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Abstract

This report discusses the selection of accurate numerical propagation

schemes for use in wind wave models. The paper utilizes previous

studies in wave modeling and in the related field of pollution mod-

eling, and does not present new numerical methods. In reviewing

possible methods, it was decided to consider explicit finite difference

methods only, although both implicit and semi-Lagrangian methods

are potentially useful. The scheme selected for further testing is the

third-order ULTIMATE QUICKEST (UQ) scheme. Using this scheme in
combination with a splitting technique, the overall model will become

second order accurate in both space and time. The scheme is tested for

one-dimensional propagation, two-dimensional propagation of short-

crested swell described by a single frequency, two-dimensional propa-

gation of a continuous spectrum, and fetch-limited wave growth. The

scheme is found to be sufficiently accurate to result in a disintegra-

tion of the wave field into discrete wave fields for common spectral

discretizations. This disintegration can be avoided by introducing a

diffusion tensor as suggested by Booij and Holthuijsen (1987). Con-

trary to conventional wisdom, common frequency resolutions of 10%

are found to be insufficient to describe swell propagation accurately.

The UQ scheme interacts well with source terms, resulting in accurate
and stable fetch-limited growth behavior. The selected scheme shows

noticeable improvements over the commnonly-used first-order scheme.

The most important improvements appear to be the removal of spuri-

ous maxima of south- or northward traveling waves, and an increased

spatial and temporal consistency of the swell field. The latter is im-

portant for swell prediction in general, and may be important for data

assimilation.

1 Introduction

Modeling wind waves on the ocean surface has been in the center of interest of

engineers and scientist for more than 50 years. After the pioneering work of

Gelci et al. (1956), many numerical wave models have been developed (e.g.,

SWAMP group, 1985; SWIM group, 1985). Such models are usually based on a

balance equation for a wave energy spectrum like F(f, 0), where f and O are
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the spectral frequency and direction, respectively. Such a balance equation
can be written as

OF 09
a VV[cgF+ -C oF= S, (1)

=o- 3(2)

CO 1au 3d (3)
co k d m(3)

a2 = gk tanh kd, (4)

where d is the mean water depth, a = 27rf is the intrinsic frequency, k is
the wavenumber, cg is the group velocity (in direction 0), S is the net source
term describing generation and dissipation of wave energy, x are general spa-
tial coordinates and m is a coordinate perpendicular to 0. The first term
of this equation describes temporal variations of the spectrum, the second
term describes spatial propagation, the third term describes changes of the
wave direction due to spatially varying depths (refraction) and the right side

describes non-conservative processes (sourceterms). Note that this equation
is only valid for slowly varying depths without currents. It can be expanded
to include effects of slowly varying currents, without changing its basic char-
acteristics (see, e.g., Komen et al., 1994). Similarly, it is easily modified for
other definitions of the spectrum (see, e.g., Tolman, 1991).

Equation (1) is usually solved using a fractional step method (e.g., Ya-
nenko, 1971), where separate parts of the equation are solved using consecu-
tive partial solvers. All models known to the author treat source terms and
propagation separately. It is also possible to consider the different propaga-
tion terms separately.

Over the last decades, much attention has been paid to the physical as-
pects of wave modeling [i.e., the right side of Eq. (1)], culminating in the
development of the WAM model (WAMDIG 1988; Komen et al. 1994). This
model is a third-generation wave model, which implies that a balance equa-
tion for wave energy spectra is solved directly, without prescribing a spectral
shape. In this model, however, not much attention has been given to nu-
merical methods. WAM uses first order propagation schemes, the numerical
diffusion of which is usually deemed unacceptable in most fields of numerical
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fluid mechanics. Several authors have utilized more accurate schemes (for

instance, SWAMP group 1985; Neu and Won 1990; Tolman 1991, 1992), but
no 'standard' has been set yet.

In the present paper the selection of an accurate propagation scheme for
implementation in a third-generation wave model is discussed. The discus-
sion and selection of schemes considers existing schemes only, and utilizes
the extensive experience with numerical methods in the field of pollution
and transport models, where governing equations closely resemble Eq. (1).
In section 2, general methods are reviewed. Based on this review, explicit
finite difference methods will be considered, although other methods, in par-
ticular implicit finite difference schemes and semi-Lagrangian methods are

potentially useful. In section 3, the selection of a scheme is discussed, and
the propagation properties of this scheme are tested considering propagation
of swell, where the wave energy is concentrated at a single spectral frequency.
The selected scheme (the third order accurate QUICKEST scheme in combi-
nation with the ULTIMATE filter) is sufficiently accurate to show effects of
discrete dispersion, also known as the 'garden sprinkler effect' (Booij and
Holthuijsen 1987). In section 4, solutions to this problem are discussed. In
section 5, the propagation test are expanded to include continuous frequency
spectra. Contrary to common belief, a frequency resolution of 10% appears
insufficient to describe swell propagation accurately. Finally, the propaga-
tion scheme has to be used in combination with the source terms to represent
fetch-limited growth. This combination of propagation and source terms may
cause numerical problems, and is discussed in section 6. The results of this
study are discussed in section 7.

2 Basic methods

For the solution of the propagation equation

OF V[]+ aF =a--V.,+[cgF] + cF=0at ~ ~~~~ O , ) (5)

three basic solution techniques are available. Standard methods are the
Finite Difference (FD) and Finite Element (FE) methods. The hyperbolic
character of Eq. (5) furthermore makes a characteristic or semi-Lagrangian
method potentially useful.
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The method of characteristics, better known in ocean wave modeling as
the 'ray method' represents a classical approach to wave propagation (e.g.,
Whitham 1974; Mei 1983). A distinction can be made between a full ray
method, where rays originate at the lateral boundaries of the area consid-
ered, or partial ray methods, where rays are traced for a given time interval.
Full ray models are mainly used for steady propagation problems (without
source terms) and for models predicting wave spectra at selected points. This
method is particularly useful as it provides insight in, for instance, effects of
variable water depths and variable currents (reviews by Peregrine and Jon-

sson 1983; Holthuijsen and Tolman 1991). However, the full ray method
results in a scattering of information in both physical and spectral space.
This is detrimental for the evaluation of source terms which require informa-
tion of the entire spectrum (whitecapping and nonlinear interactions). For
this reason full ray methods are generally not deemed suitable for third-
generation wave models. Partial ray methods or semi-Lagrangian methods
do not have this deficiency. They furthermore can be made unconditionally
stable, allowing for large time steps. The treatment of boundary conditions,
however, particularly considering small islands, can become complicated.

Apparently FE methods have never been used for wave propagation mod-
els. FE methods may be useful for wave models as they present a natural
way to increase model resolution in places where such resolution is needed
(typically along coast lines). However, it remains to be seen if matrix solvers
implicit to FE methods can be made efficient for the large number of degrees
of freedom required in a wave model. Because this study is intended to use
existing techniques, FE methods will not be considered further.

