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Abstract

The present report is the third in a series assessing the potential of the
Discrete Interaction Approximation for representing nonlinear interactions
in wind wave models. This study addresses generalization of the DIA with
multiple representative quadruplets to arbitrary depth, and particularly fo-
cuses on scaling behavior of this DIA with respect to depth. Major findings
are that (i) shallow water quadruplet layouts need to be considered explic-
itly to assure proper conservation characteristics of a DIA, (ii) full shallow
water expressions are needed to retain realistic shallow water interaction
shapes, (iii) separate scaling functions with appropriate shallow and deep
asymptotic behavior are needed to obtain proper scaling behavior for arbi-
trary depth, (iv) the choice of the underlying definition of spectral space has
a notable (numerical) impact on the resulting interactions. Experiments
with numerical optimization show that (a) an optimized generalized DIA
configured like the traditional DIA requires approximately twice the com-
puting time of the latter, (b) generalizing the quadruplet layout increases
the costs by an additional factor of just below two, and (c) that the costs
of the optimized MDIA scales linearly with the number of representative
quadruplet realizations.

As a side note that the assessment of the generalized multiple DIA,
diffusion approaches to nonlinear interactions are addressed. It is shown
that the traditional DIA with a quadruplet layout that is not resolved
by the discrete spectral grid reduces to a simple diffusion operator that
satisfies all conservation properties of the nonlinear interactions. A high-
frequency filter based on such an approach is designed and optimized to
be used in conjunction with the generalized multiple DIA, or with Neural
Network Interaction Approximations.
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1 Introduction

This study represents the third part of a study into the potential of the Discrete
Interaction Approximation (DIA) to represent nonlinear interactions in a wind
wave model. For a justification of this study reference is made to Tolman (2003,
henceforth denoted as Part 1), Tolman (2005, henceforth denoted as Part 2) and
to Tolman (2004) and Tolman and Krasnopolsky (2004). In Part 1 previously
suggested modifications to the traditional DIA of Hasselmann et al. (1985) are
evaluated using exact and approximated nonlinear interactions for selected test
spectra. In Part 2 a more in-depth analysis of the behavior of various DIAs is
presented. Instead of testing interaction approximations for selected spectra, a
holistic approach is used where wave parameters resulting from model integra-
tion are optimized. It is shown that an advanced DIA optimized in this manner
indeed can improve the accuracy of the wave model significantly, that is, will
more closely reproduce wave model results as obtained with an exact interaction
routine. The optimization in Part 2, however, was hampered by limits in the
optimization procedures used. Particularly, using an unoptimized DIA imple-
mentation, in combination with a fairly simple genetic search algorithm, resulted
in optimization experiments that pushed the limits of economical feasibility.

Considering the above, the study documented here is focused on the following
issues. First, the basic DIA is reconsidered. The original formulation is based
on a historical description of the wave field, and on the assumption of deep wa-
ter. In present modeling approaches, in particular with limited water depths,
this may no longer be the most appropriate approach. Second, previous diffu-
sion approaches are considered briefly, Whereas such approaches may lack the
desired accuracy, they may be considered as part of an multiple DIA to result
in smoother and therefore faster integration. Finally, numerical optimization of
the resulting multiple DIA is considered to obtain the most economical MDIA
feasible. Parameter optimization of the resulting MDIA, using genetic or other
approaches will be considered in the next report in this series.

In the previous parts of this study, the traditional spectral balance equation of
Hasselmann (1960) is used, applied to deep water only. In such conditions, the
evolution of the wave energy or variance spectrum F (f, θ) as a function of the
spectral frequency f and direction θ can be expressed as

∂F (f, θ)

∂t
+ cg · ∇F (f, θ) = sin(f, θ) + snl(f, θ) + sds(f, θ) , (1.1)

where the right side of the equation represents the sources and sinks, consisting of
wind input (sin), nonlinear interactions (snl) and dissipation (sds) source terms.
Furthermore, cg is the group velocity with magnitude cg = ∂σ/∂k and direction
θ, and where σ = 2πf and k (k) is the wavenumber (vector).
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Using the spectrum F (f, θ) has a historical background, and appears to be
based on the fact that this spectrum [or at least its one-dimensional version
F (f)] is naturally obtained from local time series observations of the water level
elevation. However, the wave action, which is generally defined as N = F/σ is the
basic conserved quantity for waves propagating on mean currents and in shallow
water (e.g., Bretherthon and Garrett, 1968), and spectral descriptions using the
wavenumber vector k or wavenumber-direction space (k, θ) are more generally
invariant with respect to limited depths. Note that the original expressions for
nonlinear interactions are all expressed in terms of n(k) [see Eq. (1.11)]. Because
the present study is intended to ultimately replace the DIA in the WAVEWATCH
III model (Tolman, 2002c; Tolman et al., 2002), the corresponding action balance
equation will be used. This equation is based on the action spectrum N(k, θ) =
F (k, θ)/σ = cgF (f, θ)/(2πσ) and is given as

∂N(k, θ)

∂t
+ ∇x · ẋN(k, θ) +

∂

∂k
k̇N(k, θ) +

∂

∂θ
θ̇N(k, θ) = S(k, θ) , (1.2)

ẋ = cg + U , (1.3)

k̇ = −∂σ

∂d

∂d

∂s
− k · ∂U

∂s
, (1.4)

θ̇ = −1

k

[

∂σ

∂d

∂d

∂m
− k · ∂U

∂m

]

, (1.5)

where d is the mean water depth, U is the mean current velocity, s is a coordinate
in the direction θ and m is a coordinate perpendicular to s, and where S(k, θ) =
cgs(f, θ)/(2πσ) represents the sum of the three basic source terms in Eq. (1.1).
The corresponding dispersion relation is given as

σ2 = gk tanh kd . (1.6)

Note that σ represents that intrinsic or relative frequency, as observed when
moving with the velocity U, and where the frequency as observed on a fixed
location ω is given by the Doppler equation

ω = σ + k · U . (1.7)

Note, furthermore, that in WAVEWATCH III the discrete wavenumber grid is a
function of the local water depth d, in such a way that the corresponding discrete
frequency grid is invariant (Tolman and Booij, 1998), and that the frequency grid
is logarithmic, i.e.

σi+1 = Xσi , (1.8)

where X is a constant factor.
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The nonlinear interactions, which are the centerpiece of the present study, de-
scribe the resonant exchange of energy, momentum and action between a “quadru-
plet” of four spectral components with wavenumber vectors k1 through k4 and
(radian) frequencies σ1 through σ4 (σ = 2πf). These satisfy the resonance fol-
lowing conditions (Hasselmann, 1962, 1963) :

k1 + k2 = k3 + k4 , (1.9)

σ1 + σ2 = σ3 + σ4 . (1.10)

The interactions are conventionally expressed in terms of the rate of change of
the action spectrum n(k) ≡ F (k)/σ as

∂n1

∂t
=

∫ ∫ ∫

G (k1, k2, k3, k4) δk δσ

× [n1n2 (n3 + n4) − n3n4 (n1 + n2)] dk2 dk3 dk4 , (1.11)

where ni is the action density at component i, ni = n(ki), G is a complex coupling
coefficient (Webb, 1978; Herterich and Hasselmann, 1980), and δk and δσ are delta
functions corresponding to the resonance conditions (1.9) and (1.10).

The DIA represents a massive simplification of these exact interactions. Orig-
inally (Hasselmann et al., 1985) the DIA is derived for the spectrum F (f, θ) in
deep water. Since then, forms for other spectral descriptions and for shallow
water have been suggested. These will be discussed in some more detail as rele-
vant for the present study in Section 2. Also discussed in the following sections
will be shallow water considerations, and the possible addition of in particular
diffusion-type operators to the DIA.
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2 The Discrete Interaction Approximation

The concept of the DIA as introduced by Hasselmann et al. (1985, henceforth
denoted as HHAB) hinges on three concepts. The first is the replacement of the
continuous multi-dimensional integral (1.11) by a ‘discrete interaction analogue’.
The second is the assumption that the interaction can be represented by dis-
crete interactions for a limited number of representative quadruplets (eventually
reduced to a single configuration with several realizations). The third is the re-
placement of the complex coupling coefficient G by a simple scaling function and a
proportionality constant. In the above paper, the third concept is not quite obvi-
ous, as the discrete analogue presented [HHAB, their Eq. (5.4)] already implicitly
includes the scaling arguments needed to replace G with a simple constant. A
detailed derivation can be found in Van Vledder (2002a). However, many of the
basic concept of the DIA can be constructed in a simple way, avoiding detailed
mathematical derivations.

Instead of the continuous integral (1.11), HHAB consider discrete changes
in total action δni at four resonant wave components in an infinitesimal time
interval ∆t and an infinitesimal phase-space element ∆k. Applying the principle
of detailed balance (Hasselmann, 1966; Komen et al., 1994, Section II.3.8) to the
discrete action changes at the four components of the quadruplet,

−δn1 = −δn2 = δn3 = δn4 . (2.1)

Alternatively, Eq. (1.11) can be re-written in a similar symmetric form, as is the
basis of most efficient exact algorithms. Retaining the product term in square
brackets in Eq. (1.11) to retain the dependence of interactions on spectral shape,
replacing the coupling coefficient G with a representative nondimensional strength
C ′, and introducing a scaling function B(f, k, g) to assure proper dimensionality
and scaling behavior of the resulting equations, the basic discrete analogue to
Eq. (1.11) becomes









δn1

δn2

δn3

δn4









=









−1
−1

1
1









C ′ B [n1n2 (n3 + n4) − n3n4 (n1 + n2)] ∆k∆t , (2.2)

Without further justification HHAB define the scaling function B as

B = g−8f 19 , (2.3)

which can be derived on dimensional grounds. Note that Eqs. (2.2) and (2.3) are
equivalent to Eq. (5.4) of HHAB, but do not assume that k1 = k2 as in the latter
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equation. Note, furthermore, that the product term P is regularly expressed in
two equivalent ways

P1234 = n1n2(n3 + n4) − n3n4(n1 + n2)

n1n3(n4 − n2) + n2n4(n3 − n1) . (2.4)

The above approach can be expanded upon by considering two different contri-
butions to the scaling function B,

B = B1B2 , (2.5)

where B2 represents the scaling behavior of the coupling coefficient G, which for
deep water can be expressed as (e.g., Van Vledder, 2002a)

B2 = g−4f 12 , (2.6)

and where B1 represents the ‘residual’ scaling function, which on dimensional
grounds becomes

B1 = g−4f 7 . (2.7)

The origin and form of B1 will be discussed in more detail in Section 2.5.
Finally, the discrete changes of action δni can be converted to contributions

to an action density source term δSnl,i = δSnl(ki) by dividing them by the time
increment ∆t and by distributing them over a (local) phase space element ∆ki.

δSnl,i =
δni

∆ki∆t
, (2.8)

which, combined with Eqs. (2.2), (2.4) and (2.5) gives









δSnl,1

δSnl,2

δSnl,3

δSnl,4









=









−∆k/∆k1

−∆k/∆k2

∆k/∆k3

∆k/∆k4









C ′ B1B2 P1234 , (2.9)

In this context it is relevant to note that HHAB make a distinction between
∆k being a discrete interaction phase-space element, whereas ∆ki represents the
bins in which the changes are stored in the numerical model. HHAB assume
that ∆k and ∆ki are similar, and that ∆ki may vary in phase space. Finally,
HHAB convert the description of the source term defined in terms of wave action
and the wavenumber vector k to a source term for wave energy (variance) in
terms of wave frequency f and direction θ by applying the appropriate Jacobian
transformations.

HHAB consider deep water conditions only. For restricted water depths, the
deep water DIA is typically rescaled by a constant factor, which is a function of the
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relative mean water depth kd. This approach was introduced in the WAM model
(WAMDIG, 1988), and is based on the results of Hasselmann and Hasselmann
(1981), and is generally used in third-generation wind wave models.

Several observations can be made concerning shallow water applications of the
nonlinear interactions in general, and the DIA in particular. First, the underlying
equations are applicable in restricted water depths, as long as the proper shallow
water dispersion relation is used throughout (Herterich and Hasselmann, 1980;
Hasselmann and Hasselmann, 1981). For the DIA, however, extensions to shallow
water are not trivial. Particularly, the conservation properties of the interactions
should be considered. The interactions conserve action, energy and momentum
of the waves. The conservation of action becomes clear from the detailed balance
principle for the basic equations like (1.11). Because the contributing spectral
components satisfy resonance conditions, energy and momentum are also con-
served (e.g., Hasselmann, 1963; Webb, 1978). In the DIA, the total action is
conserved by design. However, in shallow water applications, the deep water dis-
persion relation is still used in determining the layout of the quadruplets, deep
water Jacobians are still implicitly used in the equations, and deep water scaling
arguments are used in B. Hence the link between conservation of action, energy
and momentum may be lost, and none of these quantities are guaranteed to be
conserved.

With this in mind, several details of the DIA will be considered in more detail
in the following sections. Considered are representative quadruplets and spectral
sampling (Section 2.1), effects of discretization of phase space (2.2), multiple DIAs
(2.3), spectral descriptions (2.4), and scaling consideration (2.5). These sections
are followed by a section in which the resulting DIA is tested (in particular for
shallow water), and a conclusions section in which the final DIA is summarized.

2.1 Representative quadruplets

In the DIA, the contributions to the nonlinear interactions for one or more repre-
sentative quadruplets are evaluated for each discrete point in the spectral phase
space in the numerical model. The discrete spectral components will be denoted
here as kd. Note that this notation does not imply that the phase space is dis-
cretized by discretizing the components of k individually. In fact, wavenumber-
direction (k, θ) and frequency-direction (f, θ) representations of phase space are
universally used in practical wind wave models because of their isotropic direc-
tional discretization properties, which are not present in a conventionally dis-
cretized (kx, ky) representation of phase space. The representative quadruplets
satisfy the general resonance conditions (1.9) and (1.10), as well as additional
equations that constrain or define the layout of the representative quadruplet. In
its most general form, the representative quadruplet is defined as (see Part 2)
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Table 2.1: One two or three parameter definitions of the representative
quadruplet from Part 2.

kd σ ∆θ a1 a2 a3 a4

(λ) k1 σ1 0 1 1 1 + λ 1 − λ
(λ, µ) 1

2
(k1 + k2)

1
2
(σ1 + σ2) 1 + µ 1 − µ 1 + λ 1 − λ

(λ, µ, ∆θ) Eq. (2.11) σ1 ∆θ 1 + µ 1 − µ 1 + λ 1 − λ

σ1 = a1σ
σ2 = a2σ
σ3 = a3σ
σ4 = a4σ
θ2 = θ1 ± ∆θ























, (2.10)

where a1 + a2 = a3 + a4 to satisfy Eq. (1.10) and where the necessity to explic-
itly define ∆θ depends on the actual definition of σ and a1 through a4, and on
the relation between k1 through k4 and kd. Following Part 2, a distinction is
made between a one, two and three parameter definition of the representative
quadruplet. These definitions are presented in Table 2.1.

The one-parameter definition of the representative quadruplet was introduced
by HHAB. With the assumption that k1 = k2 (which is equivalent to a1 = a2 and
∆θ = 0), two mirror image quadruplet layouts can be found (see Part 2). The
complete source term is found by summation of individual contributions from
Eq. (2.9) for the two realizations for k1 equal to each discrete kd

1.
The two-parameter definition of the representative quadruplet was introduced

in Part 1. By assuming that kd and σ satisfy the dispersion relation, ∆θ is
implicitly defined. For each k valid values of k3 and k4 are identical to those of
the one-parameter quadruplet with identical λ. However, now k1 6= k2. Contrary
to the one-parameter layout, four quadruplets can be found for each parameter
setting. To assure that this parameterization defaults to the original DIA, Part
1 therefore introduced a factor 1/2 in the right side of Eq. (2.9) (taking half the
contribution of pairs of two equal solutions).

The three-parameter definition was introduced in Part 2, and represents a
symmetric version of the three-parameter definition introduced by Van Vledder
(2001). The phase space is sampled by considering quadruplets for each discrete
wavenumber

kd =
||k1||

||k1 + k2||
(k1 + k2) , (2.11)

1 as well as for extensions to the discrete grid from where contributions occur inside the
discrete phase domain.

8



which results in symmetric sets of four resulting quadruplets.
It should be noted that for a given quadruplet layout, spectral space can be

sampled in many different ways. For instance, kd = ki will give a valid sampling
scheme for each i. However, as is illustrated in Part 2, all such sampling methods
are essentially identical. Hence, the sampling scheme is chosen to maximize
symmetry in the resulting quadruplet, which in turn minimizes mathematical
operations required for the computation of the source term.

The procedure to evaluate the layout of quadruplets is as follows. Equa-
tion (2.10) and Table 2.1 with appropriate values for λ, µ and ∆θ depending
on the one-, two-, or three-parameter definition of the quadruplet automatically
satisfy the resonance conditions for the corresponding frequencies σi. The fre-
quency σi and the water depth d uniquely define the (scalar) wavenumbers ki

through the dispersion relation (1.6). The angles between the wavenumbers, and
hence the wavenumber vectors ki then follow from simple trigonometry. Equa-
tions for the quadruplets for deep water are presented in Appendix A of Part 2.
For convenience, define

kc = k1 + k2 = k3 + k4 , kc = ||kc|| . (2.12)

Note that kc is always explicitly defined by the quadruplet, because k1 and k2

are always explicitly defined. Note also that kc and kd share the same direction
to maximize the symmetry in the quadruplet. Defining the directions of the
components of the quadruplet relative to the direction of kd or kc as θi, the
angles θ1 and θ2 become

θ1 = ± arccos

(

k2
1 + k2

c − k2
2

2 kc k1

)

, (2.13)

θ2 = ∓ arccos

(

k2
2 + k2

c − k2
1

2 kc k2

)

, (2.14)

where the positive value of θ1 corresponds to the negative value of θ2 and vise
versa. Similarly, the angles θ3 and θ4 become

θ3 = ± arccos

(

k2
3 + k2

c − k2
4

2 kc k3

)

, (2.15)

θ4 = ∓ arccos

(

k2
4 + k2

c − k2
3

2 kc k4

)

. (2.16)

With these equations, there are two solutions for k1 and k2, similarly there are
two solutions for k3 and k4, resulting in a total of four different quadruplets.

