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ABSTRACT

The influence of unsteady depths and currents on wind wave propagation on the scale of shelf seas such as
the North Sea is investigated. The attention is focused on depth and current variations due to tides, which are
essentially stationary at the scale of a single wave but unsteady at the scale of wave propagation. Analytical
solutions are derived for changes of monochromatic unidirectional linear waves due to a one-dimensional tide
in water with a constant bottom level. It is shown that the change of absolute frequency due to variations of
depth and current in time is of the same order of magnitude as the Doppler shift, and that it is not negligible,
as assumed in a quasi-stationary approximation. The common quasi-stationary approximation leads to large
errors in the predicted change of wave parameters in all situations considered here.

1. Introduction

In the present study the influence of unsteady depths
and currents on wind-generated surface gravity waves
is investigated. Interactions between waves and cur-
rents, in particular the influence of currents on waves,
have been studied extensively in past decades. Their
importance is generally recognized and the subject is
treated in numerous textbooks (e.g. Whitham 1974;
Phillips 1977; Mei 1983), review papers (e.g. Peregrine
1976) and reports (e.g. Peregrine and Jonsson 1983).
Wave-current interactions are usually considered in
small scale (coastal) areas where depth and current are
treated as inhomogeneous but stationary. In such cases
the absolute wave frequency w, which is observed in a
fixed frame of reference, remains constant in space and
time. This property is exploited in numerical wave
propagation models for stationary depths and currents
(e.g. Tayfun et al. 1976) and in calculations of spectral
transformations due to stationary currents (e.g. Hedges
et al. 1985).

If wave—current interactions are considered at the
larger scale of shelf seas such as the (southern) North
Sea, the assumption of stationarity is no longer valid
as the time scale of variations in depth and current
(typically 12 hours) is not large compared to the travel
time of the waves through shelf seas (of the order of
days). The assumption that the absolute frequency re-
mains constant is therefore no longer valid. This is in
conflict with the suggestion in some studies that deal
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with large-scale depth and current fields, e.g., Burrows
and Hedges (1985), Chen and Wang (1983). In the
latter study the assumption of constant absolute fre-
quency is used, even though it is stated explicitly that
depth and current are assumed to be unsteady (*‘non-
stationary”). Note that the assumption of constant ab-
solute frequency is obviously correct for more station-
ary large scale currents like the Gulf Stream. The sub-
ject of unsteady depths and currents is addressed more
properly by, e.g., Unna (1941), Barber (1949), Lon-
guet-Higgins and Stewart (1960) and Christoffersen
(1982). However, the need to incorporate the influence
of unsteadiness of depth and current in wave models
does not seem to have been studied before.

The potential importance of wave—current interac-
tions at larger scales is illustrated here with measure-
ments acquired in the southern North Sea (Fig. 1).
These results, which are not unusual for the location
considered, show a wave height modulation of up to
50% with a period of approximately 12 hours. Although
some of these modulations can be related to variations
of the local wind velocity, this is generally not the case.
The modulation period suggests a tidal influence. Since
the tide induced depth modulation in the measurement
area is only about 5%, current variations (in space and
time) rather than depth variations are expected to be
responsible for the observed wave height modulation.

Within the linear theory of surface gravity waves,
the propagation of short-crested, random waves across
unsteady depths and currents is properly described with
the evolution of the two-dimensional action (or energy)
density spectrum. The evolution of such spectra is
commonly modeled with a discrete spectral balance
equation (e.g., the SWIM group 1985, no currents;



AUGUST 1990

32 12 hours

(m) 24 4.

time

FIG. 1. Measured significant wave heights H; at the southern North
Sea, platform Euro-0, 50 km west of the entrance to the port of
Rotterdam, water depth 26 m.