FD methods have often been used in wave models. A distinction is made
between explicit and implicit schemes. To the knowledge of the author, only
explicit schemes have been used in wave models. Explicit schemes have the
advantage of being relatively simple to implement, and have relatively mod-
est computer memory requirements. Their disadvantage is that time steps
are limited by Courant-Friedrich-Lewy (CFL) criteria. For high resolution
models, this usually implies that the propagation time step becomes much
smaller than the time step of the physical processes involved. Implicit FD

methods are generally designed to be unconditionally stable, and therefore do
not have the above time step limitation. However, implicit methods usually
require more memory, which, given the large number of degrees of freedom
in wave models, can be a problem. Furthermore, implicit FD methods in
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general are more difficult to implement than explicit methods.
Considering the above, three types of propagation schemes are poten-

tially suitable for implementation in third-generation wave models; partial
ray (semi-Lagrangian) methods, and explicit or implicit FD schemes. The
present study will concentrate on the simplest of these three methods; the
explicit FD methods. The need/potential for other methods will be discussed
at the end of this report.

3 Selection and testing of a propagation scheme

Many explicit FD methods have been used in wave models (see, for instance,
SWAMP group 1985; Neu and Won 1990; Tolman 1991, 1992). Furthermore,
Eq. (5) is similar to the governing equation in transport and pollution models.
In this field, a wealth of experience exists (see, for instance, Fletcher 1988;
Cahyono 1994), which can be applied directly to wave models.

Before a numerical scheme can be selected, requirements have to be for-
mulated. Based on several years of experience with developing and operating
third-generation wave models, the following four requirements are considered:

1 The scheme has to result in accurate propagation of poorly re-
solved swell fields over large distances at an angle with the spatial
grid.

2 The scheme has to be able to deal with extremely poor resolutions,
in particular, with respect to spectral directions (see Booij and
Holthuijsen 1987).

3 The scheme should result in negligible spurious oscillations and/or
negative wave energy.

4 When combined with source terms, the scheme should result in
stable fetch-limited growth.

The first two requirements are straightforward, although not easy to quan-
tify. The latter two requirements address the occurrence of dispersion errors
in higher order schemes. Such errors manifest as wave-like spurious solu-
tions trailing or leading a propagated wave field of finite dimensions (see,
for instance, Fletcher 1988). Such spurious solutions result in negative wave
energy, and may interact with the source terms (in particular the sensi-
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tive nonlinear interactions), resulting in temporal oscillation of solutions for
steady conditions. For many schemes such oscillations are small and damp
out slowly, but for some schemes, they result in unstable model behavior.
This interaction with source terms may require additional numerical diffu-
sion or filtering to stabilize results (e.g., Tolman 1991, 1992). This will be
discussed in section 6.

The first requirement implies the need for a higher-order accurate scheme,
as will be illustrated below. All explicit higher order schemes, however,
result to some degree in the above discussed spurious oscillations for poorly
resolved fields. Three groups of solution techniques are available to minimize
this problem (see, for instance, Fletcher 1988). These are Flux Corrected
Transport (FCT) schemes, Total Variance Diminishing (TVD) schemes and
filters and Total Variance Bounded (TVB) schemes and filters. Furthermore,
many 'engineering' solutions are available (see, for instance, Tolman 1991).

Although some experience has been obtained with higher-order propaga-
tion schemes in wave models, this experience is generally limited. There is,
however, an abundance of experience with the numerical solution of simi-
lar type equations in the field of pollution and transport models. Instead of
starting a separate comparative study into the behavior of numerical schemes
for wave models, the latter experience should be used. One of the most recent
comprehensive studies in this field has been performed by Cahyono (1993)
and Falconer and Cahyono (1993). This study indicates that the best balance
between accuracy and economy is obtained by using the QUICKEST scheme
(Leonard 1979), in combination with the ULTIMATE TVD limiter (Leonard
1991). This scheme is third-order accurate in both space and time. It does,
however, require splitting of the solution in all separate dimensions, effec-
tively making the scheme second-order accurate in space and time. Below,
the ULTIMATE QUICKEST scheme will be denoted as the UQ scheme.

We will consider the UQ scheme for propagation in one dimension first.
The QUICKEST scheme is based on the fluxes between cell boundaries. The
discrete flux Fi,- between grid points with indices i and i - 1 is defined as

-F,, dAt (s Fb) (6)

where x = cg [Eq. (2)], and where the suffix b indicates values at the cell
boundary, defined as
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Xb = 0.5 (xi + -), (7)

Fb= [(1 + C)F- + (1- C)F )2, (6 (8)

where C is the CFL number at the cell boundary (including a sign identifying
the propagation direction)

C =-- At (9)0Ax'

and CU is the (upstream) curvature of the energy density distribution

CU_ (Fi- 2 -2F- 1 +F ) (Ax)-2 for C>0 (10)
(Fi -2Fi+Fi+ ) (Ax)- 2 for C < 0 

To assure that this scheme does not generate aphysical extremata, it is used
in combination with the ULTIMATE limiter. This limiter uses the central,
upstream and downstream energy density (suffices c, u and d, respectively),
which are defined as

Fc Fi-1 , F. = Fi, Fd = Fi-2 for C > 0
Fc =F, F= Fi- , Fd = Fi+l for C <0' 

To assess if the initial state and the solution show similar monotonic or non-
monotonic behavior, the normalized energy F is defined as

- F -F,,F =F - F(12)Fd -F.

If the initial state is monotonic (i.e., 0 < FC < 1), the (normalized) energy
at the cell boundary Fb is limited to

F_<•Fb<1 , F_< F F C- (13)

otherwise
Fb = F. (14)
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This completes the calculation (and limitations) of the fluxes at the cell

boundaries. The actual propagation scheme then follows from applying these

fluxes to the spectral density at the grid point.

F +1 = FP + Y,--i,+, (15)

where Fi,+ = Fi+l,- and n is the discrete time index.
This completes the description of the UQ scheme except for the treatment

of boundary conditions. Boundary treatment is required if one of the grid

points is either on land (where F = 0 is assumed) of is a point with a

predefined boundary value. In such cases, Eqs. (7) and (8) are replaced by

xb = 3s, (16)

Fb = F., (17)

where the suffix s indicates the (average of) the sea point(s). This boundary

condition represents a simple first order upwind scheme, which does not

require the limiter (11) through (14).
Stability requirements for the UQ scheme are similar to those of a first

order scheme, where the Courant number ICJ has to be less than 1.

Before applying this scheme to multi-dimensional tests, some simple one-

dimensional test cases are considered. First consider a test similar to that of

Tolman (1992), Fig. 6. The initial distribution of the significant wave height

is given by

= F(f, o) df do, (18)

is Gaussian in space. All energy is concentrated in a single spectral bin,

representing monochromatic swell. This wave height distribution is propa-

gated for 100 time steps with C - 0.28. Results for a conventional first order

scheme and the UQ scheme are shown in Fig. la. The advantages of the latter

scheme over the first order scheme are obvious. This scheme nevertheless re-

sults in an error in the maximum value of F of approximately 10%, and tends

to flatten the maximum and sharpen the transition to areas without wave
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energy. Both are known properties of TVD and FCT schemes. It might appear
that the present scheme performs poorer than the SHASTA scheme as used
by Tolman (1991). Extended experience with the SHASTA scheme, however,
has shown that this scheme tends to skew energy distributions, in particular
for large CFL numbers, and does not interact well with source terms (see
section 6). On first impression, Fig. la suggests that the first order scheme
generates wave energy, because the surface under the distribution predicted
by the first order scheme is much larger than that of the exact solution.
This, however, is not the case. The wave energy, which corresponds to H 2,
is conserved by both schemes.