For practical applications, it is important to establish the range of valid values
for the parameters defining the quadruplet. Generally, frequencies need to be
positive. The symmetry of the interactions furthermore show that the interaction
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are insensitive to sign changes in any of the three parameters. Thus, generally,
the three parameter can be limited as

0 ≤ λ ≤ 1
0 ≤ µ ≤ 1
0 ≤ ∆θ ≤ 180◦







, (2.17)

Moreover, it is required that the length of k3 and k4 combined is as least the
length of kc, and that the difference in lengths is no greater than kc

k3 + k4 ≥ kc , (2.18)

k3 − k4 ≤ kc . (2.19)

As kc is generally defined by µ and ∆θ, this potentially provides additional
limitations on valid values for λ.

In Part 2, Eqs. (2.13) through (2.16) are presented in terms of nondimensional
wavenumbers k̃i, this being convenient in assessing valid solutions according to
Eqs. (2.18) and (2.19). Assuming deep water, a natural definition of a nondimen-
sional wavenumber is in terms of the frequency σ and the acceleration of gravity
g. Expanding the definition of Part 2 to arbitrary water depths,

k̃i =
gki

σ2
=

σ2
i

σ2 tanh kid
=

a2
i

tanh kid
. (2.20)

For the general three-parameter quadruplet layout, k̃c can be written as

k̃2
c = k̃2

1 + 2k̃1k̃2 cos ∆θ + k̃2
2 , (2.21)

or

k̃c =

[

(

(1 + µ)2

tanh k1d

)2

+
2(1 − µ2)2 cos ∆θ

tanh k1d tanh k2d
+

(

(1 − µ)2

tanh k2d

)2
]

1

2

. (2.22)

For the one- and two-parameter quadruplet these equations reduce to

k̃c = 2k̃d =
2

tanh kdd
, (2.23)

Multiplying Eqs. (2.18) and (2.19) with gσ−2 results in similar equations in terms
of k̃i, which can be written as

(1 + λ)2

tanh k3d
+

(1 − λ)2

tanh k4d
≥ k̃c , (2.24)

(1 + λ)2

tanh k3d
− (1 − λ)2

tanh k4d
≤ k̃c , (2.25)
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For deep water, all hyperbolic tangents in the above equations become 1, and
solving the above equations reproduces the explicit limits for λ from Part 2

√

max

(

0.,
1

2
k̃c − 1

)

≤ λ ≤ 1

4
k̃c . (2.26)

For the one- and two-parameter quadruplet definition, k̃c = 2, and this equation
reduces even further to

0 ≤ λ ≤ 1

2
, (2.27)

which is more restrictive than the general limitations on λ presented in Eq. (2.17).
For restricted water depths, solutions to Eqs. (2.24) and (2.25) are not trivial,

because k3 and k4 are implicit functions of λ. The corresponding limiting values
of λ will be assessed numerically below. First, however, analytical solutions will
be considered for extremely shallow water.

The nondimensional wavenumber k̃i is not convenient for extremely shallow
water as k̃i → ∞ for kid → 0. In this case, it is more convenient to define
a nondimensional wavenumber in terms of d, as well as σ and g. Furthermore
considering that in sufficiently shallow water tanh kd → kd, a suitable nondimen-
sional wavenumber can be defined as

k̂i =
ki

√
gd

σ
= ai . (2.28)

Substitution in Eq. (2.18) results in

2 ≤ k̂c . (2.29)

Because λ has disappeared from this equation, this equation now in fact may
limit µ and ∆θ. Considering that generally

k̂2
c = k̂2

1 + 2k̂1k̂2 cos ∆θ + k̂2
2 , (2.30)

k̂c can in general be expressed in terms of µ and ∆θ as

k̂2
c = 2

{

1 + µ2 + (1 − µ2) cos ∆θ
}

(2.31)

Substitution in Eq. (2.29) yields

4 ≤ 2
{

1 + µ2 + (1 − µ2) cos∆θ
}

, (2.32)

which in turn reduces to

1 ≤ cos ∆θ , (2.33)
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Equation (2.18), therefore, does not provide additional constraints for λ, µ or ∆θ
in the shallow water limit. Substitution of k̂i in Equation (2.19) results in

λ ≤ 1

2
k̂c (2.34)

For the one- and two-parameter quadruplet definition, k̂c = 2, and λ thus is
limited to

0 ≤ λ ≤ 1 . (2.35)

A comparison of Eqs (2.27) and (2.35) shows that extremely shallow water is less
restrictive with respect to valid quadruplet parameters than deep water.

Having established the valid range of the quadruplets in limiting cases, the
quadruplet evolution as a function of general depths will be assessed numerically,
starting with the one-parameter quadruplet. For this quadruplet, Eqs. (2.24) and
(2.25) become

(1 + λ)2

tanh k3d
+

(1 − λ)2

tanh k4d
≥ 2

tanh k1d
, (2.36)

(1 + λ)2

tanh k3d
− (1 − λ)2

tanh k4d
≤ 2

tanh k1d
. (2.37)

The first equation represents the lower valid limit of λ. Substituting λ = 0
(which implies k1 = k3 = k4) results in 2 ≥ 2, identifying λ = 0 as the lower limit
irrespective of the water depth. The second equation represents the upper limit
of λ. Because λ uniquely defines k3 and k4, a simple root finding algorithm is
sufficient to solve for the maximum valid λ.

Apart from the limiting value of λ the evolution of the shape of the quadruplet
with depth is interesting. This shape is defined by the ratios k3/k1 and k4/k1,
and by the internal angles θ3 and θ4. Using the dispersion relation (1.6) and the
definition of k3, the wavenumber ratios can be expressed as

k3

k1
= (1 + λ)2 tanh k1d

tanh k3d
, (2.38)

k4

k1

= (1 − λ)2 tanh k1d

tanh k4d
. (2.39)

It is easily verified that these ratios are monotonic functions of the relative depth.
The ratios of wavenumbers as a function of k1d are presented in Figs 2.1 for several
values of λ. Indeed, both ratios systematically move closer to 1 for decreasing
water depths. For λ = 0.5 (thick solid lines) or smaller, valid quadruplets can
be found irrespective of the relative depth. For restricted water depths, valid
quadruplets can be found for larger λ. From the dashed lines in Fig. 2.1 it can
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Fig. 2.1 : The wavenumber ratios k3/k1 (> 1) and k4/k1 (< 1) as a function
of the relative water depth k1d for the one-parameter definition of the
quadruplet and for λ increasing from 0 to 1 in increments of 0.1. Dotted
line: λ = 0. Thick lines: λ = 0.5. Dashed lines: the boundary of the
area with valid solutions.

be observed that the maximum allowable value of λ monotonically increases with
decreasing depth. This implies that every quadruplet layout that is valid in deep
water has a valid solution in shallow water, but that for valid quadruplet layouts
in shallow water with λ > 0.5 no valid deep water quadruplet layout exists.

Figure 2.2 presents the corresponding internal quadruplet angles θ3 and θ4.
Note that the boundaries of the areas with valid solutions in this parameter space
are given by θ4 = 180◦, and θ3 = 0◦. θ4 systematically decreases with decreasing
depth for a given values of λ. The behavior of θ3 with decreasing depth is more
complicated. Initially, θ3 increases, but after reaching its maximum (absolute)
values, it decreases monotonically.

A design feature of the two-parameter quadruplet is that it leaves the behavior
of k3 and k4 with respect to λ and d unchanged compared to the one-parameter
quadruplet definition. Moreover, the behavior of k1 and k2 with respect to µ
and d can be obtained from the former by proper exchange of parameters. This
implies that the above analysis for the one-parameter quadruplet definition can be
applied directly to the two-parameter quadruplet. However, due to the symmetry
of the definition, exchanging λ and µ results in an identical interaction. Hence,
it is sufficient to consider

13
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Fig. 2.2 : Like Fig. 2.1 for internal angles θ3 and θ4.

0 ≤ µ ≤ λ ≤ λmax . (2.40)

For the three-parameter quadruplet, a separate analysis is required. Most im-
portant is the range of valid parameter values as a function of the depth. This
range can again be established from Eqs. (2.24) and (2.25), substituting the gen-
eral expression for k̃c from Eq. (2.22). k̃c is a function of µ and ∆θ only. For
the general range of valid values for the latter two parameters as given in (2.17).
Note that λ and µ are no longer exchangeable, as k̃c is a function of µ, but not
of λ. If however, ∆θ is adjusted to reflect θ3 and θ4 from the original quadruplet,
an identical quadruplet can be obtained by exchanging λ and µ and by taking

∆θ = |θ3 − θ4| , (2.41)

where θ3 and θ4 are taken from the original values of λ and µ.
Figure 2.3 presents the minimum and maximum valid λ as a function of µ

and ∆θ for deep water. Several observations can be made from this figure. First,
for a given ∆θ, k̃c of Eq. (2.21) or (2.22) increases monotonically with µ. This
implies that both λmin and λmax increase monotonically with µ for a given ∆θ.
Similarly, k̃c decreases monotonically with increasing ∆θ for a given µ, resulting
in a corresponding behavior of λmin and λmax. Furthermore, special conditions
occur for ∆θ → 180◦ and µ → 0, for which both λmin and λmax approach 0. Also,
for µ → 1, λmin and λmax both approach 1. In both cases, the range of valid
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Fig. 2.3 : Minimum valid λ (panel a) and maximum valid λ as a function
of µ and ∆θ for the three parameter quadruplet layout for deep water
kd = 10.
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Fig. 2.4 : Range of valid values of λ corresponding to Fig. 2.3 (panel a) and
maximum λmax for all water depths minus its deep water value (panel
b).

values of λ collapses to a single value. The maximum range of valid values for λ
in deep water is 0.5, as is illustrate in Fig. 2.4a.

If the water depth is reduced, λmin generally decreases, whereas λmax generally
increases. This is illustrated in Figs. 2.5 and 2.6 for relative water depths kd = 1
and kd = 0.1, respectively. It can be shown numerically that λmax increases
systematically with decreasing kd for al µ and ∆θ (figures not presented here).
However, the decrease of λmin with decreasing kd is not monotonic, as is illustrated
in Fig. 2.4b. This figure presents the maximum values of λmin for all relative
depths, minus its value for deep water. Hence, a value of 0 indicates that the deep
water value of λmin indeed is the most restrictive for all water depths, but values
larger than 0 indicate that the most restrictive conditions occur for restricted
water depths. Figure 2.4b indicates that there is a restricted area in (µ, ∆θ)
space where λmin increases by up to 0.1 from its deep water value. However, if λ
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Fig. 2.5 : Like Fig. 2.3 for kd = 1.0.
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Fig. 2.6 : Like Fig. 2.3 for kd = 0.1.

and µ are ordered according to Eq. (2.40), if necessary using the transformation
described in conjunction with (2.41), λ is always larger than λmin as, by definition,
λmin < µ. For such a quadruplet definition, valid layouts for deep water always
result in valid layouts for restricted water depth (figures not presented here).

Without going into detail in the behavior of the quadruplet layout as a func-
tion of diminishing depth, it should be noted that the two- and three-parameter
quadruplet are expected to behave systematically different, as θ1 and θ2 develop
differently as a function of depth for the two- or three-parameter definition. In
the former case, these angles change as a function of µ and kd identical to the
changes of θ3 and θ4 as a function of λ and kd as presented in Fig. 2.2. For the
three-parameter definition, however, simple trigonometry requires that

|θ1 − θ2| = ∆θ . (2.42)

This implies that for the three-parameter quadruplet definition internal angles
in the quadruplet remain large even for small kd, whereas such angles are sys-
temically reduced in the two-parameter definition. This may have a significant
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impact on shallow water behavior of both quadruplet definitions, as will be dis-
cussed later.

2.2 Discretization of phase space

Some complications occur in the DIA because the phase space is discretized. In
general, it will be impossible to completely align quadruplets with the discrete
grid. This has two consequences for the DIA. First, the action densities ni needed
to evaluate the product term P1234 in Eq. (2.9) are estimated by bi-linear inter-
polation from the four surrounding action densities at discrete points in phase
space.

ni =

4
∑

j=1

wi,jnj , (2.43)

where the counter j identifies the four surrounding discrete points in phase space,
and where wi,j are the corresponding weight factors. Because these interpolations
are performed only to compute the strength of the interactions in Eq. (2.9), they
have no impact on the conservation properties of the interactions. Second, the
contribution δSnl,i do not coincide with the discrete grid in phase space. These
contributions are similarly distributed over the surrounding grid points as

δSnl,i,j = wi,jδSnl,i . (2.44)

This redistribution of the contributions over the discrete phase-space grid poten-
tially has an impact on the conservation characteristics of the DIA. Such char-
acteristics are most elegantly addressed by considering the conservation charac-
teristics of a single redistribution of quantities for a single quadruplet. Note that
in practice, some quadruplets will straddle the outer limits of a discrete phase
space grid. Because contributions of such quadruplets are partially unresolved
by the discrete model grid, total interactions for a finite discrete phase space grid
are generally not conserved, even if individual contributions for each quadruplet
are conserved. Addressing the conservation characteristics of a single quadruplet
therefore is more elegant and more relevant than addressing the conservation of
quantities in a finite phase space.

For simplicity we will consider the traditional one parameter quadruplet de-
fined in terms of λ only. Furthermore, consider the traditional DIA in terms of
the energy spectrum F (f, θ), and the corresponding source term snl(f, θ). Drop-
ping common terms for all four contributions, the source term contributions are
proportional to [cf. Eq. (2.5) of Part 2].
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Fig. 2.7 : Schematic layout of redistribution of contributions for a traditional
DIA quadruplet with λ = 0.25 and a grid with X = 1.1 and ∆θ = 15◦.
Dashed lines represent grid lines in phase space. Boxes represent ‘bins’
in phase space.
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For the traditional quadruplet with λ = 0.25 in a traditional phase space dis-
cretization where ∆θ = 15◦ and X = 1.1 in Eq. (1.8) the impacted spectral bins
are graphically depicted in Fig. 2.7. First, the conservation of energy will be
considered. The central (blue) bin receives the contributions of k1 and k2, and
the energy change according to Eq. (2.45) is proportional to

−2∆f0∆θ (2.46)

For k3 (the yellow bins), energy is contributed to four bins. Considering weight
factors wθ,l and wf,l in θ and f -space, respectively, and offsets in frequency space
relative to the central bin of n and n−1, respectively, and considering that ∆fm =
Xm∆f0 and that ∆θ is uniform throughout the grid, the four contributions can
be written as

X−n
[

wf,l + (1 − wf,l)X
−1
]

∆f0∆θ . (2.47)

Substituting the frequency weight factor

wf,l =
(1 − λ) − X−n−1

X−n − X−n−1
, (2.48)
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shows that the total change in energy at k3 in (2.45) is proportional to

(1 − λ)∆f0∆θ . (2.49)

Similarly, the change of energy in terms of weights, the weight function and the
resulting total change of energy at k4 (orange bins) become

Xm [wf,h + (1 − wf,h)X] ∆f0∆θ , (2.50)

wf,h =
Xm+1 − (1 + λ)

Xm+1 − Xm
, (2.51)

(1 + λ)∆f0∆θ . (2.52)

Adding the contributions from k1 through k4 shows that the total change of
energy is proportional to

[(1 − λ) + (1 + λ) − 2]∆f0∆θ = 0 . (2.53)

Hence, the total energy is conserved with the distribution of changes of energy
to discrete grids points in Eq. (2.44).

The source term for action density Snl(f, θ) corresponding to Eq. (2.45) can
be written as
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. (2.54)

For the traditional DIA quadruplet of Fig. 2.7, the contribution for the wavenum-
bers k1 and k2 to the total change of action is proportional to (σ1 = σ2 = σ)

−2σ−1∆f0∆θ (2.55)

The corresponding contributions at wavenumber k3 become proportional to

X−n
[

wf,l + (1 − wf,l)X
−1
]

σ−1
3 ∆f0∆θ . (2.56)

Considering the corresponding contributions to the energy change, this expression
can be written as

(1 − λ) σ−1
3 ∆f0∆θ = σ−1∆f0∆θ . (2.57)

Similarly, it can be shown that the contribution at wavenumber k4 becomes

(1 + λ) σ−1
4 ∆f0∆θ = σ−1∆f0∆θ . (2.58)
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Hence, the total wave action is conserved as

(−2 + 1 + 1) σ−1∆f0∆θ = 0 . (2.59)

Finally, contributions to the source term for wave momentum δM(f, θ), similar
to Eq. (2.54) can be written as
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. (2.60)

Using the above results for change of action, it is easily shown that the change
of momentum is proportional to

(−k1 − k2 + k3 + k4) σ−1∆f0∆θ . (2.61)

Using the resonance condition (1.10), the momentum is therefore also conserved.
Hence, the distribution of contributions to the interactions over discrete points
in phase space according to Eq. (2.44) results in proper conservation of energy
action and momentum for the conventional quadruplet of the DIA. Expansion
for arbitrary quadruplets is trivial, and will not be presented here.

