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ABSTRACT

Numerical errors in third-generation ocean wave models can result in a misinterpretation of the physics in
the model. Using idealized situations, it is shown that numerical errors significantly influence the initial growth,
the response of wave fields to turning winds, the scaling behavior of model results with wind speed, and the
propagation of swell. Furthermore, the numerics may influence the dynamic interaction between wind sea and
swell. Surprisingly, fetch-limited model behavior is hardly influenced by numerical errors in wave propagation.
Simple modifications of the numerics are presented to reduce or eliminate such errors. The impact of numerical
improvements for realistic conditions is illustrated by performing hindcasts for the Atlantic basin and for a

smaller region off the east coast of the United States.

1. Introduction

In the last decades wind-wave models have under-
gone major development. Since the pioneering papers
by Gelci et al. (1956, 1957), many wave models have
been developed (e.g., SWAMP Group 1985, SWIM
Group 1985). Presently the most advanced type of
wave model is the so-called third-generation model
(e.g., WAMDI Group 1988), which uses first principles
in the integration of an action or energy balance equa-
tion. With the successful implementation of this model,
the numerical wave model has become a powerful pre-
diction and research tool for the systematic investiga-
tion of the dynamics of wind waves.

Recently, a research program has been initiated in
which third-generation ocean wave models will be used
in combination with a dense network of wave obser-
vations to improve our understanding of the physics
of wave growth and decay [i.e., the Surface Wave Dy-
namics Experiment (SWADE), Weller et al. (1991)].
For the success of such a program it is essential to have
detailed knowledge of the numerical accuracy of the
model; numerical errors should not be attributed to
physical processes and the magnitude of numerical er-
rors determines the level of detail of the physics that
can be assessed. To isolate numerical errors, other
model errors related to input winds and parameteriza-
tions of the physics are considered to be beyond the
scope of this study. The latter errors obviously attract
the main attention within SWADE and will be dis-
cussed elsewhere.
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The numerical model used in this study closely re-
sembles the WAM model (WAMDI Group 1988),
which was the first operational third-generation wave
model. Since the WAM publication, more sophisticated
(and more expensive) parameterizations for most
source terms have become available. Such modified
source terms are bound to have some influence on the
numerics, but because the characteristics of the mod-
ified source terms must remain roughly identical in
order for an overall wave energy balance to exist, the
results of this study are expected to be fairly represen-
tative for most third-generation wave models.

In the present study numerical errors are analyzed
using both idealized and realistic situations with an
increasing degree of complexity. The first set of ideal-
ized situations considers time-limited growth for ho-
mogeneous conditions in order to isolate the numerics
of source term integration from wave propagation.
Second, numerical errors in swell propagation are
briefly discussed considering pure propagation, and ef-
fects of numerical errors on the balance between prop-
agation and source terms are investigated by consid-
ering fetch-limited growth. Finally, the impact of nu-
merical errors and improvements for practical wave
modeling is assessed by performing several hindcasts
for the Atlantic basin grid and the regional grid of the
SWADE experiment (Weller et al. 1991, Fig. 11).

2. Governing equations

The parameterizations of the physics of wind-wave
propagation and generation used in this study are
mainly taken from the first third-generation model
WAM (WAMDI Group 1988). Henceforth, both this
paper and the model will be denoted as WAM. A short
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overview is given here for completeness only. For de-
tails reference is made to WAM.

Propagation and generation of ocean waves is de-
scribed in WAM with a balance equation for the energy
density spectrum F(f, 8), including a net source term

S(f, 0):
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where fis the frequency and 6 the direction of the
spectral component, ¢ is the latitude, A is the longitude,
and ¢, ¢\, and ¢, are the propagation velocities in the
corresponding spaces (see WAM). For brevity of no-
tation the dependence of F and S on fand # has been
omitted. The first term on the left side of Eq. (1) rep-
resents the local rate of change of the energy density.
The second and third terms describe propagation in
latitude and longitude, respectively, and the fourth term
describes the change of wave direction due to great
circle propagation and depth-induced refraction. In
WAM the source term S [Eq. (2)] consists of (expo-
nential ) wind input S;, (Snyder et al. 1981), nonlinear
wave-wave interactions Sy (Hasselmann and Hassel-
mann 1985b), energy dissipation due to whitecapping
Sqs (Komen et al. 1984), and energy dissipation due
to bottom friction Sy, (Hasselmann et al. 1973).

The numerical implementation of Eqs. (1) and (2)
is based on a discrete representation of all independent
variables (¢, \, f, and ). It commonly features a frac-
tional step method in which propagation and genera-
tion are treated separately. The numerical treatment
of propagation is relatively straightforward; it corre-
sponds to the well-known problem of multidimensional
advection. Numerical schemes to solve these problems
will be discussed later. The numerical treatment of the
source terms (and the explicit calculation of Sy,;) is typ-
ical for third-generation wave models and will be dis-
cussed briefly here.

WAM utilizes a semi-implicit time integration
scheme to calculate the change of energy density AF
in the time step At from the source terms S

S(/, 8)
1 —0.5D(f, §) At

where D is determined by the source terms [D = A
+ 8, WAM Eqgs. (4.1) through (4.10)]. This change
of energy density per time step AF(f, 9) is limited for
each discrete spectral component (“bin”’) to a fraction
(~10%) of the highest spectral level to be reached [ es-
timated as the Pierson-Moskowitz level (Pierson and
Moskowitz 1964)]:

max(|AF(f, 0)]) = AFmax(f) = 10 wcg ' k72

AF(f,0) =

At, (3)

(4)
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After the change of energy density has been added to
the (propagated) spectra, a parametric tail is applied
for frequencies higher than f,.. This cutoff frequency
is based on both the wind speed (through the Pierson-
Moskowitz frequency fpm, i.e., the equilibrium fre-
quency for fully developed sea state according to Pier-
son and Moskowitz 1964) and the mean frequency

I
F(ﬁ0>=F(fhf,o>(i)_m for f>fip (5)

S
ﬁlf= min[fmax, max(25f_, 4ﬁ>M)], (6)
g
Jom 27 28U, ° 7
U, = UoV(0.8 + 0.065U,0)1073, (8)

where f..« is the highest discrete frequency, U, is the
wind friction velocity, and m is a constant (in WAM
m = 4). The mean frequency f is a straightforward
average over the spectrum. For an arbitrary parameter
z the spectral average is given as

27 o
z=E"! J; J(; z(f, O)F(f, 0)df db,

27 =)
E=f f F(f, 0) dfds. 9)
0 0
In WAM the spectrum is usually described using 25
frequencies with a logarithmic frequency distribution
(fi+1 = 1.1 f;), with frequencies ranging from 0.042
Hz through 0.41 Hz. Furthermore, 24 directions are
commonly used, resulting in a directional increment
of Af = 15°, This spectral resolution will be denoted
as the standard spectral discretization. The preceding
integration method for source terms shows stable be-
havior for time steps up to 20 min.