The above one-dimensional test is fairly typical for tests of advection
schemes, but not necessarily relevant for swell propagation over long dis-
tances. As an extreme swell propagation test, propagation of long swell
around the globe will be considered. Swell is considered with a period
T = 24.9s, which travels around the world in 24 days. The grid incre-
ment is chosen as Ax -- 1°, and the time step as At = lh (576 time steps).
The initial conditions again consist of a Gaussian wave height distribution in
space with a standard deviation of Ax, 2Ax or 4Ax. The results for a con-
ventional first order scheme and the UQ scheme are shown in Fig. lb through
d, respectively. For all three cases the superior behavior of the uQ scheme
compared to the first order scheme is again obvious, and errors of the UQ
scheme are similar to those in Fig. la. The case shown in Fig. lb represents
a wave field which is poorly resolved by the grid. In this case, no numerical
scheme can be expected to propagate the swell field accurately. The error in
the maximum swell height for the UQ scheme is approximately 44%, which is
still a major improvement over the error in the first order scheme (76% un-
derestimation of the peak wave height). The case shown in Fig. lc represents
a wave field which is reasonably well resolved. In this case the error of the
higher order scheme is reduced to 22%, compared to 66% for the first order
scheme. Finally, Fig. ld represents a well resolved case, where the errors
of both schemes are 6% and 53%, respectively. For the latter two cases the
behavior of the UQ scheme is excellent, particularly considering the severity
of the test.

For propagation in multiple dimensions, propagation in each dimension is
considered using a separate fractional step. Accuracy, in particular near
boundaries can be improved by rotating the order of the fractional steps. A
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two-dimensional implementation of the QUICKEST scheme has been suggested
by Davis and More (1982). This scheme, however, is only first order accu-
rate in time due to the omission of some cross-derivatives (see, e.g., Fletcher
1988, p. 344). For propagation of wave energy at an angle with the grid
this leads to an unacceptable deformation of the propagated energy distribu-
tion (figures not presented here). Note that Cahyono (1993) also concluded
that the implementation of the UQ scheme using a splitting technique for all
dimensions is more accurate than the Davis and More version of this scheme.

Several two-dimensional propagation tests have been performed. The first
test considers straightforward propagation of swell in deep water under sev-
eral angles with the grid. Swell again is described by considering wave energy
in a single discrete spectral bin. The two-dimensional spectral propagation
equation for this case is given as

OF a. a
at +vaF +0 a F =O (19)at 0X a

where x and y represent the two spatial dimensions, ± c cos9, and Q -
Cg sin . Test results for the two schemes considered here are presented in
Fig. 2. The initial condition (panel a) consists of a swell field with a Gaussian
wave height distribution with a spread of 2Ax and 2Ay in the two spatial
dimensions, where spatial increments are identical (Ax = Ay). Thus, this-
test represents a reasonably well resolved wave field. The exact solution
consists of a propagation of the field over a distance 37.5Ax = 37.5Ay in the
wave propagation direction 0, without a change in the shape of the spatial
distribution. Fig. 2b and c show the results for the first order scheme for
(Cartesian) directions 0 = 0° and 45° , respectively. As expected, these results
show large numerical diffusion, with errors in the maximum wave height
of 32% and 48%, respectively. Moreover, the orientation of the numerical
diffusion is sensitive to the propagation direction 0, which is obviously not
desirable. Finally, the propagation velocity, in particular across the grid,
appears slightly slow. Figs. 2d and e show the corresponding results for
the UQ scheme. Although the errors of this scheme are not negligible (8%
and 16%, respectively), they are much smaller than for the first order scheme.
This scheme tends to transform the original distribution to a somewhat more
square shape, but keeps the energy close to the target area. Although the
change in shape of the wave height distribution is somewhat dependent on
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the propagation direction, this is much less obvious than with the first order
scheme. The UQ also appears to be somewhat slow in propagating the wave
fields, but less so than the first order scheme.

The second two-dimensional propagation test considers swell propagation
across the Pacific Ocean using realistic model resolutions. Most global or
large scale wave models are defined in terms of longitude A and latitude ;.
The corresponding balance equation for deep water becomes (e.g., Groves
and Melcer 1961;WAMDIG 1988)

1F a.- a a.-F + - -- X cos F +-AF +-O F = 0, (20)
at cos q 0a aA 80 9

= yR-1 , (21)
A = (R cos )-1 , (22)
0g = tan R-1 , (23)

where R is the radius of the earth, and 0g represents the change in direc-
tion of waves propagating along great circles. Note that this equation is
easily transformed to shallow water by using the corresponding expressions
for x and !, and by combining the refraction velocities (3) and (23). Note
furthermore that Eq. (20) can be rewritten as

aA a. a. a 0, (24)
-+ A+ -AA + -OA = O (24)
at ao aA ao~

where the propagated quantity A _ F cos ;. Consequently, the above propa-
gation schemes can be used without modification on the propagated quantity
A. A deep-water swell propagation model has been constructed for the Pacific
Ocean based on Eq. (24), using a spatial resolution AO = 1° and AA = 1.25°,
and a time step of 20 min. Even for longcrested swell, a discrete description
of the spectral direction is required, due to the great-circle refraction term
in Eq. (24). Following common practice in wave modeling, we have cho-
sen AO = 15°. The initial condition consists of a swell field with a period
T = 17s, south of Kamchatka. Its center is located at 160°E and 45°N, and
the swell field has a Gaussian wave height distribution in space with a spread
of 2AA and 2A; (2.5° and 2.0° , respectively). To represent swell that has
been generated recently, the directional distribution of wave energy in the
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spectrum F(f, 0) is of the form cos2(O - 6), where 0 is the mean propagation
direction. Such a directional distribution is fairly representative for wind
seas. Two cases are considered; in the first case swell is propagating mainly
to the east with 0 = 120° relative to North (oceanographic convention), and
in the second case mainly to the south with 9 = 150°.

Before assessing the behavior of the two schemes considered here, the
exact solution will be approximated. This approximation is obtained by
considering the results of the UQ scheme for good resolutions in all spaces
considered. For this purpose a model with A) = AO = 0.25° and AO = 2.5°

has been constructed. The corresponding spatial resolution is more than a
factor of 2 better than the best resolution in Fig. 2. The directional resolution
is sufficient to avoid effects of discrete dispersion as described by Booij and
Holthuijsen (1987). It is expected that the error of the wave heights thus
obtained is of the order of 10% or smaller. The initial conditions, and the
'exact' solutions after 2, 4 and 6 days are shown in Figs. 3 and 4, and the
evolution of the maximum wave height is presented in Fig. 5. The swell field
propagates with identical speed in all directions contained in the initial wave
field. The large initial directional spread results in a crescent-shaped wave
height distribution which covers an increasing area with increasing time. Due
to this directional dispersion, the maximum wave height decreases to 38%i
28% and 24% of the initial maximum wave height after 2, 4 and 6 days,
respectively (see Fig. 5). Apart from effects of coastlines and the distortions
due to the map projection, the wave fields for both cases are very similar,
as expected. Note that in nature dispersion also occurs in the propagation
direction of the swell, as even swell shows a distribution of wave energy
over a continuum of frequencies. Because this test case considers purely
monochromatic swell, frequency dispersion does not occur. The effect of
frequency dispersion will be discussed in section 4.