The above analysis of the conservation properties of the DIA can be extended
to the conventional shallow water version of the DIA, where the DIA is simply
rescaled by a constant factor, which is a function of the mean relative depth kd.
The layout of the quadruplet is still evaluated assuming deep water. Inspection
of the above considerations for conservation of energy and action show that both
quantities are still conserved in shallow water, even if the resonance conditions
are evaluated for deep water. If, however, deep water dispersion is used in shallow
water to evaluate the quadruplet, the wave number resonance condition (1.10) is
violated. Thus, Eq. (2.61) no longer is zero, and wave momentum no longer is
conserved. Therefore, it is important to evaluate resonance for the actual water
depth, in order to guarantee conservation of all three wave quantities (action,
energy and momentum).

2.3 Multiple representative quadruplets

With the above, the basic method to evaluate a DIA for a given discrete spectrum
is outlined. For each individual quadruplet and each discrete spectral components
with which the quadruplet is aligned, up to 16 contributions δSnl,i,j are computed
according to Eq. (2.44). For each discrete spectral point several quadruplets
are found for a single quadruplet layout; 2 for the conventional one-parameter
definition, 4 for the two- and three-parameter quadruplet definition. Introducing
l as the counter of discrete spectral points for which quadruplets are evaluated,
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and m as the number of valid quadruplet realizations s for a single representative
quadruplet definition (λ, µ, ∆θ), the total source term becomes

Snl =
∑

∀i,j,l,m

δSnl,i,j,l,m , (2.62)

ignoring contributions outside the discrete spectral domain.
This definition is easily expanded to include multiple representative quadru-

plet definitions (λ, µ, ∆θ), as this simply adds quadruplet realizations m. Con-
sidering that here are M1 quadruplets satisfying a single definition (λ, µ, ∆θ),
and that there are M2 such definitions, m ∈ [1, M1] for a traditional DIA with
a single representative quadruplet definition, and m ∈ [1, M1M2] for a DIA with
multiple quadruplet definitions. The latter is generally designated as a Multiple
DIA (MDIA).

It is considered desirable that an MDIA with multiple but identical quadruplet
definitions reduces to the corresponding (single) DIA. This requires the DIA to
be scaled with M−1

2 . Furthermore, generally M1 = 4, with two sets of identical
quadruplets for the one-parameter quadruplet layout. To assure that the general
MDIA reduces to the original DIA, a second scaling factor 2M−1

1 = 1/2 is needed.
Thus, the general MDIA that properly reduces to the original DIA for M2 = 1
with µ = 0 and ∆θ = 0 is defined as

Snl =
1

2M2

∑

∀i,j,l,m

δSnl,i,j,l,m . (2.63)

2.4 Spectral description

Traditionally, interactions and nonlinear properties of wind waves are investigated
by considering the spectrum in terms of both the wavenumber vector and the
frequency (k, σ). The spectral description, and the underlying Fourier transform
of the surface, is inherently linear. Using the linear dispersion relation (1.6), the
three-dimension spectral space becomes two-dimensional. In theoretical work, the
two-dimensional phase space traditionally is described by the wavenumber vector
(k), for instance as above with the wavenumber action density spectrum n(k).
For numerical models, however, the description of the spectral or phase space
with k is not convenient, because discretization of k introduces a directional
anisotropy in the discretized space. Directional isotropy can be achieved by
describing the phase space with wavenumber and direction (k, θ) or frequency and
direction (f, θ or σ, θ). The wavenumber description is theoretically preferred,
due to its invariance characteristics with respect to depth changes, but has a
numerical disadvantage of loss of resolution in shallow water (e.g., Tolman and
Booij, 1998). In the WAVEWATCH III model, this disadvantage is mitigated
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by solving equations for the wavenumber-directing (k, θ) spectrum on a spatially
invariant frequency (σ) grid (Tolman and Booij, 1998).

Furthermore, a choice needs to be made between action or energy descriptions
of the wave field. The former are preferable in models, due to the conservation
characteristics for arbitrary (slowly) varying media (e.g., Bretherthon and Gar-
rett, 1968), whereas the latter are conventionally used, as they are more naturally
observed. Note that in this context, the so-called energy spectrum as obtained
by a Fourier transform of observations of surface elevations most often in fact is
a variance spectrum. The true energy spectrum is obtained by multiplying this
variance spectrum with ρg. Defining N(ι) as an action density spectrum with an
arbitrary description of the phase space ι, and F (ι) as the corresponding energy
(variance) density spectrum, the relation between the two is given as

F (ι) = σ N(ι) . (2.64)

Changing the phase space description ι is governed by the corresponding Jacobian
transformations. The conversion of the vector wavenumber spectrum F (k) to
the wavenumber-direction spectrum F (k, θ) can be done in two fundamentally
different ways. Adopting a polar perspective on (k, θ) space, the surface of an
infinitesimal phase space element becomes δk × kδθ. and the total wave energy
becomes

E =

∫

k F (k, θ) dkdθ . (2.65)

Because this represents a simple rotation of the phase space element δkx × δky,
the corresponding Jacobian transformation becomes2

F (k, θ) = F (k) . (2.66)

Alternatively, a Cartesian perspective can be adopted where the surface of a
phase space element becomes δk × δθ. and the total wave energy becomes

E =

∫

F (k, θ) dkdθ , (2.67)

with a corresponding Jacobian transformation

F (k, θ) = k F (k) . (2.68)

Both definitions are equally valid. The polar definition of the (k, θ) is gener-
ally preferred by mathematicians, whereas the Cartesian definition is universally
used in practical wave models (e.g., HHAB). The preference for the latter in
practical wave modeling appears to have its roots in history. The first wave spec-
tra were based on points observation, from which the one-dimensional frequency

2 With θ in radians. Conversion to degrees requires another Jacobian transformation.
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spectrum F1(f) can be obtained by Fourier transform. From this spectrum the
one-dimensional wavenumber spectrum can be obtained by transformation as
F1(k) = cg

2π
F1(f). From the latter spectrum a two-dimensional spectrum can be

obtained in a simple way by using a normalized directional distribution D(θ) as
F (k, θ) = F1(k)D(θ). This spectrum is compatible with the Cartesian definition,
for which

F1(k) =

∫

F (k, θ) dθ . (2.69)

However, the polar definition of the spectrum is not similarly compatible since

F1(k) = k−1

∫

F (k, θ) dθ . (2.70)

The Cartesian definition and the corresponding Eq. (2.68) will be used here. The
conversions between phase space descriptions including the wave direction θ are
unambiguous. For the energy spectrum F they are defined as

F (σ, θ) =
∂k

∂σ
F (k, θ) = c−1

g F (k, θ) , (2.71)

F (f, θ) =
∂σ

∂f
F (σ, θ) = 2π F (σ, θ) . (2.72)

The basic DIA formulation of Eq. (2.9) can be converted to arbitrary spectra
and phase space definitions using the definition (2.64) and the transformations
(2.68), (2.71) and (2.72). In the following sections, the main attention will be on
the scaling of the interactions with depth. Because this is assessed by addressing
the impact for the conventional F (f, θ) spectrum, the corresponding DIA for-
mulations for arbitrary and deep water will be considered in the present section.
The WAVEWATCH III model, however, is based on the action spectrum N(k, θ).
The optimum expressions used in this model are guided by numerical economy,
and will be discussed in Section 4.

The adaptation to the DIA for the spectrum F (f, θ) are governed by the
conversions

n(k) =
cg F (f, θ)

2π kσ
, (2.73)

n(k) =
g2 F (f, θ)

2 (2π)5 f 4
, (2.74)

which are valid for arbitrary depth and deep water, respectively. Defining Fi =
F (fi, θi), and using the definition of the quadruplet, the product terms (2.4) for
arbitrary and deep water, respectively, become
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P1234 = B3

[

cg,1F1

k1σ1

cg,2F2

k2σ2

(

cg,3F3

k3σ3

+
cg,4F4

k4σ4

)

−

cg,3F3

k3σ3

cg,4F4

k4σ4

(

cg,1F1

k1σ1
+

cg,2F2

k2σ2

)]

, B3 =
1

(2π)3
. (2.75)

P1234 = B3

[

F1

a4
1

F2

a4
2

(

F3

a4
3

+
F4

a4
4

)

− F3

a4
3

F4

a4
4

(

F1

a4
1

+
F2

a4
2

)]

,

B3 =
g6

23(2π)15f 12
, (2.76)

where ai and f = σ/2π are defining the quadruplet as in Eq. (2.10). The factor
B3 is of a form similar to the scaling functions B, and will be combined with them
in the final expression for the DIA. The other part of Eq. (2.9) that is affected
by the transformation are the vectors left and right of the equal sign, which can
be written in a more compressed form as

δSnl,i = ∓ ∆k

∆ki
× . . . , (2.77)

where . . . represents the common terms independent of the quadruplet component
i. For later reference, it is advantageous to first consider the effect of arbitrary
conversions on these terms. Consider the conversion of the description of the
phase space with the wavenumber vector k to arbitrary coordinates ι, governed
by the Jacobian J . The grid elements are then related as

∆k = J∆ι , (2.78)

and the corresponding conversion from action spectrum n(k) to energy spectrum
F (ι) becomes

n(k) = (σJ)−1F (ι) . (2.79)

Using an identical transformation between the source terms Snl(k) and snl(ι),
and using Eq. (2.10), the equation considered becomes

(σJ)−1
i δsnl,i = ∓ J∆ι

Ji∆ιi
× . . . , (2.80)

or

δsnl,i = ∓aiσJ
∆ι

∆ιi
× . . . . (2.81)
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Clearly, this transformation only adds a component to the common scaling func-
tions, but is otherwise transparent. With σJ defined by Eqs. (2.73) and (2.79)
for arbitrary depths, and assuming that ∆θi = ∆θ the source term becomes
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For deep water with σJ defined by Eqs. (2.74) and (2.79), and using Eq. (2.3),
the expression for the source term is greatly simplified
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Finally adopting the frequency grid from Eq. (1.8), which implies that ∆fi =
ai∆f , and adopting the quadruplet definition from HHAB (i.e., the values of ai

as summarized in Table 2.1), the DIA of HHAB is reproduced. The constant C
of HHAB thus is defined as

C =
C ′

22(2π)10
. (2.84)

The latter two equations will be used to asses the (potential) performance of the
(M)DIA in restricted water depth. However, the scaling function B for restricted
water depths needs to be considered before such an assessment can be made.

2.5 Scaling considerations

The scaling factor B has two contributions, as discussed in the context of Eq. (2.5).
First, the contribution of the interaction coefficient will be considered [B2 in
Eq. (2.5)]. This function is defined by the substitution of the coefficient G in
Eq. (1.11) with a constant included in C ′ in Eq. (2.9),

G ∝ B2 C ′ . (2.85)
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In Eq. (2.6) a valid deep water expression is given for B2. Being expressed in terms
of the frequency f only, this scaling factor is invariant with depth. However, it is
well known that the coupling coefficient G is sensitive to depth. It may thus be
useful to reconsider the scaling function to optimally capture the depth sensitivity
of G. This approach is fundamentally different from the approach introduced
in the original DIA (WAMDIG, 1988). The present approach considers scaling
locally in the phase space, whereas the latter applies a global rescaling after all
interactions have been computed. It should be noted that even if the B2 captures
the changes of G with depth perfectly, this is no guarantee that the corresponding
MDIA will deal with restricted water depth appropriately. The latter depends
also on the representativeness of the quadruplets chosen.

Expression for the coupling coefficient G for arbitrary water depths have
first been presented by Herterich and Hasselmann (1980), henceforth denoted as
HH80. Corresponding deep-water expressions were earlier given by Webb (1978),
although the latter paper contained several errors (e.g., Dungey and Hui, 1979).
The present study follows HH80, particularly their Appendix B. At the center of
the interaction coefficient stands the complex function D [HH80 Eqs. (B1) and
(B2)].

D =
1

3

(

D
1 1 −1

k1k2−k3

+ D
1 −1 1

k2−k3k1

+ D
−1 1 1

−k3k2k2

)

, (2.86)
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and

D23 = i(σ2 + σ3)

(

σ2
2σ

2
3

g2
− k2 · k3

)

−0.5i

(

σ2k
2
3

cosh2 k3d
+

σ3k
2
2

cosh2 k2d

)

, (2.88)

E23 =
1

2g

{
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σ2σ3
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σ2
2 + σ2

3 + σ2σ3

)

}

, (2.89)
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where σi = siσ(ki), according to the dispersion relation (1.6), k23 = k2 + k3 and
σ23 = σ(k23). Equation (2.88) is somewhat simplified from HH80 by substituting
ki tanh(kid) = σ2

i g
−1. Several observations can be made from these equations.

First, they present a complex set of equations, however, the final Eq. (2.87) has
no imaginary part. Second, this set of equations is invariant under permutation
of the wavenumbers of the quadruplet, as long as the wavenumbers in Eq. (2.87)
satisfy the resonance conditions, that is

k4 = k1 + k2 − k3 . (2.90)

Comparing HH80 Eq. (1) with the present Eq. (1.11), the interaction coefficient
G is computed from D as

G =
9π g4D2

4 σ1σ2σ3σ4
. (2.91)

Note that this conversion differs from the conversion given by Webb (1978) or
Dungey and Hui (1979) in two ways. First, the latter authors consider wave
energy spectra instead of wave variance spectra. This adds factors ρg to the
source term and product terms, hence introducing a factor (ρg)−2 on the right
side of their version of Eq. (2.91). Second, the deep water expression for D in the
latter papers includes all three contributions in (2.87), but does not include the
factor 1

3
. Hence D in the latter papers is larger by a factor 3 than D in HH80 as

used here. The expression for G in the latter papers, therefore, drops the factor
9 in the present Eq. (2.91).

Analysis of Eqs. (2.87) through (2.89) and Eq. (2.91) shows that, in deep
water,

B2 ∝ g4f−4
(

g−4f 8
)2

, (2.92)

where the term in brackets represents the scaling behavior of D, and the term in
front of the brackets is contributed by the conversion to G. In deep water, this
corresponds to Eq. (2.6). The contribution of the conversion in Eq. (2.91) indeed
is expressed in terms of frequencies only, and hence should be equally valid in
shallow and deep water. The contribution of D, however, is made up of products
of frequencies and wavenumbers, and hence is not expected to produce proper
scaling behavior in shallow water. Close inspection of these equations shows that
there is no common combination of wavenumbers and frequencies in the terms
making up these equations. Hence, there is no obvious way to modify this scaling
behavior to be applicable to shallow water. Tentatively, a formulation could be
sought that mixes frequency and wavenumber products, without modifying the
deep water expression. This implies substituting 2πf in the contribution of D
with (gk)1/2, or rewriting Eq. (2.92) as

B2 = (2π)−2mgm−4f 12−2mkm , (2.93)

27



0 0.5 1 1.5 2 2.5 3
10−1

100

101

(a)

kd

G
~

 m = 0
 m = 2
 m = 3
 m = 4

0 0.5 1 1.5 2 2.5 3
10−1

100

101

(b)

kd

G
~

Fig. 2.8 : Normalized nondimensional interaction coefficient G̃ according to
Eqs. (2.93) through (2.95) for the traditional one-parameter quadruplet
with (a) λ = 0, 25 and (b) λ = 0.15.
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Fig. 2.9 : Like Fig. 2.8 for (a) a two-parameter quadruplet with λ = 0.25
and µ = 0.10, and (b) a three-parameter quadruplet with λ = 0.25 and
µ = 0.10 and ∆θ = 0◦.

with, tentatively, m ∈ [0, 8]. For m = 0 or for deep water in general, this equation
reduces to Eq. (2.6). Using this scaling function, a nondimensional interaction
coefficient Ĝ can be defined as

Ĝ(kd) = G(kd)/B2 , (2.94)

which in turn can be normalized as

G̃(kd) = Ĝ(kd)/Ĝ(∞) . (2.95)

Examples of G̃ for selected quadruplet definitions are presented in Figs. 2.8 and
2.9. Figure 2.8a presents results for the conventional quadruplet definition of
HHAB (one parameter, λ = 0.25). If G is scaled for deep water only (solid
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line), the behavior of G with relative depth is displayed. For relative depths
decreasing from 3 (deep water) to about 0.75, G systematically increases by up
to an order of magnitude. For shallower depths, G rapidly decreases, until for
relative depths just below 0.5 D = 0 and changes sign, resulting in G = 0. For
even smaller relative depths, G again drastically increases. This region of kd
space is considered the transition area between weak interactions (in deep water)
and strong interactions (in shallow water).

For moderately shallow water (approximately kd > 0.75 ∼ 1), G is a well
behaved function of kd and the scaling function (2.93) with m ≈ 4 describes the
scaling relatively well (G̃ ≈ 1, chain line in Fig. 2.8a). For smaller relative depths,
however, it is obvious that the scaling function cannot represent the behavior
of G(kd). This behavior is not typical for the quadruplet chosen. For the one-
parameter quadruplet with λ = 0.15 (Fig. 2.8b), or the two parameter quadruplet
with λ = 0.25 and µ = 0.10 (Fig. 2.9a), similar behavior is found, with subtle
but important differences in the location of the relative depth where G = 0, and
with different optimal values of m in Eq. (2.93). For some quadruplets, however,
the behavior is completely different, as is illustrated in Fig. 2.9b with results for
the three-parameter quadruplet with λ = 0.25, µ = 0.10 and ∆θ = 0◦.