All calculations presented in this paper have been
performed with a recent version of the model WAVE-
WATCH (Tolman 1991). The model version at the
start of this study differs slightly from WAM in three
ways. First, WAVEWATCH basically solves an action
conservation equation to account for effects of mean
currents; however, its governing equations reduce to
Eq. (1) in the absence of currents. Second, in WAVE-
WATCH the bottom friction Sy, is modeled using a
formulation of Madsen et al. (1988). For this study,
this only influences results for the regional SWADE
grid slightly. Finally, WAM uses m = 4 in Eq. (5). In
this study, however, m = 4.5 has been used (unless
specified differently ) because it results in smoother nu-
merical behavior in the dynamic integration schemes
introduced in the following. Note that using physical
arguments, it can be shown that the constant » should
have a value between 4 and 5 (e.g., Phillips 1985).
Furthermore, the use of m = 4.5 has been suggested
before to make a local balance between the present
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source terms at high frequencies possible (J. A. Green-
wood, personal communication).

Finally, one addition is made to the physics of the
model: for some idealized cases a linear growth term
Sins has been added to the source terms (2), to allow
for the model to start without initial wave energy. The
linear growth is described using a formulation of Cav-
aleri and Malanotte-Rizzoli (1981), where contribu-
tions for frequencies lower than fpy have been elimi-
nated:

Sins(f,8) = 15X 107 g2
X { U, max[0, cos(8 — 8,)]}*

X exp[— (ﬁ)—‘t] . (10)

The filter for low frequencies is added to Sj,; to ensure
that the range of the discrete frequency grid to low
frequencies does not influence mean wave parameters
at initial growth and hence initial growth itself. Because
initial growth takes place at high frequencies, such a
dependency on the low-frequency extent of a discrete
frequency grid would be artificial. Note that this source
term is relevant only for truly initial growth, because
it is several orders of magnitude smaller than S;, for
well-developed seas. This was confirmed by all nu-
merical experiments including Si, .

3. Growth in homogeneous conditions

Homogeneous deep-water conditions have been
considered first to separate the integration of source
terms from propagation. In this case the energy balance
equation (1) becomes

oF

ot
A linear source term has been added to the right side
of Eq. (11) to allow calculations to start without initial
wave energy. Thus, no artificial initial conditions are
needed. Deep water is considered so that the bottom
friction source term Sy, can be omitted. The main

attention will be focused on the mean frequency f [cf.
Eq. (9)] and the significant wave height H.:

H, = 4VE. (12)

For an intercomparison of results obtained with dif-
ferent wind speeds, a nondimensional time 7, frequency
f, and energy E are used:

I=gt/Uy, f=fUsg, E=¢g°E/UL. (13)

Experiments based on Eq. (11) consist of three parts.
First, the effect of the discrete time step, the spectral
discretization, and the different frequency cutoffs will
be assessed by considering growth curves for a constant
wind speed. After that, scaling behavior will be assessed
by comparing nondimensional growth curves for dif-

:&n,1+Sin+Snl+Sds- (Il)
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ferent wind speeds. Finally, the effect of numerical er-
rors in more realistic but still artificial (homogeneous)
conditions is assessed by considering variations in wind
speed and direction as might occur during a rapid
frontal passage.

a. Effects of the time discretization

The discrete time step At can influence numerical
errors in two ways. First, discretization errors increase
with increasing time step. Second, the limitation of the
change of the spectral density per time step [Eq. (4)]
will have an increasing effect with increasing magnitude
of the time step. In Fig. 1, wave heights and mean
frequencies for U;p = 20 m s~} are presented as cal-
culated with the implicit integration scheme and time
steps At of 15 min, 5 min, and 5 s. Results obtained
with the extremely small time step of 5 s can be re-
garded as free of numerical errors due to the discrete
time step (obviously other numerical errors due to, for
instance, the spectral discretization might still be pres-
ent). Results obtained with time steps of 5 min and
15 min eventually converge to the “exact” results, as
expected, because the equilibrium state should be sta-
tionary and therefore independent of the discrete time
step. For initial growth, however, a larger time step
reduces the wave height and increases the mean fre-
quency.

To eliminate most time-step-related errors, time
steps of 1 to 3 min appear necessary. The use of such
small time steps would increase the computational costs
of a model by an order of magnitude compared to con-
ventional time steps of 15 or 20 min, whereas the in-
creased time resolution is only needed for situations
with rapid wave growth (or decay). In reality, these
conditions can only occur locally and for a limited
time. A more elegant solution would be to dynamically
adjust the time step for source term integration, using
small time steps in situations with rapid changes in the
spectrum and larger time steps in near-equilibrium
conditions. Note that rapid growth occurs only if the
time scales associated with changes in the wind speed
are smaller than the time scales of wave growth. Due
to the limited resolution of wind fields in wave models
such conditions occur for relatively strong winds,
whereas spectra for low wind speeds are expected to
remain near to equilibrium. Consequently, small time
steps will mainly be needed for relatively strong winds.

Integration of source terms with a dynamically ad-
justed time step can be performed using the following
fractional step method, which advances the solution
over a period At in time. First, the entire wave field is
propagated for a fixed time step At. The propagated
solution is used as the starting point of the source term
integration, which is performed for a number of dy-
namic time steps Az, until ZAz; = Af (recalculating
source terms each time step). The time step At is cal-
culated for every grid point separately, because source
terms at different grid points are essentially uncoupled.
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FIG. 1. The significant wave height H, (a) and the mean frequency / (b) as a function of time 7
for several integration methods and time steps Af (wind speed Uyo = 20 m s™!).

Thus, the time step for source term integration is re-
duced for selected grid points only. Henceforth,
schemes with dynamically adjusted time steps for
source term integration will be denoted as dynamic
schemes, and schemes with a fixed time step as static
schemes.

