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A key element of wind wave models is the parameterization of the resonant nonlinear interactions
between spectral wave components. In a companion paper a new Generalized Multiple Discrete Interac-
tion Approximation (GMD) has been developed. The present paper addresses the optimization of the free
parameters of the GMD. A holistic optimization approach is used where full model integration results are
optimized. Fifteen objective metrics are used, defined to measure the accuracy of a model using the GMD
relative to a model using the full (exact) interactions. Due to the large number of free parameters to be
optimized, and due to the existence of many local error minima in parameter space, traditional error
mapping or steepest descent search algorithms are not suitable to optimize the GMD. The focus of the
present study is on establishing genetic optimization techniques as a feasible and economical way to
optimize the free parameters in the GMD. The behavior of the GMD with optimized parameters is outside
the scope of this study, and is discussed in detail in the companion paper.
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1. Introduction

Modeling of wind waves at sea and on other water bodies gener-
ally considers the evolution of their energy or variance spectrum.
Traditionally, such a spectrum F is a density function defined in
terms of a spectral frequency f and a spectral direction h, and ignores
the phase of spectral components. This spectrum Fðf ; hÞ determinis-
tically describes the statistical properties of the wind waves. In its
most elementary form, the evolution equation for this spectrum
can be described using a balance equation (e.g., Hasselmann, 1960)

DFðf ; hÞ
Dt

¼ Sin þ Snl þ Sds þ � � � ; ð1Þ

where the left side represents linear wave propagation, and the
right side represents sources and sinks of wave energy, consisting
of wind input (Sin), nonlinear interactions (Snl), dissipation (Sds),
and additional processes, typically associated with shallow water.
In these source terms, the nonlinear interactions play a central role.
They represent the lowest order process known to move energy to
lower frequencies, increasing the dominant wave length as is ob-
served during wave growth. Furthermore, they stabilize the spectral
shape at high frequencies (e.g., Hasselmann, 1973). The SWAMP
study (SWAMP Group, 1985) identified the need for fully computing
the nonlinear interactions in wave models (instead of parameteriz-
ing the effects of the interactions). Such models are generally de-
noted as third-generation wave models.

The nonlinear interactions describe the resonant (conservative)
exchange of energy, action and momentum between four wave
components that satisfy the resonance conditions

k1 þ k2 ¼ k3 þ k4; ð2Þ

r1 þ r2 ¼ r3 þ r4; ð3Þ

where k is the wavenumber vector with magnitude k and direction
h, and where r ¼ 2pf is the intrinsic wave frequency. Such a com-
bination of four waves is generally referred to as a quadruplet. Com-
putation of the full nonlinear interactions requires the integration
of a six-dimensional Boltzmann integral. Although much progress
has been made in optimizing the computation of the full nonlinear
interactions (e.g., Van Vledder, 2006), they are still several orders of
magnitude too expensive for the use in operational wave models.

Third generation wave models became feasible with the devel-
opment of the Discrete Interaction Approximation (DIA, Hassel-
mann et al., 1985). In this approximation, the multi-dimensional
Boltzmann integral is replaced by evaluating interaction contribu-
tions locally in spectral space for representative quadruplets only.
The representative quadruplet is defined by the resonance condi-
tions (2) and (3), and by

k1 ¼ k2

r3 ¼ ð1þ kÞr1

r4 ¼ ð1� kÞr1
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for which the contributions to the source term at the four compo-
nents of the quadruplet are computed as
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where Fi ¼ Fðfi; hiÞ represent the spectral energy density at the four
components of the quadruplets, and dSnl;i ¼ dSnlðfi; hiÞ are the corre-
sponding contributions to the interactions. k and C are free param-
eters in this parameterization, set to k ¼ 0:25 and C ¼ 3� 107 by
Hasselmann et al. (1985).

Whereas the DIA made operational third generation wave mod-
els feasible, it was recognized from its inception as having limited
accuracy. Since then, many attempts have been made to develop
more accurate yet economical parameterizations for the nonlinear
interactions. A recent review can be found in the companion paper
(Tolman, accepted for publication). The latter paper presents a
Generalized Multiple DIA (GMD) which represents an expansion
on the traditional DIA, with several additional features.1

First, a more flexible definition for the representative quadru-
plet is introduced by expanding Eq. (4) to

r1 ¼ ð1þ lÞr
r2 ¼ ð1� lÞr
r3 ¼ ð1þ kÞr
r4 ¼ ð1� kÞr

9>>>=
>>>;
; ð6Þ

with free parameters k and l, reducing to the one-parameter defi-
nition for l ¼ 0. Furthermore, it can be expanded to a three-param-
eter definition by defining the internal angle h12 between
quadruplet components 1 and 2 as an additional free parameter.
The three-parameter definition reduces to (4) for l ¼ 0 and
h12 ¼ 0�.

Second, the GMD quadruplets are evaluated at the actual depth,
whereas in the DIA all quadruplets are evaluated assuming deep
water. This is essential to assure that the GMD reproduces all con-
servation properties of the exact interactions.

Third, multiple representative quadruplets are allowed, with
their individual contributions to the interactions normalized so
that the interactions computed for multiple copies of the same rep-
resentative quadruplet are identical to interactions computed from
one such representative quadruplet.

Fourth, the GMD features complementary scaling for weak
interactions in deeper water (kd > 0:50, consistent with the inter-
actions described in the DIA), and strong interactions as occur in
extremely shallow water (kd < 0:75, not reproduced by the DIA).

With these expansions, contributions to the interactions from a
single quadruplet realization in the GMD become
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where the scaling functions Bdeep for weak interactions and Bshal for
strong interactions are defined as
1 Additional information on the GMD can be found in the reports Tolman (2008,
2010a).
Bdeep ¼
k4þmr13�2m

ð2pÞ11g4�mc2
g

; ð8Þ

Bshal ¼
g2k11

ð2pÞ11cg

ðkdÞn; ð9Þ

where m and n are tunable parameters, nq;d and nq;s are the number
of representative quadruplets describing weak and strong interac-
tions, respectively, and Cdeep and Cshal are the corresponding propor-
tionality constants.

The traditional DIA only has two free parameters, k and C. The
GMD has many more free parameters. There are nq representative
quadruplets with up to five free parameters per quadruplet
(k;l; h12; Cdeep;CshalÞ, as well as two free parameters in the scaling
function ðm;nÞ. The present study focuses on efficient ways to opti-
mize these free parameters. The two distinct aspects of the optimi-
zation techniques used here are holistic and genetic optimization.
Holistic optimization implies that results of full wave model inte-
grations are optimized, instead of optimizing nonlinear interac-
tions for test spectra only. The holistic optimization approach is
described in Section 2. Genetic optimization is used here to effi-
ciently optimize a large number of free parameters while dealing
with many local error minima in parameters space, and with dis-
continuous error behavior in parameter space (as will be illus-
trated below in Fig. 1b). The basic principles of genetic
optimization are described in Section 3, and a full description is
presented in Appendix B.

The new optimization techniques are described and illustrated
here by considering deep water conditions only, where Cshal;m
and n are not optimized. Application of these techniques to shallow
water follow similar principles, and are presented in Tolman
(2010a). Results are presented in Section 4. A discussion and con-
clusions are presented in Section 5.
2. Holistic optimization

Holistic optimization is not new to nonlinear interactions in
wind waves. Hasselmann et al. (1985) based their parameter esti-
mates for the DIA on full wave model runs, but used subjective er-
ror measures. Since then, most interaction studies have considered
evaluating interactions for test spectra only. Tolman et al. (2004)
and Tolman (2005) reintroduced holistic optimization, as it be-
came evident that more accurate fitting of interactions to test spec-
tra is no guarantee for better wave model behavior, or even for
stable model integration.

