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Extended mild-slope (MS) and wave-action equations (WAEs) are derived by taking
into account high-order derivatives of the bottom profile and the depth-averaged current
that were previously neglected. As a first step for this derivation, a time-dependent
MS-type equation in the presence of ambient currents that consists of these high-order
components is constructed. This mild-slope equation is used as a basis to form a wave-
action balance equation that retains high-order refraction and diffraction terms of varying
depths and currents. The derivation accurately accounts for the effects of the currents
on the Doppler shift. This results in an ‘effective’ intrinsic frequency and wavenumber
that differ from the ones of wave ray theory. Finally, the new WAE is derived for the
phase-averaged frequency-direction spectrum in order to allow its use in stochastic wave-
forecasting models.

Keywords: water waves; wave–current interactions; mild-slope equations; wave-action equations

1. Introduction

The flow of surface water waves is a time-varying three-dimensional flow problem.
In various scenarios, it is plausible to assume that the flow is governed by the
Laplace equation together with a free surface and an impermeable bottom. The
three-dimensional problem is complicated to model, and its solution requires
significant computational effort. Therefore, in many applications, one dimension
is reduced in order to simplify the model.

A commonly employed approach for this reduction yields the frequency domain
mild-slope (MS)-type equations, which can be applied to linear time-harmonic
problems. The origin of this discipline is the mild-slope equation (MSE) based on
the works of Eckart (1952), Biesel (1952), Svendsen (1967) and Berkhoff (1972)
for time-harmonic waves with no ambient flow. The MSE and other MS-type
models achieve this reduction by assuming a vertical profile and averaging the
governing equation over the depth, which results in the elimination of the vertical
coordinate. The same approach was applied by Booij (1981) (later corrected by
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Extended time-dependent MSEs and WAEs 185

Kirby 1984) for waves in the presence of depth-averaged ambient currents in
the time-dependent case. Kostense et al. (1988) constructed a numerical model
for this equation, presenting an iteration method for solving the dependency of
intrinsic frequency on the amplitude of the solution.

Many works continued the MSE’s derivation (e.g. Massel 1993; Porter &
Staziker 1995; Porter 2003; Kim & Bai 2004; Porter & Porter 2006; Hsu
et al. 2006b; Toledo & Agnon 2010, 2011). Specifically, the extension of this
model to hold for steep slopes and curvatures was addressed. For the time-
harmonic case with no ambient currents, the higher order bottom components
V2h and |Vh|2, which were originally neglected, were shown to be of significance
by Chamberlain & Porter (1995) (see Klopman & Dingemans 2010 for the
significance also in a Boussinesq-like approach). In addition, retaining these
terms allows for an improved accuracy in modelling the dominating class I Bragg
resonance (see Agnon 1999). Nevertheless, these components were not fully taken
into account in the time-dependent MSE in the presence of currents. Other
components that refer to changes of the ambient current or combinations of
the bottom slope and the current were neglected as well. These components are
needed in order to yield a more accurate model for areas with strong currents and
rapidly changing ones such as near-shore regions and inlets. In order to further
increase the accuracy of the MSE models in these cases, a set of evanescent modes
may as well be added (e.g. Massel 1993; Belibassakis 2007; Belibassakis et al. 2008
for the cases without or with ambient currents, respectively).

Another simplification for this flow problem is the balance wave-action equation
(WAE; e.g. Komen et al. 1994; Young 1999). This equation is a stochastic (phase-
averaged) time-dependent frequency domain (or wavenumber domain) equation
that models the action flow, which is classically defined as the energy divided by
the wave’s intrinsic frequency. It does not present the chaotic behaviour of wave-
forecasting problems as deterministic models are used (see Annenkov & Shrira
2001), and leaps over the Nyquist–Shannon limitation, which enables a solution
for large domains.

The classical WAE in the presence of currents was derived using a variational
approach by Bretherton & Garrett (1968). Willebrand (1975) has extended the
wave-propagation part of this formulation by nonlinearity (i.e. the wave rays are
dependent on each other), which is harder in its application. The interest in
extensions of the WAE has grown recently, as spectral wave models are coupled
to circulations models in order to take into account wave-induced currents and
effects of the currents on the waves (e.g. Ardhuin et al. 2005, 2008; Mellor 2008).
Furthermore, these wave-forecasting models are extended towards the coasts,
where steep slopes and strong currents are present (e.g. Uchiyama et al. 2010).

Bretherton & Garrett’s WAE was re-derived using the time-dependent MSE
by Jonsson (1981) and Kirby (1984). This relation consisted of neglecting the
low-order refraction–diffraction component of the MS-type equation. Liu (1990)
used the same method without neglecting this component, which resulted in an
improved WAE. In this work, Liu accurately handled the changes in the Doppler
shift of the waves resulting from the improved formulation. Still, his derivation
was not extended to the frequency-direction spectrum that should allow its use
in wave-forecasting models. In addition, higher order bottom components, which
in this time were thought to be insignificant, were neglected together with the
higher order current components.

