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Third-generation ocean wave models include a so-called limiter in the integration of the source terms to
guarantee numerical stability at economical numerical time steps. The original limiter has previously been
associated with the sensitivity of model results to the numerical time step. More recent limiters appear to
remove this sensitivity by eliminating the numerical convergence from the resulting integration scheme.
This is contrary to rudimentary numerical principles as well as the underlying philosophy of third-generation
wave models. The present study investigates the effects of limiters and large model time steps using time-
limited wave growth test. It is shown that the conventional limiter results in stable model results even if
the numerical time step violates the time scales of wave growth. Contrary to common belief, its impact is
not necessarily limited to the equilibrium range of the spectrum, and the limiter systematically enhances
growth rates in the intermediate stages of wave growth. Particularly initial growth errors increase significantly
with increasing maximum discrete spectral frequency fmax. Relaxation of the limiter is shown to reduce initial
growth errors, but does so at the expense of notable errors in the spectral shape. In the present paper the
limiter was relaxed by introducing a new asymmetric limiter that retains full convergence. Initial results
obtained with this limiter are similar to those of the advocated nonconvergent limiters. Although this limiter
still needs rigorous testing and further development, its initial results suggest that there is no justification
for using nonconvergent limiters.

Keywords: third-generation wave models; limiter; nonconvergence; parameterization

1. INTRODUCTION

Third-generation ocean wave models solve some form of the spectral energy or action
balance equation, for instance

DF

Dt
¼ S, ð1Þ

where F is the wind wave spectrum, and S represents source terms for spectral wave
energy due the influence of wind, wave breaking (‘whitecapping’) nonlinear interactions
and additional (mostly shallow-water) processes. In third-generation wave models, all
sources on the right side of this equation are explicitly parameterized and accounted
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for in the integration of the equation. The first operational third-generation wave
model was the WAM model (WAMDIG 1998, Komen et al., 1994), which solves
Eq. (1) for the energy density spectrum F( f, �) as a function of the spec-
tral frequency f and the spectral direction �. To achieve stable results at reasonable
time steps, this model integrates the source terms in time using a semi-implicit
scheme and a so-called ‘limiter’ that restricts the maximum change for each spectral
bin per time step. Only recently this limiter and the argumentation behind it have
been discussed in detail (Hersbach and Janssen 1999, henceforth as HJ99). In WAM
cycles 1 through 3, the limiter ðL0Þ is given as

L0 ¼ 0:62� 10�6g2f �5, ð2Þ

�L0 < �Flim < L0, ð3Þ

where �Flim is the discrete change of spectral energy density per time step after applica-
tion of the limiter. The maximum change allowed ðL0Þ corresponds to about 10%
of the Phillips spectrum with the energy level according to Pierson and Moskowitz
(1964) for fully developed seas1. Furthermore, the integration is only performed up to
a cut-off frequency fc, above which a parametric tail corresponding to the Phillips spec-
trum is applied. This cut-off also helps to stabilize the integration, although arguments
for applying such a cut-off appear rooted in physics rather than numerics. The cut-off
frequency is usually set to 2.5 times the peak or mean frequency (see Komen et al., 1994).
With the above integration method and limiter, WAM cycles 1 through 3 give stable

results, but the results proved to be sensitive to the discrete time step �t of the model
(e.g., Tolman 1992, Fig. 1; HJ99 Section 1).
Tolman (1992, henceforth denoted as T92) removed the time step dependence from

the integration by using the limiter to calculate the maximum allowed time step, and
by dynamically adjusting the time step. When the time step is calculated separately
for each spatial grid point, this method proves to be efficient for large-scale models2,
where conditions of active wave generation cover only a small part of the domain.
For the active generation areas the time step then becomes significantly smaller, but
for the remaining spatial grid points the time step can safely be chosen much larger
than the customary 1200 s. In practice, this implies that the average source term integra-
tion time step for large-scale models significantly increases, making such models more
economical to operate. This method is also advocated by Hargreaves and Annan
(2001). Reservations voiced by Hersbach and Janssen (2001) are based on an erroneous
representation of T92 (see Appendix).
The above solution is not applicable to the WAM model, because the design of this

model requires that a single overall time step be used throughout the model. In WAM
cycle 4, along with new physics parameterizations, a new formulation for the limiter
was introduced to reduce the time-step dependence of the solution (see HJ99). This lim-
iter is given as