Tayfun and Dalrymple 1976, with stationary currents),
where the effects of unsteadiness of depths and currents
are represented by migration of action (or energy)
across the frequency domain, analogous to migration
across directions 1o represent refraction. In such an
approach, interference due to the short-crested ran-
domness of refracting waves may mask the specific ef-
fects of unsteadiness. Since the effects of unsteadiness
are the main subject of this study, such interference
should be avoided. Therefore, this study deals with the
development of a single, nonrefracting wave compo-
nent. The results thus obtained are directly applicable
to all spectral components as they are formulated
within the domain of the linear wave theory. To obtain
analytical solutions this study furthermore considers a
one-dimensional tide (constant bottom level). Ana-
lytical expressions for wave parameters are obtained
using three approximations. The first is the common
quasi-stationary approximation, in which the change
of absolute frequency due to variations of depth and
current in time is neglected. The second is a less com-
mon quasi-homogeneous approximation in which the
change of wavenumber due to variations of depth and
current in space is neglected. The third is a small per-
turbation approximation accounting for changes of
both absolute frequency and wavenumber. Results for
more realistic situations will be published elsewhere.

2. Basic equations

Consider monochromatic unidirectional waves as
described with the linear (Airy) theory for surface
gravity waves. They propagate over a depth and current
field in which variations occur at space and time scales
which are large compared to the wave length and pe-
riod, but which are not necessarily large compared to
the residence time of waves in shelf seas. The current
velocity (U) is taken to be constant over the vertical
and the influence of waves on mean depth (d4) and
current is neglected.

Such unidirectional monochromatic waves are

characterized with wavenumber (k), absolute fre-
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quency (w), amplitude (a) and direction (8). If waves
propagating on currents are considered, it is convenient
to make a distinction between a frame of reference
fixed to the bottom, in which the absolute frequency
w is observed, and a frame of reference moving with
the local current velocity U, in which the relative or
intrinsic frequency o is observed. As depth and current
are approximately stationary and homogeneous on the
scale of a single wave, the absolute frequency w, the
relative frequency ¢ and the wavenumber k (=1k|, &k
has direction #) are interrelated by the dispersion re-
lation:

w=0+k-U (1)

where
o’ = gk tanh(kd). 2)

Waves can thus be described locally with three param-
eters, i.e., the amplitude a, direction § and one of the
three phase parameters w, o or k.

To describe the changes of the above wave param-
eters a method of characteristics is used in which wave
energy is followed as it propagates over varying depths
and currents. The propagation velocity of the wave
energy ¢, (direction 6), as observed in a frame of ref-
erence moving with the local current velocity U, is
given by the linear theory as:

do o
Cg = @ =n % (3)
in which
1 kd
=2t Snh(2kd) 4)

In the fixed frame the propagation velocity of the energy
(¢,)is (e.g., Phillips 1977):
dx
ch=c+ U= E .

The corresponding rate of change of absolute frequency
w, relative frequency ¢, wavenumber k and direction
6 (denoted as dw/dt, do/dt, dk/dt and df / dt respec-
tively) can be determined using Eq. (1) and the fol-
lowing kinematic consistency relation [e.g., Whitham
1974, his Eq. (1.31)], which is a conservation equation
for the density of the waves:

dk

— +Vw=0.

a
The equations for these rates of change are (e.g., Chris-
toffersen 1982; Mei 1983, p. 96):

(5)

(6)

dw d0dd U

et ke— 7
dt  dd & k ot (7
_CEC _@Qg_ a__U (8)
dt ad ds as
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do Oo|dd ou

E_Q[E_{_U.Vd]_cgk._é? (9)
do 1[ 8¢ od oU
z“‘z[aza‘ 5;} (10)

in which s is a coordinate in the direction 8 and m is
a coordinate perpendicular to s. The operator d/dt is
defined as:

d 9

- a + (¢, +U)- V.
Since Egs. (1) and (2) interrelate w, ¢ and k, only one
of the equations, (7) through (9), needs to be integrated
to obtain expressions for changes of w, ¢ and k. Of
these the rates of change of absolute frequency and
wavenumber are convenient in the following analysis
as they become zero in (quasi-) stationary or (quasi-)
homogeneous conditions, respectively.

