ in a
field of peak periods are therefore not necessarily representing holes in the underlying swell field.
Instead, they show an area where other parts of the spectrum become dominant. For instance,
between the clear GSE wave field and the US east coast, local wind seas and lesser swell fields are
dominating Tp. To isolate the hurricane swells and obtain a clearer picture, such fields are sup-
pressed in the figure by not showing contours for Tp < 9 s.

All three GSE alleviation methods used (Figs. 8(b)–(d)) appear to remove the GSE effectively.
The smoothest solutions are obtained by the BH87 method (Fig. 8(b)), and the averaging method
(Fig. 8(c)), which yield nearly identical results. The most detailed solution is obtained by the
divergence method (Fig. 8(d)). Since no exact solution is available, and since all three methods
have removed the GSE adequately, it is impossible to identify which method is the best one.

The results of Fig. 8 are fairly representative for the entire two month period considered here. A
qualitatively similar example for hurricane Florence is shown in Tolman (2001, Fig. 2). Never-
theless some remnants of the GSE appear to occur in isolated cases. The most pronounced residual
GSE for the two month period considered here occurred for the above swell field from Al-berto
around August 11. The corresponding results for 00 GMT are presented in Fig. 9. Although most
of the GSE, as is evident in panel (a), has been removed by all methods, some residual GSE appears
evident for all methods (panels (b)–(d)), particularly between 33�N and 37�N, and 45�W and 60�W.

The main reasons to search for alternative GSE alleviation methods is to find cheaper methods
for high resolution models. Table 1 therefore presents relative computational costs (wallclock
times) for several methods. All costs are normalized with the run time for the UQ model without
GSE alleviation. All runs were performed on a four processor 700 MHz Intel Zeon machine
running Red Hat Linux 6.2 and using a Portland Group compiler. The OpenMP version of
WAVEWATCH III was run on all processors for the full months of August and September 2000,
in four day segments. Average values for the entire two month period are presented in Table 1.
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Timing results for individual four day segments showed no noticeable variability, except for the
divergence method.

Timing results for the UQ scheme with the BH87 GSE alleviation method have already been
discussed in Section 1. The BH87 diffusion operator by itself adds 15% to the computational time
of the model. Proper choice of Ts � 3 days, however, reduces the attainable time step for prop-
agation, and hence increases the computational time by 74%. The averaging method increases the
computational costs of the model by 11%. This method is therefore always cheaper than the BH87
diffusion operator, even if the latter method does not dictate numerical time steps. The divergent
advection velocity method, as implemented here, leads to a sizeable increase of computational

Table 1

Relative run times of NAH models with UQ scheme with different GSE alleviation methods

Plain UQ UQ/BH87 with

Ts ¼ 1 day

UQ/BH87 with

Ts ¼ 3 days

UQ with averaging UQ with divergence

1 1.15 1.74 1.11 1.69

Fig. 9. Like Fig. 8 for August 11, 2000, 00 GMT.
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time of 69%. Note that the computational costs of this method critically depend on the filter
settings as discussed in Appendix B.

5. Discussion

The GSE is a potentially serious problem in ocean wave models. The solution suggested by
BH87, which adds a diffusion tensor to the propagation equation, appears to work satisfactorily.
It is, however, rather expensive for models with high spatial resolution, due to inherent constraints
on numerical time steps. In the present paper, alternatives are investigated, mainly to improve
numerical economy. Two alternatives are presented. One adds a spatial averaging step to the
equation. The other adds controlled divergence to the advection vectors.

The averaging technique as presented in Section 2 and Appendix A is similar to the diffusion
technique of BH87, since the spatial orientation of the averaging area mimics the diffusion tensor.
The main advantage of the averaging technique over the BH87 diffusion approach is that it is
cheaper in all cases, but particularly for high resolution models, because it has no impact on the
propagation time step of the model. An undesirable aspect of the BH87 method is that it requires
application specific tuning of Ts. For instance, if the idealized test case used here is extended to 10
days on an appropriately enlarged grid, Ts needs to be increased similarly to suppress the GSE
after 10 days. Unfortunately, the averaging technique shares this problem; in an extended test, as

and an need to be increased significantly to remove the GSE after 10 days (figures not presented
here).