L4 ¼ L0
�t

�
ð4Þ

1That is, in the mean wave direction, assuming a cos2 type directional distribution.
2See Appendix for relevant details of implementation.
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�L4 < �Flim < L4, ð5Þ

where �¼ 1200 s is a normalization time step. Like this limiter, the discrete change of
spectral density per time step �F approximately scales with the time step �t. Thus
the relative impact of this limiter is independent of the time step and will not disappear
for �t ! 0. This implies that the limiter becomes an integral part of the solution, and
that a numerical scheme that includes this limiter no longer converges to the solution
for the physics parameterizations of the model. In fact, a model based on this limiter
may be expected to closely reproduce the previous solution for a time step
�t � 1200 s, independent of the actual time step �t. Convergence of the integration
of source terms and hence an independence of the numerical solution from the limiter
requires that the impact of the limiter reduce with reduced time step of the model, or

@L

@ð�tÞ
< 1: ð6Þ

A weaker than linear dependence of L on �t thus retains full convergence, albeit with
slower speed than for a limiter that is independent of �t.
Extensive experience with WAM cycle 4 has shown that this model behaves poorly at

short fetches (e.g., Hersbach 1996). This behavior can be attributed to improper scaling
behavior of limiter (4). To correct this, several alternative limiters have been proposed
for WAM cycle 4. These limiters generally replace the Phillips type spectral shape of
limiters (2) and (4) with a Toba type spectral shape, and replace �t=� with a properly
scaling linear dependence on �t (e.g., HJ99, Luo and Sclavo, 1997, Hargreaves
and Annan 1998, Monbaliu et al., 2000). A good example of such a limiter is the HJ99
limiter, which is given as

L4 ¼ 3:0� 10�7gu�f
�4fc�t, ð7Þ

where u� is the friction velocity, limited by its Pierson Moskowitz value, and fc is the
dynamically calculated cut-off frequency as described above. The test cases presented
in the above papers suggest that such limiters indeed result in a small dependence on
the numerical time step �t, and show proper scaling behavior for short fetches. HJ99
furthermore justify the use of a nonconvergent limiter by stressing the importance of
proper scaling behavior of the model while adhering to large time steps, and by men-
tioning our general lack of understanding of the physics in the spectral range where
the limiter is usually activated. It therefore seems that at least for engineering purposes,
where the bottom line is that the model performs properly, reliably and economically,
the most recent limiters like (7) are a major step forward for WAM, and potentially for
other third-generation wave models.
From a scientific point of view, however, the nonconvergence of all new limiters vio-

lates rudimentary principles of numerical modeling. It is also contrary to the philoso-
phy of third-generation wave models. This philosophy implies that the evolution of
the spectrum should be determined by the parameterization of the source terms
alone. This philosophy was adopted in order to get the best possible wave model,
that could also be used as a tool to investigate alternative formulations for source
terms. If the limiter becomes a systematic part of the solution, it becomes difficult if
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not impossible to use the model for the latter purpose. The argument of HJ99 that their
limiter is used only sporadically might be considered to counter this reservation. This
argument, however, is at odds with the additional claim of HJ99 that the time
step dependence of the model can only be removed adequately with a nonconvergent
limiter3.
From the above it appears clear that nonconvergent limiters like (7) may be accept-

able for engineering applications, but reduce the usefulness of the model as a scientific
tool. Moreover, if these limiters are used in engineering applications, it is of crucial
importance to know what the limitations of the applicability of these limiters are.
Such limitations have not been addressed by previous authors.
Considering this, the present paper seeks to investigate the impact of limiters in third

generation wave models. To this end a test model and test case are selected in Section 2.
Effects of this limiter in this test case are illustrated and discussed in Section 3. This
test will be used to support or disprove common wisdom regarding limiters, and
furthermore gives an indication of the limits of applicability of limiters in combination
with large time steps. To further access effects of relaxed limiters, and to address
the potential of alternative limiters, a new asymmetric but convergent limiter is pres-
ented and tested in Section 4. The results of this study are discussed in Section 5.
This section also presents a more detailed comparison of the present results with
HJ99. Finally, conclusions are summarized in Section 6.

2. TESTING LIMITERS

To test the effects of a limiter, a wave model and limiter need to be selected. In the
present study, WAM cycle 3 physics as described in WAMDIG (1988) and the corre-
sponding limiter (2) are used.
This limiter is chosen as it is only published and widely used convergent limiter. Its

effects can easily and elegantly be addressed by successively reducing the time step
of the model. The main argument against this limiter is that a Toba type frequency
dependency ðL / u�f