Development, optimization and validation of interaction
parameterizations requires evaluation of exact interactions. In this
study exact interactions are computed using the Webb–Resio–Tra-
cy (WRT) method (Webb, 1978; Tracy and Resio, 1982; Resio and
Perrie, 1991), as implemented in the portable package developed
by Van Vledder (2002, 2006).2

Holistic optimization of nonlinear interactions requires the
adoption of a full wind wave model. In this study research version
3.15 of WAVEWATCH III

�
has been used. For all practical purposes,

this model is identical to the recently released model version 3.14
(Tolman, 2009). This model includes the above identified WRT
package for exact interactions, the traditional DIA, and the GMD.
With the exception of the choice of nonlinear interactions, default
settings of this model are used. To assure sufficient spectral resolu-
tion for WRT computations, the spectra are discretized using 36
directions (Dh ¼ 10�) and a relative frequency increment of 7%,
with a discrete spectral frequency range as recommended by Van
Vledder (2006) (0.04–0.78 Hz for the tests considered here).
2 Model version 5.04 used here.
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Fig. 1. Error mapping in ðk;CdeepÞ parameter space for a traditional DIA configuration of the GMD. (a) Total error in percent for all combined deep water tests. (b) Composite of
optimum error regions; gray shaded area is total error at 10% increments above minimum error. Contour lines represent minimum error + 10% for individual parameters; Hs:
red chain line, fp: red dashed line, h red dotted line, rh: red solid line; b: green lines; hðf Þ blue lines. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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The holistic optimization requires test cases, test parameters
and error metrics, as discussed in the following sections.

2.1. Test cases

Test cases need to be simple and cheap, since they need to be
run many times, but they also need to be representative for the
processes to be described by the GMD. Considering the critical role
of the interactions in wave growth, test cases first and foremost
need to focus on wave growth, including effects of turning winds
or winds not aligned with the waves. Swell mostly needs to be con-
sidered in the context of interactions between wind seas and swell.
With this in mind, six deep water test cases have been designed, as
summarized in Table 1. Additional shallow water tests are dis-
cussed in Tolman (2010a). Note that all tests produce a set of spec-
tra from which arbitrary test parameters and metrics can be
produced, as will be discussed in Sections 2.2 and 2.3.

Tests 01 and 02 represent conventional time- and fetch-limited
growth curve computations. Test 01 considers 48 h of wave growth
for a wind speed at 10 m height U10 ¼ 20 ms�1. Initial conditions
consists of a JONSWAP spectrum (Hasselmann, 1973) with peak
frequency fp ¼ 0:25 Hz aligned with the wind. Forty-eight hourly
spectra are saved for model comparison starting with the 1 h fore-
cast. Test 02 considers the same initial conditions and wind speed
blowing perpendicularly offshore from a straight coastline. The
spatial model resolution is 10 km, and 50 spectra are saved at
10 km intervals starting 10 km offshore. Data are saved only at
the end of 24 h of model integration. The width of the area consid-
ered is 500 km.

Test 03 is the ‘homogeneous front’ test of Tolman (1992). In a
one-point model without propagation, initial conditions are set
as in the previous tests. For four hours, a wind of U10 ¼ 10 ms�1
Table 1
Test cases.

Case Description Type Spectra

01 Time-limited growth curve 1 point model 48
02 Fetch-limited growth curve Quasi-stationary 50
03 Turning wind representing front 1 point model 48
04 Continuously turning wind 1 point model 48
05 Slanting fetch with offshore wind Quasi-stationary 50
06 Wave growth with background swell 1 point model 48
is aligned with the initial wave conditions. For the next two hours
the wind increases to U10 ¼ 20 ms�1 while turning 90�. The wind
then stays constant for 6 h, after which it linearly reduces to
U10 ¼ 10 ms�1 over the next 12 h, without changing direction.
Fourty-eight spectra are saved at 30 min intervals during the
24 h of model integration.

Test 04 is a one-point model with a continuously rotating wind.
Initial conditions are set as in test 01, and the wind rotates contin-
uously at a rate of 40�=6 h. The slow rotation is used to assure that
the spectrum stays unimodal. Integration is performed for 24 h,
and 48 spectra are saved at 30 min intervals. Tests 03 and 04 deal
with turning winds, where interaction approximations are known
to influence results (e.g., Van Vledder and Holthuijsen, 1993).

Tests 05 and 06 are variations on tests 02 and 01, respectively.
Test 05 is a slanting fetch case with winds under an angle of 45�

with the coast. Except for the wind direction and the width of
the basin (increased to 1000 km), this test is identical to test 02.
In test 06 a narrow banded swell field with a wave height
Hs ¼ 5 m and peak frequency fp ¼ 0:06 Hz encounters the wind
sea at an angle of 135� in a test that is otherwise identical to test
01. Both represent well know conditions where interaction param-
eterizations may be important (e.g., Ardhuin et al., 2007).
2.2. Test parameters

All test cases presented in the previous section produce wave
spectra, for baseline reference runs using the exact WRT algorithm,
and for the GMD with various parameter settings. Error measures
could simply be based on the spectra directly, but this does not al-
low for optimizing more targeted behavior of the model. For the
latter purposes, parameters computed from the spectrum will be
defined first, after which associated error measures are defined
in the following section.

Several classes of wave parameters can be distinguished. First,
mean wave parameters identify bulk wave model behavior such
as total energy generated and mean direction and speed of wave
propagation. Considering such model parameters in the optimiza-
tion allows for a strong constraining of mean model behavior,
without which details in spectral model behavior may be irrele-
vant. Second, one-dimensional spectral measures, i.e., spectral
measures based on integrating over spectral directions are
important for many physical processes such as computation of



Table 2
Individual parameter errors in percent of the traditional DIA relative to the exact
(WRT) approach for all test cases. Two values for the first four error measures for test
06 indicate errors for wind sea and swell separately.

Test case
01 02 03 04 05 06

�H 15.4 13.9 9.1 8.9 11.7 16.1 5.5
�fp 5.4 6.0 2.1 2.8 5.1 5.8 0.8
�h 0.0 0.0 2.3 3.6 4.1 0.1 1.6
�r 11.4 13.1 10.8 10.5 19.8 11.0 21.1
�a 9.4 6.4 15.9 17.1 9.1 10.0
�f 0 2.0 3.3 4.1 7.0 5.0 2.5
�b 70.0 61.0 60.6 62.8 64.2 70.8
�F1 151 146 117 119 115 145
�G1 80.3 76.1 63.5 64.5 62.9 81.1
�nl1 87.8 89.7 81.8 83.5 65.0 88.5
�h 0.1 18.1 18.1 25.8 34.0 26.3
�r 46.3 40.7 45.9 48.5 56.0 43.4
�F2 138 133 109 116 133 132
�G2 59.5 58.0 56.5 58.7 60.2 60.0
�nl2 87.5 89.3 81.6 82.2 74.6 88.2
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wave-induced wind stresses and parameters relevant for remote
sensing such as the mean squared slope. Finally, full spectral
parameters and error measures are important to get all details of
the model behavior optimized.