Considering the above, a DIA with a scaling factor for G can only be expected
to give reasonable results for intermediate water depths with kd > 0.75 ∼ 1.0.
Similarly, the scaling factor for the entire DIA source term as introduced in
WAMDIG (1988) is considered adequate for kd > 1 only. However, many recent
applications of in particular the third generation SWAN model (Booij et al., 1999;
Ris et al., 1999) apply the DIA to shallow water including the surf zone, where
kd � 1. In such conditions, a DIA with a bulk scaling function, or a DIA where
G is represented with a scaling function line (2.93) is bound to fail. However,
due to the small number of quadruplets used in the MDIA, and the feasibility to
pre-calculate them, it does not appear necessary to replace the actual interaction
expressions (2.87) through (2.91) with a constant and a simple scaling function,

B2 = G(d) . (2.96)

Or, in order to be able to revert to the traditional deep water DIA, an appropriate
choice would be

B2 =
f 12 G(d)

g4 Gdeep
. (2.97)

The behavior with G → 0 for a critical relative depth kd deserves additional
attention. If the interactions are dominated by a small number of quadruplet
configurations, this might mean that the interactions have a distinct minimum in
kd space. This hypothesis appears supported by a narrow band approximation
presented by HH80, their Fig. 1. However, these authors also state that their
approach has limited validity, particularly in this specific range of relative depths.
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Hasselmann and Hasselmann (1985), however, suggests that for practical wind
sea spectra, the local minimum in the overall interaction strength for kd < 1
does not exist (their Fig. 3). Because a MDIA only considers a small number of
interaction configurations, it might be sensitive to reproducing behavior similar
to narrow band approximation. This will be addressed in tests in the following
section.

This leaves the ‘residual’ scaling function B1 in Eq. (2.5). Part of this term arises
when the resonance conditions in Eq, (1.11) are used to reduce the number of
integration spaces by integrating along paths that satisfy such conditions only.
This integration introduces a Jacobian in the integration (see Van Vledder, 2002a,
his page 35). Note that this Jacobean is applied along the locus of integration,
and will therefore not result in a single scaling factor. However, this Jacobian
scales with inverse local group velocities. In the simplified DIA, it therefore
appears reasonable to express this Jacobian in terms of the inverse general group
velocity cg corresponding to f , σ and k. A second scaling factor occurs due to the
transitions from the vector wavenumber space to the Cartesian definition of the
(k, θ) space according to Eq. (2.68). Note that this conversion should be applied
to the original integral (1.11), and not to the discrete analogues (2.2). This adds
the Jacobian from Eq. (2.68) to three more integration spaces in the detailed
balance equation on which (2.2) is based. This more formally defines the scaling
factor of Eq. (2.5) as

B1 = k3c−1
g , (2.98)

which in deep water can be written as

B1 = 2 (2π)7 g−4f 7 . (2.99)

This scaling factor indeed corresponds to the factor of the DIA in Eq. (2.7), with
the addition of a constant factor.

2.6 Putting it all together

With all considerations from the previous paragraphs, practical DIAs can be
constructed for arbitrary depths and various spectral space descriptions, and for
energy or action spectra. In this, the expansion to a multiple DIA according to
Eq. (2.63) will be omitted as being trivial. Also, considerations regarding the
layout of the quadruplet do not need to be revisited here.

First, contributions to the interactions δsnl(fiθi) = δsnl,i for the conventional
energy spectrum F (fi, θi) = Fi will be considered, consistent with the original
DIA of HHAB. In this approach, it is also assumed that the frequency grid
discretization of Eq. (1.8) is used, as is presently commonplace in third generation

30



wave models. The corresponding contributions to the nonlinear interactions are
found in Eq. (2.82), where the scaling function B of Eq. (2.5) is defined by its
constituents B1 according to Eq. (2.98) and B2 according to Eq. (2.93) or (2.97)
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where

B′ =
k4+mσ13−2m

(2π)14 g4−m c2
g

, (2.101)

or

B′ =
k4σ13G̃

(2π)14 g4 c2
g

, (2.102)

with G̃ being the coefficient G normalized with its deep water value. The deep
water equivalent of the scaling factor in terms of f and g only becomes

B′ = 22 (2π)9 f 23 g−10 . (2.103)

For deep water the full expressions greatly simplify. The expression follows from
Eq. (2.83), also accounting for the constant factor in Eq. (2.99)
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Finally, the relation between the proportionality constant of (C) HHAB and the
present constant (C ′) becomes

C = (2π)−3 C ′ , (2.105)

where a final factor 2 is added to account for the fact that the general quadru-
plet generates four mirror image representations, whereas the original quadruplet
generates only two such contributions.
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This expanded DIA for deep water is identical to the DIA presented by HHAB
if a1 through a2 from the first line of Table 2.1 are substituted, and if the prod-
uct terms of wave energies are rearranged according to Eq. (2.4). The DIA for
arbitrary depths defined by Eqs. (2.100) through (2.102) is considerably more
complicated. The product terms in Eq. (2.100) become more complicated due to
the inclusion of Jacobians for limited water depths. Second, the scaling function
B′ according to Eq. (2.101) or (2.102) is more complicated, particularly if the
normalized interaction coefficient G̃ is included explicitly. Note, however, that
this scaling function is a function of the spectral frequency only, and is therefore
not expected to dominate computational costs.

So far, the interactions have been expressed in the traditional wave modeling
framework of the wave energy spectrum in terms of the wave frequency and
direction F (f, θ). However, as expressed in the Section 1, the DIA that is being
developed here is intended to be implemented in the WAVEWATCH III model.
It is therefore more sensible to express the interactions directly in terms of the
spectral description used in this model as illustrated in Eq. (1.2). This model uses
the action density spectrum as a function of wavenumber and direction, which
relates to the above energy spectrum as

N(k, θ) =
cg

2π σ
F (f, θ) , (2.106)

With this conversion, the basic expression for the expanded DIA for WAVE-
WATCH III becomes
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or
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For deep water the scaling term becomes

32



Fig. 2.10 : Spectrum used for scaling tests. Lowest contour level at 2% of
the spectral peak energy density. Contour lines at factor 2 increments.
Frequencies relative to peak frequency.

k4σ12G̃

(2π)12 g4 cg

→ 2 (2π)9 g−9 f 21 . (2.109)

2.7 Testing

The generalized (multiple) DIA developed in the previous sections in principle
should have a more realistic shape and scaling behavior than the traditional
(multiple) DIA. To be able to design a strategy to optimize the generalized DIA
for arbitrary depths, this behavior needs to be tested. Because the testing should
focus on the scaling and shape of interaction, a simple test is sufficient here.
Considering this, the deep water test of Tolman (2004, 2005) and Tolman and
Krasnopolsky (2004) is adopted for arbitrary water depths.

Following the test setup of Section 4.1 of Tolman (2004), a JONSWAP spec-
trum (Hasselmann et al., 1973) with a peak enhancement factor γ = 2 and a
normalized peak spread σ = 0.07 are adopted. The directional distribution of
Hasselmann et al. (1980), with a switch-over to a parametric tail for higher fre-
quencies consistent with numerical wave models. The spectrum is presented in
Fig. 2.10. For the present test, this spectrum is applied for relative depths ranging
from deep water (kd = 10) to extremely shallow water (kd = 0.20), as outlined in
Table 2.2. It should be noted that the spectrum of Fig. 2.10 is not representative
for the shallowest water conditions in Table 2.2. Because of the focus on shape
and scaling of interactions, this is not a major limitation here.

Figure 2.11 presents the exact interactions for the relative depths from Ta-
ble 2.2. These source terms are computed using the Webb-Resio-Tracy (WRT)
(Webb, 1978; Tracy and Resio, 1982; Resio and Perrie, 1991). Calculations are
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Fig. 2.11 : Exact nonlinear interactions obtained with the WRT method for
a range of relative depths (kd). Lowest contour level at ±2% of the max-
imum absolute interaction per depth. Contours at factor 2 increments.
Frequencies relative to peak frequency. Spectrum from Fig. 2.10.
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Figure 2.11 continued.
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Table 2.2: Relative water depths kd used in the scaling test (top line) and
corresponding physical water depths d in meter for a spectral peak fre-
quency fp = 0.1Hz (second line). The third line presents the normalized
scaling factors used in Fig. 2.11 and the bottom line represent the orig-
inal DIA depth scaling of Eqs. (2.110).

10.00 3.00 2.50 2.00 1.50 1.25 1.00 0.75 0.50 0.40 0.30 0.20

248.4 74.2 61.3 47.9 33.7 26,3 18,9 11.8 5.74 3.78 2.94 0.98
1 0.972 0.958 0.955 1.03 1.32 1.87 3.70 16.6 173 2740 99400
1 0.928 0.887 0.845 0.877 1.02 1.43 2.51 4.43 4.43 4.43 4.43

performed with the portable package developed by Van Vledder (2002b, 2006)3.
Each source term is normalized with its own maximum absolute value, so that
the focus can be on the spectral shape. The corresponding scale factors are pre-
sented at the middle line of Table 2.2. At a later stage source terms obtained with
approximations will be normalized with the same values as these WRT results, to
asses scaling behavior of approximate solutions with respect to the exact WRT
results.

For kd > 3, the water is considered to be deep. The corresponding source
terms for kd = 10.00 and kd = 3.00 look virtually identical (Fig. 2.11a,b), and the
scaling factors differ by less than 3% (Table 2.2). For depths reduced to kd = 2.50,
2.00 and 1.50, source term shapes and scaling factors remain virtually unchanged.
For relative depths kd decreasing further to 1.25, 1.00 and 0.75, clear changes in
the shape of the source terms start to occur, while the scaling factors start to
increase systematically. For relative depths kd = 0.50 and smaller, the shape
of the source term converts to an apparently different regime, and the scaling
factors increase by orders of magnitude. This corresponds to the local minimum
of the interaction coefficient G̃ around kd = 0.5 as is illustrated in Figs. 2.8 and
2.9, and corresponds to a transition from weak interactions in deeper water to
strong interactions in extremely shallow water. Note that the signature of the
source term becomes more one-dimensional, with a signature mainly in frequency
space.

The first approximate solution for the exact interactions to be considered is
the original DIA with λ = 0.306 and C = 2.49 106. These parameter settings
represent an optimized traditional DIA for the input spectrum of Fig. 2.10. In
the traditional DIA approach, the interaction is always computed for deep wa-
ter. Effects of shallow water are introduced only by multiplying the deep water
interactions with a constant factor D (Hasselmann and Hasselmann, 1985)

D = 1 +
5.5

k̄d

[

1 − 5

6
k̄d

]

e−1.25k̄d . (2.110)

3 Model version 5.04 used here.
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where k̄ represents a conventional mean wavenumber from the spectrum. For
numerical reasons, however, the mean relative depth is estimated as

k̄d = 0.75k̂d , (2.111)

where k̂ is defined as

k̂ =
(

1/
√

k
)−2

. (2.112)

The shallow water correction of Eq. (2.110) is valid for intermediate depths only.
For this reason the mean relative depth k̄d is not allowed to become smaller than
0.5.

Figure 2.12 shows the interactions according to the original DIA, scaled with
the same values as used in Fig. 2.11 for the exact (WRT) interactions. From
the previous sections, it is clear that this approximation does not conserve mo-
mentum. Furthermore, the shape of the interactions is independent of depth, and
hence this DIA approach by definition cannot reproduce the transition from weak
to strong interactions as displayed by the WRT approach. The traditional DIA
approach does, however, reasonably capture the change of scales of interactions
for relative depths down to kd = 0.75. This is also illustrated with the scaling fac-
tor D as presented on the bottom line of Table 2.2. For relative depths kd < 0.5,
the traditional DIA grossly underestimates the strength of the interactions, with
the strength of the interactions negligible compared to the corresponding panels
in Fig. 2.11. Note that any other modified and or multiple DIA that uses this
quasi-deep water approach will suffer from the same behavior and deficiencies
and does therefore not need to be discussed in this context.

Figure 2.13 shows the interactions obtained with the proper shallow water
quadruplet layout, and the shallow water product term, but still with a scaling
function for deep water, i.e., Eqs. (2.100) and (2.103). Note that Eq. (2.105) is
used to be able to use the proportionality constant C consistent with the HHAB
approach. A comparison of Figs. 2.12 and 2.13 shows that for intermediate depths
with kd ≤ 1 the DIA becomes slightly stronger, without significant changes to
the shape of the interactions. Compared to the exact interactions in Fig. 2.11
this can be considered as a minor improvement. For more shallow water, the
shape of the interactions seems to change, but the strength of the interactions
is even more underestimated than by the original DIA. For the smallest depth,
the underestimation is increased by a factor 200, increasing the overall underes-
timation to eight orders of magnitude for kd = 0.2 The changing shape of the
interactions can be addressed if the interactions are normalized with their own
maximum absolute value (Fig. 2.14). This shows strong interactions at higher
frequencies, whereas the exact computations shift the main interactions to lower
frequencies (Fig. 2.11). Hence, this partial shallow water DIA represents the
strong interactions for depths ks < 1 very poorly indeed.
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Fig. 2.12 : Like Fig. 2.11 for the traditional DIA approach with λ = 0.306
and C = 2.49106. Each panel is scaled with the corresponding maximum
absolute source term from the WRT method.
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Figure 2.12 continued.
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Fig. 2.13 : Like Fig. 2.12 for the traditional DIA approach with λ = 0.306
and C = 2.49 106, but using the shallow water dispersion relation in the
determination of the quadruplet layout, and with the proper form of the
product terms for shallow water.
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Figure 2.13 continued.
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Fig. 2.14 : Like Fig. 2.13, scaled with maximum interaction for the DIA at
each relative depth.
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Fig. 2.15 : Like Fig. 2.12 for the expanded DIA approach of Eqs. (2.100) and
(2.101) with λ = 0.306, C = 2.49 106, and m = 0.
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Figure 2.15 continued.
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Fig. 2.16 : Like Fig. 2.15, scaled with maximum interaction for the DIA at
each relative depth.
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The next incremental adjustment of the DIA is to incorporate the scaling
function of Eq. (2.101). Figure 2.15 shows the results for m = 0. This corresponds
to adoption the proper shallow water form of the ‘residual’ scaling factor B1 of
Eq. (2.98), but retaining the deep water form of the scaling function B2 for the
interactions coefficient G from Eq. (2.6). For intermediate water depths with
kd < 1, results remain very similar to those of the original DIA from Fig. 2.12.
For more shallow water, the underestimation of the strength of the interaction
now is also virtually identical to the underestimation of the original DIA, with
an underestimation of five orders of magnitude for kd = 0.2. The shape of the
interactions for shallow water, however, is much more realistic than when the
deep water scaling function is used (compare Figs. 2.16, 2.14, and 2.11).

Some of the shallow water scaling of the coupling coefficient can be introduced
by setting m = 4 in Eq. (2.101). The results presented in Fig. 2.17 show that this
modification expands the range of proper scaling behavior to depths as low as
kd = 0.5. For kd = 0.2, the underestimation of the strength of the interactions is
reduced to a factor of approximately 150, down from five orders of magnitude for
the original DIA. The shape of the interactions for these extremely small depths
also remains much more realistic (Fig. not shown here). Further increase of m
reduces the scaling errors for extremely shallow depths even further, with results
for m = 7 giving near-perfect scaling behavior for kd = 0.35. This is illustrated
in Fig. 2.18. Note that the improved behavior for extremely shallow water is
achieved at the cost of an overestimation of the strength for intermediate depths
(kd ≈ 1), and that the asymptotic scaling behavior for kd → 0 does not match
that of the WRT method.

One reason why the expanded DIA does not seem to be able to reproduce
the scaling behavior of the WRT method for extremely shallow water, is because
the scaling function (2.101) is not set up for such conditions. Using the shallow
water dispersion relation

σ2 = k2 gd , (2.113)

and using this to replace frequencies in the scaling function except for B1 results
in

B′ = g2 (2π)−14 k11 c−1
g (kd)n . (2.114)

where theoretically n = 6, but where n can be considered as a tunable constant.
Numerical experiments show that n = −3.5 results in reasonable scaling behavior
for extremely shallow water. This is illustrated in Fig. 2.19. If the resulting
interactions are rescaled by an additional factor 0.08, results for kd < 0.5 show
excellent scaling behavior compared to the exact WRT results. For larger depths
the interactions now are too small, and virtually disappear for kd > 0.75. Because
this equation gives good scaling for shallow depths, and virtually no interactions

46



Fig. 2.17 : Like Fig. 2.12 for the expanded DIA approach of Eqs. (2.100) and
(2.101) with λ = 0.306, C = 2.49 106, and m = 4.
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Figure 2.17 continued.
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Fig. 2.18 : Like Fig. 2.12 for the expanded DIA approach of Eqs. (2.100) and
(2.101) with λ = 0.306, C = 2.49 106, and m = 7.
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Figure 2.18 continued.
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Fig. 2.19 : Like Fig. 2.12 for the expanded DIA approach of Eqs. (2.100) and
(2.104) with λ = 0.306, C = 2.49106, and n = −3.5. All sources rescaled
with local WRT value and an additional factor of 0.08.
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Fig. 2.20 : Like Fig. 2.12 for the expanded DIA approach of Eqs. (2.100)
and (2.115) with λ = 0.306, C = 2.49 106, m = 4, n = −5.5 and
C ′

s = 3.8 10−6.
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Figure 2.20 continued.
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for deep water, and because Eq. (2.101) shows the opposite behavior, it is logical
to combine the two scaling behaviors in a single formulation

B′ =
k4+mσ13−2m

(2π)14 g4−m c2
g

+ C ′
s

g2 k11 (kd)n

(2π)14 cg

. (2.115)

Figure 2.20 shows the results for the expanded DIA of Eq. (2.100) with this
scaling function B′ with m = 4, n = −3.5 and C ′

s = 0.08. Within the limitations
of the DIA with a single quadruplet to reproduce the shape of the interactions,
this DIA accurately reproduces the interactions across the entire range of relative
depths considered here.