�4Þ might be more appropriate than the Phillips type dependency
ðL / f �5Þ. This convergent limiter, however, will by definition not become an integral
part of the model results. The only requirement of the limiter then is that it is a reason-
able approximation of expected (changes of the) spectra. Over three decades of experi-
ence with Phillips type spectra more than qualify these spectra as such. Furthermore,
the direct dependency of the Toba type spectrum on u� implies that L ! 0 for
u� ! 0, unless u� is ‘filtered’ (HJ99). The inherently subjective nature of this filtering,
in the opinion of the author, negates physical arguments for using a Toba spectral type
in the limiter.
Two additional remarks need to be made regarding limiter (2). First, this limiter

displays proper scaling behavior. Following HJ99 Section 2, it can be written in a non-
dimensional form as

L
�
¼ 0:62� 10�7f ��5, ð8Þ

3Note that in a precursor to HJ99, Hersbach (1996) proposed a convergent limiter and mentions the import-
ance of convergence. This limiter was replaced by (7) in HJ99.
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where L
�
¼ Lg3u�5� is the nondimensional limiter, and f � ¼ fu�g

�1 is the nondimen-
sional frequency. Secondly, because the limiter displays proper scaling behavior, it is
restrictive when applied at different scales.
In this context it should be noted that the non-scaling behavior of the WAM cycle 4

limiter (4) as identified by HJ99 is caused by the addition of the factor �t=�. This factor
is also a main reason for this limiter to be too restrictive for short fetches. In the 1 km
grid spacing case in HJ99 Fig. 2, �t=� ¼ 0:1. This limits the allowed change per time
step to only 1% of the Phillips equilibrium level, effectively prohibiting wave growth.
HJ99, however, erroneously suggest that limiter L0 instead of the factor �t=� is the
source of the suppressed growth at short fetches.
The WAM cycle 3 physics have been selected here for their robustness, ease of imple-

mentation, and reproducibility. An argument against using these physics would be that
they are not ‘state of the art’. Presently, at least three third generation wave models are
widely distributed, WAM, SWAN (Booij et al., 1996, 1999; Ris et al., 1999) and
WAVEWATCH (Tolman and Chalikov 1996; Tolman 1999). Even with different phy-
sics parameterizations, including the WAM cycle 3 physics, these models show fairly
similar growth behavior. Therefore, general findings regarding limiters as obtained for
one parameterization should at least be qualitatively applicable to other parameteriza-
tions. This can be tested qualitatively by comparing the present results with those of
HJ99.
Effects of the limiter are easiest isolated in a simple time-limited homogeneous test

case for deep water as used in T92 and HJ99. In this test case, the following equation
is solved

@Fð f , �Þ

@t
¼ Sð f , �Þ: ð9Þ

Unlike in HJ99, fetch-limited test cases are not necessary, because limiter (2) shows
proper scaling behavior. The spectrum has been discretized with 24 directions
ð�� ¼ 15
Þ, and 40 frequencies from 0.042 to 1.72Hz with a logarithmic distribution
where fiþ1 ¼ 1:1fi. In the test cases presented in the following section, the initial
conditions consist of a JONSWAP spectrum with a peal frequency fp¼ 0.5Hz
and �¼ 3.3. This discrete frequency range was chosen to assure that the prognostic
part of the spectrum (i.e., the spectrum up to fc) always falls within this range.
Note that the initial peak frequency fp was deliberately chosen significantly larger
than in previously published tests in order to illustrate specific limiter behavior (as
will be discussed below).

3. EFFECTS OF THE LIMITER L0

Figure 1 shows growth curves for the above test case as obtained with various time
steps with a wind speed U10¼ 20m s�1. The largest time step �t¼ 1200 s (dotted line)
is often used in large-scale third generation wave models. Successive reduction of the
time step shows a large impact of the time step on the initial significant wave heights
Hsð¼ 4

ffiffiffiffi
E

p
, E is the total energy in the spectrum F, panel a), with convergent behavior

near full-grown conditions (t>15h). With successive reduction of the time step the
impact of the time step on the solution becomes negligible, and the convergent solution
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is reached. This solution is in principle free of time discretization errors. The convergent
solution as presented in Fig. 1 (solid line) has been obtained with �t¼ 5 s. For practical
purposes, this solution is reached for �t¼ 60 s (not presented in figure).
The corresponding evolution of the peak frequency fp [estimated using a parabolic fit

to the frequency spectrum F( f )] is presented in Fig. 1b. The frequency is plotted as a
function of the wave length Hs to provide a simple estimate of errors in the spectral
shape. In the initial growth stages, errors in fp(Hs) can be up to 20%. Although such
errors are notable, they are small compared to the corresponding errors in the wave
height Hs (Fig. 1a).