A simple way to determine a dynamic time step is
to choose the time step so that the maximum change
of energy density per spectral bin does not exceed a
given fraction of some equilibrium energy level; in
other words, the time step is chosen to satisfy limitation
(4). Combined with a simple explicit integration
scheme [1.e., Eq. (3) with D = 0], dynamic integration
is performed as

~ . o [ AFma(N)Y

J — — i — A
Ath = mm[At > Ath, ?En(w(f’ 6)\) ], (14)
<;,f

F(f, 0)7 = max[0, F(f; )" + (S(f; 0)At,)’), (15)

i=1

where j is a local counter for the dynamic time step,
set to 1 at the beginning of the integration for the grid
point and the time interval At considered. Here F(,
6)° is the propagated energy density spectrum and
At% = 0. The net source term S(f, )’ is calculated
from the spectrum F(f, 6)’~" at the beginning of the
dynamic time step. At the end of the dynamic integra-
tion (i.e., when 2 Az, = At), F(f, 8)’ is the local solution
at the new time level. Note that a more elaborate ex-
plicit dynamic scheme has been used before in the one-
dimensional research model EXACT-NL (Hasselmann
and Hasselmann 1985a; Van Vledder and Weber
1988).

The semi-implicit integration scheme of WAM can
also be used as a basis of a dynamic scheme, in which
case the dynamic time step (14) and the integration
(15) become

o T [ AFpalf)
Aty = mm[At E) Atly, n\]y};n[lS(f, ™
J<Sur
AFmax(f) )_I]J]
x(l+0.5D(f,0)———‘S(f’e)l , (16)

F(f, 0) = max[O, F(f, 6)’!

S(f, 0) Aty ]
* (1 =05 D(/, 0)Atd) ] (7

Note that for initial growth the spectral densities F and
hence the source terms .S are extremely small. Conse-
quently, the preceding schemes will not result in the
expected small dynamic time steps. Therefore, the dy-
namic time step is forced to 5 s for extremely small
nondimensional energies E < 2.5. For Ujp=20ms ™!,
this corresponds to a wave height of only 0.54 m. In
realistic conditions this forcing of the dynamic time
step is probably never used, since nondimensional
energies are usually an order of magnitude larger than
the limit value used here.

Results obtained with both the explicit and the im-
plicit dynamic scheme with a time step Atz = 15 min
are presented in Fig. 1 together with the previously
discussed results of the static implicit scheme. This fig-
ure shows that the implicit dynamic scheme results in
somewhat larger waves than the explicit dynamic
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scheme, but for all practical purposes the results of the
two schemes are identical to the results of the static
scheme with a time step of 5 s. The increase in com-
putational effort for the dynamic schemes compared
to the conventional semi-implicit scheme with At
= 15 min will be discussed later in the one-dimensional
frontal passage case.

b. Effects of the spectral discretization

The spectral discretization generates numerical er-
rors due to the resolutions Af and Af(or Af/f)in the
direction and frequency spaces, respectively, and due
to the finite range of the discrete frequency space. For
homogeneous conditions with a wind speed U,, = 20
m s~! such errors appear to be small; a reduction of
either A6 or Af by a factor of 2 results in systematic
variations of H and f of 1% or less. Adding discrete
frequencies beyond the lowest discrete frequency of
the standard spectral discretization has no effect on
results (which was expected since the spectrum never
reaches the lowest discrete frequencies), whereas add-
ing higher frequencies influences the initial growth
slightly, but has negligible effects after 6 to 12 h. Con-
sequently, the standard frequency range appears to be
adequate for a wind speed U;; = 20 m s~!. Note that
the frequency range is not necessarily adequate for
other wind speeds.

c. Effects of the parametric tail

The choice of the constants in the cutoff frequency
Jayof (6) and the power m of the high-frequency tail
influence the results. An increase of the constant for
the mean frequency from 2.5 to 3.5 or an increase of
the constant for the wind frequency fpy from 4 to 5
both result in a decrease ‘of H; of 3% and an increase
of fof 5% (At = 5 s, explicit integration for 48 h).
Changing the power m of the parametric tail (5) from
4 to 5 (which is usually assumed to be a reasonable
range for m) results in an increase of H; of 5% and a
decrease of f of 10%. This is astonishing considering
that the tail contains a small part of the total energy
within the spectrum. However, because the tail param-
eterization is more related to the physics than to the
numerics, it is outside the scope of this study.

d. Scaling behavior

To compare growth characteristics for various wind
speeds, calculations have been performed for wind
speeds Uy of 5, 10, 15, 20, 25, and 30 m s~! (static
integration, At = 5 s). Because the wind speed U, (or
the friction velocity U, ) is the only external forcing,
growth curves are expected to scale with the wind speed
(friction velocity). Hence, the model should produce
a single set of nondimensional growth curves. If the
frequency grid is scaled to obtain identical nondimen-
sional discrete frequencies as in (13), nondimensional
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growth curves for all wind speeds indeed are identical
(figure not presented here). However, if the standard
spectral discretization is used (24 directions, 25 fre-
quencies ranging from 0.042 Hz through 0.41 Hz),
nondimensional growth curves for different wind
speeds show large differences as is illustrated in Fig. 2.
Growth curves for wind speeds of 15, 20, and 25 m
s™! show reasonable agreement with the results for
scaled frequency grids. For 30 m s™! they deviate from
the above curves for times larger than 0.6 X 10°. For
wind speeds smaller than 15 m s™', they deviate ex-
tremely. This nonscaling behavior has to be related to
the fixed (nonscaling) range of the frequency grid, but
not to its resolution, because the logarithmic frequency
distributions causes the frequency resolution to auto-
matically scale with wind speeds. For high wind speeds,
the limitation of the fixed frequency grid has been
common knowledge in the WAM group; if waves keep
growing, the spectrum eventually reaches the lowest
discrete frequency and growth stops. In Fig. 2 growth
for 30 m s~ winds indeed stops around time 10°. For
lower wind speeds (5 and 10 m s™!), the nonscaling
behavior is less well known, but has a similar origin.
For these wind speeds the wave spectrum is located at
high frequencies, (partially) outside the discrete fre-
quency range. Consequently, it is unlikely that the
model shows good scaling behavior for these low wind
speeds.