Mean wave parameters considered here are the significant
wave height Hs, peak frequency fp, mean direction h and directional
spread rh

Hs ¼ 4
ffiffiffiffiffiffiffi
m0
p

; m0 ¼
ZZ

Fðf ; hÞdf dh; ð10Þ

h ¼ atan
b
a

� �
; ð11Þ

rh ¼ 2 1� a2 þ b2

m2
0

 !1=2
8<
:

9=
;

2
4

3
5

1=2

; ð12Þ

a ¼
ZZ

cosðhÞFðf ; hÞdrdh; ð13Þ

b ¼
ZZ

sinðhÞFðf ; hÞdrdh; ð14Þ

and where fp is determined by fitting a parabola to the peak of the
one-dimensional spectrum Fðf Þ.

Fðf Þ ¼
Z

Fðf ; hÞdh: ð15Þ

Note that such mean parameters can be computed for either the en-
tire spectrum, or for individual spectral partitions representing
wind sea and swell as occur in test 06 (e.g., Hanson et al., 2009).

Eq. (15) also represents the first of the one-dimensional spectral
parameters. The energy spectrum focuses naturally on the behav-
ior of the spectral peak. Many physical processes are governed by
the behavior of the spectrum for frequencies above the spectral
peak (including the spectral tail), which is more conveniently ad-
dressed by the steepness spectrum Gðf Þ. Similarly, the behavior
of the actual source terms should be addressed, even in a holistic
optimization approach. This adds two more one-dimensional spec-
tral parameters to be considered,

Gðf Þ ¼ k2Fðf Þ; ð16Þ

Snlðf Þ ¼
Z

Snlðf ; hÞdh: ð17Þ

Other relevant one-dimensional spectral parameters are the mean
directions hðf Þ and directional spread rhðf Þ as a function of spectral
frequency, obtained by applying Eqs. (11) and (12) for each discrete
spectral frequency band individually. Several additional parameters
describe relevant aspects of the one-dimensional spectra and source
term. One of such is the energy level in the high-frequency equilib-
rium range of the spectrum a, (Phillips, 1958), computed as

a ¼ ð2pÞ4g�2Fðf Þf 5; ð18Þ

which can be evaluated locally at the highest discrete frequency of
the model. Similarly, the behavior in the transition range from spec-
tral peak to equilibrium range can be evaluated in terms of level,
power law fit or general fit to the reference model results (denoted
here as ‘‘b’’). A final relevant parameter from the source term is de-
fined from the energy flux in frequency space Mðf Þ

Mðf Þ ¼
Z f

0
SnlðfiÞdfi: ð19Þ

This flux generally has a two-lobed structure, and the zero-flux fre-
quency f0 for which Mðf0Þ ¼ 0 is important as it identifies a natural
separation of the spectrum into two parts which on average do not
exchange energy.

Finally, the full two-dimensional spectrum Fðf ; hÞ, the corre-
sponding steepness spectrum Gðf ; hÞ ¼ k2Fðf ; hÞ and the full inter-
actions Snlðf ; hÞ are considered.

2.3. Metrics

From the test parameters defined in the previous section, test
metrics can be constructed. To consistently combine different error
metrics, all metrics are normalized to become fractions or percent-
ages. Normalization is, furthermore, applied locally in time (space)
to assure equal weight for relative errors in all stages of develop-
ment for each test. For instance, the wave height error is addressed
locally as

Hs;p � Hs;b

Hs;b
; ð20Þ

where the indices p and b represent the results from runs made
with the parameterization (GMD) and the baseline computations
(WRT), respectively. With N test spectra for an individual test case,
the wave height error �H for the test case is defined as a conven-
tional rms error

�H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
N

Hs;p � Hs;b

Hs;b

� �2
vuut : ð21Þ

All other errors are defined similarly, and are presented in Appendix
A. This results in fifteen individual error measures up from the five
used in Tolman et al. (2004). Errors for all parameters and all test
cases for the traditional DIA are presented as a baseline in Table 2.
Whereas the DIA shows moderate errors for the four mean wave
parameters, a and f0, large errors are found for all error measures
based on one- or two-dimensional spectral data, consistent with
known shortcomings of the DIA.

For each individual test case, these errors are combined into a
single error measure

�nn ¼
X
�pap

.X
ap; ð22Þ

where nn represent the number of the test from Section 2.1, �p rep-
resent the 15 error measures, and ap represent corresponding
weights, with a focus on (large weight for) mean wave parameters,
as these are typically the primary output parameters of operational



Table 3
Error weights in Eq. (22) as used in the optimization procedure for all test cases. Two
values for test 06 indicate weights for wind sea and swell separately.

Test case

01 02 03 04 05 06

�H 10 10 10 10 10 5 5
�fp 5 5 5 5 5 2.5 2.5
�h 5 5 5 5 5 2.5 2.5
�r 5 5 5 5 5 2.5 2.5
�a 5 5 5 5 5 5
�f 0 3 3 3 3 3 3
�b 3 3 3 3 3 3
�F1 1 1 1 1 1 1
�G1 1 1 1 1 1 1
�nl1 1 1 1 1 1 1
�h 1 1 1 1 1 1
�r 1 1 1 1 1 1
�F2 1 1 1 1 1 1
�G2 1 1 1 1 1 1
�nl2 1 1 1 1 1 1
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wave models. Weights as used in this study are presented in Table 3.
Finally, the total error metric for all test cases is computed as

�tot ¼
X
�nnbnn

.X
bnn; ð23Þ

where bnn are the corresponding relative weights. In the present
study, all weights of tests used in each optimization experiment
are set equal (bnn � 1).
3. Genetic optimization

A DIA or GMD requires optimization of its free parameters. For
the DIA, only two free parameters exist (k;C), and all error mea-
sures for all tests can be addressed by direct mapping of errors in
the two-dimensional parameter space, requiring typically Oð103Þ
model runs for each test. Examples of error mapping for this con-
figuration of the GMD, optimizing k and Cdeep for a single represen-
tative quadruplet, are presented in Fig. 1. Fig. 1a presents the total
error �tot for all tests and all parameters in (k;Cdeep) space. A broad
but well defined region exists with near-optimum model behavior
(i.e., near-minimum errors). Fig. 1b shows that the corresponding
minimum errors for individual parameters do not coincide in
parameter space, and hence cannot be optimized simultaneously.

Another natural approach to optimizing (k;Cdeep) is using a
steepest descent algorithm. In such an approach, a single first
guess of the optimum value of (k;Cdeep) is made either randomly,
or based on previous experience. From this location in parameters
space a path to the location of the minimum error is sought by
numerically evaluating partial derivatives of the error in parameter
space, and following a path of steepest descent to the (local) error
minimum. This requires absence of local minima and well-behaved
derivatives of the model error in parameter space. For the simple
DIA configuration of the GMD, steepest descent algorithms proved
reasonably successful, although local rather than absolute error
minima were found based on actual initial guesses of (k;Cdeep)
(see Fig. 1b).

As will be shown below, an accurate GMD configuration for
deep water can consist of as many as nq;d ¼ 5 representative qua-
druplets with four free parameters each (k;l; h12;Cdeep), or 20 free
parameters. Brute force mapping of errors in parameter space for
this configuration may require as many as Oð1030Þ model runs
per test case,3 which is obviously not feasible. Initial experiments
3 Assuming that approximately 101:5 realizations per parameter need to be
evaluated for accurate mapping.
with steepest descent methods were also unsuccessful for such
GMD configurations (Tolman et al., 2004; Tolman, 2005), due to
the abundance of local minima in parameter space, and occasional
near-discontinuous behavior of errors. However, the latter papers
also introduced genetic optimization approaches as a feasible alter-
native to optimize parameters in a precursor to the GMD.