FIGURE 1 Time limited wave growth for a wind speed U10¼ 20m/s for several time steps for WAM cycles
1–3 physics and numerics (WAMDIG 1988). twenty-four discrete directions and 40 discrete frequencies
ranging from 0.042 to 1.72Hz. Initial conditions consist of a JONSWAP spectrum with peak frequency
0.5Hz and peak enhancement factor �¼ 3.3. (a) Wave height Hs as a function of time. (b) Peak frequency
fp as a function of the wave height Hs.
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Before continuing with analyzing specific effects of the limiter, it should be noticed
that Fig. 1 shows a much larger impact of the time step than Fig. 1 of T92, which
was obtained with a virtually identical model and test. The only differences between
the test cases are the discrete spectral range and initialization of the models. In the pres-
ent test, initial growth is forced to occur at much higher frequencies, where the much
shorter time scales of growth are expected to be impacted much more for identical limit-
ers and time steps.
Effects of a limiter can be assessed by considering the ratio between the discrete spec-

tral change after the limiter is applied (�Flim) and the change before the limiter is
applied (�F ).

�ð f , �Þ ¼
�Flimð f , �Þ

�Fð f , �Þ
: ð10Þ

Of particular interest in such an analysis are patterns that can be identified with
instability. Tentatively, these are oscillations at the scale of the grid. Visual inspection
of the spectral distribution of this ratio suggest that such oscillations mostly occur in f
space, with consistent behavior along directions (figures not presented here).
Furthermore, the predominant importance of nonlinear interactions, which are thought
to be the main source for the instabilities, lies in its redistribution of energy over fre-
quencies. Therefore, it appears useful to consider the ratio of limited to unlimited
changes as a function of the frequency only

�ð f Þ ¼

R 2	
0 �Flimð f , �Þ d�R 2	
0 �Fð f , �Þ d�

: ð11Þ

Finally, an impression of the overall impact of the limiter can be obtained by addres-
sing this ratio for the entire spectrum,

�t ¼

R fc

0

R 2	
0 �Flimð f , �Þ d� dfR fc

0

R 2	
0 �Fð f , �Þ d� df

: ð12Þ

Because this ratio has no meaning in the diagnostic part of the spectrum, the integration
is performed up to fc only.
Figure 2 shows �t, the ratio of limited to unlimited change of total prognostic energy,

for computations with �t¼ 1200 s using the limiter of Eqs. (2) and (3). Presented are
the overall ratio (solid line), and ratios based on positive or negative �F(f, �) only
(dashed and dotted lines, respectively). The suppressed growth rates in the initial
hours integration as evident in Fig. 1 (compare solid and dotted lines) can be explained
by the fact the limiter allows only a fraction of the positive and total energy changes
during the first hours of integration (�t  1, solid and dashed lines in Fig. 2), whereas
a larger part of negative changes is allowed by the limiter (dotted line). Between 12 h
and 16 h, the limiter has a bigger impact on negative changes �F than on positive
ones (dotted and dashed lines). This implies that (contrary to common belief) limiters
may artificially increase growth rates (�t>1).
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Figure 3 shows the distribution of effects of the limiter L0 over frequencies [�( f )] for
several times, again making a distinction between all, positive and negative values of
�F (
, dashed and dotted lines, respectively).
After 1 h of integration (upper left panel of Fig. 3), the limiter allows less than 10% of

the positive and total expected changes in spectral energy density [�( f )� 0.1, 
 and
dashed lines] for the spectral peak ð�Þ and higher frequencies, whereas it leaves negative
changes �F unchanged [�( f )¼ 1, dotted line]. This implies that the model attempts to
significantly increase the energy levels throughout the spectrum. For high frequencies
this is expected as WAM cycles 1 through 3 are known to overestimate the energy
level at high frequencies compared to the fairly realistic initial conditions used here.
This behavior is therefore at least partially caused by poorly chosen initial conditions.
It is nevertheless representative for arbitrary source term formulations, as a wave model
will have to regenerate the equilibrium range of a spectrum if preexisting swell comes
under the direct influence of rapidly increasing winds.
After 3–6 h of integration, the equilibrium level is reached for frequencies above fp

ð�Þ, and the limiter influences positive and negative contributions at similar rates.
The limiter is activated for alternatively negative and positive contributions, suggesting
that it actively suppresses instabilities. At the same time, the limiter still systematically
suppresses wave energy growth at the spectral peak frequency fp by as much as 80% or
more ½�, �ð f Þ < 0:2�. A similar suppression of about 35% is still present after 12 h of
model integration (lower right panel).
Figures 2 and 3 identify some of the pathology of the limiter; less than 25% of the

total change of energy is allowed in the first 5 h of integration and less than 50% in
the first 8 h (solid line in Fig. 2, �t<0.25 and 0.50, respectively). Whereas the limiter
suppresses growth rates at the spectral peak (see above description of Fig. 3). Thus,
contrary to common belief, effects of the limiter are not necessarily confined to the
equilibrium range of the spectrum. Furthermore, values of � that are systematically