Considering the foregoing, the standard spectral dis-
cretization results in good scaling behavior for wind
speeds between approximately 15 and 25 m s™!. Be-
cause wind speeds are commonly much lower, the
range of wind speeds with good scaling behavior should
be extended to lower wind speeds by extending the
discrete frequency range to higher frequencies. A mea-
sure for the highest discrete frequency (fm.x) needed
for a given wind speed can be obtained from scaling
laws. To ensure that scaling behavior is adequate, the
cutoff frequency f,[Eq. (6)] has to be within the dis-
crete frequency grid (fir < fmax), because the actual
highest frequency then becomes immaterial for both
source team calculation and integration. In the final
growth stages fir = 4 fpm. For firthen to be within the
discrete frequency grid, scaling laws result in the fol-
lowing constraint for the highest discrete frequency fuax:

4 g
27 28U,

fmax>4fl;M= (18)

Using this constraint, good scaling behavior is guar-
anteed for the final stages of growth, but not for all
growth stages. Initial growth is described adequately
only if the high-frequency range includes the spectrum
in its first stage of growth. The highest discrete fre-
quency needed to comply with this constraint can be
estimated empirically from scaling laws, assuming that
a given highest frequency is sufficient for a given wind
speed (e.g., assuming that fy., = 0.41 Hz as in the
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FIG. 2. (a) Nondimensional energy £ and (b) frequency f as a function of nondimensional time { for several wind speeds Uq.
Time step A7 = 3 s, standard spectral discretization with 24 directions and 25 frequencies (0.042-0.41 Hz).

standard discretization is sufficient to describe initial
growth for Ujp = 15ms™")

U*,r
Uy’

Jenax = frmax,r (19)

where the suffix r refers to the above empirical reference
conditions. Both constraints are illustrated in Fig. 3.
Note that for low wind speeds the first constraint is
especially important; wave conditions for these wind
speeds are usually near full development due to the
small time scales of wave growth. Such conditions have
to be described well, since they represent ““initial con-
ditions™ for storm cases. To illustrate the improved
scaling behavior for an extended frequency range,
growth curves obtained with 37 frequencies ranging
from 0.031 to 0.97 Hz (i.e., three additional low and
nine additional high frequencies) are presented in Fig.
4. Based on Fig. 3, good scaling behavior is expected
for wind speeds larger than 7 to 8 m s™', which is in
agreement with the results presented in Fig. 4.

e. Unsteady wind conditions

To assess the effect of the suggested numerical im-
provements under more realistic wind and wave con-
ditions, a case with an unsteady but homogenous wind
field has been considered, using the standard spectral
discretization with five discrete high frequencies added.
The wind speeds represent an idealized front and are
presented in Fig. 5a and Fig. 5c. After an initial period
with relatively low wind speeds (10 m s™!, 0-4 h) the
front passes between 4 and 6 h. The front is represented
by a sharp increase in wind speed and a change in wind
direction of 90°. After the front passes the wind speed

and direction remain constant (6 to 12 h) and finally
the wind speed reduces (12 to 18 h). Presented are the
significant wave heights H, (Fig. 5b) and mean direc-

tions 8 (Fig. 5¢):
ff sinf F(f, 0)

ff cosf F(f, 6)

@ = arctan (20)

1.50
f
max

1.25

Hz)
1.00
0.75
0.50 f~
0.25

5

Uy @

FIG. 3. Required maximum discrete spectral frequency fp.x as a
function of wind speed Uy,. Solid line: requirement for convergence
[Eq. (18)]. Dashed line: resolution compatible with standard spectral
resolution for Uyo = 15 m s™' [Eq. (19)]. Long dash: conventional
fmax- Dotted lines: discrete frequencies of the (extended) standard
discretization.
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Results for a implicit-static scheme with time steps of
either 5 s (solution with negligible time-step errors) or
15 min (conventional ), and with both the explicit and
implicit dynamic scheme with a basic time step of 15
min, are presented in Fig. 5. The figure clearly shows
the differences between the conventional time integra-
tion (dashed lines) and the “exact™ solution (solid
lines), in particular for the directions. During the fron-
tal passage (i.e., between 4 and 6 h) the rate of change
of direction (80/dt) of the conventional approach
(dashed line) is typically only half that of the exact
solution (solid line). The results for the explicit-dy-
namic (long dash) and implicit-dynamic (dotted lines)
schemes can hardly be distinguished from the solid lines
(exact solution).

In Fig. 5d the number of dynamic time steps n, per
15-min basic time step are presented for both dynamic
schemes. The explicit scheme shows values of n, of 10
to 15, corresponding to dynamic time steps Aty ay =~
At/ n .,y of the order of 1 to 2 min. The implicit scheme
allows for much larger dynamic time steps. For this
case the average number of dynamic time steps #,y,
~ 2.0 (Atgavy = 7.5 min), effectively doubling the
computational effort compared to the conventional
static approach. The major part of the extra compu-
tational effort is used during the actual frontal passage,
where the dynamic time step of the implicit scheme is
reduced to approximately 3 min. Because the implicit
dynamic scheme is much cheaper than the explicit
scheme and gives similar results for mean wave pa-
rameters, it appears to be preferable.

4. Propagation and fetch-limited growth

Wave propagation is important both for swell prop-
agation and for fetch-limited growth. The former case

considers pure propagation with a negligible effect of
source terms and the latter case considers the local bal-
ance between effects of propagation and wave growth.