The technique using a divergent advection velocity is different from the diffusion or averaging
technique for three main reasons: (i) The diffusion and averaging techniques are applied locally to
a spatial bin, whereas the divergence method is applied globally to a contiguous swell field. This
implies that the local spreading applied in the divergence technique per spatial grid point scales
with ðDcg;DhÞ=N , where N is the spatial extent of the swell field in terms of grid increments Dx.
This implies that the local spreading applied in the divergence method is typically a factor 1=N
smaller than with the other two methods. (ii) The divergence method is inherently two-dimen-
sional, generating crescent shaped discrete swell fields, whereas the other two methods only spread
wave energy along the propagation and perpendicular directions. (iii) The divergence method with
near-ideal settings performs just as well after 10 days in the idealized test as after 5 days (figures
not presented). Hence, this method is not expected to require much application dependent tuning,
unlike the other two methods.

The three GSE alleviation methods with parameter settings as in Figs. 2(b), 5(b) and 7(a) give
for practical purposes identical results in the idealized test case. To further assess differences in the
inner workings of the three methods, a modified idealized test case has been run for these model
settings. In this test, all initial wave energy is concentrated in the dominant spectral bin only
ðhm ¼ 30�; fm ¼ 0:1 HzÞ. Fig. 10 shows the corresponding significant wave height ðHsÞ distribu-
tions in 1 day intervals, with contours at 20% intervals of the instantaneous maximum Hs. Also
shown in the figure are the expected data envelopes in the case of no spectral dispersion (dotted
lines), and of a directional dispersion of �0.5Dh (dashed lines). These lines are offset by 400 km
from the initial maximum wave height, to nearly touch the initial 20% Hs contour.
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The plain UQ scheme (Fig. 10(a)) is expected to advect the initial distribution without changing
its shape, i.e., staying tightly within the dotted lines. Changes in the shape of the wave height
distribution indicate well documented numerical errors of the UQ scheme. Mostly however,
nondispersive advection is accurately modelled, and numerical errors appear negligible compared
to the expected directional dispersion (dashed lines).

The UQ scheme with the BH87 diffusion method or the present averaging method (Figs. 10(b)
and (c)) again show virtually identical results. Based on the lowest (20%) wave height contours,
and the expected dispersion envelopes at �0.5Dh (dashed lines), both schemes are too aggressive
in spatially spreading the energy in a single spectral bin. In spite of this, the entire wave field (Figs.
2(b) and 5(b)) still shows remnants of the GSE. Note that the ‘theoretical’ setting for the tunable
parameters in both models (Ts � 2:5 days for BH87, as ¼ an ¼ 0:5 for averaging), are much
smaller than the values used in obtaining the results of Figs. 2(b), 5(b) and 10(b)–(c). Without
further analysis, this might have suggested that swell fields for individual spectral bins need to be

(a) (b)

(c) (d)

Fig. 10. Modified idealized test case with one energy containing spectral bin ðhm ¼ 30�, Dh ¼ 15�, fm ¼ 0:1 Hz,

c ¼ 1:1Þ. Contours at 20% intervals of instantaneous maximum significant wave height Hs for initial conditions, and at 1

day intervals up to five days. Dotted lines: expected data envelope without spectral sub-grid dispersion. Dashed line:

expected data envelope for energy evenly distributed over Dh. (a) UQ scheme, (b) UQ and BH87 as in Figs. 2(b), (c) UQ

and averaging as in Fig. 5(b), (d) UQ and divergence as in Fig. 7(a).
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excessively smoothed to get good model results for the entire spectrum. Figs. 10(b)–(c) show that
the schemes in fact are only moderately too aggressive in smoothing individual wave fields.

The UQ scheme with divergent advection (Fig. 10(d)) and with the ‘theoretical’ settings
b0 ¼ 0:01 and bs ¼ bn ¼ 0:5 shows near ideal directional dispersion at the 20% contour level
(compare lowest contour with dashed line), and here does not display the overly smoothed be-
havior of the previous two schemes. At the 80% level (highest contour levels), the dispersion of the
wave heights is nearly identical to that of the other two methods. This explains why the divergence
method yields nearly identical results for the overall wave field in Fig. 7, while needing less
smoothing of the individual wave fields in Fig. 10. This identifies a fourth difference between the
divergence and other methods; the linear directional dispersion with ~rrn in the divergence method is
apparently more realistic (or at least more efficient) in removing the GSE, than the inherently
nonlinear dispersion due to diffusion or averaging. Note that the two-dimensional structure of the
divergent correction is not obvious here for the relatively small directional increment. For larger
directional increments (figures not presented here), it becomes obvious.