The final possible upgrade of the DIA to be considered is the introduction of
the full nonlinear scaling of the coupling coefficient G by using Eqs. (2.100) and
(2.102). Results for this approach with the single component DIA are presented
in Fig. 2.21. For water depths kd > 0.75 this approach shows reasonable results.
For shallower water, however, the scaling behavior is inadequate, with a signif-
icant underestimation of the strength of the interactions. Note, however, that
this underestimation is typically less than two orders of magnitude, and hence
represents a major improvement over the original DIA approaches. Note, fur-
thermore, that there is a small but distinct difference between results for kd = 10
and kd = 3, suggesting that this approach for a conventional single DIA results
in some spurious changes in interaction strength while going from deep water
(kd = 10) into borderline depth-limited water (kd = 3).

Figure 2.22 addresses the shape of the interactions for smaller water depths.
Shapes appear reasonable, in spite of the scaling issues encountered. Whereas the
interactions are too narrow in directions and frequency compared to the exact
interactions (Fig. 2.11), they do shift properly to lower frequencies with regard
to the low-frequency positive lobe.

This concludes the tests of the single quadruplet DIA with the expanded formula-
tions developed here. It is clear that the proper shallow water quadruplet layout,
proper form of the product term and a proper scaling term all are important in
order to obtain a DIA that scales properly across a range of relative depths. It
is also clear that there are two distinct ranges of interactions, separated for this
DIA for depths around kd = 0.5. Previously known limitations of this DIA limit
its ability to properly reproduce the shape of the interactions. It is neverthe-
less encouraging that the interactions become more one-dimensional (oriented in
frequency space) as in the WRT approach.

The logical next step is to test a DIA with multiple quadruplets (multiple or
MDIA), that has shown the capability to reproduce the shape of the nonlinear in-
teractions more accurately in deep water. An MDIA with four quadruplet layouts
defined by two parameters (λ, µ) is used as a first illustration here. The MDIA is
moderately optimized and the quadruplet settings are presented in Table 2.3. As
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Fig. 2.21 : Like Fig. 2.12 for the expanded DIA approach of Eqs. (2.100) and
(2.102) with λ = 0.306, and C = 2.49 106.

55



Figure 2.21 continued.
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Fig. 2.22 : Like Fig. 2.21, scaled with maximum interaction for the DIA at
each relative depth.
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Table 2.3: Quadruplet layout used in the MDIA scaling test. Quadruplet
layout defined by two parameters (λ, µ). Left columns correspond to
scaling from Eq. (2.101). Right columns correspond to scaling from
Eq. (2.114) with n = −3.5.

quad. λ µ C λ µ C
1 0.064 0.050 3.92 108 0.078 0.050 4.69 106

2 0.175 0.100 1.21 107 0.350 0.100 1.83 106

3 0.300 0.150 1.62 107 0.397 0.150 1.38 106

4 0.403 0.200 8.51 106 0.500 0.200 8.67 106

discussed above, there is no need to test this MDIA with the traditional scaled
deep-water approach from the original DIA. The first case considered will be the
fully expanded (M)DIA based on Eq. (2.100) with the parametric scaling from
Eq. (2.101) with m = 0. Results for this MDIA are presented in Figs. 2.23 and
2.24. Consistent with the corresponding results for the single component DIA
(Fig. 2.17), this MDIA shows good scaling behavior for kd ≥ 1. For kd ≥ 0.5
reasonable scaling behavior is obtained, as well as a transition to of more one-
dimensional signature of the interactions. For smaller depths, the more one-
dimensional signature remains, but the magnitude of the interactions is severely
underestimated.

Alternately, the asymptotic scaling for shallow water from Eq. (2.114) can be
used. Rather than using this scaling with the deep-water optimized quadruplets,
this approach can be used with quadruplets specifically optimized for shallow
water. Such quadruplets, moderately optimized for kd = 0.20 with n = −3.5, are
presented in the right columns of Table 2.3. The corresponding interactions for
the more shallow relative depths are presented in Fig. 2.25. The corresponding
interactions show excellent scaling behavior for kd ≤ 0.5, and a severe underesti-
mation for deeper water, consistent with the corresponding results for the single
DIA. Several features of the exact interactions are well represented, including the
one-dimensional character, and the broadening of the interactions near kd = 0.5.
In general the interactions are too narrow in directional space.

Figure 2.26 shows the interactions for the scaling function of Eq. (2.115) with
m = 4 and n = −3.5, which combines deep and shallow scaling and quadruplets.
This approach indeed provides good scaling behavior across depths, but with
similar shortcomings in shapes as seen in the individual components.

The final approach to be tested is the scaling function (2.102), which includes
the actual interaction coefficient G from Eqs. (2.86) through (2.89). The results
of this approach are presented in Figs. 2.27 and 2.28. This MDIA is based on
the deep-water optimized quadruplet on the left side of Table 2.3. This approach
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Fig. 2.23 : Results for an MDIA based on Eq. (2.100) and (2.101) with m = 4
for the corresponding quadruplets from Table 2.3. Each panel scaled as
in Fig. 2.11.
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Figure 2.23 continued.
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Fig. 2.24 : Like Fig. 2.23 with each panel scaled with its own absolute max-
imum value.
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Fig. 2.25 : Results for an MDIA based on Eq. (2.100) and (2.114) with n =
−3.5 for the corresponding quadruplets from Table 2.3. Each panel
scaled as in Fig. 2.11.
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Fig. 2.26 : Results for an MDIA based on Eq. (2.100) and (2.115) with m = 4
and n = −3.5 for the quadruplets from Table 2.3. Each panel scaled as
in Fig. 2.11.
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Figure 2.26 continued.
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Fig. 2.27 : Results for an MDIA based on Eq. (2.100) and (2.102) for the
quadruplets from Table 2.3. Each panel scaled as in Fig. 2.11.
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Figure 2.27 continued.
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Fig. 2.28 : Like Fig. 2.27 with each panel scaled with its own absolute max-
imum value.
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provides decent scaling behavior across depths without further modifications.
Interactions are moderately overestimated for transition depths, and somewhat
underestimated for the most shallow water depths. The scaling behavior may
be improved further by adding a simple rescaling function based on kd, as in
the original DIA. Unlike in the original DIA, this function represents a minor
correction to scaling behavior. In the former case, it represented all scaling
behavior.

The major shortcoming of MDIAs based on the scaling functions (2.115) or
(2.102) is that the shape of the spectra is too narrow in the shallowest water (com-
pare the WRT interactions in Fig. 2.11 with MDIAs in Figs. 2.26 through 2.28).
A reason for this may be found in the evolution of the one and two parameter
quadruplet layout with depth as identified in Fig. 2.2. Both the one parameter
quadruplet layout (λ) and the two-parameter quadruplet layout (λ, µ) show a
reduction of the internal quadruplet layout with reduced depth. Among others,
this implies that some viable quadruplet layouts for shallow water can never be
achieved, and that by definition, the quadruplet becomes more one-dimensional
in shallow water. For the three parameter quadruplet layout (λ, µ, ∆θ), the be-
havior is (or can be) significantly different. The natural extension to restricted
water depths is to keep (λ, µ, ∆θ) independent of the relative water depth. Note
that this only keeps the angle between k1 and k2 constant. A more advanced
method would be to allow particularly ∆θ to become a function of the depth.
In the present context it is most relevant to address the systematically different
behavior induced by keeping the quadruplet parameters, in particular ∆θ, un-
changed. A simple way to achieve this is to compute deep-water ∆θ equivalent to
the two-parameter quadruplet from the left column of Table 2.3, to extend these
two-parameter quadruplets to three-parameter quadruplets. Hence, deep-water
behavior should be similar or identical, but shallow water behavior is bound to
change.

Figures 2.29 and 2.30 present results obtained with this three parameter
quadruplet definition. Results in deep water ares somewhat different from the
results for the two parameter quadruplet layout, because of different sampling of
the spectral space (the two parameter layout still uses the sampling techniques
from Part 2). Considering the deep water differences between the two- and three-
parameter quadruplet definitions, results for shallow water are remarkably simi-
lar. The three parameter quadruplet shows slightly poorer scaling characteristics
in extremely shallow water, as well as even directionally narrower interactions.
Hence, the tree parameter quadruplet definition does not seem to improve the
behavior in shallow water.
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Fig. 2.29 : Results for an MDIA based on Eq. (2.100) and (2.102) for the
quadruplets from Table 2.3, assuming a three-parameter quadruplet def-
inition with ∆θ obtained from the two-parameter quadruplet definition
in deep water. Each panel scaled as in Fig. 2.11.
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Figure 2.29 continued.
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Fig. 2.30 : Like Fig. 2.29 with each panel scaled with its own absolute max-
imum value.
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2.8 Conclusions

The simple numerical experiments performed here with the DIA and MDIA in re-
stricted water depths clearly identify the superiority of a properly derived shallow-
water DIA over the conventional re-scaled deep-water DIA. Applying the proper
shallow water dispersion relation in the determination of the layout of the quadru-
plet(s) is essential to assure that the interactions conserve wave momentum. If
the proper shallow water quadruplet layout is used, the shape of the interactions
becomes highly unrealistic, unless the proper shallow water product term and
scaling functions not associated with the coupling coefficient are also introduced
[Eq. (2.100)]. The latter modification in fact produces a much more realistic ‘one-
dimensional’ signature of the interactions in extremely shallow water. However,
the scaling behavior of such interactions in shallow water is highly inadequate,
with the strength of the interaction underestimated by several orders of magni-
tude. The argument could be made that this is a positive attribute when applying
such a DIA in an operational model; if the assumption is made that the four-wave
interactions are not the dominant process in shallow water, then a parameteriza-
tion that naturally ‘filters out’ these interactions in extremely shallow water in
fact may be acceptable or even desirable.

Further improvements can be made by considering appropriate scaling func-
tions representing the coupling coefficient G in the DIA. A simple and tentatively
robust approach is presented in Eq. (2.101), where the parameter m represents
the level at which wavenumbers rather than frequencies should be considered in
the scaling function. Tentatively, the value of m should range from 0 to 8, with
values of m ≈ 4 suggested by assessment of the behavior of G in Figs. 2.8 and
2.9. Increasing m indeed increases the range of proper scaling if the DIA to shal-
low water, and into the transition range from weak to strong interactions around
kd ≈ 0.5. This approach, however, cannot produce the asymptotic scaling be-
havior for extremely shallow water. To produce such scaling behavior, a proper
shallow water scaling function needs to be introduced [Eq. (2.114)]. This function
with n ≈ −5.0 indeed gives proper asymptotic scaling behavior in extremely shal-
low water. The ‘deep’ and ‘shallow’ scaling functions can be combined into one
[Eq. (2.115)], or an MDIA can be constructed with a mixture of quadruplets with
both scaling functions to produce acceptable scaling behavior across all depths.
Alternately, the full shape of the interaction coefficient G can be retained in the
scaling function [Eq. (2.102)], resulting in significantly improved scaling behavior
across arbitrary depth. Such an MDIA could tentatively be improved further
with a corrective scaling function as a function of the relative depth kd.

It should be noted that the DIA approaches considered here have not been
fully optimized. Considering the results from Part 2, such an optimization should
be based on holistic model behavior, and it is therefore not sensible to optimize
methods presented here in more detail. It is, however, obvious from the present
results, that there are ample opportunities to optimize the expanded DIA, in
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particular its scaling functions, for arbitrary depths. It is more appropriate to
discuss actual techniques, after the discussion of the numerical optimization of
the expanded DIA in Section 5. It does remain important to realize that the
extremely shallow water conditions are not realistic or the four-wave interactions
not locally dominant for practical wave modelings.
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3 Diffusion operators

Diffusion operators have been presented as a possible alternative to the DIA by
several authors, for instance, Hasselmann et al. (1985), Zakharov and Pushkarev
(1999), and Jenkins and Phillips (2001). Although these approaches are cheap,
they appear to lack the desired accuracy. In the context of the present study
diffusion operators may nevertheless be useful to improve the economy of the
resulting algorithm. In particular for higher frequencies, time scales of spectral
evolution are short, requiring small numerical time steps for accuracy and sta-
bility. Applying selective smoothing (diffusion) in this spectral range may well
improve numerical model integration economy (by allowing for larger time steps),
while proper optimization may well assure that the accuracy of model results does
not suffer from such an approach.

The traditional one-dimensional diffusion equation for an arbitrary parameter A
evolving in time t and space x is given as

∂A

∂t
− D

∂2A

∂x2
= 0 , (3.1)

where D is the diffusion coefficient. In a traditional forward time central space
(FTCS) finite difference approach, the numerical solution to this equation be-
comes

An+1
j = An

j +
D∆t

(∆x)2

(

An
j−1 − 2An

j + An
j+1

)

, (3.2)

where j and n are discrete space and time counters, and ∆x and ∆t are discrete
space and time counters, respectively. Stability requires that (e.g., Fletcher, 1988)

P =
D∆t

(∆x)2
< 0.5 , (3.3)

where P is the Peclet number. Equation (3.2) can also be interpreted as a smooth-
ing algorithm. If the diffusion coefficient D varies in space, a conservative version
of Eq. (3.2) can be obtained if the algorithm is implemented as a redistribution
rather than averaging algorithm. For the grid point j, the parameter value A
contributes to this grid point and its neighbors as





δAj+1

δAj

δAj−1





n+1

= An
j





0
1
0



+ An
j P





1
−2

1



 , (3.4)

where the first term on the right represents the unchanged state, and the second
term represent the ‘source term’ for smoothing. Such an equation is very similar
to the local contributions of the DIA with a traditional one-parameter quadruplet
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Fig. 3.1 : Small-scale one-parameter quadruplet inside a nine-point grid sten-
cil in the spectral grid, with definition of relative distances in the spectral
grid. Central component of quadruplet coincides with central grid point
in stencil.

definition. Considering that in this approach the first two components of the
quadruplet are identical, and that component 3 has a larger frequency, Eq. (2.83)
can be rearranged as





δsnl,3

δsnl,1

δsnl,4



 =
C ′

22(2π)10
g−4f 11P1234





1
−2

1



 . (3.5)

Hence, the traditional DIA can be considered as a diffusion operator applied in
the direction of the locus in spectral space given by the resonance conditions, and
with a discrete step size defined by the quadruplet parameter λ. Note that the
analogy between the DIA and a local diffusion operator is solely due to the choice
of the quadruplet layout, and is not reproduced for more complex quadruplet
layouts. This may well explain the inherent stability of the traditional DIA, and
why this stability is not shared by DIAs with more complex quadruplet layouts.

Whether or not the DIA as described in Eq. (3.5) acts as a true diffusion
operator in the discretized spectral space depends on the spatial scale of the
quadruplet in spectral space as defined by λ, relative to the discrete spectral
increments used to discretize this space. If |f3 − f1| > ∆f (and for similar
directional considerations), individual contributions of the DIA are resolved by
the discrete spectral space, and the direct link between Eqs. (3.4) and (3.5) is
lost as components of the quadruplet do not correspond to adjacent grid points in
spectral space. If, however, λ is selected sufficiently small so that the components
of the quadruplet fall within three adjacent discrete grids points in the frequency
and direction spaces, an equivalence between Eqs. (3.4) and (3.5) is established.

Figure 3.1 shows the layout of small scale quadruplet inside a nine-point
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stencil of grid points in spectral space. The central component of the quadruplet
[f1, θ1) = (f2, θ2)] is collocated with the central grid point in the discrete spectral
space, and a3, a4, b3 and b4 are normalized distances in the nine-point stencil (i.e.,
normalized with distances between the corresponding spectral grid lines). If ∆F1

and ∆F2 are the discrete spectral changes for the two mirror image quadruplets,
the changes of spectral density in the nine-point stencil become

δF = M1∆F1 + M2∆F2 , (3.6)

where M1 and M2 are 3 × 3 matrices with rows representing discrete directions
and columns representing discrete frequencies. With the relative distances as
defined in Fig. 3.1, these matrices become

M1 =





a4b4 (1 − a4)b4 0
(1 − a4)b4 Mc (1 − a3)b3

0 (1 − a3)b3 a3b3



 , (3.7)

M2 =





0 (1 − a3)b3 a3b3

(1 − a4)b4 Mc (1 − a3)b3

a4b4 (1 − a4)b4 0



 , (3.8)

Mc = a3b3 + a4b4 − a3 − a4 − b3 − b4 . (3.9)

The distribution scheme can be simplified for interactions on scales that are much
smaller than the discretization of spectral space, where a3, a4, b3, b4 � 1. In such
conditions Eqs (3.7) and (3.8) become

M1 ≈





0 b4 0
b4 −a3 − a4 − b3 − b4 b3

0 b3 0



 , (3.10)

M2 ≈





0 b3 0
b4 −a3 − a4 − b3 − b4 b3

0 b4 0



 , (3.11)

and the corresponding redistribution of spectral energy closely resembles the two-
dimensional version of the diffusion equation (3.4), which in turn closely corre-
sponds to the simple diffusion equation suggested by Jenkins and Phillips (2001).
Note that this diffusion equation is alway having main axes lined up with the
discrete grid axes.