The determination of the wave amplitude for prop-
agation over currents is based on the conservation of
wave action (e.g., Whitham 1974; Phillips 1977). For
monochromatic unidirectional waves the (Eulerian)
action conservation equation is

%f:i+v-[(cg+U)A] =0

(11)

(12)

in which A is the action density (i.e. action per unit
area):

A=E/o (13)
and E is the energy density:
E = pga’. (14)

3. Measure of unsteadiness

To quantify the relative importance of unsteadiness
in the following analysis, consider a depth or current
field with variations at length scale L, (in the propa-
gation direction of the waves) and time scale T,.. The
travel time of wave energy over such a distance L, is
L4 /c., where c,, is the wave propagation velocity. If
this travel time is small compared to the time scale
T4, the depth and current field is quasi-stationary with
respect to wave propagation. Otherwise the depth and
current field is essentially unsteady. Similarly, the travel
distance in a time interval T is ¢, Ty.. If this travel
distance is small compared to the length scale L., the
depth and current field is quasi-homogeneous. The fol-
lowing parameter can therefore be used as a measure
of the unsteadiness (and inhomogeneity ) of depth and
current with respect to wind wave propagation:

v - L,  travel time _ length scale
coT4  time scale travel distance

(15)
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The depth and current field is unsteady and inhomo-
geneous if ¥ = O(1), quasi-stationary and inhomo-
genous if ¥ < 1 and unsteady and quasi-homogeneous
if ¥ > 1. For stationary, homogenous conditions ¥ is
not defined as both L4 and T, then approach infinity.

The time scale T, of depth and current variations
in shelf seas is obviously the tidal period 7}, but the
length scale L, is less readily estimated. This length
scale is determined by the tidal wave length L, and by
characteristic length scales of the bathymetry. The latter
length scales are dominant in nearshore areas, whereas
the tidal wave length is dominant away from the coast.

To estimate the magnitude of ¥ for wind waves on
tides away from the coast, consider a simple situation
with unidirectional monochromatic waves propagating
in water with a constant bottom level at an angle 6
relative to the propagation direction of a one-dimen-
sional tide. Taking the tidal period 7, and L,/ | cosf| as
estimates of the time scale T, and the length scale L4
and using the propagation velocity of the tide ¢,
= L,/ T,, the value of ¥ is

¢, |cosf|

(16)

As the tidal velocity ¢, =~ Vég and as the wave prop-
agation velocity ¢, as estimated by Eq. (5) is always
smaller than Vgd (since ¢, < Vgd and tidal currents
usually have a small Froude number, i.e., U < Vgd),
V¥ is always larger than 1, so that tides are never sta-
tionary with respect to waves. In many cases ¥ = O(1),
in which case the tide is unsteady and inhomogeneous,
whereas for some situations ¥ > 1 (i.e., in extremely
deep water where ¢, > ¢, or for |cosé| < 1), in which
case the tide is homogeneous (and unsteady).

The unsteadiness parameter does not of course in-
dicate the magnitude of current influences.

4. One-dimensional waves on a one-dimensional tide

To illustrate the influence of (space and) time de-
rivatives of depth and current on waves, consider
monochromatic unidirectional waves. The tide is rep-
resented by a one-dimensional long wave, propagating
in the positive x-direction in water with a constant bot-
tom level:

d(x,t) = dy + Ay sinX(x, t) (17)
U(x, 1) = Ay sinX(x, 1) (18)
X(x, 1) = Kx — Qt (19)

¢ = Q/K = Vgd, (20)
Au/Aqs=Vg/dy. (21)

In these equations X is the tidal phase, ¢, is the tidal
propagation velocity, K and £ are the wavenumber
and frequency of the tide and 4y and A, are the current
and depth amplitude, respectively (the current velocity
is assumed to be constant over the depth).
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To determine changes of wave parameters a method
of characteristics is used in which the waves are fol-
lowed with the propagation velocity of the wave energy
¢,. The analysis starts at a location and time where X
= (0, which implies that in the initial situation the depth
equals dy and that there are initially no current. The
wave parameters in this initial situation are indicated
with suffix zero (e.g., wg).

Three different approximations can be used to de-
termine changes of wave parameters. The first is a
quasi-stationary approximation in which time deriv-
atives of depth and current are neglected. The second
is a quasi-homogeneous approximation in which space
derivatives of depth and current are neglected. The
third is an unsteady inhomogeneous approximation in
which both time and space derivatives of depth and
current are accounted for.