The expected reduction of the maximum swell height due to directional
dispersion can be estimated by considering the asymptotic behavior of swell
propagating from a point source. In this case the swell fields at different times
are located on concentric circles. The area over which the wave energy in
any part of the directional distribution is spread due to directional dispersion
is then proportional to the circumference C of the circle on which the swell
field resides, where c is given as
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C = R sin (-) . (25)

Conservation of energy requires the swell energy to be inversely proportional
to C, so that the wave height Hs becomes proportional to

-1/~~~~~~26
Hs c [R sin (-)]-1/2 (26)

For propagation distances cgt significantly smaller than R these two equations
can be approximated as

C = cgt, (27)

H t-c / 2 (28)

The above asymptotic solutions are valid only if the propagation distance cgt
is significantly larger than the spatial extent of the initial distribution. In the
tests considered, this is the case after approximately 1 day (note that Eq. 26

requires that H T co for t 4 0). The trend of Eq. 26 is included in Fig. 5.
After approximately one day, the wave height reduction due to directional
dispersion (solid lines) follows the behavior of Eq. 26 (dotted line) perfectly.

Figures 6 and 7 show the results for the first order scheme using the above
realistic model resolutions, and Figs. 8 and 9 show the corresponding results
for the UQ scheme. Both schemes show peculiar results with several local
maxima.

The only difference between 'exact' model of Figs. 3 and 4 and the UQ

scheme of Figs. 8 and 9 is the numerical resolution. The reduced spatial
resolution results in a slight deformation of the propagated wave field. The
narrow distribution of wave heights in the propagation direction of the waves
is nevertheless maintained. The effect of the reduced directional resolution is
much more dramatic. In Figs. 8 and 9 the initial condition consists of a set
of discrete wave fields for directional increments of 15°. All these wave fields
propagate more or less independently, resulting in a set of local maxima along
the crescent shaped wave field. This is the so-called garden sprinkler effect
(Booij and Holthuijsen 1987, henceforth denoted as GSE), which occurs for
any accurate scheme if the directional resolution is insufficient to maintain
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the continuity of the wave field. The required directional resolution to avoid
the GSE is of the order of A =-- Ax/(cgt), which is typically of the order of
1° to 3° .

In the first order scheme (Figs. 6 and 7), the GSE is not obvious. It is
masked by the large numerical diffusion of this scheme, which is particu-
larly evident in the large spreading of the wave field in the wave propagation
direction. This scheme only appears to favor propagation along meridians,
generating an additional local maximum at 160°. The generation of this local
maximum is caused by the formulation of the balance equation (20) in terms
of longitudes (A) and latitudes (4). Waves propagating along meridians re-
main on the same meridian, because it is a great circle. Then A = =g = 0,
and the propagation is essentially one-dimensional. Numerical diffusion then
occurs only along the propagation direction (compare Fig. 2b and Fig. 10).
Because wave energy is not redistributed perpendicular to the wave prop-
agation direction, the GSE remains noticeable. For all other propagation
directions great circles are curved lines in O-A space, so that the propagation
is three-dimensional. This implies that the first order scheme introduces sig-
nificant numerical diffusion in the 4, A and 0 spaces. The numerical diffusion
in A and 0 space simply manifests itself as a spreading of wave energy in these
spaces. The numerical diffusion in 0 space, manifests itself as a spreading of
wave energy perpendicular to the wave propagation direction (see Fig. 10).
Consequently, waves not travelling along meridians are subject to large nu-
merical diffusion in all directions. This diffusion is apparently sufficient to
mask the GSE for the model resolutions considered here.

Two additional remarks need to be made considering the GSE. First, the
directional dispersion of swell results in a continuous narrowing of the direc-
tional distribution. The directional distribution of swell energy is therefore
always poorly resolved by practical model resolutions. Every propagation
scheme will therefore result in some numerical diffusion in 0 space due to
the great circle refraction term. This effect will be largest for components
travelling at large angles with meridians, for which the great-circle refraction
velocity is largest. In Figs. 8 and 9 this effect can be observed as a slightly
smoother wave height distribution for waves traveling in the most easterly di-
rections. Secondly, the (relative) effect of the curvature of great circles in A-+
space becomes smaller for small-scale models and near the equator. In such
conditions propagation along parallels will become nearly one-dimensional,
and the first order scheme can be expected to favor this propagation direction
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too.
Figure 5 shows the evolution of the maximum wave height in time for the

first order scheme (chain lines). For the first three days, the maxima of both
runs with the first order scheme are practically identical, as would be ex-
pected. In the last three days, the results of both runs start to deviate. This
is attributed to the occurrence of the spurious maximum at 160°E. When
this maximum becomes the global maximum, the reduction of the maximum
wave height slows down significantly (branch marked A in figure). The max-
imum wave height predicted by the first order scheme is systematically low
(compare chain and dotted lines), as would be expected considering the large
numerical diffusion of this scheme. Figure 5b furthermore shows that the rate
of reduction of the maximum wave height is too large (compare the slopes
of the chain and dotted lines), except when the spurious maximum becomes
the maximum wave height (branch marked A).

The evolution of the maximum wave height of the UQ scheme is also
presented in Fig. 5 (dashed lines). The results for both runs are again sim-
ilar, until a spurious maximum at 160°E becomes the global maximum in
the run with southerly wave propagation (branch marked B in the figure).
Inthe latter case thewave height reduction due to dispersion stops almost
completely. The maximum wave height predicted by the UQ scheme follows
the exact solution closely, in spite of the unrealistic spatial energy distribu-
tion. This behavior is attributed to cancellation of numerical errors; the local
maxima in the swell distribution are expected to over-estimate the maximum
wave height, whereas propagation errors of these local maxima reduce the
predicted wave height.

The clear occurrence of the garden-sprinkler effect and unrealistic disper-
sion characteristics of accurate schemes like the UQ scheme, show that the
improvement of the numerical scheme in some ways degrades model per-
formance. The solution to this problem is simple: increase the directional
resolution by an order of magnitude. This solution, however, is usually not
economically feasible. An alternative solution is discussed in the following
section.
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4 Dispersion correction

The GSE and solutions to this problem have been discussed in detail by Booij
and Holthuijsen (1987). Their solution adds a diffusion tensor to the prop-
agation equation. Considering plane-grid propagation without a refraction
term, their equation becomes

at OxF2+ _ |F-D aF + _ 1 F DZYY ] -2DY aa =°, (29)at ax VF' D~x- ay [F-D,,,,ay Ox , ay

Dx = Ds cos2 0 + D,,nn sin2 0, (30)

Dy = Ds sin2 0 + Dnn cos 2 0, (31)

DXY = (DS - Dn,) cos 0 sin 0, (32)

D = (Acg) 2 Ts/12, (33)

D-n = (cgA0) 2 T,/12, (34)

where Dss is the diffusion coefficient in the propagation direction of the wave
component, Dnn is the diffusion coefficient perpendicular to the wave propa-
gation direction, Acg is the discrete increment of group velocities correspond-
ing to the discrete frequency increment Af, and Ts is the time elapsed since
the generation of the swell (henceforth denoted as the 'swell age'). The diffu-
sion along the main axes of the tensor Dss and Dnn depends on the spectral
increments Af and AO. Hence the required numerical diffusion decreases
with increasing resolution. For third generation wave models, a logarithmic
frequency grid is used, where Af = Xff, and Xf is typically 0.1. For deep
water, this implies that Acg = Xfcg. The ratio between DS, and Dn then
becomes

Dss ~~~2
____ (x 2I(35)

which for Xf = 0.1 and AO = 15° becomes 0.15. Hence the diffusion per-
pendicular to the wave propagation direction Dn is an order of magnitude
larger than the diffusion in the propagation direction DS. This implies that
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the diffusion will mainly redistribute wave energy perpendicular to the prop-
agation direction (i.e., along the crescent shaped swell fields), whereas the
widening of the the swell field in the propagation direction will be less.