If the quadruplet falls within the nine-point grid stencil but with relative
distances a3, a4, b3 and b4 not much smaller than 1, M1 and M2 retain their
diagonal structures, and the orientation of the quadruplet in Fig. 3.1 become
effective (non-orthogonal) axes of a diffusion or smoothing operator, with the
ratio of ∆F1 and ∆F2 determining the actual shape of the smoother within the
stencil. To address the evolution of the shape of the stencil a little more, consider
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the case with ∆F1 = ∆F2 and with a3 = a4 = b3 = b4. For a, b = 1
2
, 2

3
and 1, the

shape of the distribution stencil becomes





1 2 1
2 −12 2
1 2 1



 ,





1 1 1
1 −8 1
1 1 1



 ,





1 0 1
0 −4 0
1 0 1



 , (3.12)

respectively. For a, b increasing from 0 to 1
2

the smoother evolves from operating
along grid axes only to becoming a two-dimensional smoother in spectral space
with weights decreasing with the distance to the central point of the smoother.
For further increasing a and b larger weights fall upon the corners of the nine-
point stencil, evolving toward a quadruplet redistribution that becomes resolved
by the discrete spectral grid. From a practical perspective, it therefore appears
required that a, b < 0.5 for a quadruplet to become the basis of a diffusion or
smoothing algorithm.

Note that the basic conservation properties of this smoother are all encapsu-
lated in the detailed balance version of the interaction and DIA formulations [e.g.,
Eq. 2.2] as already noted by Webb (1978) and in Section 2.2; energy and action
are conserved as long as the components of the quadruplet satisfy the resonance
conditions for frequencies, and momentum is conserved if wavenumber resonance
conditions are also met. Furthermore, a logarithmic discretization of frequency
space is implicit to diffusion character of the DIA equations. Thus, a diffusion
operator with the proper conservation properties for nonlinear interactions can
be constructed by a) redistributing energy over a quadruplet as in the original
DIA, b) having a, b ≤ 1 in Fig. 3.1, and by having a and b based on the full
resonance conditions by using the one-parameter quadruplet definition based on
λ only. Thus, a simple diffusion operator similar to Jenkins and Phillips (2001)
can be constructed without any further derivations. It also suggests that such an
approach is representative only for interaction scales that are not resolved by the
discrete spectral grid.

A consequence of this behavior is that a valid (in terms of conservation prop-
erties) smoother can be constructed independent of the actual computation of
∆F1 and ∆F2. There are two systematically different approaches to estimating
these increments; consider it as a pure numerical smoother, or consider it as an
attempt to model unresolved stabilizing interactions in the tail of the spectrum.
Both approaches will be considered here.

If a purely numerical smoother is to be considered, the strength of the smoother
is easily controlled if it is defined by the discrete change of the spectral density
at the central point of the grid stencil ∆Fc, and if the distribution matrices are
normalized consistently as in

δF = (M1 + M2)M
−1
c ∆Fc . (3.13)
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This change can be normalized with the the corresponding spectral density Fc,
∆F̃c = ∆Fc/Fc. Note that the stability criterion (3.3) then tentatively corre-
sponds to

∆F̃c < ∆F̃c,lim ≈ 0.5 . (3.14)

The strength of the smoother can then be controlled by a user-supplied maximum
value of the normalized change of the central spectral density ∆F̃c,max ≤ ∆F̃c,lim.
Furthermore, the smoother is needed only for the high-frequency flank of the
spectrum. This can be achieved by introducing a filter function Φ(f), taken from
the JONSWAP spectral definition.

Φ(f) = exp

[

−c1

(

f

c2fp

)−c3
]

, (3.15)

where fp is the peak frequency of the (wind sea part of the) spectrum. In the
original JONSWAP expression, c1 = 1.25 and c3 = 4. The constant c2 is added
to allow for a shift of the filter from the spectral peak (as in JONSWAP where
c2 = 1) to higher frequencies (c2 > 1).

Furthermore, the smoother at least needs to be independent of the numer-
ical time step, or ideally to be numerically convergent. The first requirement
demands that the strength of the filter for small time steps scales with the time
step, similar to the time step scaling of the model physics. To achieve this a
nondimensional time step ∆t̃ needs to be introduced. Typical ways to generate a
nondimensional time can be taken from, e.g., Hersbach and Janssen (1999), and
include a normalizing time step (∆tn) or a representative frequency (fr)

∆t̃ ∝ ∆t ∆t−1
n , ∆t̃ ∝ fr ∆t ,

Finally considering that F̃c,lim should scale with ∆t̃ and should be an asymptotic
constant for large ∆t̃,

Ψ(∆t̃) = tanh ∆t̃ (3.16)

and a relatively simple numerical filter can be defined as

∆F̃c = Φ(f) Ψ(∆t̃) ∆F̃c,max , (3.17)

Thus, the filter is defined by five parameters; λ defining the quadruplet geometry,
∆F̃c,max defining the filter strength, and c1 through c3 limiting the filter to high
frequencies only. Furthermore, a definition of the nondimensional time step needs
to be developed further. Ideally, these parameters are optimized holistically to-
gether with the other parameters of the MDIA as in Part 2. Note that for the
logarithmic frequency grid (1.8) used here
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a3 = a4 = a34 =
λ

X − 1
. (3.18)

Thus, either a34 or λ can be user defined.
A drawback of this filter scheme is that it is non-convergent. Due to the

linear dependence on ∆t̃ the impact of the filter remains in existence for ∆t → 0.
If the filter is non-convergent, it appears more elegant to define it more closely
consistent with the nonlinear interactions, possibly as a reduced part of a multiple
DIA. Computing the change of spectral energy consistent with the quadruplet
strength of the traditional DIA (3.5) with a time step ∆t, and filtering the change
relative to the peak frequency as in (3.15) the nondimensional spectral change
strength ∆F̃1,2 for the quadruplet becomes

∆F̃1,2 = −Mc Φ(f)
C ′

2(2π)10
g−4f 11 P1234 ∆t F−1 . (3.19)

Note that the factor −Mc represents the fact that the quadruplet is not resolved
by the discrete frequency grid, and that hence contributions of changes at F3 and
F4 are also attributed to the central bin of the smoothing stencil. A user defined
maximum filter strength ∆F̃max needs to be filtered with respect to the frequency
and distributed over the two quadruplet representations. Equal distribution over
maximum changes ∆F̃m,1 and ∆F̃m,2 results in

F̃m,1 = 0.5∆F̃maxΦ(f) , F̃m,2 = 0.5∆F̃maxΦ(f) , (3.20)

or can be distributed relative to interaction strengths.

∆F̃m,1 =
|∆F̃1| Φ(f)

|∆F̃1| + |∆F̃2|
) , ∆F̃m,2 =

|∆F̃2| Φ(f)

|∆F̃1| + |∆F̃2|
) . (3.21)

With this, the central energy changes corresponding to Eq. (3.17) become

∆F̃c,1 = ∆F̃m,1 tanh

(

∆F̃1

∆F̃m,1

)

, ∆F̃c,2 = ∆F̃m,2 tanh

(

∆F̃2

∆F̃m,2

)

. (3.22)

Note that ∆F1,21 can be both negative and positive, describing either anti-
diffusion or diffusion, but that both are fully consistent with the previous smoother,
Practical applications of this smoother will be discussed in Section 5.2. Note, fur-
thermore, that from Eq. (3.19) a consistent source term can be defined, for which
the ensuing equations represent a time integration method fully consistent with
a diffusion-based filter.
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4 Numerical aspects

Two additional numerical aspects of the nonlinear interactions have not been
addressed yet. The first deals with the fact that the discrete spectrum does not
cover the entire spectral space; the second is important for time integration of
physics in a numerical wave model.

By definition, the discrete description of spectral space contains a minimum and
maximum discrete spectral frequency or wavenumber. Because the nonlinear
interactions are by definition non-local in spectral space, parts of quadruplets
contributing to interactions inside the discrete spectral space reside outside this
space. This implies that the discrete frequency or wavenumber space needs to
be expanded to encompass all contributing quadruplets in their entirety. This in
turn implies the addition of discrete low-frequency grid point in spectra space.
For such grid points, absence of spectral energy can be assumed. Furthermore,
it implies addition of discrete high-frequency grid points, for which a power law
spectral energy distribution is considered, as has been published in many previous
papers.

Numerical integration of source terms in WAVEWATCH III is executed in a
separate fractional step, that solved the following reduced version of Eq. (1.2)

∂N(k, θ)

∂t
= S(k, θ) . (4.1)

The numerical solution of this equation employs a semi-implicit method where

∆N(k, θ) =
S(k, θ)∆t

1 − αD(k, θ)∆t
, (4.2)

where D represents the diagonal terms of the partial derivative of the nonlinear
interactions with respect to the spectrum, D(ki, θj) = ∂S(ki, θj)/∂N(ki, θj) This
method was originally introduced in WAMDIG (1988), using a central scheme
with α = 0.5. Hargreaves and Annan (1998, 2001) modified this scheme by
introducing α = 1 for increased stability and accuracy for high frequencies. The
latter scheme forms the basis for the dynamical source term integration scheme of
WAVEWATCH III (Tolman, 1992, 2002b). For WAVEWATCH III, the diagonal
term D follows from Eq. (2.107) or (2.108) as









δD1

δD2

δD3

δD4









=









−K ′
1

−K ′
2

K ′
3

K ′
4









C ′ B′ , (4.3)

where B′ is the appropriate scaling function, and where
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Note that the extra computational effort required to evaluate D is more than
compensated for by a much smoother spectral integration with significantly larger
dynamically computed time steps.
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5 Numerical optimization

In order to be able to optimize parameter settings in the MDIA, a numerically
efficient implementation needs to be constructed. There are two aspects to nu-
merical efficiency. The first is the raw computational effort required to assess
the MDIA, which is relevant in relation to the computational effort needed for
the conventional DIA. Development of a computationally efficient MDIA will be
addressed in Section 5.1. The second aspect is the smoothness of integration,
which will impact the dynamical time step in the source term integration in
WAVEWATCH III. Mostly, this can be addressed only in conjunction with the
parameter optimization of the MDIA. In the present study, only filter techniques
for the high frequency part of the spectrum as discussed in Section 3 will be
addressed inside WAVEWATCH III in Section 5.2. For completeness, the actual
equations used in WAVEWATCH III will be summarized in detail here.

Keys to the ‘final’ version of the MDIA implementation are (i) the formulation
in terms of the action spectrum N(k, θ) [Eq. (2.107)], (ii) using for deep water
a proportionality constant compatible with HHAB [Eq. (2.105)], and (iii) using
a composite deep and shallow scaling function consistent with Eq. (2.115). This
results in the basic equation for discrete interaction contributions
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and the corresponding diagonal contributions
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with the corresponding diagonal contributions K ′
i from Eqs. (4.4) through (4.7).

In these equations Cd in the proportionality constant for the deep water scaling
consistent with the constant in HHAB, Cs is the corresponding constant in the
shallow water scaling, Bd and Bs are the deep and shallow water scaling functions,

Bd =
k4+m σ12−2m

(2π)9 g4−m cg

, (5.3)

Bs =
g2 k10

(2π)9 cg
(kd)n , (5.4)
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respectively. Consistent with the MDIA experiments of Section 2, quadruplets
should have separate proportionality constants for both scaling ranges, or should
be identified for one range only. Md and Ms are the number of quadruplet
definitions used for for the deep and shallow scaling, respectively. Formally,
these normalization factors belong in the summation of all contributions from
all quadruplet realizations (2.63). However, because Md and Ms do not need
to be equal, these factors are more elegantly included in Eq. (5.1). Furthermore
considering that the devision by 2 in Eq. (2.63) is included in the scaling functions
(5.3) and (5.4), the former equation simply becomes

Snl =
∑

δSnl . (5.5)

Note that the spectral conversion from F (f, θ) to N(k, θ) does not influence the
value of m and n, since both parameters address the scaling behavior of the
coupling coefficient G only.

5.1 Computational optimization

Numerical optimization of any computer code addresses minimization of the work
done, and making work done efficient by using ‘vector’ style operations. In the
present context, it is irrelevant to address parallelization, since WAVEWATCH III
incorporates effective parallel paradigms at a higher level in the code (Tolman,
2002a). Most relevantly, this wave model uses a parallelization method where
source terms for different spatial grid points are addressed in parallel.

A first inspection of shallow water energy distribution equations like Eq. (2.100)
and (2.107) indicates that the complexity of the product term greatly depends on
the spectral description chosen. Clearly, the description for the action spectrum
N(k, θ) [Eq. (2.107)] is much simpler than the equation for the energy spectrum
F (f, θ) [Eq. (2.100)], and the simplest form is obtained for the action spectrum
n(k), cf. Eqs. (2.2) and (2.4). Note that for any spectral description, the equation
can be recast in terms of a pseudo spectrum F
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where the scaling function B still depends on the actual spectrum for which the
DIA is formulated. For application in WAVEWATCH III, solving Eq. (2.107),
the pseudo spectrum is defined as

Fi =
N(ki, θi)

ki
, (5.7)
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Fig. 5.1 : Interactions computed from a given model spectrum in deep wa-
ter for the traditional DIA and its quadruplet for (a) computations of
interactions in terms of F (f, θ) and (b) in terms of F = N(k, θ)/k.

and similar pseudo spectra can be defined for each spectral description for which
the DIA is defined directly. With the pseudo spectra, the spectrum is con-
verted only once, after which components of quadruplets are interpolated from
the pseudo spectrum directly, thus simplifying the computation of the product
term. This mainly result in much simpler expressions, but has only a moderate
to negligible impact on the numerical economy.

However, the choice of (pseudo) spectral description does have a distinct im-
pact on the resulting interactions. These differences occur because, depending
on the description used, factors in the product term are directly evaluated at the
quadruplet components, or are implicitly interpolated from the discrete spectral
grid. The highly nonlinear nature of Snl results in a rather significant impact of
choices of spectra description. This is illustrated in Fig. 5.1, with interactions
computed from either F (f, θ) or N(k, θ)/k. Clearly, the differences are signifi-
cant. The first interaction is consistent with the traditional DIA, whereas the
second is consistent with the original description of interaction in terms of ac-
tions. For now, the action description will be used here, acknowledging that a
switch back may be needed of the interaction parameters are optimized.

Another way to speed up computations is to pre-compute where possible.
For the nonlinear interactions, this mostly concerns quadruplet layouts. This is
particularly true for the conventional DIA, where the quadruplet layout remains
unchanged throughout the spectral grid. Only one set of interpolation addresses
and weights then needs to be saved. In WAVEWATCH III, the traditional DIA
is furthermore optimized by organizing computations in long vector loops. The
structure of the computational subroutine is illustrated in Fig. 5.2. In order to
effectively execute the long loops over (extended) discrete spectral space, arrays
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computational subroutine

Compute depth scaling factor
Expand discrete spectral space to high and low frequencies
Initialize working arrays

Do for all bins in expended spectral space

Compute energy at quadruplet components
Compute interaction strength
Compute diagonal strength

Do for all bins in model spectral space

Combine interaction contributions
Combine diagonal contributions

Fig. 5.2 : Algorithm for computing the conventional DIA in the WAVE-
WATCH III model.

with addressing information are constructed in an initialization routing, that is
only run once during program execution (see w3snl1md.ftn for details). This
highly optimized routine will be used as a timing benchmark.

The routines used so far in this study and in Part 2 have been designed to
strike a balance between ease and transparency of coding and numerical efficiency.
The corresponding algorithm is presented in Fig. 5.3. Note that this algorithm
uses a minimum of preprocessing, and that the quadruplet layout is recomputed
in the computational algorithm for each quadruplet and frequency separately.
Because these settings are used for each direction, the overhead of re-establishing
the quadruplet layouts in fact is modest.

To address the numerical efficiency of various DIA implementations, three
test cases are considered. The first is the traditional DIA with the one-parameter
quadruplet definition with λ = 0.25,. The second is a DIA with a single quadru-
plet definition, but with a two-parameter quadruplet definition with µ = 0.10
and λ = 0.25. Note that this DIA definition does not result in stable model inte-
gration (see Part 2). However, in the context of model economy it is relevant as
it identifies the origin of differences in computational effort between algorithms.
The final test case is a four component MDIA, as described in the left side of Ta-
ble 2.3. The ’out-of-the-box’ test provided with WAVEWATCH III is used with
a discrete spectrum with 24 direction and 25 frequencies. All computations are
performed on a Linux system with a Portland compiler (aggressive optimization),
by calling the subroutines 1000 times for a given wave spectrum. The differences
in the computational cost, however, can be related directly to the amount of
operations performed, and should therefore be more generally applicable.

Timing results for the algorithm of Fig. 5.3, normalized with the results of
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computational subroutine

Expand discrete spectral space for pseudo spectrum
Initialize working arrays

Do for all quadruplet definitions

Do for all frequencies (expanded range)

Determine quadruplet layout
Compute proportionality constant

Do for all directions

Do for all four quadruplet realizations

Get quadruplet energies
Compute interaction and diagonal strength
Apply contributions in expanded spectral space

Go from expanded to normal spectral space
Normalize for number of quadruplets

Fig. 5.3 : Algorithm for computing the generalized DIA in the previous sec-
tions of the present study.

the conventional DIA of Fig. 5.2 are presented in Table 5.1. Note that the con-
ventional DIA is run only for the first case.