Genetic algorithms are loosely based on principles of natural
selection, and genetic algorithms form a subset of what is generally
identified as Evolutionary Computing (e.g., Eiben and Smith, 2003).
A qualitative description of genetic optimization will be given in this
section, introducing essential concepts and terminology. A detailed
description of the algorithms developed for the optimization of the
GMD is given in Appendix B. A software package to perform the ge-
netic optimization is described in Tolman (2010b), and is intended
for distribution with the next public release of WAVEWATCH III.

A genetic optimization approach starts with a sparse (typically
random) sampling of the parameter space. For each sample the
model error �tot is evaluated, and the samples are sorted with re-
spect to the error. After the first sampling, the parameter space is
re-sampled, using error information from the previous sampling
in ways similar to natural selection in biology, as will be discussed
in some more detail below. Re-sampling is repeated until a target
accuracy or convergence is reached. Individual samplings of
parameter space are called populations with individual members.
Consecutive populations are called generations.

This process is illustrated in Fig. 2 with several generations of a
genetic optimization of k and Cdeep in the GMD configuration corre-
sponding to the traditional DIA. Each generation samples the
parameter space with 50 members, compared to 806 combinations
of (k;Cdeep) evaluated for error mapping of a sub-set of this space in
Fig. 1a. In Fig. 2 individual members of the population are color
coded according to their rank in the population based on their er-
ror �tot (rank 1 corresponds to the smallest error in the population).
The corresponding error can be inferred from Fig. 1a.

The first generation (Fig. 2a) randomly samples parameter
space. In the third generation (Fig. 2c) the highest ranked genera-
tions (blue colors) start to cluster around the absolute error mini-
mum in Fig. 1a. In the tenth generation (Fig. 2f) the 20 highest
ranked members of the population all virtually coincide with the
optimum model configuration. In this case five generations, requir-
ing the evaluation of 250 configurations, are sufficient to find the
(near-) optimum GMD configuration. This is only moderately
cheaper than full mapping of errors in parameter space. For more
complex configurations, however, the reduction of effort between
mapping and genetic optimization becomes dramatic, as will be
shown in the following section.

The key feature of a generic optimization approach is the devel-
opment of a new generation from the previous generation. This is
where the link to natural selection in evolutionary biology arises.
Members of the new generation are constructed from the previous
generation by combining information from existing members of
the previous generation. Pairs of such members from the previous
generation (denoted as parents) are randomly selected with a high-
er probability of selection for members with smaller model errors.
From a pair of parents from the previous generation, a pair of chil-
dren in the new generation are generated by (i) mixing GMD con-
figuration information from both parents (corresponding to genetic
cross-over recombination in biology), and (ii) by randomly modify-
ing the GMD configuration of the children (corresponding to genet-
ic mutation in biology). The selection of parents and generation of
children continues until the desired size of the new population is
reached. To assure that the new generation includes the best con-
figurations from the previous generation, some of these may be re-
tained directly in the new generation (although this is not
essential). This genetic optimization algorithm is illustrated in
Fig. 3 and technical details are presented in Appendix B. Note that
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Fig. 2. Example evolution of generations for optimization of traditional DIA configurations. Color represents rank number in population, with rank 1 corresponding to
smallest error. Corresponding overall model errors can be obtained from Fig. 1a.
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the genetic approach does not rely on gradients of the error in
parameter space, and hence can deal with discontinuities of errors
in parameter space. Note, furthermore, that the re-sampling of
parameter space for each consecutive generation implies that the
algorithm does not automatically focus on identified local error
minima, but can ‘jump’ between local error minima in parameter
space.

Several additional considerations are important for genetic
optimization in general.

First, continued convergence of a genetic algorithm relies on a
broad set of parameter settings to be present in the parents (de-
noted as diversity in biology). Rapid initial convergence may lead
to rapid loss of diversity, and hence poor final convergence. Con-
versely, slow initial convergence may lead to sustained diversity
and better final convergence. As rapid initial convergence is often
associated with large population sizes, and lack of diversity with
small population sizes, the choice of the population size is impor-
tant. As there are no clear guidelines for population sizes, this be-
comes an important (iterative) aspect of designing the genetic
optimization experiments.

Second, convergence of genetic optimization algorithms is noto-
riously discontinuous; with no improvement between subsequent
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generations intermixed with large improvements. Hence, the num-
ber of generations to be considered is typically selected manually,
without introducing automated convergence criteria.

Third, genetic optimization is known to be efficient in getting
near-optimum solutions, but is not as efficient in converging on
the actual (local) error minimum. For this reason, a steepest des-
cent method is always applied starting from the best performing
member of the last generation (in literature denoted as an evolu-
tionary hybrid method). This is done to assess the level of conver-
gence of near-optimum solutions, and to address final convergence
to a (local) minimum error in parameter space (see also previous
point).

Fourth, with its random initialization, and random selection of
parents and generation of children, the genetic optimization can
be interpreted as a directed random search. Combined with the
occurrence of many near-optimum solutions for complex GMD
configurations (Tolman et al., 2004), it is therefore prudent to re-
peat the optimization experiments with different initial conditions.
Here, three separate initial conditions are used for each experi-
ment, for convenience denoted below as the ‘red’, ‘green’, and
‘blue’ experiments, consistent with colors used in subsequent
figures.
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Fig. 4. Evolution of minimum error �min (solid lines) and average error �avg (dashed
lines) as a function of the generation number. Traditional one-parameter DIA
quadruplet configuration with nq ¼ 1 quadruplets. Red, green and blue lines
represent the corresponding three experiments with different random initial
conditions. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
4. Results

The GMD is foremost intended to provide an economical yet
accurate nonlinear parameterization for operational wave models.
This implies that the cheapest (i.e., least complex) configurations
are preferable. Furthermore, only limited experience exists with
genetic optimization of the GMD. Such experience is also best built
by going to incrementally more complex configurations, until no
more benefit in accuracy is gained, or the optimization becomes
economically unfeasible. Furthermore, the present study focuses
on establishing the genetic optimization approach described here,
and less on the resulting GMD configurations. In this context, it is
sufficient to establish the optimization for deep water only. The
behavior of the resulting GMD configurations, including those opti-
mized for shallow water, is discussed in detail in the companion
paper (Tolman, accepted for publication).

The simplest possible configuration of the GMD is equivalent to
the DIA configuration, i.e., using one quadruplet, defined by k and
Cdeep only. This configuration was already used in the previous sec-
tion to illustrate the features of genetic optimization. The evolution
of generations as shown in Fig. 2 for a population size npop ¼ 50
indicates that convergence is achieved after ngen ¼ 5 generations.

In general convergence can be estimated by assessing the evo-
lution of the minimum error (�min) and the average error (�avg, here
defined for the fittest half of the population), as a function of the
generation number. Convergence is associated with the minimum
errors remaining unchanged with progressing generations, while
the average error becomes close to the minimum error. Fig. 4
shows the evolution of these errors for the red, green and blue
experiments, where the results presented in Fig. 2 correspond to
the red experiment.