FIGURE 2 Ratio of total prognostic discrete energy change after and before application of the limiter ["t,
Eq. (12)]. �t ¼ 1200 s, conventional limiter L according to Eqs. (2) and (3).
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as low as 0.1 indicate that the physical parameterizations in the model should result in a
local equilibrium in a single time step or less. This implies that the model time step is
simply incompatible with the time scales of development of both the total energy and
the spectral energy at fp.
It could be argued that the limiter L0 is a victim of its own success; it allows stable

integration for time steps which are grossly incompatible with the physics at the fre-
quencies that carry the bulk of the wave energy (i.e., close to fp). Due to this incompat-
ibility, it is unrealistic to expect an integration with any limiter to be both stable and
accurate in the present test case. This does not imply, however, that the improvement
of the limiter L0 cannot be achieved. Therefore, alternative limiters are considered in
the following section.

4. AN ALTERNATIVE LIMITER

The results presented in the previous section show that the limiter L0 has two distinct
effects on the integration of the source terms; it suppresses instabilities, but in doing so
it also suppresses wave growth in general. Furthermore, instabilities occur mostly above
the spectral peak frequency, and have an expected signature related to the spectral grid

FIGURE 3 Ratio of discrete spectral change after and before application of the limiter corresponding to
Fig. 2 for several times ["t( f ), Eq. (11)]. Prognostic part of the spectrum only ( f<fc). 
: total spectral change.
�: total change at discrete peak frequency. Dashed line: positive contribution of �F only. Dotted line:
negative contributions only. Note only occasionally 
 will be out of the range of the figures (and even be
negative), when the total change of energy before applying the limiter is close to 0.
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resolution. Considering that the instabilities can be regarded as a superposition on
the physically realistic spectral changes, and that in principle only the instabilities
need to be limited, it appears logical to replace the symmetric limiter (3) by an asym-
metric limiter

ð� � 1ÞL0 < �Flim < ð� þ 1ÞL0, ð13Þ

where � represents the (nondimensional) asymmetry. A first guess for � (denoted as �1)
can be obtained from a local (in the spectrum) average of the discrete spectral change
normalized with L0

�1 ¼ �Fð f , �Þ=L0, ð14Þ

where the area of averaging has to be large enough to average out local oscillations in
�F( f, �) related to instabilities, yet small enough to be close to the physically realistic
part of �F( f, �). Note that such an approach in principle corresponds to a relaxation
of the limiter for the physically realistic part of �F, without relaxing the limiter for
the unstable contributions to �F. Somewhat arbitrarily, �1 will be calculated here
using five grid points in f and � spaces (25 in total), with relative weights of one for
the central three points in both spaces, and 0.5 otherwise. As is obvious from Fig. 2,
�1 may be big as 10 in the initial stages of the integration ð�1 / ��1Þ. Such large
values of � would allow the model to reach the Phillips energy level in a single step,
and would clearly lead to accuracy and probably to stability problems. Initial experi-
ments with the asymmetric limiter indeed showed that j�j < 1 is required near fc to sup-
press instabilities, but that � may be larger near the spectral peak frequency. Therefore,
� in Eq. (13) is estimated here from �1 and a maximum allowed value �max

� ¼ �minðj�1j, �limÞ, ð15Þ

where the sign of � equals the sign of �1, and where the limiting value �lim is estimated as

�lim ¼

�max for f � 0:4fc
. . . for 0:4fc < f � 0:7fc

minð1, �maxÞ for f > 0:7fc

8<
: , ð16Þ

where . . . identifies a linear combination of the adjacent constant values. Figure 4 shows
the results of calculations with �t¼ 1200 s and with several values of the maximum
nondimensional asymmetry �max.
Figure 4 shows a positive impact of a moderate asymmetry of the limiter ð�max � 3Þ

on the model results. With increasing asymmetry, the wave heights Hs(t) converge to
the convergent solution (compare dashed and solid lines in Fig. 4a). For larger allowed
asymmetries (�max¼ 4) the model starts to display an unrealistic ‘overshoot’ behavior
(upper dashed line in Fig. 4a). This behavior is not related to numerical instability,
as spectra remain well behaved (figures not presented here). Instead, it appears to
be related to numerical accuracy. Limited accuracy might be expected, because this
limiter allows for ‘equilibrium’ in the spectrum to be reached in as little as two discrete
time steps.
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The improved representation of the wave heights for increased asymmetries �max
comes to some degree at the expense of an increased error in the spectral shape. This
is illustrated in Fig. 4b, which shows a systematic over-estimation of fp(Hs) which
increases with increasing �max. Qualitatively, this might be expected as wave growth
occurs due to an interplay of two processes; the wind increases spectral energies for a
given frequency and directions, whereas the nonlinear interactions shift energy to
lower frequencies. Integration with large time steps violates physical time scale of the
first process, as has been discussed in Section 3. In the convergent solution, fp shifts
by 20–30% per 20min in the initial stages of wave growth. This implies that a new spec-
tral peak is generated at frequencies where 20min earlier virtually no wave energy was
present. Because nonlinear interaction will obviously not be able to achieve this in a