The generalized MDIA in its non-optimized configuration is significantly slower
to run than the optimized conventional DIA, typically by a factor of 10. This fac-
tor can be explained by the increased amount of computations to be performed in
the generalized algorithm. A factor of 2 can be expected because the generalized
MDIA assesses 4 realizations of a quadruplet layout, whereas the conventional
DIA assesses only 2 realizations. Furthermore, the computational effort of a DIA
is dominated by the work done to gather quadruplet energies, and to distribute
contributions over spectral space. In the conventional DIA, the gathering and
redistribution concern 9 discrete spectral bins, whereas for the generalized MDIA
16 discrete bins are considered, accounting for another factor of approximately
2. The remaining factor 2.5 in run time difference is consistent with general opti-
mization procedures used in the conventional DIA, but absent in the generalized
MDIA. In the generalized algorithm of Fig. 5.3, the computational effort scales
linearly with the number of representative quadruplet definitions. This explains
why the MDIA with four representative quadruplets (case 3) is 4 times more
expensive to run than the MDIAs with one representative quadruplet (cases 1
and 2).

One method to optimize nonlinear computations is the so-called triplet method.
This method uses the property of the nonlinear interactions that each discrete
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Table 5.1: Run times for various DIA and MDIA algorithms normalized with
the run time for the convention DIA with one representative quadruplet,
defined by λ alone. Case 1: traditional quadruplet (λ = 0.25). Case 2:
two parameter quadruplet (λ = 0.25, µ = 0.10). Case 3: four component
MDIA from Table 2.3. For reference, the normalized run time of the
exact interactions used here is approximately 1500.

Algorithm Case 1 Case 2 Case 3
Conventional DIA (Fig. 5.2) 1 – –
First MDIA (Fig. 5.3) 10. 10. 41.
Triplet unfiltered (Fig. 5.4) 60. 750. 3300.
Triplet ε1 = ε2 = 0.25 (Fig. 5.4) 7.6 62. 350.
Optimized MDIA (Fig. 5.8) 2.1 3.6 13.

interaction Snl(ki, θj) consisting of all contributions from Eq. (5.6) can be con-
structed as a sum of triple products (triplets) of pseudo spectral values corre-
sponding to individual quadruplet realizations.

Snl(ki, θj) =
∑

l,m,n

wi,j,l,m,nFlFmFn =
∑

l,m,n

wi,j,l,m,nTl,m,n , (5.8)

where w represents a weight, and Fl, Fm and Fn represent pseudo spectral values
in the discrete spectral space. This method was originally introduced by Snyder
et al. (1993, 1998) as an efficient way to compute exact interactions on a relatively
coarse discrete spectral grid. More recently Van Vledder (2005) used this method
to optimize an MDIA based on the convectional single-parameter quadruplet
definition, and has shown good numerical efficiency in this case. However, it does
not appear that this method is generally efficient for a generalized quadruplet
definition.

In a continuous spectral space, each individual quadruplet results in 4 triplets
Tl,m,n in the evaluation of the product term in Eq. (5.6). In a discrete space,
however, Fl etc. are a weighted average of up to four discrete spectral values.
Hence, the evaluation of the product term in Eq. (5.6) for a single quadruplet
can require the evaluation of as many as 4 × 43 = 256 triplets Tl,m,n. Further-
more, these results need to be redistributed to the four discrete spectral locations
from which all for quadruplet elements are gathered (a total of 42 locations), or
conversely, up to to 42 quadruplets contribute to the interaction at each discrete
spectral grid point. Finally, each quadruplet has up to 4 realizations. Hence, the
evaluation of the nonlinear interactions for a given spectral point can require up
to 47 = 16, 384 triplets Tl,m,n.

For the conventional quadruplet definition, much fewer triplets need to be
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evaluated. First, F1 and F2 coincide with one single discrete spectral grid point,
whereas F3 and F4 are obtained by interpolation from 4 grid points. It can
be shown that the corresponding evaluation of the product term in Eq. (5.6)
then only requires 24 triplets Tl,m,n. Furthermore, only 9 discrete spectral grid
points contribute to the interactions in a given point, and only 2 realization
exist of each quadruplet. Hence, for the conventional quadruplet definition, only
24 × 9 × 2 = 432 triplets Tl,m,n can contribute. This is in stark contrast to the
16,384 triplets found above.

This leaves a significant number of triplets to be evaluated for each individual
spectral grid point, even for the conventional quadruplet. To address the econom-
ical feasibility of the triplet method in the present context, a simplified triplet
code has been developed here. The three main simplifications and assumptions
are (1) deep water will be considered for an initial assessment of the economical
feasibility, (2) the diagonal term will not yet be considered, and (3) triplet tables
are evaluated for frequencies only, requiring indirect addressing for application
in the full spectral space. The latter is not as efficient as direct addressing for
each individual discrete spectral component, but will be essential for reduction
of internal storage required in an application for arbitrary depths. The basic
algorithm for the triplet method is presented in Fig. 5.4.

The actual computational routine for the triplet method is almost trivial,
consisting of three nested loops, including the summation in Eq. (5.8). Most
coding is required for the computation of triplet data in the initialization routine.
This, however, needs to be done only once, and the resulting triplet data can easily
be retained in memory. Resulting run times of this approach are presented in
Table 5.1, and resulting triplet counts are presented in Table 5.2.

Run times for the raw triplet methods are significantly longer that those of
the initial MDIA algorithm of Fig. 5.3. For case 3, this approach in fact is
slower than the exact interaction routines used in this study. The more complex
quadruplet layout of case 2 (compared to case 1) results in an increase of the
number of triplets of a factor of approximately 15, and in a similar increase in
computing time. For the multiple quadruplet approach of case 3, the number of
triplets increases by another factor of 4, and a comparable increase in computing
time. Apparently, the number of duplicate quadruplets in the MDIA environment
with the expanded definition of the quadruplet is negligible, unlike for a similar
approach with the conventional quadruplet definition of the DIA (Van Vledder,
2005).

However, the triplet approach can be sped up significantly by filtering the
triplets to be used in the computation. In Fig. 5.4, three different filter locations
are identified (ε1, ε2 and ε3). In all these cases, only triplets are retained for which

w ≥ εi wmax , (5.9)

where w are (partial) weigh factors for triplets (see discussion of individual filters
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initialization subroutine

Expand discrete spectral space as needed
Initialize working arrays

Do for all frequencies

Do for all quadruplet definitions

Determine quadruplet layout
Compute proportionality constant

Do for four realizations of quadruplet

Construct 256 triplets of product term of Eq. (5.6)
Combine into unique triplets
Filter based on relative weight (ε1)

Distribute resulting triplets to 16 contributing
discrete spectral grid points, filter on distribution
weight (ε2). Proportionality constant added

Do for all frequencies

Combine results into unique triplets
Filter based on relative weight (ε3)
Store resulting quadruplet information

computational subroutine

Expand discrete spectral space for pseudo spectrum

Do for all frequencies

Do for all directions

Evaluate Eq. (5.8)

Fig. 5.4 : Algorithm for computing the generalized DIA using triplets.
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Table 5.2: Triplet counts for a single discrete spectral nonlinear interaction
for various MDIA applications. Cases as in Table 5.1

Case 1 Case 2 Case 3
Maximum number of triplets 432 16,384 65,536
Actual unique triplets 426 6,674 25,986
Triplets for ε1 = 0.25 144 1,042 5,645
Triplets for ε1 = 0.25, ε2 = 0.25 64 526 2,937
Triplets for ε1 = 0.25, ε2 = 0.25, ε3 = 0.001 32 230 738

below). Effects of these filters are illustrated in Figs 5.5 through 5.7 for cases 1
through 3, respectively.

The first filter (ε1) is applied for the triplets Tl,m,n that make up the product
term in Eq. (5.6) which determines the strength of the local interactions. Ap-
plying this filter may modify the local interaction strength, but does in no way
impact conservation properties of the nonlinear interactions. Tentatively, filter
levels of ε1 ≈ 0.001 filters out only very small contributions, and hence is ex-
pected to have little or no impact on resulting interactions. This is easily verified
with numerical computations. Somewhat surprisingly, this filter can be applied
aggressively with values as large as ε1 = 0.25. This is illustrated in the (b) panels
of Figs 5.5 through 5.7, which show interaction from the triplet method with
ε1 = 0.25. Clearly, the filtering has only a moderate impact on the resulting
interactions, with a larger impact on the more complex cases. Note that the
number of resulting triplets is reduced by factors of approximately 3, 6 and 5
for the three separate cases (Table 5.2), with similar impacts on computational
effort (results not presented here).

The second filter (ε2) is applied to the distribution of the triplets that de-
scribe the interactions strength to individual discrete spectral components, and
again deals directly with interpolation weights. If the interpolation weight for
an individual spectral contribution is too small in the filter, none of the triplets
describing the interaction strength are applied to the discrete spectral grid point
considered. Note that this filter does impact the conservation properties of the
interactions, as discrete contributions within a quadruplet are selectively ignored.
This filter, however, can also be applied aggressively with moderate impact on the
resulting interactions. This is illustrated with results for ε1 = 0.25 and ε2 = 0.25
in the (c) panels of Figs 5.5 through 5.7. Results are again only moderately
changes, whereas the number of triplets used again is reduced by a factor of
typically 2.

The third filter (ε3) is applied after all resulting triplets have been combined.
Therefore, weight factors used in this level of filtering include proportionality
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Fig. 5.5 : Effects of filtering on the triplet method for a test spectrum and
case 1 (traditional DIA quadruplet with λ = 0.25). (a) Unfiltered results.
(b) Adding filter with ε1 = 0.25. (c) Also adding ε2 = 0.25. (d) Also
adding ε3 = 0.001. Scaling identical in all panels.
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Fig. 5.6 : Like Fig. 5.5 for case 2, with expanded quadruplet definition (λ =
0.25, µ = 0.10). Scaling as in Fig. 5.5.

constants. Due to the strong dependency of the proportionality constant with
frequency. this filter will have a distinct impact even for smaller values of the
filter. This is illustrated in the (d) panels of the figures for ε3 = 0.001. Clearly
this filter has a particularly large impact on high-frequency interactions. It is
therefore not advisable to use this filter.

Considering the above, the triplet approach can be used with aggressive set-
ting of the first two filters, but should not be used with the third filter. To obtain
a representative estimate of the numerical economy of such an approach, run
times for ε1 = ε2 = 0.25 and ε3 = 0 are presented in Table 5.1. These results
correspond to Figs 5.5c through 5.7c. Note that this filtering technique mostly
weakens the interactions. If the filter is used in the holistic optimization of the
interaction (see Part 2), then this weakening is automatically accounted for as
part of the optimization. Alternatively, resulting weights after filtering can be
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Fig. 5.7 : Like Fig. 5.5 for case 3, (MDIA from Table 2.3). Scaling as in
Fig. 5.5.

renormalized for the first two filters.
With the aggressive filtering, the economy of case 1 is improved compared

to the general implementation used in the previous section. For more com-
plex quadruplets and the MDIA with more complex quadruplets, the triplet
method remains substantially slower that the partially optimized direct method
of Fig. 5.3. Considering that this triplet method does not yet include the eval-
uation of the diagonal terms, nor actual applications to shallow water, it does
not appear that this triplet method will be an economically feasible approach for
the generalized multiple DIA presented in the present study. The only exception
may be an MDIA with the traditional single parameter quadruplet definition and
with many representative quadruplet. The latter would be consistent with the
results of Van Vledder (2005).
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Considering the above results with the triplet method, it is prudent to merge
optimization techniques used for the traditional DIA (Fig. 5.2) with the previ-
ously used algorithm for the generalized multiple DIA (Fig. 5.3). The resulting
algorithm is presented in Fig. 5.8. This algorithm is more involved than previ-
ous algorithms, because it balances the basic approach of the traditional DIA of
Fig. 5.2 with the need to efficiently store precomputed interpolation and distribu-
tion data. The latter requires compact storage and the use of indirect addressing
in spectral space, rather than providing absolute offset data for each individual
discrete spectral grid point. First, it is recognized that all relative addresses and
interpolation or redistribution data for all discrete directions for a given discrete
frequency are identical. For each frequency, however, interpolation data may be
different due to differences in relative depths kd for each discrete frequency. In-
stead of recomputing these data for each frequency for each subroutine call, such
data are stored for discrete nondimensional depths kd.

For these discrete relative depths to be equally accurate in various spectral
ranges, increments in kd need to be consistent with frequency increments in the
spectral grid. From the dispersion relation (1.6) a non-dimensional frequency σ̃
can be defined as

σ̃2 =
σ2d

g
= kd tanh kd . (5.10)

By defining a minimum and maximum relative depths kdmin and kdmax, the cor-
responding frequencies σ̃min and σ̃max are defined. Using a nondimensional fre-
quency grid consistent with (1.8)

σ̃i+1 = X̃σ̃i , (5.11)

assures that the resolution of in interpolation table is uniform in the discrete
spectral space. Using nd discrete relative depths, X̃ becomes

X̃ = (σ̃max/σ̃min)
(nd−1)−1

. (5.12)

For a typical low lowest model frequency of 0.03 Hz, and a typical minimum
realistic depth of 1 m, the smallest relative depth in a model is kd ≈ 0.06.
With this in mind kdmin = 0.025 is set as the default in the model. With a
typical setting of kdmax = 10. and nd = 250, the relative depth increment is
approximately 2% (X̃ = 1.0196), which is significantly better than the typical
spectral resolution, and hence appears generally acceptable.

Note that the outer loop in the computational routine considers quadruplet
realizations and not quadruplet layouts. This implies that the duplication of
identical quadruplet realizations for the conventional one-parameter quadruplet
layout can be avoided in a simple way (at (a) in Fig. 5.8). Note that this speeds
up the computations for case 1 significantly, but that this has no impact on the
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initialization subroutine

Initialize discrete nondimensional depths

Do for all nondimensional depths

Do for all representative quadruplets

compute offsets, indices and weights

Do for 2 or 4 quadruplet realizations (a)

Put data into temporary storage

Determine extended spectral ranges

Do for all nondimensional depths

Do for all quadruplet realizations

Store offsets, weights and factors for the computation
of quadruplet energies and contributions to the
interactions and diagonal term (b)

Do for all nondimensional depths

Do for all quadruplet realizations

Do for 4 elements of quadruplet

Do for 2 frequency offsets

Get directional indices

Do for 2 or 4 quadruplet realizations (a)

Store data for putting together interactions
and diagonal from contributions (c)

Finalize storage and clean up

Fig. 5.8 : Optimized algorithm for computing the generalized DIA, based on
techniques used for the conventional DIA (Fig. 5.2).
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computational subroutine

Expand discrete spectral space as needed (d)

Initialize working arrays

Do for all quadruplet realizations

Do for expanded frequency range

Retrieve offsets and weights

Do for all directions

Compute quadruplet energies (b)

Compute interaction and diagonal contributions

Do for expanded frequency range

Retrieve offsets and weights

Do for all directions

Compute interactions and diagonal strength (c)

Fig. 5.8 continued

computational effort for cases 2 and 3 (due to the representative quadruplets
used).

As with the triplet approach, filtering of computations can be considered.
First, the number of discrete spectral grid points from which the quadruplet
energies are computed can be reduced based on the relative interpolation weighs
(at (b) in Fig. 5.8). Such an approach proves to speed the code by only a few
percentage points, while requiring a massively more complicated source code.
This kind of filtering will therefore not be used here. Similarly, distributions of
contributions to the grid can be filtered (at (c) in Fig. 5.8). A quick assessment of
the potential of this filtering indicates a maximum possible speedup of 10 to 15%,
at the cost of a much more complicated code. The latter may well counteract the
possible gain, and therefore this filtering is also not considered here in detail.

Finally, filtering can be used to apply quadruplets defined only with deep or
shallow scaling of Eqs. (5.3) and (5.4) only at depth that are consistent wit this
filtering. Tentatively, it would be possible to filter based on the ratio of these two
scaling functions. However, since there is no requirement or guarantee that Cd

and Cs are consistent, this would not be a very robust scaling approach. Instead,
the interactions based on Eqs. (5.3) only (Cs = 0.) will be computed only for
frequencies where

kd ≥ kdfd , (5.13)
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and interactions based on Eqs. (5.4) only (Cd = 0.) will be computed only for
frequencies where

kd ≤ kdfs , (5.14)

where kdfd and kdfs are the nondimensional depths of the filter, as defined exter-
nally by the user of the code. This filtering modifies the computational frequency
ranges at (d) in Fig. 5.8. Values like

kdfd ≈ 0.25 kdfs ≈ 3.00

will virtually guarantee no impact of the filter. Typically, the MDIA could be
tuned with such values, after which optimum filter values can be found by making
the filter more restrictive until an influence can be seen in the resulting interac-
tions. Note that this filter is not applied if both Cd and Cs are non-zero for a
given quadruplet layout, and that this filter had no impact on the timing test
presented here due to the moderately limited water depths.

The final run times of this code are presented in Fig. 5.1. The speed-up ob-
tained compared to the original code are substantial, with a factor of nearly 5 for
case 1 and of nearly 3 for cases 2 and 3. The new code applied with the quadru-
plet definition of the original DIA is a factor of 2 slower that the much simpler
traditional DIA. This seems to be a reasonable price to pay for full inclusion
of shallow water effects, and for appropriate scaling behavior up to extremely
shallow water (kd ≈ 0.025). With the traditional DIA taking approximately 25%
of the computational effort of the total model, this will correspond to a 25%
increase in overall model run time (ignoring possible impact through adjustment
of time steps). Whereas the MDIA is significantly more expensive, practical ap-
plications should be well under a factor 20 more expensive than the conventional
DIA. This makes the increase in costs for the model well under a factor 5, roughly
corresponding to historical operational computing capability increases in two to
three years. Hence, such a model is economically feasible for operational wave
modeling in the near future.