Equation (29) cannot be used directly in combination with the UQ scheme,
because this scheme treats two-dimensional propagation as essentially one-
dimensional. Therefore, a separate diffusion step is added to the propagation
algorithm.

a F F F1 2 FD XI + D _ y +at ax ax ay ay XI' axay 2D x-~ - ~ - ~ [ D~ - -~ ~ 7 V V~yya(36)

Note that this also allows for a simple reintroduction of refraction, and for
transferring the equation to a longitude-latitude grid (i.e., again replacing
F by A4). This equation is solved using a simple forward-time central-space
scheme. At the cell interface between points i and i - 1 in x space, the term
in brackets in the first term on the right side of Eq. (36) (denoted as Di,-)
is estimated as

a Di, _ =D2si + Di-l (Fi -Fi) (37)

Corresponding values for indices i and i + 1 (Di,+), and for gradients in y
space (D1j, and Dj,+) are obtained by rotating indices. If one of the two grid
points is located on land, the discrete diffusion between the grid points is set
to zero. The mixed derivative at the right side of Eq. (36) is estimated for
the grid point indices i and i - 1 in x-space and j and j - 1 in y-space as

DY F aF ;: Dij__ = +Dxij + Dxyi,,j + Dxyij-l + Dxyilj_-
Da x-y4

(38)(-Fij 0 + +Fii -yFiaj-l
0.5(A~xj+ Axjy) Ay

Note that the increment Ax will become a function of y if a longitude-
latitude grid is used. This term is evaluated only if all four grid points
considered are sea points, otherwise it is set to zero. Using a forward-in-time
discretization of the first term in Eq. (36), and space-centered discretizations
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for the remainder of the first and second term on the right side, the final
numerical representation of Eq. (36) becomes

F?.+ n At Ait+ 7 ±=- (Di + -Di,) + A (DT,+ -

iAt
+ D- ( + Dij,-+ + Tjj,+_ +Dvj,++) .

Using this forward-in-time and central-in-space scheme, stable solutions can
be obtained for (e.g., Fletcher 1988, Part I section 7.1.1)

Dmax At9 < 5

min(Ax, Ay) 2 - 05,
(40)

where Dmax is the maximum value of the diffusion coefficient (typically
Dmax - D= ). This implies that for old long swells, where both cg and
Ts in Eq. (34) are large, stability can become a serious problem, particularly
for high-resolution grids (small Ax and Ay).

In testing this diffusive dispersion correction and comparing it to the 'exact'
solution of Fig. 3, one should realize that the exact solution considers only
monochromatic waves (a single frequency), instead of the more natural con-
tinuous frequency spectrum. The exact solution therefore does not include
frequency dispersion as described above by Dss. For the swell propagation
tests with the diffusive dispersion correction we therefore compare the exact
solution to numerical results with Dss = 0. Below we will denote the UQ
scheme with the diffusive dispersion correction as the UQDC scheme.

Figures 11 and 12 shows results for the UQDC scheme with Ds = 0. The
swell age T, is set to 0 for the initial condition, and evolves naturally dur-
ing propagation (dTs/dt = 1). The resulting wave fields remain realistically
narrow in the wave propagation direction, but are much smoother perpen-
dicular to the wave propagation direction than the results of the UQ scheme
(Figs. 8 and 9). Some local maxima can still be distinguished, but the local
maximum at 160°E no longer becomes the global maximum. The evolution
of the maximum wave height is shown in Fig. 13 (chain lines). The predicted
maximum wave height is somewhat smaller than the exact solution, but fol-
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lows the dispersion trend closely. The maximum wave height for both runs
remain nearly identical, as the local maximum at 160°E no longer dominates.

The dynamic evolution of the swell age Ts introduces two practical prob-
lems. The first is the above recognized stability problem, which cannot be
evaluated easily if T8 is allowed to evolve dynamically. The second problem
is the definition of Ts for realistic wave conditions considering multiple swell
fields and a wind sea. Ts could be evaluated using a balance equation similar
to that of the spectrum F (Booij and Holthuijsen 1987, appendix). This
roughly doubles the memory required for a wave model, which is generally
not acceptable in an operational environment. However, Booij and Holthui-
jsen also suggest (p. 322) that the use of a single representative wave age T,

might be adequate for the description of swell propagation. A singe wave
age simplifies the assessment of numerical stability, and requires a negligible
increase in memory for implementation of the diffusive correction.

Figures 14 and 15 show results for the UQDC scheme with D8 - 0 and
T, = 5 days. Like in the test with the dynamically evaluated swell age
Ts, a good representation of the exact solution is found. Due to the fairly
large diffusion selected, the secondary maxima have been suppressed even
further compared to Figs. 11 and 12. The stronger diffusion results in an
additional (small) underestimation of the maximum wave height (dashed
lines in Fig. 13), but does not influence the dispersion behavior (slope of
dashed lines in Fig. 13).

Note that with the simplified description of Dss and Dn, it is also rea-
sonable to assume that the diffusion coefficients are constant over the grid,
and to use the deep water diffusion coefficients everywhere. Equations (37)
and (38) can then be simplified as

(41)

(42)

D, = D (Fi -Fi-l 

ij,_ Dy -Fij + Fijs + FAx- - Fiyj -By t 0.5(Axj + Axj-l) Ay )

which for deep water and a single swell source (or a constant Ts) are identical
to Eqs. (37) and (38).

19



5 Frequency dispersion

Swell with a single frequency has been considered up to this point, ignoring
effects of dispersion due to the continuous frequency spectrum of every wave
field. For pure frequency dispersion (ignoring directional dispersion) the
asymptotic solution for waves originating from a point source shows a decay
of the (maximum) wave proportional to the inverse root of the time t (e.g.,
Whitham 1974, chapters 11 and 13)

H c t-C 1/ 2 (43)

Multiplication with Eqs. (26) or (28) to obtain the dispersion rate for both
directional and frequency dispersion then results in

H C [ sin ( g)] si

Hs oc t-l, 

(44)

(45)

as a general solution, and-a solution for short distances, respectively.
Due to economical constraints, it is virtually impossible to generate an

'exact' solution for full spectral propagation by using high resolution in all
spaces considered. Therefore, model results for realistic model resolutions
will only be compared to each other and to the dispersion trend predicted by
Eq. (44). Considered is the propagation of a JONSWAP spectrum (Hasselmann
et al. 1973) with a peak period of 17 s, a peak-enhancement factor y = 3.3,
and the directional distribution of Hasselmann et al. (1980). The frequency
resolution is given as fi+l = 1.1fi. The corresponding one-dimensional input
spectrum is presented in Fig. 16a. Only the eastern propagation direction
with 0 = 120° is considered. The results for the first order scheme, the UQ
scheme, the UQDC scheme with dynamically evaluated Ts, and the UQDC

scheme with constant Ts are presented in Figs. 17 through 20, respectively
The first order scheme (Fig. 17), shows the expected smooth behavior,

with a minor spurious maximum at 160°E. Because this solution is signifi-
cantly influenced by numerical diffusion, it is attractive, as it produces fairly
physical wave height distributions. In contrast, the UQ scheme (Fig. 18),
shows disintegration of the wave field. Such results are clearly unaccept-
able for practical wave models. The two versions of the UQ scheme with the
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diffusive dispersion correction (Figs. 19 and 20) successfully remove the dis-
integration from the UQ scheme, and show results which are similarly smooth
as those of the first order scheme. The maximum wave heights, however, oc-
cur in a more defined region (without a spurious maximum at 160°W), and
the corresponding spectra are much sharper (figures not presented here).