FIGURE 4 Like Fig. 1 for asymmetric limiter and �t¼ 1200 s.
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single time step, the time scales of shifting the peak frequency are also grossly violated.
Relaxing the limiter by allowing a larger asymmetry or by other means (as in HJ99),
will have a direct impact on the local wave growth due to wind, and hence increase
Hs significantly. It will increase the nonlinear interactions only indirectly when local
spectral densities become larger. It will therefore only indirectly influence the shift of
fp. It is therefore not surprising that the shifting of fp to lower frequencies starts to
lag with an increasingly relaxed limiter.

5. DISCUSSION

The present study analyzes the effects of the so-called limiter on the source term inte-
gration in third-generation wind wave models. This limiter is intended to suppress
instabilities in the spectrum that occur if economically large time steps are used. The
present paper seeks to investigate the effects of this limiter starting with its original
formulation in WAM cycle 3. As has been discussed in Section 2, the findings thus
obtained are expected to be fairly representative for other limiters and physics parame-
terizations. To support this further, present findings will be compared to the results of
HJ99 (obtained with WAM cycle 4 physics and their new limiter) where possible.
Limiters have been very successful in assuring numerical stability in the source term

integration for third-generation wave models with large time steps, but have long
been known to do so at the expense of suppressed initial wave growth rates (T92,
HJ99, present Figs. 1 through 3). Not well known is that the use of a limiter may arti-
ficially increase growth rates by limiting negative spectral changes more severely than
positive changes (Fig. 2). This behavior could nevertheless be observed in previous
studies, as the growth rate @Hs=@t for a given wave height typically is larger for a
model based on a limiter than for the convergent solution in the intermediate growth
stages (T92 Fig. 1, HJ99 Figs. 4 and 5).
The limiters might furthermore be considered very successful as stable integration

can be obtained, even when the numerical time step grossly violates spectral time
scales of wave growth. The present test shows that the impact of the limiter can be
dramatic at the peak of the spectrum (Fig. 3), and need not be confined to the high-
frequency equilibrium range of the spectrum as is often assumed. When the limiter is
relaxed to allow the model to more closely follow its physical time scales, predicted
wave heights Hs become more realistic. Ultimately, however, this will lead to a systema-
tic overestimation of the peak frequency for a given wave height (Fig. 4, last paragraph
of previous section). This behavior can also be observed in HJ99 Fig. 5. For the largest
time step and hence least restrictive limiter, the wave heights are overestimated while
peak frequencies show no noticeable errors for t>5h (dotted lines in left panels).
Furthermore, friction velocities (u�, upper right panel) show much larger errors than
Hs. Because u� in WAM cycle 4 is known to be sensitive to the high-frequency part
of the spectrum, this is an additional indication of notable errors in the spectral shape.
Considering the above, there are two types of errors associated with limiters and the

large model time steps they allow. The first is the systematically suppressed initial
growth rate. Even if the limiter is relaxed as in the present study or as in HJ99, this
behavior remains notable (Fig. 4, HJ99 Fig. 5). The relative importance of this error
depends on two factors; the frequency at which initial growth starts, and the wind
speed considered. The frequency range at which initial growth occurs is limited by
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the maximum discrete model frequency fmax. If the inverse of this frequency is consid-
ered as a representative time scale for wave growth (as suggested in HJ99), a nondimen-
sional time step �~tt can be defined as