The red lines in Fig. 4 indicate that this experiment looses diver-
sity after about five generations (�avg � �min, compare dashed and
solid red lines; consistent with Fig. 2), and that no gain in accuracy
is obtained with additional generations. The green experiment has
a better initial conditions with smaller minimum and average er-
rors than the red experiment, but requires more generations to
reach the optimum solution and to lose diversity (ngen ¼ 8–9). Fi-
nally, the blue experiment combines the best initial conditions
with quickly reaching the optimum error, while still retaining lim-
ited diversity in the last generation (�avg visibly above �min for the
last generation, compare dashed and solid blue lines). Based upon
this figure, it appears that npop ¼ 50 and ngen ¼ 10 represent an ade-
quate setup for this optimization experiment.

The DIA configuration of the GMD has been used above to illus-
trate how genetic optimization works, and that this technique in-
deed can find near-optimum configurations of the GMD. The next
step is to increase the complexity of the GMD configuration by
adding representative quadruplets, and by considering two- and
three-parameter quadruplet definitions.

Population sizes (npop) were obtained by trial and error, increas-
ing sizes slightly faster than linearly with the degrees of freedom of
the optimization process. For the three-parameter quadruplet a
larger random initial population was used to produce sufficient
viable initial configurations (i.e., sufficient initial diversity).

The number of generations (ngen) was determined interactively,
using error evolution analysis as presented in Fig. 4. For the rela-
tively cheap optimization experiments for the one-parameter qua-
druplet definition a liberal number of generations was used. For
the more complex definitions ngen was limited more aggressively,
relying on the subsequent steepest descent optimization to guar-
antee (local) convergence.

Resulting experiment designs are presented in Table 4. Note
that the two- and three-parameter quadruplet definitions



Table 4
Population sizes (npop) and number of generations (ngen) for optimization experiments
for one-, two- and three-parameter quadruplet definitions with nq representative
quadruplets. Population sizes in parenthesizes identify size of initial generation if
different from subsequent population sizes.

nq ðkÞ ðk;lÞ ðk;l; h12Þ

npop ngen npop ngen npop ngen

1 50 10 – – – –
2 125 40 – – – –
3 200 70 350 45 600 (1200) 60
4 350 100 500 60 1200 (2400) 60
5 – – 600 60 1500 (3000) 90
6 – – 750 60 2000 (4000) 150

Table 5
Minimum errors in percent for all deep water tests for various GMD configurations.
DIA represent the WAVEWATCH III model with default DIA implementation. Error for
one-, two- and three-parameter quadruplet definition.

nq Configuration

ðkÞ ðk;lÞ ðk;l; h12Þ

DIA 25.1 – –
1 21.2 – –
2 16.5 – –
3 15.7 14.2 11.9
4 15.6 11.9 11.2
5 – 11.0 9.25
6 – 10.8 9.08

Table 6
Optimum GMD configurations using traditional representative quadruplet definition
and nq ¼ 3 representative quadruplets. iq is quadruplet number sorted by k. Red green
and blue experiments with different random initial conditions.

iq ¼ 1 iq ¼ 2 iq ¼ 3 �tot

k Cdeep k Cdeep k Cdeep

Red 0.066 5:80 � 107 0.184 4:32 � 107 0.318 1:43 � 107 16.0

Green 0.126 4:79 � 107 0.237 2:20 � 107 0.319 1:10 � 107 15.7

Blue 0.066 5:63 � 107 0.184 4:33 � 107 0.318 1:44 � 107 16.0
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Fig. 5. Optimum deep water configurations for GMD using the traditional one-
parameter quadruplet definition from the DIA. Shaded areas are obtained from error
mapping from Fig. 1 with contours at 10% intervals above minimum error. Dashed
line identifies optimum CdeepðkÞ from the mapping experiment. nq ¼ 1—3 results
obtained by optimizing both k and Cdeep. nq ¼ 13 results obtained by sampling
spectral space with 13 preset values of k and optimizing the corresponding values
for Cdeep, resulting in nq ¼ 5 contributing quadruplets.
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generally require nq > 2 for stable model integration, and are,
therefore, not evaluated for nq 6 2. The corresponding total model
errors �tot are presented in Table 5. The top line in the latter table
represents the error for the WAVEWATCH III model with default
DIA implementation as a baseline for improvements gained by
adopting the GMD.

Table 5 shows a systematic reduction of the error with both an
increased number of quadruplets nq, and with the increased com-
plexity of the quadruplet definition. For the one-parameter ðkÞ qua-
druplet definition improvement of the model error saturates when
more than 3 or 4 representative quadruplets are considered, con-
sistent with previous findings of Hashimoto and Kawaguchi
(2001) and Van Vledder (2005). This will be discussed in more de-
tail below. For the two-parameter ðk;lÞ and three-parameter
ðk;l; h12Þ quadruplet definitions similar saturation appears to oc-
cur for nq ¼ 5 or 6. The reduced model error also results in qualita-
tively improved model behavior, as discussed in Tolman (accepted
for publication).

To illustrate the power of genetic optimization for this problem,
consider the optimization of the three-parameter quadruplet defi-
nition with nq ¼ 5 representative quadruplets. For this configura-
tion, five sets of parameters k;l; h12 and Cdeep need to be
optimized, for a total of 20 free parameters. As mentioned above,
brute force optimization would require Oð1030Þ configurations to
be evaluated, which is economically unfeasible. Also, steepest des-
cent methods have been shown to be incapable of producing near-
optimum parameter estimates for such a configuration. The corre-
sponding genetic optimization experiment as outlined in Table 4,
however, requires the evaluation of only 1:3105 configurations
per random initial conditions to produce well-optimized parame-
ter settings. Although this represents a serious computational ef-
fort, it is economically feasible even on moderately big cluster
computers.4 Hence, genetic optimization is an astounding factor
1024 more effective than brute force optimization, and becomes an
essential part of the development of the GMD.
4 For the present experiments, typically 20–200 processors were used.
The remainder of the results section will illustrate some rele-
vant aspects of the genetic optimization of GMD configurations.
These illustrations will address the random and near-optimum
nature of the results, saturation of improvements, and additional
peculiarities of genetic optimization.

Genetic optimization techniques were selected to deal with
multiple local near-minima of errors in parameter space. Further-
more, due to its random nature, the optimization with various ini-
tial conditions is expected to result in different near-optimum
solutions. This is illustrated here with optimum parameter settings
for the traditional one-parameter quadruplet definition with
nq ¼ 3 representative quadruplets in Table 6. Here, the red and
blue experiments result in virtually identical configurations, indi-
cating the reproducibility of genetic optimization from different
initial conditions. However, the green experiment produces a
clearly different configuration with a clearly smaller total error.
This indicates that reproduction of configurations from different
initial conditions is no guarantee that this is the best overall solu-
tion, and that it is essential to repeat the experiments with multi-
ple initial conditions. For more complex configurations, even more
near-optimum solutions with less replication of configurations are
found (resulting configurations not presented here).

The diminished improvement of the total error with increasing
number of representative quadruplets suggests limitations of the
accuracy of the GMD. This was already observed for the traditional
DIA quadruplet layout by Van Vledder (2005), and attributed to an
effective saturation of degrees of freedom in the parameterization
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Fig. 6. Like Fig. 4 for experiments with (a) the two-parameter quadruplet definition and nq ¼ 6 representative quadruplets, and (b) the three-parameter quadruplet definition
and nq ¼ 5 representative quadruplets.