The evolution of the maximum wave height predicted by the above four
schemes is presented in Fig. 21. As expected, the wave height decay is more
rapid than in the previous monochromatic, short-crested cases (compare with
Fig. 5). Furthermore, the first order scheme results in the smallest wave
heights. The differences between the schemes, however, have become smaller.
This is due to the fact that the higher order scheme now incorporates ad-
ditional diffusion (Dss), whereas the first order scheme remains unchanged
compared to the monochromatic cases. Unfortunately, none of the schemes
reproduces the trend of Eq. (44) particularly well. In fact, the decay rate of
the first order scheme appears to be the most realistic.

The poor description of frequency dispersion for the conventional spec-
tral resolution is likely related to poor resolution of the frequency spectrum.
Figure 16a shows that most of the input energy is concentrated in a sin-
gle spectral bin. This implies that effects of reduction of the wave height
due to the different propagation velocities of spectral components will not
be modelled accurately. In fact, most of the frequency dispersion in the
model is generated by the diffusion term in the dispersion correction equa-
tion. To test this hypothesis, calculations have been performed with a higher
frequency resolution (fi+l = V-..lfi), and with a smoother spectrum (peak
enhancement factor 7 = 1, i.e., a Pierson-Moskowitz spectrum). The corre-
sponding initial spectrum is shown in Fig. 16b. Note that the peak of this
spectrum is relatively well resolved by the frequency discretization.

The results for the first-order scheme and the UQDC scheme with Ts 
5 days using the enhanced spectral resolution are presented in Figs. 22 and
23, respectively. Due to the smoother spectrum, wave energy is spread over a
larger area in the propagation direction of the waves, and apart from the spu-
rious maximum at 160°E in the first order scheme, the results of both schemes
are similar. The evolution of the maximum wave heights for both schemes is
presented in Fig. 24. The maximum wave heights for both schemes indeed
appear very similar, and follow the expected dispersion behavior (dotted
lines) closely. The latter confirms that the poor representation of frequency
dispersion in conventional model resolutions and a strongly peaked spectrum
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are caused by insufficient resolution in the frequency space.
The close similarity between the results of the the first-order scheme and

the UQDC scheme with respect to the maximum wave height and the wave
height distribution do not necessarily imply that the details of the wave
fields are also similar. To assess some details of the wave field, time series
of some additional parameters will be considered for the location 160°W and
20°N. First, Fig. 25 shows local wave heights for the calculations with the
conventional frequency resolution (panel a) and for the enhanced resolution
(panel b). The UQDC scheme (solid lines) results in maximum wave heights
10 to 20% higher than those of the first order scheme (dotted lines), and the
maximum wave heights occur over a shorter time interval. The corresponding
spectra, however, show much larger differences. This can be illustrated by
considering the peak frequency fp presented in Fig. 26. For a point source,
the expected peak frequency at a distance r from a source in deep water is

.qt
- gt = (46)

4wr'

where t it the time elapsed since wave generation (Snodgrass et al. 1966).
This analytical solution is shown as the dashed line in Fig. 26. For the con-
ventional spectral resolution and the JONSWAP spectrum (Fig. 26a), the first
order scheme (dotted line) represents the change of peak frequency poorly.
During the passage of the maximum swell height, the peak frequency re-
mains nearly unchanged for more than a day. The UQDC scheme shows a
significantly better reproduction of the expected evolution of fp, but also
includes noticeable errors. For the enhanced frequency distribution and the
Pierson-Moskowitz spectrum (panel b), the first order scheme (dotted line)
shows much better results, but significantly overestimates the peak frequency
before the maximum wave height occurs, and underestimates it afterward.
The UQDC scheme shows much smaller errors.

Errors in the peak frequency and hence in the local spectra imply that
the spatial and temporal evolution of the wave field are not well described.
This becomes obvious, if the source area of the swell field is reconstructed
from the evolution of the peak frequency at 160°W 20°N. Differentiating (46)
with respect to time, results in
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r=g / fP \
r g V=t I 4ff at (47)

Such estimates of r are presented in Fig. 27 for the models with the con-
ventional resolution (panel a) and with the enhanced resolution (panel b).
The results show some noise related to round-off errors in fp that occur in
Eq. (47), but most of the oscillations are due to frequency discretization
in combination with numerical propagation errors. For the conventional fre-
quency resolution (panel a), the first order scheme (dotted line) overestimates
the distance of the swell source by an order of magnitude during the passage
of the maximum swell height. The errors of the UQDC scheme (solid line) are
clearly smaller, but still unacceptably large. For the high-resolution model,
the first order scheme shows a systematic overestimation of the source dis-
tance r of 50-100%. The UQDC scheme is clearly more accurate, but also
shows a systematic overestimation of the distance before the swell peak has
passed (t < 4 days). The differences between panels a and b again suggest
that most of the errors in panel a are related to the insufficient frequency
resolution.

6 Fetch-limited wave growth

The final test of the propagation scheme considered here is its interaction
with source terms. Previous experience with higher order accurate propa-
gation schemes shows that such schemes might produce spurious oscillations
in steady fetch-limited growth curves and even influence model instability
(Tolman 1991, 1992). This behavior is probably related to the interaction
between nonlinear source terms and numerical dispersion errors in the prop-
agation scheme. To investigate the interaction between propagation schemes
and source terms we consider a simple case of one-dimensional fetch-limited
wave growth in deep water. The corresponding spectral energy balance equa-
tion is given as

aF +OxSF
+ -S + S + Sds,At ax

(48)
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where Si, is the wind input source term, S,,$ represents nonlinear resonant
wave-wave interactions and Sds represents dissipative processes ('whitecap-
ping'). Formally the first term of this equation can be omitted, since fetch-
limited wave growth represents a steady problem. However, in a general
purpose wave model the steady state is reached by calculating forward in
time with a constant wind speed and direction until a steady state is ob-
tained. In the present tests, the source terms of the original WAM model will
be used (WAMDIG 1988); i.e., an input source term based on Snyder et al.
(1981), the discrete interaction approximation of Hasselmann et al. (1985) to
describe the the nonlinear interactions, and the dissipation parameterization
of Komen et al (1984).

All fetch-limited growth tests are performed with a constant wind speed
at 10m height ulo = 20m/s. A fairly common spectral discretization with
24 discrete spectral direction and 25 discrete frequencies is used (AO = 15°

and fi+1 = 1. fi, with frequencies ranging from 0.041-0.42Hz). This spectral
discretization is adequate for the wind speed considered here (see Tolman
1992). The space and time steps are chosen to represent a regional model
implementation, where fetch-limitations are expected to be important (Ax -

25km, At 15min), with a maximum fetch of 625km (25 grid points). The
initial conditions consist of a JONSWAP spectrum with a peak frequency of
0.25Hz and a wave height of 0.79m.