‘a. Phase parameters

In the following changes of the phase parameters w,
o and k are determined and discussed for all three ap-
proximations separately. Changes are expressed as ab-
solute changes from the initial situation, e.g., Aw = w
— Wp.

1) QUASI-STATIONARY APPROXIMATION

In a quasi-stationary approximation partial time de-
rivatives of depth and current are assumed to be zero,
so that dw/dt in Eq. (7) is zero. The absolute frequency
w (=w; in this approximation ) therefore remains con-
stant and equal to the initial frequency wy. The wave-
number (k) can be determined at any location (time)
along ray paths from wy, (local) depth d, (local ) current
velocity U and direction 6. Using Egs. (1) and (2) the
changes of absolute frequency and wavenumber are

Aw; =0 (22)
Aky = ks — ko. (23)

As the absolute frequency remains constant, the change
of relative frequency Ag, is opposite to the Doppler
shift kU, (where U, is the current velocity in the prop-
agation direction of the waves, U, = U cosf), which
for small variations in wavenumber (Ak/k < 1) ap-
proximately equals koU,:

Agy =~ —koU,. (24)

2) QUASI-HOMOGENEOUS APPROXIMATION

In a quasi-homogeneous approximation partial space
derivatives rather than time derivatives of depth and
current are assumed to be zero. It follows then from
Eq. (8) that wavenumber k (=k;, in this approximation )
rather than absolute frequency w remains constant. The
frequency can be determined at any time (location)
along the ray path from k, the (local ) depth d and the
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(local) current velocity U. Using Eqgs. (1) and (2) the
changes of absolute frequency and wavenumber are

Ak, =0 (25)
Awy, = Vgko tanh(kod) ~ wo + koU,
= Ady +koU,.  (26)

The change of absolute frequency Aw, consists of the
Doppler shift kU, due to current variations only, and
the change of relative frequency Aoy, due to depth
variations only. For arbitrary depth and current vari-
ations the ratio between those two contributions to Awy,
is determined using Eq. (2) and a truncated Taylor
series expansion for Ytanh(Ad/dp) < 1):

Aoy _ Ad Vgd, Vkod

kU, do U, 2 cosh?(kodo)Vtanh(kodo)
For the depth and current field considered here, Ad
and U (=AU since U = 0 initially) are interrelated

[Egs. (17), (18) and (21)], so that this ratio becomes
a function of kod, and 6 only:

(27)

AO’;, _ Vkodo
= 6)! . 2
koU, (cosh) 2 cosh?(kodo) Vtanh(kod,) (28)

In Fig. 2 this ratio is plotted as a function of kyd,, for
several angles #. This figure shows that the depth in-
duced variation of absolute frequency (Ac;) in Eq. (26)
is only relevant compared to the current induced vari-
ation of the absolute frequency (koU,) for relatively
shallow water (e.g8., kodp < 1), and for waves traveling
in directions almost perpendicular to the propagation
direction of the tide (e.g., 80° < {6] < 110°). In the
latter case, however, Doppler shifts become negligible
as cosf approaches 0, so that the entire change of ab-
solute frequency becomes negligible. For shelf seas

. --- lol =120°
i — 8 =180
-1.0 - T - T T T
0 1 2 3 4 5
ko d0

FIG. 2. The ratio between the depth induced and current induced
contributions to the change of absolute frequency Aw, in quasi-ho-
mogeneous approximation (Ao, and kU, respectively).
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away from the coast, where relative water depths kydp
are usually not extremely small, Eq. (26) thus becomes

Awy = kU, (29)

3) UNSTEADY INHOMOGENEOUS APPROXIMATION

If both space and time derivatives of depth and cur-
rent are accounted for in the basic equations of section
2, both wavenumber k and absolute frequency w will
change. To obtain the change of phase parameters (€.g.,
w), one would have to integrate Egs. (5), (10) and
one of the three equations, (7) through (9), simulta-
neously (in time). To simplify the derivation of ana-
lytical solutions, a small perturbation approach is used
in which (i) changes in k, w and o are assumed to be
relatively small (| Ak/ky| < 1 etc.), (ii) effects of depth
variations are neglected (which away from the coast
are negligible in the other two approximations), and
(iii) the change A# of direction is neglected (i.e., tide
induced refraction is neglected). Using such an ap-
proximation Eq. (7) becomes

dw _Oc

d ad|_ at (30)
Since dd/dt and 6U/6t are periodic functions of the
tidal phase X, dw/dt and w vary with X only. It is there-
fore convenient to integrate the rate of change dw/dX
in X (instead of dw/dt and dx/dt in t). Since

a'w 1 dw
dx —Q+cwcosl9KE (31)