Table 7
Like Table 6 for configuration using the two-parameter quadruplet definition and nq ¼ 6 representative quadruplets. Final error in percent estimated after complementary
steepest decent optimization.

iq Red Green Blue
�tot ¼ 11:47 �tot ¼ 10:97 �tot ¼ 10:78

k l Cdeep k l Cdeep k l Cdeep

1 0.098 – 5:27 � 107 0.069 0.045 7:41 � 108 0.059 0.026 2:59 � 108

2 0.123 0.092 4:43 � 108 0.183 0.002 5:39 � 107 0.132 0.080 2:60 � 108

3 0.182 0.120 8:75 � 105 0.232 0.147 5:95 � 107 0.227 0.127 6:30 � 107

4 0.232 0.068 5:47 � 107 0.233 0.064 1:22 � 107 0.279 – 1:36 � 107

5 0.328 0.145 2:54 � 107 0.278 0.237 1:44 � 107 0.351 0.219 1:47 � 107

6 0.383 – 2:37 � 106 0.351 0.110 1:92 � 107 0.359 0.070 7:03 � 106
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in spite of a further increase of the number of representative qua-
druplets nq.

To assure that this ‘saturation’ is not an artifact of the genetic
optimization, an additional optimization experiment has been per-
formed with the one-parameter quadruplet layout. In this experi-
ment nq ¼ 13 quadruplets are considered with pre-set values of k
ranging from 0.100 to 0.400 and increments of 0.025. The corre-
sponding strengths Cdeep were optimized using a population size
of npop ¼ 500 and considering ngen ¼ 40 generations. It was found
that no more than 5 of the 13 quadruplets contributed to the solu-
tion, with a resulting optimum model error �tot ¼ 15:9%. This
clearly indicates that the saturation of improvement with increase
of the number of quadruplets is a feature of the GMD, and not a
feature of the optimization.

Fig. 5 summarizes the optimization results for traditional DIA
quadruplet definition with multiple representative quadruplets.
The shaded area and dashed line in this figure represent the results
of the mapping experiments, with the genetic optimization results
for nq ¼ 1 (green square) centered on the shaded area as expected.
The figure shows that there are favored quadruplet configurations
used by multiple GMD configurations. It also shows that optimized
quadruplets do not have strengths Cdeep much larger than found in
mapping for the given k, but can be smaller by up to an order of
magnitude. If Cdeep becomes much smaller than that, the resulting
quadruplet does not contribute to the model results. It is then
either removed automatically by the optimization, or can be re-
moved by hand without influencing the model error (see Tolman,
2010a).
Finally, Fig. 6 shows error evolutions for optimization experi-
ments for two configurations, and Table 7 show the optimization
results corresponding to Fig. 6a. These experiments have been cho-
sen to illustrate peculiarities of the genetic optimization, aug-
mented with a steepest descent algorithm.

Fig. 6a and Table 7 present results for the optimization of a GMD
configuration using the two-parameter quadruplet definition with
nq ¼ 6 representative quadruplets. Typical behaviors for these
experiments include: (a) clearly different near-optimum solutions,
and (b) clearly different error evolutions, both indicating the need
for performing the optimization with a variety of initial conditions.
(c) Table 7 illustrates the occurrence of degenerated quadruplets
with l ¼ 0. In this case the two-parameter quadruplet becomes a
one-parameter quadruplet. (d) In the red experiment quadruplet
iq ¼ 3 has an anomalously weak Cdeep and is effectively switched
off, resulting in a configuration with effectively nq ¼ 5.

This experiment illustrates two more behaviors of genetic opti-
mizations. The first occurs for the red experiment. In generation 13,
this experiment has prematurely focused on a non-optimum con-
figurations, and has lost most of its diversity (�min � �avg). In gener-
ation 14, however, the minimum errors dramatically decrease and
the diversity of the population increases. This shows that the
experiment is able to focus on a more appropriate near-optimum
solution and illustrates the capability of the genetic optimization
procedure to ‘jump’ from one local minimum to another local error
minimum in parameter space. The second behavior is observed
when comparing the results for the blue experiment in Fig. 6a
and Table 7; in the figure, the blue experiment shows the largest
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final total error, whereas in the table it proves most accurate. This
represents a situation where the final convergence of the genetic
optimization was slow, and where a subsequent steepest descent
algorithm resulted in a dramatic improvement of the error of the
optimum configuration. This illustrates the usefulness of augment-
ing the genetic optimization with a steepest descent algorithm.

Fig. 6b shows the error evolution for a GMD configuration with
the three-parameter quadruplet definition and nq ¼ 5 representa-
tive quadruplets. This configuration shows much more consistent
error evolution between the three experiments with final optimum
errors of the genetic optimization experiments of 9.37%, 9.99%, and
9.83%, respectively. The steepest descent optimization improved
these errors to 9.25%, 9.31% and 9.83%, respectively, influencing
the green experiment most. All three final configurations are
clearly distinct, without displaying degenerate configurations
(configurations not presented here).

5. Discussion and conclusions

The present study presents new objective optimization tech-
niques for free parameters in a Generalized Multiple DIA parame-
terization of nonlinear interactions in wind waves (GMD, Tolman,
accepted for publication). Key elements are the holistic and genetic
nature of the optimization. It is shown that the most accurate GMD
configurations require 20 or more free parameters to be optimized
objectively.

Holistic optimization implies that full model integration results
are optimized, using idealized test cases. For each test case base-
line results are obtained with the exact nonlinear interactions
computed using the Webb–Resio–Tracy (WRT) method. Results
obtained with the GMD parameterization are compared to the
baseline results using fifteen objective metrics computed from
modeled wave spectra (48–50 spectra per test case). A similar ap-
proach was used subjectively by Hasselmann et al. (1985). The
objective approach was (re-)introduced by Tolman et al. (2004).
A companion paper (Tolman, accepted for publication) demon-
strates that improved model behavior (smaller objective errors)
for idealized test cases results in similar improvements in realistic
applications. A more commonly used optimization approach, fit-
ting interactions approximations for idealized spectra only, has
no such guarantee (e.g., Tolman et al., 2004).

Traditional brute-force optimization is unfeasible for the opti-
mization of a GMD with 20 or more free parameters due to the
sheer number of configurations to be evaluated. Traditional steep-
est descent methods proved unsuccessful due to the occurrence of
many local error minima in parameter space, and due to non-
smooth derivatives of errors in parameter space (Tolman et al.,
2004; Tolman, 2005). The latter papers also introduced genetic
optimization as a feasible technique to objectively and simulta-
neously optimize a large number of free parameters in the GMD.
The genetic optimization is further developed in the present study
and presented in Sections 3 and Appendix B.

The genetic optimization techniques are applied to GMD config-
urations for deep water with increasing complexity (i.e., increasing
numbers of free parameters). In these experiments, the following
results and conclusions were obtained:

(i) The genetic optimization procedure developed in the pres-
ent study is capable of optimizing more than 20 free param-
eters in GMD.

(ii) The method is highly efficient, as is evident in the fact that
optimization of 20 parameters required O(106) model evalu-
ations, compared to O(1030) model evaluations needed for
brute force error mapping for such a GMD configuration.
Note, furthermore, that the genetic optimization is highly
suitable for parallelization of computations, as errors for var-
ious members of the population can be computed in parallel
(see Tolman, 2010b). The same holds true for error mapping,
but generally not for steepest descent methods.