No exact solution is available for Eq. (48), due to the complexity of the
nonlinear interactions. The 'exact' solution will therefore again be approxi-
mated using a high resolution model. In this model the spectral discretization
remains unchanged, but the spatial and temporal resolutions are increased
to Ax = 2.5km and At = 1.5min. With this resolution the choice of the
propagation scheme becomes immaterial. The first order scheme has been
used here to obtain the exact solution.

The resulting dependency of the wave height Hs on the fetch x after 4 days
of model integration is shown for several propagation schemes in Fig. 28a.
The first order scheme (dotted line) overestimates the exact solution (solid
line). Most of the error is concentrated in the first offshore grid point, as
discussed by Tolman (1992). The UQ scheme (dashed line), follows the exact
solution closely, and hence shows a small but distinct improvement compared
to the first order scheme. This is in contrast with the findings of Tolman
(1992), who showed no improvement when changing from the first order
scheme to a second order accurate SHASTA scheme. This can be explained as
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the latter scheme used a purely first order approach in the first grid point,
whereas the UQ scheme uses a mixed first-order/third-order approach in the
first grid point. The SHASTA scheme furthermore required some additional
diffusion when combined with source terms, which may also be detrimental
to the behavior of this scheme.

The UQ scheme results in a small oscillation of the solution in the steady
regime, as observed in Fig. 28b (dashed lines). However, the solutions remain
stable, and the oscillation are insignificant for most applications. If these
oscillations are nevertheless unacceptable, they can be suppressed using a
small, controlled amount of diffusion. Considering that diffusion already is
an integral part of the UQDC scheme, this diffusion is modeled explicitly. To
assure that the diffusion is small for all wave components, the diffusion is
defined using a preset cell-Reynolds (or cell-Peclet) number 1- = cgAxDg-1,
where Dg represents the diffusion for growing wave components. Note that
large values of 1Z represent conditions with small diffusion. Applying the
corresponding diffusion isotropically, we obtain

D 9 D 5 =D =cg min (/\a, AY)D Dss- D,, Cg min(Ax, Ay) (49)

Results for the UQ scheme with a diffusion defined by 1- = 10 are shown
in Fig. 28 (chain line). This small amount of diffusion removes virtually
all oscillations. The resulting growth curves show a minor influence from
diffusion for the first few grid points (compare chain and dashed lines), but
effects of this diffusion on the growth behavior are generally negligible.

For practical applications, the diffusion defined by Eq. (49) should be
incorporated in the UQDC scheme. This requires the combination of the dif-
fusion terms contained in Eqs. (33), (34) and (49). The wave age Uoci =

U1 oka- 1 is a natural parameter to identify (potentially) growing wave com-
ponents. Requiring that the propagation diffusion of Eqs. (33) and (34) is
used for U1oc 1 < 0.7, and that the growth diffusion of Eq. (49) is used for
U1oc- 1 > 1.0, the final diffusion tensor is defined as

Xg = min { 1, max [0, 3.3 (kUo) 2.3] }, (50)

Dss = XgDg + (1 - Xg)(Acg) 2 T,/12, (51)
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Dnn = XgDg + (1 - Xg)(cgAO)2 T8/12 .

The UQDC scheme with this diffusion correction gives practically identical
results to the UQ scheme with the diffusion of Eq. (49) (chain line in Fig. 28).

7 Discussion and conclusions

This report evaluates several propagation schemes for ocean wind wave mod-
els. It is based on previous experience in wave modeling and modeling of
pollution transport, and does not present new numerical methods. A re-
view of available methods suggests that explicit finite difference schemes are
prime candidates to be used in wave models. Implicit FD schemes and semi-
Lagrangian schemes are also potentially useful. The application of the latter
two schemes is discussed in more detail below. Based on previous experience
in the field of pollution models, the third-order accurate ULTIMATE QUICK-

EST (UQ) scheme was selected. This scheme was shown to be sufficiently
accurate to produce the so-called garden sprinkler effect (osE), where the
initially continuous wave field disintegrates into a set of discrete wave fields.
This effect is solely due to the poor resolution of spectral directions, and is
therefore not an artifact of the UQ scheme. It is expected to occur with any
accurate propagation scheme. This problem can be avoided if the directional
resolution of the spectrum is increased by an order of magnitude. However,
for most wave models this is not economically feasible.

An alternate solution to avoid the GSE is the inclusion of a diffusive dis-
persion correction, as suggested by Booij and Holthuijsen (1987) (denoted as
the UQDC scheme). This approach effectively removes the garden-sprinkler
effect. Furthermore, simplifications to this approach as suggested by Booij
and Holthuijsen proved to be viable. For idealized swell propagation tests
the UQ scheme performs far better than the first order scheme. However, it
should be noted that the diffusive correction of Booij and Holthuijsen intro-
duces some non-physical aspects into the model. Swell shows an increasingly
narrower directional distribution during propagation. This implies that swell
produces a sharp shadow zone behind islands. This can be observed in the
'exact' swell model of Fig. 4d, where the swell field is cut-off by New Guinea.
In contrast, the diffusive correction shows enhanced (lateral) diffusion with
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increasing swell age Ts in Eqs. (33) and (34). If the UQ scheme is used in
combination with this diffusive correction (Figs 12d and 15d), the transition
to a shadow zone behind islands will be smoothed significantly.

If the wave spectrum is considered to be continuous in direction and
frequency, both directional and frequency dispersion occur. Frequency dis-
persion is poorly described when using conventional spectral resolutions in
combination with a peaked initial spectrum. This poor behavior is related
to the frequency resolution of the model. Contrary to common belief, the
conventional 10% resolution of the spectral frequencies is thus inadequate for
the peaked spectrum considered here. Adopting a smoother initial spectrum
and a 5% frequency resolution improves frequency dispersion dramatically.
For such conditions the spatial distribution of wave heights and the maxi-
mum wave height become fairly insensitive to the choice of the propagation
scheme. The first order scheme does, however, have a tendency to generate
spurious maxima for southward (or northward) travelling wave components.
Whereas overall wave heights are only slightly influenced by the propagation
scheme, local spectra show larger differences. As an example, it is shown that
the peak frequency is much more accurately described by the UQDC scheme.
The UQDC scheme furthermore shows a more consistent temporal (and hence
spatial) evolution of wave spectra. The latter differences will be important
for swell prediction, in particular for offshore operations, where dynamical
responses of offshore equipment to wave motion are strongly governed by
the wave frequency. It might also allow for decomposing the wave field in
discrete swell fields, the origin of which can be retrieved without calculating
the local swell age Ts. This might be useful in data assimilation schemes.

Both the first order and UQDC schemes interact well with source terms.
Unlike in previous attempts to use a higher order scheme (Tolman 1992), ad-
ditional diffusion is not required to stabilize fetch-limited growth behavior for
the UQDC scheme. It is shown that the UQDC scheme results in slightly more
accurate fetch-limited growth. However, as was concluded before (Tolman
1992), effects of the propagation scheme on fetch-limited growth behavior are
minor.

Considering the above, the UQDC scheme presents a significant improve-
ment over the first order scheme. Its main advantages are that it does not
produce spurious maxima related to southward (northward) travelling wave
components, and that it results in a more consistent temporal and spatial
evolution of the wave field. The latter is particularly important for consis-
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tent swell prediction, and might have implications for data assimilation. It
remains to be seen if the effects on local wave height are significant. This de-
pends largely on the actual frequency spectra of the wind sea field generating
the swell, and on spectral transformations during the transition from wind
sea to swell. Considering that Figs. 25a and 25b represent limiting cases for
narrow and wide spectra, differences between maximum wave height of 10 to
20% might be expected.