[from Egs. (11) and (19)], the change of absolute fre-
quency becomes

Aw(X) = fF(X)dX (32)

-Q+c. cosBK
where F(X) is the rate of change dw/dt as given by
Eq. (30). Equation (32) holds for any Q and X, not
only for @ and K related as in Eq. (20). The integral
at the right-hand side of this equation can be deter-
mined by considering a quasi-homogeneous situation
for which ¢,, cosf K/ approaches 0. In such a situation
Aw(X) approaches Aw,(X) [Eq. (29)], so that the in-
tegral at the right-hand side of Eq. (32) equals
—QAwy(X). Using Eqgs. (20) and (29), Eq. (32) then
becomes

1

Aw = 1 — ¢c* cosf koUp (33)

in which the propagation ratio c* is defined as
« _ v _  [tanh(kodo) 05 34
4 e, 0[_—_k0 do . (34)

Since c* is a function of kyd, only, it can be interpreted
as an alternative relative depth parameter (instead
of ko d 0 ) .
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The change of absolute frequency Aw relative to the
Doppler shift kU, is shown in Fig. 3 as a function of
direction 8 and relative depth kod. This figure shows
that for waves traveling in directions opposite to the
tide (i.e. 90° < 6 < 270°), Aw is smaller than the
Doppler shift, with a minimum of 0.5k,U,. For waves
traveling in the same direction as the tide (—90° < §
< 90°), Aw is larger than the Doppler shift and for
most relative depths and directions of the same order
of magnitude as the Doppler shift, except for waves in
extremely shallow water, traveling in approximately
the same direction as the tide (e.g. kodo < 1 and |6]
< 20°). In the latter case the change of absolute fre-
quency becomes an order of magnitude larger than the
Doppler shift.

An expression for the change of relative frequency
is simply found by subtracting wy = op from Eq. (1)
and by using Eq. (33):

c* cosd

A = e
d 1 — ¢* cosb

koU,. (35)

The normalized change of relative frequency Ag/
koU, is also shown in Fig. 3. This figure shows that the
change of relative frequency Ac usually differs largely
from the Doppler shift koU,. For waves traveling in
directions opposite to the tide (90° < 6 < 270°), Ac
has a sign opposite to that of the Doppler shift and is
in absolute value smaller than the Doppler shift by a
factor of 2 or more. For waves traveling in the same
direction as the tide (—90° < 6 < 90°), A¢ and kU,
show the same sign, and A¢ can be either much smaller,
much larger or of the same order of magnitude as the
Doppler shift.

An expression for the change of wavenumber can
be obtained from Eq. (8) using an approximation sim-
ilar to that of the above derivation for Aw [now in-
voking a quasi-stationary situation where c,, cosf K/
approaches infinity instead of zero and using Ak, as
given by Eq. (23)]. The result is

-6
- -5 Ao
- e 5%
- -3
-2 -Ak
Ly Dk
0
0 - ] 1
0 1 2 3
Ko do

FIG. 3. Normalized change of absolute frequency Aw/koU,, relative
frequency Ao/ koU, and wavenumber Ak/ Ak, as a function of relative
depth kod, for waves traveling on a one-dimensional tide at angle 9.
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—c* cosf

Ak = ——— Ak,.
1 —c¢* cosf

(36)

Finally the normalized change of wavenumber Ak/
Ak, is shown in Fig. 3. This figure shows that Ak always
differs largely from Ak,, as Ak is either smaller than
Ak by a factor of 2 or more (90° < 6 < 270°, wave
traveling in directions opposite to the tide), or shows
an opposite sign (—90° < # < 90°, waves traveling in
the same direction and the tide).