�~tt ¼ fmax�t: ð17Þ

In deep ocean wave model applications, and in the test case of HJ99, fmax is typically
0.4Hz. For this relatively low maximum frequency, the initial growth error is moderate
but notable as discussed above. If fmax is increased, the nondimensional time step �~ttmax
will increase, and initial growth errors can be expected to increase accordingly.
This may become a serious problem if the maximum frequency is increased to properly
describe mixed wind-sea and swell systems on coastal scales (SWAN for this reason has
a default fmax¼ 1Hz), while an attempt is made to keep �t similar to those of deep
water models (e.g., Luo and Sclavo 1997; Monbaliu et al., 2000). In terms of the
wind speed of friction velocity, a nondimensional frequency f � and time step �t�

become

f � ¼
fu�
g
, �t� ¼

g�t

u�
ð18Þ

The common test cases for effects of limiters are performed with fairly high wind
speeds. For lower wind speeds, the nondimensional maximum frequency f �max will
become lower, suggesting a more accurate description of initial growth. The non-
dimensional time step �t�, on the other hand, will become larger. This implies that
‘fully grown’ conditions will be reached in less time steps, which suggests that the over-
all accuracy of the growth curve calculation might be less than for higher wind speeds.
Such behavior for lower wind speeds with more accurate initial growth, but with
remaining errors in later growth stages, can easily be verified with calculations with
reduced wind speeds (figures not presented here).
The second error introduced by the large time step is that of the spectral shape, where

the shifting of fp to lower frequencies with increasing Hs appears to lag systematically.
In the present test, this error appears to cancel other shape errors in the initial growth
stages (Fig. 4, Hs<1m), but becomes prominent for the intermediate growth stages
(1<Hs<6m). This error increases with the relaxation of the limiter. Because this
error occurs at intermediate growth stages, it is expected to be potentially important
at arbitrary wave model scales.
Previous authors have done an excellent job in reducing the time step dependency of

third generation wave models as was discussed in the introduction. Nevertheless, the
potential for the above errors remains in their models as discussed here. The main draw-
back of newly proposed limiters such as (7) is their nonconvergent behavior, which can
only be justified for engineering applications (see Section 1). Even in such applications,
the nonconvergence has one major drawback; it makes it virtually impossible to assess
the magnitude of errors. In a convergent model, the magnitude of numerical errors can
be assessed by rerunning selected cases with systematically reduced time steps. For a
nonconvergent model the effects of reducing the time step are unpredictable, and
there are no simple tools to estimate the magnitude of its errors.
The most elegant way to eliminate the above errors is to locally reduce the time step if

necessary (T92, Hargreaves and Annan 2001), thus eliminating the need for a limiter.
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The model structures of WAM and SWAN, however, do not allow such an approach. It
therefore remains useful to investigate convergent limiters.
Upon casual inspection, the present asymmetric convergent limiter of Eqs. (13)

through (16) may not look like a good solution compared to the new limiter of HJ99
(compare Fig. 4 and HJ99 Fig. 5). As discussed before, however, this is at least partially
due to the more taxing initial conditions used in the present study. To obtain a more
equal comparison, the present test has been rerun with a wind speed u10¼ 25m s�1

and an initial peak frequency fp¼ 0.25Hz, as in HJ99. A single maximum asymmetry
�max¼ 3 has been used, based on the results of Fig. 4. The results of this test are
presented in Fig. 5.

FIGURE 5 Like Fig. 1 for the test case of Hersbach and Janssen (1999). U10¼ 25ms�1, and initial con-
ditions with fp¼ 0.25Hz. Note that the solid and chain lines practically coincide.
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A comparison of the present Fig. 5 with Fig. 4 of HJ99 shows qualitatively similar
impacts of the original limiter in spite of the different physics parameterizations used
(compare dotted and solid lines in both figures, note that the limiters are identical
for �t¼ 1200 s). It does appear, however, that the WAM cycle 4 physics as used in
HJ99 is slightly more sensitive to the limiter than the WAM cycle 3 physics used
here. The errors for the present convergent limiter (compare dashed and solid lines in
Fig. 5) are both qualitatively and quantitatively similar to those of the nonconvergent
limiter (7) of HJ99 (their Fig. 5, compare dotted and solid lines). As expected, effects of
reducing the time step to �t¼ 600 s are very different for both limiters. For the present
limiter, the reduction of the time step virtually eliminates time discretization errors in
the model (compare chain and solid lines in Fig. 5). In HJ99 the reduction of the
time step has much less impact, particularly regarding initial growth errors.
Considering this, the new asymmetric limiter appears to behave comparably to the
HJ99 limiter, but does so without sacrificing the convergence of the numerical scheme.
It should be noted that the asymmetric limiter was developed for the present study

mainly to illustrate the effects of a progressively relaxed yet convergent limiter. At
best, the present study can be considered as a proof of concept for such a limiter. If
such a limiter is to be applied to operational models, its behavior needs to be tested
much more rigorously than in the present paper. Furthermore, the averaging scheme
in Eq. (14) as well as the limitation in Eq. (16) are chosen in an ad hoc manner and
require additional attention. Finally, an important aspect of the limiter is the stabiliza-
tion of the source term integration for high frequencies. Other improvements can also
improve the stability of the source term integration in this spectral regime, and should
therefore be considered simultaneously. Such improvements are for instance (i)
Non-central time integration as first suggested by Hargreaves and Annan (oral presen-
tation at 1996 WISE meeting, 2000, 2001), and used by HJ99. (ii) Application of a
smooth transition to the parametric tail as suggested by Tolman and Chalikov
(1996). (iii) Development of improved parameterizations of the nonlinear interactions
without the spuriously large interactions at high frequencies as is common in the pre-
sently used Discrete Interaction Approximation (see Hasselmann et al., 1985 Fig. 7).