(iii) Due to the inherently random nature of genetic optimiza-
tion, it is essential to use an ensemble of optimization exper-
iments for each GMD configuration considered. The
ensemble size of three as used here is a bare minimum to
assess the need and power of using an ensemble approach.

(iv) The random nature of the optimization also results in find-
ing multiple near-optimum solutions rather than the objec-
tively single optimum solution. This implies that different
near-optimum solutions can be found for different ensemble
members.

(v) An important feature of the genetic optimization is that the
method allows for ‘jumping’ between local minima, so that
the method does not ‘lock in’ on marginal local minima iden-
tified early in the process.

(vi) Added complexity of a GMD configuration leads to added
accuracy, both in terms of the complexity of definition of
the representative quadruplet, and in terms of the number
of representative quadruplets.

(vii) Saturation of improvement occurs with adding complexity
to the GMD configuration. For the traditional DIA quadruplet
configuration, it has been shown that the saturation of
improvements has occurred when approximately 4 or 5 rep-
resentative quadruplets are considered, and that the satura-
tion is a feature of the GMD and not of the optimization
approach, consistent with previous results of Hashimoto
and Kawaguchi (2001) and Van Vledder (2005). For more
complex quadruplet configurations saturation also appears
to occur, and is likely to also be associated with the GMD
rather than the optimization approach.

(viii) A hybrid method, adding a steepest descent approach start-
ing from the best performing configuration of a given gener-
ation, helps to assess if convergence on the (local) error
minimum is reached, and in some cases results in much bet-
ter convergence on the error minimum.

In the present study, the optimization techniques are applied to
deep water configurations of the GMD only. As shown in Tolman
(2010a) the above conclusions equally hold for shallow water opti-
mization, when adding appropriate shallow water test cases.

It should be noted that the other source terms used in the
WAVEWATCH III model [see Eq. (1)] were not developed for the ex-
act interactions, but explicitly for the DIA. It is not clear, whether
the present GMD configurations can be considered as universal
optimized configurations, or that the optimum configuration is
dependent on the input and dissipation source terms. Until and un-
less universality of optimized configurations is demonstrated, it
will be prudent to repeat GMD optimizations for other input and
dissipation source term packages. Similarly, it is easy to add new
test cases or new error parameters, to focus on specific behavior
of the interactions. This would also require additional optimization
experiments, which can be performed using the package developed
for this study (Tolman, 2010b).

If the optimization of the GMD is repeated, lessons learned from
the present study can be applied, for instance.

(a) The saturation of improvement appears to be a feature of the
GMD, related to inherent degrees of freedom. It should
therefore be sufficient to concentrate on the one-parameter
quadruplet definition with nq ¼ 3 or 4 representative qua-
druplets and the three-parameter quadruplet definition with
nq ¼ 5 or 6 representative quadruplets.
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(b) Using ensembles of three optimization experiments for each
configuration is a bare minimum. When a smaller number of
configurations is considered it becomes more feasible to use
a large variety of initial conditions. Note that an economic
way of using a large ensemble would be to obtain partial
convergence with a limited number of generations for a
large ensemble, while assessing full convergence with suffi-
cient populations only with the most promising of the initial
ensemble members (similar to ‘island methods’, e.g., Eiben
and Smith, 2003).

(c) The development of an evolutionary optimization approach
is part art and part science, with many subjective choices
made along the way. Many of these choices could be consid-
ered in more detail in future studies. However, the present
optimization approach has clearly been proven to be highly
efficient for the highly nonlinear optimization required here,
and it may be more effective to spend more effort on refining
the GMD, than on further refining the optimization
techniques.
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Appendix A. Expressions for error metrics

Errors for the peak frequency (fp; �fp), mean direction (h; �h), and
directional spread (rh; �r) are defined as

�fp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
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N

fp;p � fp;b

fp;b
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1
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rh;p � rh;b

rh;b

� �2
vuut ; ðA:3Þ

where the normalization angle Dhn needs to be defined, since no
natural normalization angle exists. Somewhat arbitrarily
Dhn ¼ 90� is chosen here. In test 06 these errors are defined for
the wind sea and swell separately. Errors for the high-frequency en-
ergy level (a; �a; b; �b) and the nonlinear zero-frequency (f0; �f 0) are
defined as

�a ¼
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�f 0 ¼
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Errors for the one-dimensional spectrum (Fðf Þ; �F1), steepness spec-
trum (Gðf Þ; �G1), and the source term (Snlðf Þ; �nl1) are defined as
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0 Fpðf Þ � Fbðf Þ
� �2df

q
R f2

0 Fbðf Þdf
; ðA:7Þ
�G1 ¼
1
N

X
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR f2
0 Gpðf Þ � Gbðf Þ
� �2df

q
R f2

0 Gbðf Þdf
; ðA:8Þ
�nl1 ¼
1
N

X
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR f2
0 Snl;pðf Þ � Snl;bðf Þ
� �2dfR f2

0 S2
nl;bðf Þdf

vuut : ðA:9Þ

The upper integration bound f2 ¼ 3:5f p is explicitly defined to as-
sure that errors in the parametric tail, which for Fðf Þ are constant,
may not dominate the error measure, or that the integration range
does not influence the results (as for Gðf Þ). Here fp is determined
from the wind sea partition of the spectrum. The error measures
for the spectral direction and spread (hðf Þ; �h and rðhÞ; �r) are de-
fined as

�h ¼
1
N

X
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR f2
f1

hpðf Þ � hbðf Þ
� �2df

q
hnðf2 � f1Þ

; ðA:10Þ
�r ¼
1
N

X
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR f2
f1

rpðf Þ � rbðf Þ
� �2df

q
rh;1;2ðf2 � f1Þ

: ðA:11Þ

These directional parameters are defined even for spectral frequen-
cies with virtually no energy. To assure that the error measure fo-
cuses on a spectral range containing energy only, f1 and f2 are
chosen to only include frequencies for which Fðf Þ > 0:001Fmax,
where Fmax is the maximum energy of the corresponding spectrum.
Finally, the errors for the two-dimensional spectral and source term
errors are defined as

�F2 ¼
1
N

X
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 2p
0

R f2
0 Fpðf ; hÞ � Fbðf ; hÞ
� �2df dh

q
R 2p

0

R f2
0 Fbðf ; hÞdf dh

; ðA:12Þ
�G2 ¼
1
N

X
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 2p
0

R f2
0 Gpðf ; hÞ � Gbðf ; hÞ
� �2df dh

q
R 2p

0

R f2
0 Gbðf ; hÞdf dh

; ðA:13Þ
�nl2 ¼
1
N

X
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 2p
0

R f2
0 Snl;pðf ; hÞ � Snl;bðf ; hÞ
� �2df dhR 2p

0

R f2
0 S2

nl;bðf ; hÞdf dh

vuut ðA:14Þ

with f2 defined as with the corresponding one-dimensional spectral
error measures.
Appendix B. Genetic optimization

This appendix presents relevant details of the genetic optimiza-
tion techniques designed to optimize the free parameters of the
GMD. The description of a single member of the population is dis-
cussed in Appendix B.1. For completeness, this also includes
parameters for the strong or shallow water scaling, although actual
optimization in such conditions is not addressed in this manu-
script. Appendix B.2 describes the construction of the initial popu-
lation, and Appendix B.3 describes the evolution of consecutive
populations.