4) ANALYSIS OF RESULTS

For all three approximations a current velocity U
causes a local difference between the absolute frequency
w and the relative frequency ¢, which equals the Dopp-
ler shift & U,. In the quasi-stationary approximation
all variations in the Doppler shift are balanced by
changes in the relative frequency, whereas in a quasi-
homogeneous approximation all variations in the
Doppler shift are balanced by changes of the absolute
frequency. In the more realistic unsteady inhomoge-
neous approximation neither changes of the absolute
frequency nor changes of the relative frequency equal
the Doppler shift, but both Aw and Ag¢ are of the same
order of magnitude as the Doppler shift (where Aw
- Ag equals the Doppler shift). This indicates that both
unsteadiness and inhomogeneity of depth and current
are relevant for wave—current interactions in the tidal
situation considered here.

b. Wave amplitude

To determine the wave amplitude a quasi-stationary
and a quasi-homogeneous approximation to the action
density equation (12) could be considered, analogous
to the approach used for the phase parameters in the
previous section. However, to allow for a comparison
with existing numerical models (e.g., Chen and Wang
1983), the full equation ( 12) will be solved for all three
approximations, whereas the phase parameters w, o
and k for the three approximations are determined as
in the previous section. Consequently a quasi-station-
ary (quasi-homogeneous ) approximation is defined as
an approximation in which depth and current are un-
steady (inhomogeneous), but in which the change of
absolute frequency (wavenumber) is neglected.

Moving with the propagation velocity of the waves,
all changes in action density are caused by gradients
in the propagation velocity only. Such gradients are
caused by variations in current, water level and wave-
number [Eq. (5)], which all vary with phase X of the
tide only. Consequently, the solution to Eq. (12) is
stationary in a frame of reference that moves with the
velocity ¢, along the x-axis (as X is stationary in this
frame of reference). Thus d(c,-e,)4/dy = 0 and
04/dt + ¢,04/0x = 0 so that Eq. (12) becomes

5‘3—([(ch05()+ U-—-c¢)A] =0. (37)
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Consequently (cg0 cosf — ¢,)Ap = (cgcos0 + U — ¢,)4,
and using Eq. (34) the relative action density 4/A4,
becomes

A _ c*
1~ c¢* cost

A Acg cost + U
Ao

Ce0

-1
] . (38)

The relative wave amplitude a/ 4y can be obtained from
Egs. (13) and (14):

E 3 _O'_ ﬁ 0.5

ap [} Ao ’
Using a truncated Taylor series expansion of Egs. (38)
and (39) for small relative changes Acy/c.0, Ad/ap

and AA/Ag, the relative change of wave action and
amplitude become

(39)

a4 _ c* Acg cost + U (40)
Ay 1 = c* cost Cg0
Aa 1[Ac AA
— =] — 4 —]. 41
ap 2 [ g0 AO } ( )

As indicated above, Eqs. (40) and (41) hold for all
three approximations, as long as the appropriate for-
mulations for Ag/ao and Ac,/ ¢, are used. In the fol-
lowing these formulations are first substituted in Egs.
(40) and (41) for all three approximations and then
the changes of amplitude for the three approximations
are analyzed and intercompared.

1) QUASI-STATIONARY APPROXIMATION

In the quasi-stationary approximation the change of
relative frequency Ao, is given by Eq. (24). The change
of propagation velocity Ac, equals aU,, where « is a
function of kyd, only (see appendix A). Substituting
these two equations in Egs. (38) and (39) and using
Eq. (3), the relative change of wave amplitude for the
quasi-stationary approximation becomes (after some
straightforward algebra):

* _
TR
where
G, =1+ (ng+ ) cos?d
G, = ng cosfG, ™.