Swell propagation is described by a well-known
multidimensional advection equation. WAM uses ei-
ther a first-order upwind (‘“‘upwave”) propagation
scheme or a second-order leapfrog scheme. The first-
order scheme is commonly used and has many advan-
tages: it is fast and simple and does not show artificial
solutions (e.g., negative energy). Its disadvantage is
the large numerical diffusion, making the scheme
highly dissipative. Second-order schemes such as the
leapfrog scheme reduce the numerical diffusion, but
usually incorporate significant numerical dispersion.
This results in artificial wavy solutions with negative
energy near strong gradients. In WAM, this problem
is solved by adding explicit diffusion to the leapfrog
propagation scheme, making it essentially as dissipative
as the first-order scheme (WAM, p. 1781). In the
Crank-Nicolson scheme originally used in WAVE-
WATCH, similar problems occur. Here, the scheme is
mixed with a first-order scheme, also introducing some
diffusion. Other solutions are available to eliminate the
dispersion errors of second-order schemes without
adding excessive diffusion/dissipation (e.g., see
Fletcher 1988). In this study, the first-order scheme
will be compared with a scheme based on the sharp
and smooth transport algorithm (SHASTA, Boris and
Book 1973, 1976; Book et al. 1975), which uses a flux-
corrected transport (FCT) algorithm to assure physical
behavior. The actual implementation of this scheme
is discussed in the Appendix. The capability of this
scheme to yield both small dissipation and dispersion
errors is illustrated in Fig. 6, where a narrow cosine-
like energy distribution on a background level has been
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FIG. 5. Results for unsteady but homogeneous wind case resembling a strong frontal passage.
(a) wind speed U,y, (b) significant wave height H;, (¢) mean wave direction 6, and (d) number
of dynamical time steps per basic (15 min) time step #,. Spectral discretization with 30 frequencies

(0.042-0.66 Hz).

propagated for 100 time steps with a Courant number
0.281.

Fetch-limited growth is investigated by considering
the following time-independent one-dimensional deep-
water version of Eq. (1):

oF

Ce a = Sin,] + Sin + Snl + Sds‘

(21)

All numerical experiments with this equation have
been performed using the standard spectral resolution
and a wind speed of 20 m s~'. Grid increments Ax

and time steps At vary. To obtain the time-independent
solution, a time-dependent version of (21), including
a term dF/dt at the left side, is solved until the results
become steady. Again S, is used for initialization
purposes only and again was found to have negligible
effects on the final steady solution for the full spectral
model. '

In a numerical solution of (21) errors can occur due
to the choice of the propagation scheme and due to
the grid increment Ax. Errors in the source term in-
tegration are assumed to be negligible by considering
sufficiently small time steps and sufficient spectral res-
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FIG. 6. One-dimensional deep-water propagation of a single spectral
bin with first-order and SHASTA schemes. Propagation over 28.1
grid increments in 100 time steps (arbitrary energy units).

olution. The effect of the propagation scheme on fetch-
limited behavior is studied by further reducing Eq. (21)
to linear and exponential growth for one frequency
and direction only:

oF
Ce a = Sin,l + Siny (22)
for which the analytical solution becomes
Sin M
F(x) = "[exp(—i‘)— 1]. (23)
Si Ce

Using analytical solutions for the time integration of
the source terms in (22) and forcing the fetch-unlimited
solution to a saturation limit E., by multiplying the
source terms with a factor

E - 0.75E, 2
r=1- max[(), (_OZ-EK)] , 24)

“growth curves” for both propagation schemes have
been calculated. In Fig. 7 results are presented for a f
= (.1 Hz and the Pierson-Moskowitz saturation level
on which (4) is based (Ax = 25 km, Ar = 15 min).
The first-order scheme shows an overestimation of
F(x). This is caused by the upwind estimation of spatial
gradients, which results in an underestimation of spatial
gradients and therefore in an underestimation of prop-
agation. Because source terms are calculated at the grid
points and thus are “exact,” the net effect is an over-
estimation of F(x). The second-order scheme does not
have- this deficiency and shows near-perfect results.
From the results of Fig. 7, it is expected that the two
schemes show different fetch-limited behavior for the
full spectral form of Eq. (21). To investigate this, fetch-
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limited calculations have been performed for both
schemes (Ax = 25 km, At = 225 s). Surprisingly, wave
heights and mean frequencies are practically identical
for both schemes (see Fig. 8). After inspecting the re-
sults in detail, it appears that this behavior has two
causes. First, both schemes use an identical upwind
boundary treatment at x = 25 km and should therefore
show identical results at this point. As will be shown
later, a significant part of the numerical propagation
error is concentrated in this point. Second, the first-
order scheme smooths gradients in space, which slightly
lowers spectral peaks. This slightly decreases nonlinear
interactions and hence reduces growth rates, which
compensates part of the diffusion error in propagation
(figures not presented here).

The effect of the grid resolution can be assessed by
considering fetch-limited growth curves for several res-
olutions in otherwise identical models and conditions.
In Fig. 9 wave heights and mean frequencies are pre-
sented for grid resolutions of 6.25 km, 25 km, and 100
km (first-order scheme, Az = 225 s). The largest grid
increment is fairly representative for fine-resolution
ocean wave modeling (e.g., the SWADE Atlantic basin
models), whereas the smallest is roughly representative
for detailed coastal models. Because results for the
smallest increment Ax should have the smallest nu-
merical errors, a finite increment appears to result in
an overestimation of the wave height and an under-
estimation of the mean frequency. A major part of this
error is generated in the first grid point. This is illus-
trated in Fig. 9 with results obtained with Ax = 25
km, using boundary conditions at x = 25 km from a
run with resolution Ax = 6.25 km (i.e., a nested model
where a significant part of the boundary error is re-
moved). Since the results of the nested run (triangles)
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FIG. 7. Fetch-limited growth for a single frequency and direction
due to linear and exponential growth and a limiting energy level. f
=0.1Hz, Up=20ms™", Ax = 25 km, and Af = 15 min.
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schemes. Wind speed 20 m s~!

remain close to the results for high grid resolution
(dotted line), it appears that the major part of the dif-
ferences between the runs with different resolutions
(and hence the numerical errors) arises in the first grid
point. Note that repeated calculations with the second-
order scheme ( figures not presented here ) show similar
results, the impact of the change of resolution being
much larger than the impact of the change of schemes.

Two remarks must be made on the results presented
in this section. First, the effects of the grid discretization

(@ g
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, standard spectral discretization, Ax = 25 km and Az = 15 min, dynamic implicit source term integration.

on fetch-limited growth depend on wind speed through
scaling laws. The nondimensional grid increment AX
is given as AX = gAx/U2% (cf. the nondimensional
fetch X). For an increasing increment Ax or a decreas-
ing wind speed U,q (or U, ), the nondimensional grid
increment increases. Consequently, the importance of
the error at the first grid point becomes even larger
than in the case considered here (which uses fairly high
winds and small grid increments). Simultaneously, the
effect of the propagation scheme becomes smaller. Sec-
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FI1G. 9. Fetch-limited growth curves of (a) the significant wave height and (b) the mean frequency for several grid increments Ax. Wind
speed 20 m s~!, standard spectral discretization, At = 225 s, first-order scheme. The nested results are obtained using boundary conditions

from the results for Ax = 6.25 km at x = 25 km.
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ond, one might expect the overall results to be affected
by the time step. However, repeated calculations with
a much smaller time increment (30 s) and with dy-
namic schemes (using the maximum time step for sta-
ble propagation for the grid resolution considered ) re-
produce the time-independent results presented here
closely.