Table B.1
Basic description of members of a population: ig is the sequence number of the
parameter in the description; nq is the number of representative quadruplets; iq is the
quadruplet number. Note that h12 < 0� is used to identify (one- or) two parameter
quadruplet definitions. std and c refer to perturbation mutation in Table B.2

ig Par. Range acc. Type Std

5ðiq � 1Þ þ 1 k 0–0.5 0.001 Lin 0:25c
5ðiq � 1Þ þ 2 l 0–0.5 0.001 Lin 0:25c
5ðiq � 1Þ þ 3 h12 0–180� 0.1� Lin 45�c
5ðiq � 1Þ þ 4 Cdeep 105 � 1010 3 digit Exp cCdeep

5ðiq � 1Þ þ 5 Cshal 104 � 109 3 digit Exp cCshal

5nq þ 1 m (�8) to 4 0.01 lin 4 � c
5nq þ 2 n (�6) to (�2) 0.01 lin 4 � c
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B.1. The genome

A population in the genetic optimization approach is character-
ized by its members and their ‘fitness’ (or error). In a traditional ge-
netic optimization approach, and in the precursor to the present
study (Tolman et al., 2004), an individual member of the popula-
tion is represented by a bit string (e.g., Holland, 1992). For the pres-
ent optimization problem, it is more natural to use a set of real
numbers to describe a member of the population, which is com-
monly called an evolutionary strategy approach (Eiben and Smith,
2003).

The description of a member of the population needs to include
the five free parameters of a representative quadruplet (k;l; h12,
Cdeep;Cshal) for each iq of nq representative quadruplets and the scal-
ing parameters (m;n) from Eq. (1)through (9). This results in
ng ¼ 5nq þ 2 numbers describing a member of the population, as
outlined in Table B.1. For practical reasons, the population infor-
mation is stored in human-readable formatted data files. This
effectively creates an accuracy limit at which the parameters are
described, as is documented in Table B.1. This Table also presents
the allowed range of all parameters, based on physical limitations
of parameters and on experiments with error mapping for single
quadruplets. Note that invalid quadruplet configurations arising
in the initialization or in children are not added to a population
(corresponding to lethal mutation in biology).

Finally, a fitness value f is traditionally defined for each member
of a population. The fitness is naturally defined here as the inverse
of the model error

f ¼ ��1
tot : ðB:1Þ

Note that not all free parameters need to be optimized for a given
GMD configuration. Therefore, a mask consisting of nq logical values
is defined for each optimization experiment, identifying which
parameters are to be optimized. The population management tech-
niques described below only modify GMD parameters that are thus
identified, using preset (unchanging) values for all other
parameters.
B.2. The initial population

The initial population is generated by a simple random initiali-
zation. For k;l and h12 direct physical limitations of the parameter
settings are available, as discussed in the previous section. For the
initial population, values for these three parameters for each mem-
ber are set randomly assuming a uniform distribution of values in
the valid range of the parameter (Table B.1).

Allowed values of Cdeep and Cshal are not naturally bounded and
are set in a wide range around values expected from previous map-
ping and inverse modeling studies. Because these parameters cover
several orders of magnitude, an exponential type of distribution is
used where logðCdeepÞ and logðCshalÞ are uniformly distributed over
their valid range.

Particularly for a GMD using the three-parameter quadruplet
definition many less viable quadruplets are generated when a
purely random initialization is used. This may result in too few via-
ble quadruplets on which the optimization focuses too quickly, in
effect limiting the diversity of the population. To avoid this, a lar-
ger number of random realizations may be considered to fill the
first population, of which only the fittest members are retained.

B.3. Subsequent populations

When the initial population has been established, the fitness f
of each member is computed, and the population is sorted by
descending fitness. A population model is needed to populate the
next generation (Eiben and Smith, 2003, Sections 3.6 and 8.8). In
the present study, a small fraction of the best performing members
of the population is retained. All other members of the new popu-
lation are generated as offspring of parents from the previous
population.

Only fit members of the present population are allowed to be-
come parents, defined by their model error

� 6 Xp�min; ðB:2Þ

where �min is the error of the fittest member of the population. The
resulting fraction of the population that is allowed to become par-
ent is furthermore limited by a minimum and a maximum fraction
of the population. With this, the limiting fitness (flim) is defined as
the fitness of the fittest member of the population that is not al-
lowed to become a parent, or, if l members of a ranked population
are allowed to have offspring, flim ¼ flþ1. The probability pi of each
parent with index i 6 l to be chosen as a parent is defined as

pi ¼ ðfi � flimÞ
Xl

i¼1

fi � flim

 !�1

: ðB:3Þ

Using these probabilities, sets of two parents are randomly selected
until sufficient offspring has been generated.

The first step in the process of generating offspring from parents
is cross-over recombination. Both parents are defined by a ‘string’
of 5nq þ 2 real numbers. Randomly, 0, 1 or 2 crossover points are
selected in this string. On one side of a crossover point, data is ta-
ken from parent one, on the other side, data is taken from parent
two. When parents are described with bit strings rather than real
numbers, the crossover point may be in the middle of the descrip-
tion of a physical parameter, hence ‘mixing’ information of both
parents for that parameter.

In the simplest approach to mutation with real-valued parame-
ters denoted as simple recombination in (Eiben and Smith, 2003,
Section 3.5.3), all parameter values are directly taken from one of
the two parents without additional considerations at the crossover
point.

Another process denoted as single arithmetic recombination
describes this process at the crossover point by taking a single
parameter in the child, and defining it as a weighted average of
the parameter values of the two parents. Defining the parents as
x and y, the child as c, and the index i representing the crossover
parameter value index, the parameter value of the first child is
determined as

ci ¼ jxi þ ð1� jÞyi; ðB:4Þ

and the parameter value for the second child is obtained by
exchanging x and y. In the present algorithm, a random choice is
made between simple and single arithmetic recombination, and j
is also chosen randomly.



Table B.2
Parameters used in the generation of children from parents in the genetic optimi-
zation procedure. See Table B.1 for computation of std from c in perturbation
mutation from spread parameter.

Fraction of old population retained 0.05
Error factor for parent selection (Xp) 2.00
Minimum parent fraction 0.25
Maximum parent fraction 0.50
Probability of 0 crossovers 0.50
Probability of 1 crossover 0.25
Probability of 2 crossovers 0.25
Probability of arithmetic recombination 0.50
Expected number of mutations 1.25
Probability of uniform mutation 0.30
(otherwise perturbation mutation)
Spread parameter in perturbation (c) 0.10
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After recombination, the children are further changed from
their parents by allowing for mutations, that is, random changes
in one or more of the real numbers describing the child. An ex-
pected number of mutations per child is pre-described. Two types
of mutation are considered. One is uniform mutation, where in ef-
fect the parameter to be mutated is randomly re-initialized. The
second type is mutation by perturbation, where the parameter va-
lue is modified slightly, using a normal distribution with a small
predefined standard deviation (identified by c in Table B.1). Finally,
mutations are capable of switching between one-, two-, or three-
parameters quadruplet definitions, and to switch deep and/or shal-
low water scaling on or off. With an expected number of mutations
per child set to approximately 1, many children will not have
mutations.

Parameter settings for the genetic optimization scheme used
here are gathered in Table B.2. Because there are no hard and fast
rules for setting most parameters, their values have been based on
common sense and numerical experimentation.
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