The above differences explain a paradox in the results of different methods for either the ide-
alized or real world cases presented. In the idealized test case (Figs. 1, 2, 5 and 7) the divergence
method gives similarly smooth or smoother results. In the real work case, however, (Figs. 8 and 9)
the same method gives less smooth results. This is possibly due to the somewhat excessive
smoothing needed in the BH87 or averaging methods needed to remove the GSE for individual
swell fields. This is bound to lead to similarly excessive smoothing of the overall wave fields. The
fact that the divergence method needs less local smoothing for individual wave fields may well
explain why overall wave fields also appear less smooth. It should, however, again be stressed that
a lack of an ‘exact’ solution in the real world cases makes it impossible to define which method is
the most accurate.

This study was started to find a cheaper GSE solution than the BH87 diffusion operator for
models with high spatial resolution. The new averaging technique presented here appears to offer
an ideal choice. Its results are virtually identical to those of the BH87 approach. For large scale
models, such as NCEP’s global model, the reduction in model run time compared to the BH87
method is moderate (4% for the equipment used here). For small scale models, particularly the
North Atlantic Hurricane model, the reduction in model run time is expected to be significant
(30% for the equipment used here).

From a theoretical perspective, and based on idealized test cases, the divergent advection
method suggested here appears superior to the other two GSE alleviation methods. In its present
form, however, it is much more expensive than the averaging method for practical applications.
Considering the small differences in model results, such an increased expense does not seem
justifiable in operational models.

In its present form, the costs of the divergence method critically depend on the decomposition
of wave fields for a given spectral bin into individual wave fields. Its economy can be influenced
dramatically by modifying the different filter levels as discussed in Appendix B. However, the
expensive nature of this method is a direct consequence of the decomposition method used here.
Any such method will require linear search elements, which are notoriously inefficient. It is un-
likely that any method requiring such a decomposition will be able to rival the economy of the
averaging technique. For this reason, further attempts to find cheaper instantaneous decompo-
sition methods have been abandoned.
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An alternative has already been identified in Section 3 in using separate evolution equations for
the location and extent of swell fields. In such a case, search algorithms are only needed in wave
generation areas, whereas for established swell fields, corrections for the advection vector can be
established with minimal effort. However, developing such a set of parallel equations, particularly
for spherical grids where the direction of swell changes along their great circle paths, is far from
trivial. However, because the divergence method appears to have some physical advantages, and
particularly has the potential to allow for GSE alleviation without removing shadow zones behind
islands, it does appear to be a candidate for additional research.

6. Conclusions

The GSE is a potentially serious problem in ocean wave models. A solution to this problem has
been suggested by Booij and Holthuijsen (1987, BH87). Whereas this method works satisfactorily,
it also adds significant computational effort to high resolution models. This increase is mostly due
to the fact that the diffusion terms introduced in this technique adversely influence numerical time
steps. In the present paper a new averaging technique is introduced. Its results are nearly identical
to the BH87 techniques, yet have no impact on numerical time steps. This method is therefore
significantly cheaper for high resolution models. A second alternative method adds divergence to
the advection field. This method appears superior from a physical perspective, and unlike the
other methods does not appear to need application specific tuning. However, it is presently too
expensive for operational models. Some suggestions are made for further research into the latter
method.
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Appendix A. Spatial averaging

Let the vectors~ss and~nn in ðx; yÞ-space define the extent of the averaging area in Fig. 4 and Eq.
(15) in the propagation and normal direction, respectively. Normalized with the grid steps, they
are given as

~ss ¼ 0:5asðc � c�1ÞcgDt cosðhÞðDxÞ�1

0:5asðc � c�1ÞcgDt sinðhÞðDyÞ�1

� �
; ðA:1Þ

~nn ¼ �anDhcgDt sinðhÞðDxÞ�1

anDhcgDt cosðhÞðDyÞ�1

� �
: ðA:2Þ
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The four vectors ~rr1;2;3;4 defining the corners of the interpolation area in counterclockwise di-
rection then become

~rr1 ¼~ssþ~nn;

~rr2 ¼ �~ssþ~nn;

~rr3 ¼ �~ss�~nn;

~rr4 ¼~ss�~nn;

ðA:3Þ

where the origin of~rr is at the grid point considered. In obtaining the values at the gray points in
Fig. 4, one of the outer corners of the nine-point stencil is always involved. This point is easily
found from the signs on the components of the vectors ~rr. The adjacent point for interpolation
then is found by comparing the absolute values of the components of the vector. The interpolation
weight factor for the corner point of the stencil then becomes

minðjrn;xj; rn;y jÞ
maxðjrn;xj; rn;y jÞ

; ðA:4Þ

where rn;x and rn;y are the x and y components of the four vectors~rrn. With this weight factor, the
intermediate spectral densities at the gray points in Fig. 4 are defined. The weight for the gray
point in the averaging along the dashed lines in Fig. 4 is given as the absolute value of the proper
component of the vector~rrn. Finally, using the average of the means of four triangles spanned by
the central points and two adjacent~rrn, the average value Favg is estimated as