6. CONCLUSION

Most third-generation wind wave models use a so-called limiter to assure numerical sta-
bility when the model is integrated with economically feasible time steps. This limiter
has previously been shown to result in a noticeable dependence of model results on
the discrete time step of the numerical integration. In recent papers, this time step
dependency has been removed by scaling the limiter with the time step. This approach
removes the numerical convergence from the integration scheme. This is contrary to
rudimentary numerical principles and to the philosophy behind third-generation
wave models.
The present study investigates the effects of limiters starting from the original WAM

cycle 3 approach. It is shown that a conventional convergent limiter allows for stable
model results even if the discrete model time step grossly violates time scales of (initial)
wave growth. Contrary to common belief, the effects of the limiter are not necessarily
confined to the equilibrium range of the spectrum, and the limiter can result in artifi-
cially increased growth rates in the intermediate growth stages. In its original form,

LIMITERS IN THIRD-GENERATION WIND WAVE MODELS 81

D
ow

nl
oa

de
d 

by
 [

U
O

V
 U

ni
ve

rs
ity

 o
f 

O
vi

ed
o]

 a
t 0

6:
39

 2
8 

O
ct

ob
er

 2
01

4 



errors induced by the limiter are dominated by suppressed initial growth rates. Such
errors become more prominent if the maximum model frequency fmax is increased.
If the limiter is relaxed, errors in the initial growth rates can be significantly reduced.

Ultimately, however, the relaxation of the limiter in combination with large time steps
will result in errors in the spectral shape, where the evolution of the peak frequency fp
will become too slow for the given wave height evolution. Although these results
have explicitly been obtained for the WAM cycle 3 physics, similar behavior appears
evident in WAM cycle 4 when the limiter is relaxed (see HJ99).
The present results for relaxed limiters have been obtained with a new asymmetric

limiter that retains full convergence. Because this limiter appears to result in similar
model behavior than can be obtained with previously suggested nonconvergent
limiters, there appears to be no good justification to use the latter. The present
study, however, can only be seen as a proof of concept for the new limiter. Much
work needs to be done before it can be safely implemented in operational models.
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APPENDIX

Dynamically Adjusted Time Steps

In T92, the limiter L0 is used to calculate the time step as

�t / min
8�,f

L0ð f Þ

jSð f , �Þj

� �
, ðA:1Þ

for an explicit Euler scheme, or according to his Eq. (16) for the semi-implicit scheme of
WAM. Hersbach and Janssen (2001) label this approach as not suitable for operational
application because their analysis shows that �t # 0 for S " 0 while F # 0. From Eq.
(A.1), however, it is obvious that �t ! 1 for S ! 0 for all F. The misunderstanding
of Hersbach and Janssen (2001) is based on their definition of a limiter as proportional
to the instantaneous spectrum [their Eq. (4)], which would lead to a time step

�t / min
8�,f

Fð f , �Þ

jSð f , �Þj

� �
, ðA:2Þ

where  is relative limitation level. If such a relative limiter is used to adjust the time
step, it may lead to the above pathological behavior (if the equations used illustrate
this indeed are representative for source terms). More importantly, it will by definition
not allow for wave growth starting from F¼ 0.
In the released version of WAVEWATCH (Tolman 1999), a time step based on a

relative limitation (A.2) was added to a time step based on the parametric limitation
(A.1) to assure accurate swell dissipation due to various processes (see Tolman 1999
pages 37–38 for details). To avoid pathological behavior, the latter time step is filtered as

�t / min
8�,f

max½Fð f , �Þ, L0ð fmaxÞ�

jSð f , �Þj

� �
, ðA:3Þ

which is practice has proven to be accurate and economical for a wide range of model
applications.
As a final economical safeguard, the distributed version of WAVEWATCH allows

the user to set a minimum allowed time step. If the dynamically calculated time step
is smaller than this minimum, the integration scheme reverts to the original convergent
limiter. Typically this minimum time step is set to 120–300 s, at which time step level the
impact of a convergent limiter is generally negligible. This minimum time step as well as
limiter levels used in the calculation of the time step are user-defined in this model.
Their impact is therefore easily checked for any application.
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