5. The SWADE October storms

To investigate the impact of the preceding numerical
improvements for realistic wave modeling, several
hindcasts have been performed for two of the SWADE
grids for the period of 22-29 October 1990 (including
a model spinup period on 20-21 October). The grids
cover the Atlantic Ocean and part of the east coast of
the United States, respectively, and are denoted as the
basin grid and the regional grid (see Weller et al. 1991,
Figs. 11a and 11b). The resolution of the basin grid is
1° X 1° and of the regional grid is 0.25° X 0.25°. The
propagation time steps are 15 min and 10 min, re-
spectively. Boundary conditions for the regional grid
are obtained from the corresponding run on the basin
grid. The wind fields for the basin grid consist of NMC
operational global analysis wind fields (interpolated
from the original 2.5° X 2.5° grid), which are available
every 6 hours, This time and space resolution is fairly
representative for wind fields used for ocean-scale wave
hind- and forecasting. The wind fields for the regional
grid consist of an analysis on a 50 km X 50 km grid,
which is also available every 6 hours. This analysis is
specially developed for SWADE at NASA /Goddard
Laboratory for Atmospheres and will be presented in
detail elsewhere. The resulting regional wind fields are
much more detailed in space than the basin-scale
winds, but still poorly resolved in time. Note that within
the model wind speeds are interpolated to obtain wind
speeds central in time for each (propagation ) time step
considered.

Calculations have been performed with three differ-
ent versions of the model. In the first version (denoted
A), a conventional numerical approach is used [24
discrete directions, 25 frequencies (0.042-0.41 Hz);
static, implicit source-term integration; first-order
propagation scheme]. In the second version (B), the
improvements for source-term integration have been
incorporated; an extended frequency range (33 fre-
quencies, 0.041-0.88 Hz) and dynamic, implicit source
term integration are used. This frequency range assures
good scaling behavior for wind speeds from approxi-
mately 7.5 m s™! to 25 m s~'. A first-order upwind
propagation scheme is still used. In the third version
(C), all improvements have been incorporated, in-
cluding the second-order accurate SHASTA propaga-
tion scheme. In the following the effects of the im-
proved source term integration is assessed by consid-
ering the difference in results of model versions A and
B. Similarly, the difference between results of versions
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B and C shows the effect of improved propagation and
the differences between A and C show the total effect
of numerical improvements. The model comparisons
will concentrate of the significant wave height H, (12)
and the mean period T[= !, cf. (9)].

a. Results for the basin grid

To illustrate the impact of numerical improvements
on the basin hindcasts, significant wave heights and
mean periods for 0000 UTC 26 October 1990 are pre-
sented in Fig. 10. Also presented are the differences
induced by the numerical improvements (i.e., the dif-
ferences between models C and A). The wave heights
and periods (Fig. 10, panels a and b) show two large
active storm systems, marked as A and B. System B
has caught up with an old swell system traveling in
roughly the same direction. Furthermore, two distinct
swell systems (marked as C and D) can be distin-
guished. The structure and wave direction of the storm
systems is clear from the figure. Swell system C travels
in northeasterly directions and has been generated ap-
proximately two days earlier. Swell system D travels
in southeasterly directions and has been generated four
days earlier in the Labrador Sea (approximately 50°N,
55°W). Note that on top of swell system D, a newly
generated wind sea travels in southwesterly directions.

The changes in wave height AH, and periods and
AT due to the improved numerics are presented in Fig.
10, panels (¢) and (d), positive values corresponding
to an increase due to the improved numerics. By an-
imating the changes in wave height and period due to
(part of the) numerical improvements, the following
observations could be made.

First, the dynamic integration has little effect on the
mean wave parameters (M,.v, = 1.2), as was expected,
because the wind fields used here are fairly smooth
both in space and time. However, the wave height
shows small modulations with time scales of a few
hours (not shown here). In fact, small-scale features
of the wind fields can be distinguished in animations
of AH,and AT, particularly in the tropics. Such effects,
however, cannot be distinguished in Fig. 10.

Second, the extended frequency range results in a
systematic reduction of wave heights and periods for
areas with low wind speeds. For high wind speeds, ef-
fects of the extended frequency range appear to be neg-
ligible. In Fig. 10 these effects can be recognized as a
systematic reduction of T and H, in the tropics (AT
typically —1.75 s, AH, typically —0.3 m), whereas in
active generation areas mean wave parameters are only
slightly influenced.

Third, the improved propagation scheme strongly
influences the propagation of swell, increasing the wave
height at the swell peak and reducing the spread of
wave energy in the propagation direction. This spatial
concentration of swell energy results in a similar vari-
ation of wave periods. In Fig. 10, panels (c) and (d),
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FIG. 10. Model results for the basin model at 0000 UTC 26 October 1990. (a) Significant wave height H, and (b) the mean period T
from the improved model. (c) Wave height variations AH; and (d) mean period variations AT as induced by the numerical improvements.
The arrows in panel (a) point in the mean wave propagation direction and their length is scaled with H,.

the enhanced swell peak and the reduction of wave
height and period in front of and behind the swell peaks
can be observed clearly for the swell fields C and D,
and for the old swell field in storm B.