Favg ¼
1

6

X4

n¼1

F ð~rrnÞ þ
1

3
F ð~rr ¼ 0Þ: ðA:5Þ

The global energy conservation of this scheme needs to be assured, so that the averaging does
not create or dissipate energy. The above averaging scheme can be rewritten in the form

Favgðfi; hj; xl; ymÞ ¼
X1

L¼�1

X1

M¼�1

aL;Mðxl; ymÞF ðfi; hj; xlþL; ymþMÞ; ðA:6Þ

where l and m are absolute discrete grid counters in physical space, and L and M are corre-
sponding relative counters. Thus, for each ðxl; ymÞ, the original spectral density F ðxl; ymÞ con-
tributes to nine surrounding averaged spectral densities Favgðxl; ymÞ. Global conservation requires
that the sum of all corresponding factors a applied to F ðxl; ymÞ equals 1, or

X1

L¼�1

X1

M¼�1

aL;Mðxl�L; ym�MÞ ¼ 1: ðA:7Þ

For a given spatial point ðxl; ymÞ and spectral bin ðfi; hjÞ, Eq. (A.1) shows that ~ss and ~nn, and
hence the coefficients aL;M are a function of cg, c, Dh, Dt, Dx and Dy. By definition, Dt is constant
for a wave field. For most models, the same is true for c and Dh. For the present test case, grid
increments Dx and Dy are constant across the grid, and the deep water conditions make cg con-
stant as well. Hence, aL;M are constant across the spatial grid, and because
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X1

L¼�1

X1

M¼�1

aL;Mðxl; ymÞ � 1; ðA:8Þ

the interpolation method is conservative. However, for shallow-water applications, where cg

varies across the grid, or for spherical grids, where Dx varies with y, aL;M varies across the grid and
Eq. (A.7) will generally not hold. Hence in such conditions the above averaging scheme is not
conservative. A simple solution to obtain a conservative averaging, is to use aL;Mðxl; ymÞ to dis-
tribute the energy F ðxl; ymÞ, rather than to gather the energies from the nine-point stencil. This
replaces Eq. (A.6) with

Favgðxl; ymÞ ¼
X1

L¼�1

X1

M¼�1

aL;Mðxl�L; ym�MÞF ðxl�L; ym�MÞ ðA:9Þ

dropping the dependence of F on ðfi; hjÞ for brevity. For this averaging scheme to be conservative,
only (A.8) needs to be satisfied, which is the case by definition. Note that this final averaging
scheme is identical to (A.6) for constant cg, Dx and Dy (as in the idealized test case). Finally, to
avoid excessive ‘bleeding’ of energy into coastlines parallel to the x or y axes, energy is not dis-
tributed onto land.

Appendix B. Divergent advection

The method for correcting the advection velocity and direction as outlined in Section 3 is easily
implemented for a test case where only one discrete swell field is present for each F ðfi; hjÞ. In
practical conditions multiple fields are present and an iterative method is required. A simple it-
erative method is to find all local maxima, and to identify swell fields by descent methods from
those maxima. Eqs. (17)–(19) then can be applied to each such field individually.

A first implementation of such a scheme in WAVEWATCH III was found to be prohibitively
expensive for practical applications. To reduce the computational time needed, some filtering is
introduced. The first is an absolute filter, stating that only bins with an equivalent wave height less
than Hmin will be considered in the search for individual fields, i.e.,

F >
H 2

min

16DfrDhr
; ðB:1Þ

where Dfr ¼ 0:1f and Dhr ¼ 15� are representative rather than actual grid spacings, to avoid
sensitivity of filtering to the spectral resolution. Similarly, a relative filtering is applied, using only
spectral densities that are larger than a fraction � times the global maximum spectral density Fmax

for the spectral bin ðfi; hjÞ

F > �Fmax: ðB:2Þ

Even though this filtering significantly reduces the computational costs of the search algorithm,
resulting run time still are prohibitive. This is easily explained because literally hundreds of
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individual fields were found for many spectral bins. Because many of such fields are essentially
‘noise’, the last filter applied was to only apply the correction for the first Nmax fields found for
each spectral bin. The practical results obtained with WAVEWATCH III as presented in Section
4 are obtained with Hmin ¼ 0:001 m, � ¼ 0:001 and Nmax ¼ 25.
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