As a final test of the resulting generalized MDIA codes, this code has been fully
integrated in the WAVEWATCH III model. For the present purpose, it is imple-
mented in the ‘user’ slot (NLX) of model version 3.13. The code is intended for
distribution in release 4 of the WAVEWATCH III code. Figures 5.9 through 5.11
shows some example results of the model with different nonlinear source term
options.

Figure 5.9 shows the results for the default WAVEWATCH III model with the
conventional DIA (corresponding to the default setting of model version 2.22).
Figure 5.10 shows the results for the new source term with the same parameters
settings (case 1 in this section). Ideally, these results would be nearly identi-
cal. However, the differences introduced by different spectral descriptions (see
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Fig. 5.9 : Spectrum and source terms from model run with traditional DIA
(default WAVEWATCH III).
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Fig. 5.10 : Like Fig. 5.9 for new model setting with quadruplet setting from
case 1

.
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Fig. 5.11 : Like Fig. 5.9 for new model setting with quadruplet setting from
case 3

.
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Fig. 5.1) has a significant impact on model results. This implies that the new
interaction approach is not fully ‘backward compatible’ with the original DIA.
The new approach increased the model run time by approximately 20%, as was
expected.

Figure 5.11 presents results for the MDIA used in this section (case 3). This
implementation shows stable model results at approximately 3 times the cost of
the default model, with clear differences in the spectral shape and (nonlinear)
source terms. Note that case 2 is not run in this context because the approach
was proven unstable in Part 2 (as was verified here).

5.2 Filtering for high frequencies

With the generalized interaction approximation included in the WAVEWATCH
III model, only the potential benefits and inner workings of a smoothing / diffu-
sion operator for high frequencies as outlined in Section 3 still need to be assessed.
The starting point will be the diffusion equivalent high frequency interactions,
with the integration method that degenerates to a conservative smoother. In
Section 3, expressions are given in terms of the energy spectrum F . In the
present section, the action description of WAVEWATCH III and the correspond-
ing Eqs. (5.1) through (5.5) will be used. Using these equations and considering
that the high frequency flank of the spectrum will rarely if ever correspond to
extremely shallow water, only the ‘deep water’ scaling Bd needs to be used, and
considering the approximate application used here, only a reasonable value of
m = 4 is used in the corresponding expression. The action based equation equiv-
alent to Eq. (3.19) then becomes

∆Ñ1,2 = −Mc Φ(f) C
k8 σ4

(2π)9 cg
P1234 ∆t N−1 , (5.15)

where the product term is taken from Eq. (5.1), Mc represents the cumulative
interpolation factors of all quadruplet components inside the nine point stencil
from Eq. (3.9), and where Φ(f) is adopted unchanged from Eq (3.15)

Φ(f) = exp

[

−c1

(

f

c2fp

)−c3
]

, (5.16)

with c1 through c3 as tunable parameters, and where the quadruplet layout is
defined by either λ or a34 as in Eqs. (3.18) and (1.8).

This corresponds to a high-frequency only source term comprised of Eq. (5.1)
combined with the filter function (5.16), which is to be combined with an inte-
gration technique that reduces it to a conservative filter for large source term
values. A first impression of the potential and inner workings of such a filter can
be assessed by looking at the behavior of the underlying filtered source term.
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Fig. 5.12 : Nonlinear interactions used in computing the test spectrum (DIA
panel a) corresponding to Fig.!5.9and the ‘filter’ source term for (b)
a34 = 1.00, C = 2.0× 108. (c) a34 = 0.50, C = 1.0× 109. (d) a34 = 0.05,
C = 1.0 × 1011.

This source term is defined by five free parameters, λ (or a34), C, c1, c2 and c3.
The latter three parameters need to be chosen such that Φ(fp) ≈ 0, Φ(3fp) ≈ 1
and that Φ ≈ 0.5 for frequencies moderately larger than fp. This can be achieved
by setting

c1 = 1.25 , c2 = 1.50 , c3 = 6.00 (5.17)

Whereas these parameter settings could obviously be refined in a full model
optimization, they will be kept at these values for the present study.

The values of λ and C define the shape and strength of the filtered nonlinear
interactions. Figure 5.12a shows the full nonlinear interactions from the DIA
corresponding to the test results presented in Fig. 5.9 obtained without filtering
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for high frequencies. Note that compared to the latter figure, the frequency range
displayed covers the entire discrete frequency range in the model (0.04 - 0.40 Hz),
whereas the previous figure only displays source terms up to 0.25 Hz. Panels (b)
through (d) show the filtered interaction for three values of a34, with C chosen
to result in a interaction strength comparable to that of the DIA (panel a).

The figure indicates that appropriate values of C increase dramatically with
decreasing values of λ. This is at least partially due to the fact that interpolation
values in the interactions, and the corresponding factors in the interpolation
stencil (3.7) and (3.8) approach 0 for a34 → 0 or λ → 0. This implies some
potential sensitivity of the filter to the actual spectral grid resolution. Part
of the grid sensitivity related to the interpolation factors can be eliminated by
defining the filter in terms of a34 instead of λ, in which case the interpolation
factors become independent of the spectral grid resolution.

Figure 5.12 also indicates that the scales of the interactions become larger for
a34 > 0.5, indicating that tentatively smaller values are more appropriate when
the source term is used as a basis for a filter.

The filter function for the action spectrum in WAVEWATCH III is completed
by a simple conversion of Eqs. (3.20) through (3.22) from spectral energy densities
F to action densities N . The maximum changes ∆Ñm,1 and ∆Ñm,2 thus become

Ñm,1 = 0.5∆ÑmaxΦ(f) , Ñm,2 = 0.5∆ÑmaxΦ(f) , (5.18)

or

∆Ñm,1 =
|∆Ñ1| Φ(f)

|∆Ñ1| + |∆Ñ2|
) , ∆F̃m,2 =

|∆Ñ2| Φ(f)

|∆Ñ1| + |∆Ñ2|
) . (5.19)

and the central energy changes corresponding to Eq. (3.17) become

∆Ñc,1 = ∆Ñm,1 tanh

(

∆Ñ1

∆Ñm,1

)

, ∆Ñc,2 = ∆Ñm,2 tanh

(

∆Ñ2

∆Ñm,2

)

. (5.20)

Using the full implementation of this filter, an effective Snl,e source term can be
defined as

Snl,e = (Nf − N) ∆t−1 , (5.21)

where Nf is the spectrum after filtering, and N is the original spectrum. When
applied to Fig. 5.12 this effective source term is more than an order of magnitude
smaller than the underlying source term of Fig. 5.12 (figure not presented here).
This could be expected as time steps are based on nearly canceling source terms.
Hence, time steps based on nonlinear interactions only would be an order of
magnitude smaller than actual time steps, and similarly the filtering introduced
here is expected to suppress the source term by an order of magnitude.
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The next step is to test the effects of using the filtered source term as a
smoother, and to address the various additional parameter settings in Eqs. (5.15)
through (5.20). Still to be considered are the parameter setting for a34, C and
∆Ñmax. First, the necessity and impact of setting ∆Ñmax is addressed. Using a
median value of a34 = 0.50 and effectively removing the asymptotic filter behavior
by setting ∆Ñmax = 106, C is systematically increase with the intention to go
from no impact to model instability. For C = 107 no impact on the model is
notable (figures not presented here). This was expected since the corresponding
strength of he interaction is smaller than the residual source term by up to an
order of magnitude. For C = 108, the filtered nonlinear source term is of the
same order of magnitude as the residual source term, and a small impact can
be seen on the spectra shape and the resulting wave hight. For C = 109, the
resulting source term is incompatible with the model time step, and the model
integrations becomes unstable as expected (figures not presented here).

The next step of this experiment is to reduce ∆Ñmax for a34 = 0.50 and
C = 109, to assure that the corresponding limitation of the spectral changes
indeed result in stable numerical results. Using ∆Ñmax = 1.00 is not expected to
result in a stable filter, but for the most part result in stable model integration,
with minor spurious secondary spectral peaks at high frequencies. This can be
explained since the full interactions used in the model will counteract instabilities
in the high-frequency filter. For ∆Ñmax = 0.50 the filter is theoretically stable,
and indeed stable model results are obtained, with a minor squaring of spectral
contours at high frequencies. For a more conservative ∆Ñmax = 0.25 the filter
is actively engaged, but smooth spectral results with a minor impact on wave
height (less than 2% reduction) is found. As a final test the strength C of the
interactions is increased radically to C = 1015, effectively applying the maximum
filter strength consistently. For ∆Ñmax = 0.50 this results in stable but noisy
model results, and for ∆Ñmax = 0.25 this results in stable and smooth model
results. Hence the filter appears to work as designed, with required maximum
filter strengths in the 0.25 to 0.50 range.

Also addressed in these experiments is the impact of choosing Eq. (5.18) or
(5.19) to distribute maximum changes for the two quadruplet realizations. The
latter approach give consistently smoother spectral results and is therefore used
exclusively in the experiments below.

The above experiments have been repeated for other values of a34. For
a34 = 1.00 results are similar to those described above, with the following mi-
nor differences. The model integration appears fully stable with smooth high-
frequency spectral contours for ∆Ñmax = 1.00 but with a somewhat larger im-
pact on the wave height (3% reduction). For lower ∆Ñmax the results convert to
he results for a34 = 0.50. For a34 = 0.05 results are also generally similar, but
with a smaller impact on the wave height. Results for ∆Ñmax = 1.00, 0.50 and
0.25 corresponding to the results presented in Fig. 5.9 are presented in Figs. 5.13
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Fig. 5.13 : Spectrum and source terms from model run with traditional DIA
(default WAVEWATCH III). with filter added with a34 = 0.05 and
∆Ñmax = 1.00 (compare to Fig. 5.9, note difference in frequency range
of plots).
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Fig. 5.14 : Like Fig. 5.13 with ∆Ñmax = 0.50.
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Fig. 5.15 : Like Fig. 5.13 with ∆Ñmax = 0.25.
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Fig. 5.16 : Like Fig. 5.13 with ∆Ñmax = 0..
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through 5.15. Fig. 5.16 represents the case without filtering. Note that in the
latter four figures the spectral range considers the entire discrete spectral domain
to highlight high-frequency model behavior.

Figure 5.13 with ∆Ñmax = 1.00 clearly shows local instabilities in the spec-
trum for high frequencies (upper left panel). These instabilities are clearly shown
in the source terms, particularly the nonlinear interactions, and manifest as bulls-
eye patters in the latter. Note that the nonlinear interactions in this figure neither
include, nor are corrected for the nonlinear behavior of the filter. However, noise
introduced in the spectrum due to the filter does result in a direct response of the
full nonlinear interaction term, shown here as the bullseye patterns. When the
maximum filter strength is reduced to ∆Ñmax = 0.50 (Fig. 5.14), signatures of
instability are removed from the spectrum, but can still be seen in the (nonlinear)
source terms. For ∆Ñmax = 0.25 (Fig. 5.15), all signs of instability are removed
from the source terms. However, the net effect of the filter can still be recognized
from the fact that the nonlinear source term shows systematic differences when
compared to the source terms obtained with the filter switched off (∆Ñmax = 0.,
Fig. 5.16). For this model setup, the noise disappears from the source terms for
∆Ñmax ≈ 0.35 (figure not presented here).

Considering the above, it appears prudent to define the quadruplet by a34 instead
of λ, and by choosing a34 << 1. In the latter case, the averaging stencil reduced
from a nine-point stencil to a five point stencil [see Eqs. (3.10) and (3.11)], which
allows for a more efficient implementation. Optimization of the code largely
follows that of the generalized MDIA of Fig. 5.8, and will not be discussed in
much detail here. The only important modification made during optimization
has its root in the fact that the hyperbolic tangents function in Eq. (5.20) repre-
sents a disproportionally large part of the computational effort of the algorithm.
Replacing this equation by a simple limiter

−∆Ñm,1 ≤ ∆Ñc,1 ≤ ∆Ñm,1 , −∆Ñm,2 ≤ ∆Ñc,2 ≤ ∆Ñm,2 (5.22)

significantly reduces the cost of the algorithm, while requiring slightly lower values
of ∆Ñmax for smooth results. The computational cost of the resulting algorithm
is depending on the local wind speed. For strongly forced conditions, the cost it
roughly half of that of the traditional DIA. For small wind speeds, most compu-
tations can be avoided, and the cost of the algorithm becomes trivial compared to
the traditional DIA. Tentative default parameter setting are given by Eq. (5.17)
and by

a34 = 0.05 , C = 1010 , ∆Ñmax = 0.25 (5.23)

which results in borderline unstable results without setting ∆Ñmax, and which is
properly stabilized with this setting of ∆Ñmax for the test model integration used
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in the previous figures. This finalizes the nonlinear filtering approach introduced
here.

This filter can be used in several ways. In combination with the generalized
MDIA developed in this report, it may be used in two ways. It may improve
high-frequency behavior of the resulting model, and it might result in larger time
steps in the model, thus improving the overall model economy. Both possible
applications need to be considered in a holistic model optimization as introduced
in Part 2.

Another application may be in combination with a Neural Network Interac-
tion Approximation (NNIA) as discussed in Tolman et al. (2005) and Tolman
and Krasnopolsky (2004). The latter paper indicates that a hybrid NNIA with
an internal quality control that reverts to a full interaction computation in cases
where the NNIA is inaccurate results in stable model computations. However,
the computations also show that the NNIA has an intrinsic problem with stabi-
lizing the high-frequency tail of the spectrum. Tentatively, the filter technique
introduced here can be used to explicitly stabilize the tail of the spectrum, and
could therefore be a crucial part of a hybrid NNIA. This concept is outside the
scope of the present paper and will not be pursued further here.
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6 Summary and conclusions

The present report is the third in a series assessing the potential of the Dis-
crete Interaction Approximation for representing nonlinear interactions in wind
wave models. It addresses generalization of the DIA with multiple representative
quadruplets to arbitrary depth. Starting form the original DIA as introduced by
Hasselmann et al. (1985), the DIA equations are derived for arbitrary depths and
arbitrary definitions of the wave spectrum and spectral space. Attention is given
to:

• Quadruplet layout as a function of finite depth and sampling of spectral
space by such quadruplets.

• Effects of spectral discretization on conservation properties of the nonlinear
interactions.

• The use of multiple representative quadruplets.

• Effects of he choice of the spectrum and spectral space.

• Scaling considerations for finite depth conditions.

Using systematic testing by incrementally including shallow water aspects into the
DIA, it is shown that a full shallow water expression for the DIA is essential, and
that in particular details of the scaling function are essential for a well-behaved
source term parameterization.

A two-part scaling function is needed to generate a DIA with proper scaling
behavior for all depths. The two parts of the scaling function represent asymptotic
behavior for deep and shallow water, respectively. It should also be noted that the
shallow water realizations of the nonlinear four-wave interactions are generally
not a dominant physical process. Therefore, ignoring the shallow water part of
the scaling function in effect will reduce a non-relevant source term in strength,
and hence be physically acceptable in most model applications.

Experiments with using the full interaction strength G in combination with
a single representative quadruplet were unsuccessfully.

Several more conclusions can be drawn from the optimization of the resulting
DIA. It was found that the choice of spectrum and spectral space has a distinct
impact on the resulting interactions, most likely due to an interplay between
small numerical interpolation differences and strong nonlinear interactions in the
physical process described. It was also found that the triplet method for optimiz-
ing nonlinear interactions (Snyder et al., 1993, 1998; Van Vledder, 2005) may be
effective for a traditional (multiple) DIA, but is not efficient for the generalized
DIA presented here.
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Experiments with numerical optimization furthermore show that an optimized
generalized DIA configured like the traditional DIA requires approximately twice
the computing time of the latter, that generalizing the quadruplet layout increases
the costs by an additional factor of just below two, and that the costs of the
optimized MDIA scales linearly with the number of representative quadruplet
realizations.

The present study also addresses diffusion approaches as parameterizations of
nonlinear interactions (e.g., Hasselmann et al., 1985; Zakharov and Pushkarev,
1999; Jenkins and Phillips, 2001). It is shown that a simple linear diffusion style
operator is obtained from a conventional DIA with a traditional one-parameter
quadruplet that is not resolved by the discrete spectral grid. Such a diffusion
operator shares all conservation properties with the exact interactions.

Generally, diffusion operators are considered insufficiently accurate for appli-
cation as a interaction parameterization. However, the diffusion operator defined
here can easily be converted into a high-frequency filter, with properties consis-
tent with the properties of the nonlinear interactions. Such a filter can be used
either in conjunction with a multiple DIA, or, for instance, in combination with
a Neural Network Interaction approximation (Tolman et al., 2005; Tolman and
Krasnopolsky, 2004). The latter potential application will be addressed elsewhere.

This high-frequency filter is no necessarily convergent, i.e., it may have a
nett effect on the model integration even for time steps approaching 0. However,
since the strength of the filter is typically compatible with the strength of the
residual source term (wind + interactions + dissipation), it is expected to be small
compared to the actual interactions. Hence, its impact on the mean solution
is expected to be small to negligent, as has been demonstrated in the model
integration test performed here.

The present study focuses on scaling behavior, not on the parameter optimization
of the generalized multiple DIA. As was demonstrated in previous parts of this
study, such an optimization will need to consider full model integration, rather
than individual spectra and source terms. Such a parameter optimization will be
performed in the next part of this study.
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