Fourth, one might expect the numerical improve-
ments to influence the dynamic interaction between

swell and wind sea because (i) the extended frequency
range will result in moderate wind—sea spectra at higher
frequencies, with a larger frequency gap between swell
and wind sea, (ii) the dynamic time integration might
cause a more rapid growth of young wind sea, and (iii)
the improved propagation schemes have a large impact



OCTOBER 1992

on the local swell energy. The different frequency gaps
and magnitudes of swell and wind sea energy cause
differences in the nonlinear interactions between the
two fields. Furthermore, they influence the overall wave
steepness and hence dissipation rates. One indication
of a modified dynamic interaction between swell and
wind sea can be found in swell field D in Fig. 10, which
shows systematically enhanced wave heights due to
source term improvements only (not shown here). This
might be related to the aforementioned effects of an
enhanced frequency range. The model output was not
sufficient to investigate this process in detail. Another
indication can be found at the boundaries of moving
storm systems, where animation of A7 regularly shows
wave periods that are reduced by more than 3 s (in
Fig. 10d, however, such regions are not observed).
These reductions can be explained qualitatively from
averaging over a spectrum with enhanced growth of
wind sea and from reduced diffusive swell propagation
out of the wind sea field. A comparison of results of
all three model versions indicates that all numerical
improvements play a significant role at the boundaries
of storm systems.

b. Results for the regional grid

The regional model shows essentially the same effects
of improved numerics as the basin model, except for
two additions.
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First, the enhanced spatial resolution of the wind
fields results in higher maximum wind speeds and
therefore in larger temporal variations of the wind, in
spite of the large time interval over which new fields
are available. With the more rapidly changing wind
conditions, dynamic time integration becomes more
important, even though the basic time step is smaller
than in the basin model. For one small-scale storm this
resulted in a significant increase of the wave heights
(up to 1.5 m) as illustrated in Fig. 11b-d (i.e., wind
sea at approximately 44°N 55°W). Such differences
occur on relatively short time scales (typically 3-6 h).

Second, the regional bottom grid shows large vari-
ations on the continental shelf, with some shallow grid
points near the shelf edge (Fig. 11a). At these shallow
points, the dynamic time integration without a limit
to the change of energy density per time step allows
the bottom friction term to be much more active. This
results in a clearer “imprint” of shallow grid points on
wave heights and periods.

Finally, Fig. 12 shows wave heights, periods, and
directions for the location of NDBC buoy 44004
(38°30’N, 70°36 ‘W) as obtained with either the con-
ventional approach (dotted lines) or with the improved
numerics (solid lines). This figure illustrates the impact
of the numerical modifications for mean wave param-
eters at a given point. The wave height (Fig. 12a)
slightly decreases, in particular for lower wave heights.
The mean period (Fig. 12b) shows a significant de-
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FIG. 11. Model results for part of the regional model at 1200 UTC 27 October 1990. (a) Water depths in meters, (b) significant wave
height H; for the conventional numerics, and (d) the improved numerics, and (c) the differences between both models. Legend as in Fig.

10.
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FIG. 12. Regional model results for the location of NDBC buoy
44004 (38°30’N, 70°36 W) in October 1990. Conventional numerics
(dotted lines) and improved numerics (solid lines).

crease, again in particular for moderate wind and wave
conditions. Finally, the mean wave direction becomes
more sensitive to variations of wave (wind) condi-
tions (in particular 22 and 23 October) and can show
large systematic differences for low wind speeds (25
October).

6. Discussion

The idealized and realistic wave generation and
propagation conditions considered in this study clearly
show that the conventional numerical approach in
third-generation wave models incorporates significant
numerical errors. These errors can easily result in a
misinterpretation of the physical behavior of such
models. In particular, growth rates, response to turning
winds, low wind speed conditions, and propagation of
swell are influenced. Furthermore, the sharpness of
spectra is slightly influenced and the dynamic inter-
action between swell and wind sea may be influenced.
If a model is to be used as a research tool to investigate
the details of wave dynamics, such errors should be
eliminated, or at least rightfully attributed to numerics
instead of physics. As is shown in this study, a signif-
icant part of the numerical errors can be eliminated in
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a relatively simple way by using a dynamic integration
of source terms, an extended frequency range, and
more accurate propagation schemes.

In this study the dynamic time step has been related
to a spectral equilibrium level only. This introduces
several potential disadvantages. First, swell energy lev-
els are, by nature, much smaller than the equilibrium
level. Therefore, they are unlikely to influence the dy-
namic time step (except for extremely shallow water
next to much deeper water as in the regional model).
To assure accurate time integration of such spectral
components, in particular in situations with significant
bottom friction, the dynamic time step should also be
related to, for example, the relative change of energy
density (as in EXACT-NL). Furthermore, one might
be able to make the dynamic integration more eco-
nomical by modifying the dependence of AF., on k
and ¢, and by maintaining static integration for wind
speeds for which the chosen frequency range is expected
to show poor scaling behavior, assuming that the latter
results will show significant numerical errors anyhow.
Another reason for maintaining static integration in
the latter conditions is that unrealistic behavior of the
nonlinear interactions is observed to occur, which can
reduce dynamic time steps significantly. Finally, it
should be noted that the dynamic integration is ex-
pected to become increasingly important, when wind
fields with a better temporal resolution are considered.

The choice of the highest discrete frequency is es-
sentially governed by economic considerations, as long
as the highest discrete frequency is low enough for all
source term parameterizations not to incorporate part
of the capillary wave region. However, as important as
increasing the frequency range is the way in which
model results are analyzed. Such an analysis should
obviously concentrate on wind speed ranges for which
numerical errors related to the finite frequency range
are expected to be small.

The literature concerning the solution of advection
problems is vast and many different schemes have been
used in wave models (e.g., SWAMP Group 1985). The
scheme presented here has good properties for wave
propagation, although across-grid propagation at high
Courant numbers could be improved. Recently the in-
terest in higher-order propagation schemes for wind
wave models has increased (e.g., Neu and Won 1990),
due to studies such as SWADE and the “Bight of
Abaco” experiment.

The three improvements suggested here do not deal
with all sources of numerical errors. In this study also
the effect of a finite spatial resolution near coastlines
has been recognized. This is, however, strongly related
to the degree of spatial resolution that is economically
feasible. A reduction of spatial resolution results in an
increase of computational effort that roughly scales with
the third power of the grid refinement, due to the two-
dimensional grid and Courant limitations on the time
step. Furthermore, swell propagation for discrete spec-
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tra leads to a disintegration of a continuous wave field
(“garden sprinkler effect,” Booij and Holthuijsen
1987). When numerical diffusion is eliminated from
the propagation schemes, such effects might become
apparent in models. This error can be reduced greatly
by applying controlled diffusion to the propagation
equation and by increasing the directional resolution
to Af ~ 5° (Booij and Holthuijsen 1987).