2) QUASI-HOMOGENEOUS APPROXIMATION

In the quasi-homogenous approximation the
changes of the relative frequency A, are away from
the coast usually much smaller than the Doppler shift
koU, [ see Eq. (28) and Fig. 2], so that Ag), ~ 0. Away
from the coast n ~ ny (Eq. (4) with small relative
depth variations Ad/dp) so that Ac,, ~ 0 [Eq. (3)
with k& = k; and ¢ = oy]. Substituting these solutions
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for Ao, and Acgy in Eqgs. (38) and (39), the relative
change of wave amplitude becomes
Aah 1 U c*

_ 43
ao 2 ceo0l — c* cosb (43)

3) UNSTEADY INHOMOGENEOUS APPROXIMATION

In the unsteady inhomogeneous approximation the
change of relative frequency Ac is given by Eq. (35).
The change of propagation velocity Ac, can be ex-
pressed in terms of U, ¢, c* and 4, considering that
(1) Acy/ Acgs = Ak/ Ak, [linearization of Eq. (3 ) around
kol, (1i) Acg; = aU, (appendix A) and (iii) Eq. (36).
Substituting such an expression for Ac, together with
Egs. (35) and (38) in Eq. (39), the relative change of
wave amplitude for the unsteady inhomogeneous ap-
proximation becomes, after some straightforward al-
gebra:

c*[G3 ~ c* cosf]
[1 — c* cosf]?

(44)

where
G; = [1 + ng cos?0]1G,™".

4) ANALYSIS OF RESULTS

The relative change of amplitude for the case con-
sidered here is obviously best estimated by (44) (i.e.
by the inhomogeneous and unsteady approximation ).
This equation shows that the relative change of am-
plitude Aa/a, is a linear function of relative current
velocity U/c,, which like Doppler shift is easy to es-
timate for practical shelf sea conditions. The ratio be-
tween Aa/ap and U/c, is a complicated function of
the relative depth kodo and the direction 6. Figure 4

ko do

FIG. 4. Relative changes of wave amplitude Aa/a,, normalized
with the relative current velocity U/ ¢, as a function of relative depth
kod, for waves traveling on a one-dimensional tide at angle 6.
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shows that for most relative depths and directions the
relative change of amplitude is of the same order of
magnitude as the relative current velocity but smaller.
Only for waves in extremely shallow water (e.g., kod
< 1) propagating in approximately the same direction
as the tide (e.g. |6]| < 30°), the relative change of am-
plitude becomes significantly larger than the relative
current velocity.

The influence of unsteadiness and inhomogeneity
of depth and current (i.e., changes of absolute fre-
quency and wavenumber, respectively ) on the change
of wave amplitude can be distinguished by intercom-
paring the changes in amplitude of the three approxi-
mations. The change of amplitude in the quasi-sta-
tionary and the quasi-homogenous approximations
(Aa, and Aagy, respectively) are therefore normalized
with the change of amplitude of the unsteady inho-
mogeneous approximation ( Ag) in Fig. 5. Since neither
Aay/Aa nor Aap/Aa approximately equals 1 [i.e.,
equals 1 = O(107")], both the unsteadiness and the
inhomogeneity of depth and current are material to
the change in amplitude in the situation considered
here. Note that the relative importance of unsteadiness
and inhomogeneity is independent of the current ve-
locity, i.e., independent of the magnitude of the wave—
current interactions, since Aa,/Aa and Aa,/Aa are
functions of kydgand 6 only.

5. Discussion

As indicated in section 3, depths and currents due
to tides in shelf seas are essentially an unsteady and
inhomogeneous medium for wind wave propagation.
Away from the coast interactions due to current vari-
ations are dominant over those due to surface level
variations. Changes of the absolute frequency w for the
situation considered here [Eq. (33), Fig. 3] are of the
same order of magnitude as the Doppler shift kU,
whereas relative changes of the wave amplitude [Eq.
(44), Fig. 4] are of the same order of magnitude as the
relative current velocity U/c,. Considering e.g. a cur-
rent velocity of 1 m s™!, a water depth of 25 m and a
wave period of 7 s (which is fairly realistic for the
southern North Sea), relative changes of the order of
10% might be expected for these wave parameters.

Relative errors in changes of wave parameters as
induced by the quasi-stationary or quasi-homogeneous
approximation are independent of the actual current
magnitude, and vary with relative depth kodo and di-
rection 8 only (e.g., see Figs. 3 and 5) for the situation
considered here.