Even after the selection of a better numerical scheme, there is always
room to make further improvements to the numerics of a model. First, spa-
tial wave propagation essentially represents one-dimensional propagation in
a two- or three-dimensional space (longitude-latitude(-direction)). In the
present approach, propagation in each space is treated separately. It might
be more economical and more accurate to treat this propagation as truly
one-dimensional. In a finite difference approach this is possible, but requires
additional cross-terms which complicate the scheme. A more natural way of
treating the propagation as one-dimensional would be a semi-Lagrangian ap-
proach. Secondly, wave models require high resolution mostly near coast lines
and to describe details of the bathymetry, but generally not in the deeper
ocean. It might therefore be a significant improvement if the wave model is
formulated in terms of a variable grid. Thirdly, with increased resolution,
the time steps required by explicit finite difference schemes become contin-
ually smaller. To avoid this, implicit or semi-Lagrangian schemes could be
adopted. If necessary, such approaches can be adopted in selected spaces
only. For instance, propagation in direction space due to refraction is known
to pose serious stability problems in shallow water wave models, and is there-
fore could be treated with an implicit scheme. In view of the above, much
numerical development work can still be done with respect to wave modeling.
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Figure captions

Fig. 1 One-dimensional propagation tests. dotted lines: exact solution,
dashed lines: first order scheme, solid lines: UQ scheme. (a) Similar
to test of Tolman (1992), Fig. 6., 100 time steps with C = 0.28 (b) -
(d) propagation around the globe of wave energy distributions with
different spatial extends. Wave period T = 24.9s, grid increment
Ax = 1°, time step At = lh, 576 time steps.

Fig. 2 Two-dimensional swell propagation in deep water. (a) Initial Gaus-
sian wave height distribution, with a spread of 2Ax and 2Ay in
the two spaces. (b) - (e) Propagation after 60 time steps with
cgAt/Ax = cgAt/Ay = 0.63. First order scheme with 0 = 0° (panel
b) and 0 = 45° (panel c). UQ scheme with 0 = 0° (panel d) and
0 = 45° (panel e). Contour intervals at 10% of the initial maximum
wave height. + indicates the expected location of the maximum
wave height.

Fig. 3 Swell heights after 0, 2, 4 and 6 days (panels a through d) for the
North Pacific swell propagation test with 0 = 120° initially (Mer-
cator projection). Contours at 10% of the initial maximum wave
height in panel a) and at 5% in panels b) through d). 'Exact' solu-
tion obtained with the UQ scheme with AA = Aq5 = 0.25°, AO = 2.5°

and At = 10min.

Fig. 4 Like Fig. 3 with 0 = 150° initially.

Fig. 5 Maximum wave height as a function of time in the North Pacific
propagation test, normalized with the initial maximum wave height.
dotted line: based on Eq. (26); solid lines: 'exact' solution; chain
lines: first order scheme; dashed lines: UQ scheme. (a) linear
scaling. (b) logarithmic scaling.

Fig. 6 Like Fig. 3 for the first order scheme using a realistic model resolution
(AA = 1.25° , AO = 1°, A0 = 15° and At = 20min). Initial 0 = 120°.

Fig. 7 Like Fig. 6. Initial 0 = 150°.



Fig. 8 Like Fig. 6 for the UQ scheme.

Fig. 9 Like Fig. 7 for the UQ scheme.

Fig. 10 Numerical diffusion for wave components travelling along meridians
(a) and in any other direction (b). Solid lines: directions of diffusion.
Dashed line: propagation direction.

Fig. 11 Like Fig. 6 for the UQ scheme with diffusive dispersion correction in
lateral direction only (Ds - 0). Ts evaluated dynamically.

Fig. 12 Like Fig. 11. Initial 0 = 150°.

Fig. 13 Like Fig. 5. dotted line: based on Eq. (26); solid lines: 'exact'
solution; chain lines: UQDC with dynamically evaluated Ts; dashed
lines: UQDC scheme with Ts = 5 days.

Fig. 14 Like Fig. 6 for the UQ scheme with diffusive dispersion correction in
lateral direction only (Dss- 0). Ts = 5 days.

Fig. 15 Like Fig. 14. Initial 0 = 1500.

Fig. 16 One-dimensional input spectra for full-spectral test runs. (a) JON-

SWAP spectrum with conventional frequency resolution. (b) Pierson-
Moskowitz spectrum with enhanced frequency resolution. Arbitrary
but identical spectral scales.

Fig. 17 Full spectral north Pacific propagation test with a realistic model res-
olution. Initial conditions consist of a JONSWAP spectrum with the
direction distribution of Hasselmann et al. (1980) (see also Fig. 16a).
The peak period is 17s and the initial mean wave direction 0 = 120°.

AA = 1.25°, AO = 1°, AO =- 15°, Xf = 0.1, and At = 20min. Con-
tours at 10% of the initial maximum wave height in panel a) and at
2.5% in panels b) through d). First order scheme.

Fig. 18 Like Fig. 17 for the UQ scheme.

Fig. 19 Like Fig. 17 for the UQDC scheme with dynamically evaluated swell
age Ts



Fig. 20 Like Fig. 17 for the UQDC scheme with constant swell age Ts = 5
days.

Fig. 21 Maximum wave height as a function of time in the full spectral North
Pacific propagation tests, normalized with the initial maximum wave
height. Initial conditions consists of a JONSWAP spectrum wit a con-
ventional frequency resolution (Fig. 16a). dotted line: expected dis-
persion behavior based on Eq. (44); dashed line: first order scheme;
double chain line: UQ scheme; chain line: UQDC scheme with dy-
namic Ts; solid line: UQDC scheme with Ts = 5days. (a) linear
scaling. (b) logarithmic scaling.

Fig. 22 Like Fig. 17, Pierson-Moskowitz spectrum with enhanced frequency
resolution.

Fig. 23 Like Fig. 20, Pierson-Moskowitz spectrum with enhanced frequency
resolution.

Fig. 24 Like Fig. 21, Pierson-Moskowitz spectrum with enhanced frequency
resolution.

Fig. 25 The significant wave height normalized with the initial maximum
wave height at 160°W 20°N as a function of time according to the
first order scheme (dotted lines) and the UQDC scheme with constant
swell age Ts = 5 days (solid lines) (a) Conventional frequency resolu-
tion, JONSWAP spectrum (corresponds to Figs. 16a, 17 and 20). (b)
Enhanced frequency resolution, Pierson-Moskowitz spectrum (corre-
sponds to Figs. 16b, 22 and 23).

Fig. 26 Like Fig. 25 for peak frequency. Dashed line represents expected
peak frequency for point source.

Fig. 27 Like Fig. 25 for distance of swell source r as calculated form the
temporal derivatives of the peak frequency. Dashed line: distance to
center of source region.

Fig. 28 Growth curves for fetch-limited wave growth and a wind speed of
20m/s. (a) Wave height H8 as a function of the fetch x after 4 days
of model integration. Wave height Hs as a function of time for three



fetches x. Solid lines: exact solution (high resolution model); dotted
lines: first order scheme; dashed lines: UQ scheme; chain lines: UQ
scheme with isotropic diffusion (7T = 10). AO = 15°, fi+- = 1, lfi,
fmin = 0.041Hz, fmax = 0.42Hz, Ax = 25km and At = 15min.
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