Even with all of the suggested numerical improve-
ments, each model will have some numerical errors.
For a complex wave model, the remaining numerical
error is difficult to quantify. Assuming that the re-
maining numerical error is much smaller than the dif-
ferences between the old and new approaches, numer-
ical errors in wind-dominated conditions might be ex-
pected to be a few percent at most, except for situations
where the high-frequency range of the discrete spectrum
is insufficient. Swell propagation obviously remains
sensitive to numerical errors due to the nature of the
problem and the usually poor model resohutions. Per-
haps more important than a well-defined estimate of
remaining errors is the recognition by wave modelers
engaged in basic research of wind wave physics that
model errors can lead to a misinterpretation of results.
The only practical way to assess this problem appears
to be to perform duplicate calculations with modified
NUMErics.

The hindcasts for the SWADE storms show that the
new numerics systematically reduce wave heights and
mean wave periods for low wind speeds ( AH, typically
—0.3 m and AT typically —1.75 s, for the moment
ignoring local, fluctuating effects of propagation errors
on swell). For more extreme wind and wave conditions
the effects of the new numerics are generally much
smaller, whereas significant increases of H; and T on
small space and time scales could be realized with
higher-resolution winds. This systematic variation of
numerical errors with wind speed will change the slope
of regression curves for observed and calculated wave
data. Therefore, even the relatively small effects of nu-
merics on wave heights might have a recognizable im-
pact in model verification studies. The much larger
effects of numerics on wave periods is bound to have
a distinct effect in verification studies. However, the
mean period is a convenient model parameter to com-
pare due to its straightforward definition, but it is phys-
ically less relevant than, say, the peak period of the
(wind sea part of the) spectrum. At low wind speeds
the latter parameter is strongly influenced by the extent
of the discrete frequency grid to high frequencies. Due
to averaging over swell and wind seas, the mean wave
period T will generally show smaller changes than the
spectral peak period, so that the spectral peak period
is bound to show even larger effects of the improved
numerics than the mean period 7.

This paper mainly dealt with the wave model as a
research tool. If a model is used as a production forecast
model, the impact of errors will be different. Presently,
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operational wave models are mainly used to predict
mean wave parameters, for which several of the pre-
ceding numerical errors partially cancel; slow growth
rates are partially compensated by overestimated wave
energy for low wind speeds, and effects of propagation
errors in fetch-limited growth are partially compensated
by indirect effects on source terms. Nevertheless, effects
of numerical improvements on particular wave periods
are significant. One might conclude that the majority
of the effects of the improved numerics occurs for low
wind speeds (with or without swell), and that conse-
quently the old approach is a “high wind speed” ap-
proach. Note, however, that this is true only for rela-
tively slowly varying wind fields, where a large fixed
time step does not significantly influence the extreme
wave heights. For hurricanes and cyclones, this need
not be true. Finally, relatively new applications of wave
models, such as data assimilation and the computation
of ocean-atmosphere boundary-layer parameters,
make a more detailed use of wave model results and
are therefore potentially sensitive to effects of numerical
errors. »

The acceptability of numerical errors in operational
models is strongly related to the economics of the nu-
merical improvements. These economics are usually
strongly influenced by the actual implementation of
the model (especially on vector processors) and on the
actual hardware used. For WAVEWATCH on a Cray-
YMP, the extended frequency range, the dynamic time
integration, and the new propagation scheme each in-
creased the computational costs by approximately 25%,
with a total increase of approximately 90%, where the
simple dynamic integration method used here might
leave room for improvements as discussed. Note that
dynamic time integration might save computer time
in global wave models. For instance, global WAM on
a 3° X 3° grid uses a propagation time step of 1 h and
a source term time step of 20 min. Using dynamic
integration with a basic time step of 1 h, the average
source term time step might become larger than 20
min, potentially making the model cheaper.

7. Conclusions

The idealized conditions considered here show that
numerical errors in the conventional third-generation
approach to wind wave modeling can lead to serious
misinterpretations of physics in the model. Growth
rates, response to turning winds, low wind-speed be-
havior, swell propagation, and possibly interactions
between swell and wind sea are influenced. Errors in
growth rates and response to turning winds are prac-
tically eliminated by introducing dynamic time inte-
gration of source terms. Low wind-speed (and some
swell/wind~sea interaction) errors can be controlled
by adjusting the (high-frequency) range of the discrete
spectrum. Swell propagation is improved by using im-
proved propagation schemes. Experiments with these
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numerical modification in realistic conditions show a
large effect of the numerical improvements on wave
periods, and a smaller, but distinct, effect on wave
heights. If more detailed wind fields are used, effects
on particular wave heights are expected to increase.
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APPENDIX
Second-Order Propagation Scheme

The method of flux-corrected transport (FCT),
originally applied to the sharp and smooth transport
algorithm (SHASTA), is well documented by the
founding fathers of this technique (Boris and Book
1973, 1975, 1976; Book et al. 1975, 1981). Although
the basic algorithm can be applied to any high-order
scheme, the original approach with the SHASTA
scheme is elegant for wave modeling for its relative
simplicity and for the simple way in which boundary
conditions can be incorporated. As is shown in the
referred papers, many different SHASTA/FCT
schemes can be constructed. Using the terminology
introduced in the referred papers, the scheme adopted
in WAVEWATCH will be defined here. For numerical
formulations, terminology, and other details reference
is made to these papers, in particular to Book et al.
(1975) and Boris and Book (1976).

The WAVEWATCH-SHASTA scheme used here is
“phoenical” (Book et al. 1975, p. 251, i.e., has no re-
sidual diffusion if the propagation velocity equals zero),
except for the propagation in the physical space for
spectral components that are influenced by active wave
generation (defined as components with Uy cos(6
— 6,)27k/f> 1). The flux limiter is that of Zalesak
(1979), using both the old spectra and the propagated
and diffused spectra. The limiter checks for minima
only to avoid the problem of “clipping” of maxima.
The propagation in the two-dimensional physical space
is performed simultaneously. Refraction, however, is
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handled separately (time splitting), to assure that flux
limitation due to poor resolution in the physical space
does not introduce diffusion in the direction space. The
major disadvantage of this scheme is that for propa-
gation across the two-dimensional spatial grid at high
Courant numbers, energy is contracted in the propa-
gation direction and diffused perpendicular to this di-
rection. In the basin runs this has no appreciable effects,
because the Courant numbers are small away from the
northern and southern boundaries, but in the regional
model it appears to enhance the disintegration of swell
spectra due to the discrete description of the frequency
space ( “garden sprinkler effect,” Booij and Holthuijsen
1987).
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