In the quasi-stationary approximation the change of
absolute frequency due to depth and current unsteadi-
ness is neglected. Consequently [Eq. (33), Fig. 3], er-
rors in the magnitude of the (change of) absolute fre-
quency are of the same order of magnitude as (but not
equal to) the Doppler shift. In this approximation
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FI1G. 5. Normalized changes of wave amplitude as a function of
kodp for waves traveling on a one-dimensional tide at angle 6 (a)
quasi-stationary approximation (Aa,/Aa) and (b) quasi-homoge-
neous approximation ( Aa/Aa).

changes of relative frequency and wavenumber (Ac¢
and Ak) are overestimated by a factor of two or more
for waves and a tide traveling in opposite directions
(90° > 6 > 270°), and even show a wrong sign for
waves and a tide traveling in similar directions (—90°
> @ > 90°) (see Fig. 3, note that Ag;/Ac = — Ao,/
koU, = Ak,/ Ak). Finally Fig. 5a shows that the quasi-
stationary approximation also introduces large errors
in the predicted changes of wave amplitude, including
underestimations, overestimations and wrong signs.

H. L. TOLMAN

1173

In the quasi-homogeneous approximation the
change of wavenumber (and away from the coast
change of relative frequency ) due to depth and current
inhomogeneity is neglected. Consequently (Fig. 3)
changes of phase parameters are comparable to those
of the quast-stationary approximation, except for ex-
tremely deep water, where errors as induced by the
quasi-homogeneous approximations vanish. Figure 5b
shows that the quasi-homogeneous approximation
underestimates the change of amplitude by a factor of
two or less for most relative depths kydo and directions
6. Note that the error in change of amplitude does not
vanish for extremely deep water, unlike the error in
the phases parameters. For extremely deep water,
however, tidal currents are small, so that the total
change of amplitude [ Eq. (44)] becomes negligible.

Finally it should be noted that the analysis as pre-
sented in this study only deals with waves on a freely
propagating tide. However, many current fields cannot
be described in such a way. Consider, e.g., depth- or
river-induced current variations in coastal areas and
deep-ocean surface currents such as the Gulf Stream.
In those cases the unsteadiness parameter [Eq. (15)]
can still be used to determine whether depth and cur-
rent are quasi-stationary, quasi-homogeneous or un-
steady and inhomogeneous. The results of section 4
are only applicable if the length and time scales of depth
and current variations are related to some propagation
velocity of the depth and current field.

6. Conclusions

The present study shows that tides on the scale of
shelf seas such as the (southern) North Sea are an un-
steady and inhomogeneous medium for the propaga-
tion of (wind) waves. For such conditions the following
conclusions can be drawn. 1) The currents are strong
enough to induce significant wave-current interactions,
manifested in changes of absolute frequency, wave-
number and wave amplitude. 2) The change of absolute
frequency, which is typical for unsteady media, is of
the same order of magnitude as the Doppler shift, but
not equal to the Doppler shift. 3) In the quasi-stationary
approximation, which is commonly used in wave
propagation models, the absolute frequency of the
waves remains constant. In such models errors domi-
nate the predicted current induced changes of wave
wavenumber, absolute and relative frequency and wave
amplitude.
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APPENDIX A
Relation between U, and Ac,

Considering small perturbations as above and as U
= AU, a (=Ac,/ U,) can be written as:

A 9¢ _ ¢ Ok
U, 98U, dkaU,

o =

(A1)

where the suffix s, indicating the stationary approxi-
mation, has been dropped. Using equation (3) and (4),
dcg/ Ak is written as

—a—c5=;§2(n2—n+n’kd)

ok (A2)

where #n' is the derivative of n with respect to kd. To
find an expression for 8k/3U,, the dispersion relation
(1) is rewritten as:

do

Aw=ak

Ak + kAU, + U,Ak. (A3)

Using a quasi-stationary approximation Aw equals 0.
For small perturbations the current velocity U is (ex-
pected to be) small compared to the propagation ve-
locity ¢, (=80 /0dk), so that

ok Ak k k?

—_— - —=——, A4
oUu, AU, Cg no (A4)

Substitution of (A2)and (A4)in (A1) gives an expres-
sion for a, which is a function of 4d only:
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