Proc. R. Soc. A (2012)
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Applications of improved frequency-direction spectrum WAEs without an
ambient flow were presented by Mase (2001) and Holthuijsen et al. (2003)
using the parabolic approximation of Berkhoff’s time-harmonic MSE and the
same MSE without this approximation, respectively. Both presented good
improvements in their numerical results for steady problems. Still, because of
the use of a time-harmonic equation, their models are less appropriate for the
time-dependent case. Furthermore, higher order bottom and current components
were not taken into account in their derivations.

The case of waves in the presence of ambient currents was discussed in the
appendix of Holthuijsen et al. (2003). In their derivation, the wave properties,
which were calculated using Berkhoff’s time-harmonic MSE with no currents,
were substituted into Bretherton & Garrett’s equation. This results in an
inconsistent model, because Holthuijsen et al.’s improved wave properties were
not derived for waves in the presence of currents. A further advancement in this
field was done by Hsu et al. (2006a), where the time-harmonic extended MSE in
the presence of currents was used as the basic function. In this work, the higher
bottom changes were taken into account, but not the higher order terms related
to the current. Both works did not take into account the changes in the Doppler
shift as in Liu (1990). Furthermore, starting from a time-harmonic equation is
appropriate only for steady wave problems.

The aim of the present study is to construct in terms of linear wave theory
an extended MSE and WAE that have an improved behaviour for rapid spatial
bottom changes as well as ambient current changes both in time and space.
The paper is constructed as follows: a derivation of an extended MSE for time-
dependent waves with high-order components in the presence of an ambient
current is given in §2; the new MS-type equation is used to construct an extended
deterministic WAE in §3, and its stochastic frequency-direction spectrum version
is derived in §4. Numerical results are presented in §5, and the work is summarized
and discussed in §6.

2. The extended mild-slope equation for wave–current interactions

(a) The formulation of the Hamiltonian under vertical profile assumptions

In this section, the time-dependent MSE of Booij (1981) and Kirby (1984) is
extended to contain higher order bottom profile and ambient current terms. The
derivation in this section is given from first principles using a variational approach
in the same manner as Dingemans (1997, §3.2). The Hamiltonian describing the
irrotational flow of an incompressible inviscid fluid with a free surface is

H =
∫∫

H dx dy =
∫∫

(V + T )dx dy, (2.1)

V = 1
2

rgh2 (2.2)

and T = 1
2

r

∫h

−h
[|VF|2 + (Fz)2]dz . (2.3)

Proc. R. Soc. A (2012)
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Extended time-dependent MSEs and WAEs 187

Here, V is the potential energy density; T is the kinetic energy density;
F(x , y, z , t) is the wave velocity potential; h(x , y, t) is the free-surface
displacement; h(x , y) is the bottom profile; r is the density; V is the horizontal
gradient operator; and the subscripts denote partial derivatives. The vertical
coordinate z of the Cartesian coordinate system Oxyz directs upward with
the Oxy-plane located on the still-water surface. The evolution equations for
the free-surface elevation h(x , t) and the velocity potential at the free surface,
4(x , y, t) = F(x , y, h, t), are given by Hamilton’s canonical equations,

r
vh

vt
= dH

d4
(2.4)

and

r
v4

vt
= −dH

dh
. (2.5)

It is important to note that equations (2.1)–(2.5) describe potential motions only.
For water waves, potentiality is a reasonable approximation, which is widely
used. Ambient currents, on the other hand, are restricted by this formulation,
as realistic currents usually consist of a small vorticity component. Nevertheless,
consistent rigorous analysis of such an idealized model would allow us to gauge
the importance of effects currently not taken into account in the models described
in the literature. Demonstration of the importance of currently neglected terms
for this particular model would imply the necessity of incorporating them into all
models. Moreover, application of the results to vortical currents might also prove
to be plausible (see discussion in §6).

In order to write separate equations for the oscillatory flow and the mean
flow, the free-surface elevation and the velocity potential are divided into two
parts (see Chu & Mei 1970)—a current and a wave part. The mean current is
assumed to be varying slowly on wavelength scale, denoted by mx and my, and the
oscillatory part is restricted to small wave steepnesses (3). This can be written in
the following manner:

h(x, t) = gh0(mx , my, mt) + 3h1(x , y, t) + O(32) (2.6)

and
F(x, z , t) = gm−1f0(mx , my, mt) + 3f (z , x , y)f1(x , y, t) + O(32). (2.7)

Here, the component that is denoted by the subscript ‘0’ is dominated by the
ambient current, and the component that is denoted by the subscript ‘1’ describes
the oscillatory part of the motion. In equation (2.6), the assumption of a two-
dimensional mean current flow is incorporated, whereas in equation (2.7), a known
vertical profile is assumed for the wave component of F. The latter is a common
assumption of the MS-type equations, where the vertical profile’s dependence on
the horizontal coordinates is weak through functions such as the wavenumber k
and the bottom profile h. Three scaling parameters are presented in equations
(2.6) and (2.7): Stokes’s wave steepness parameter, 3 = O(ka), where a is the
wave amplitude and the rate of change of the depth over the non-dimensional
depth m = O(Vh/kh). These parameters are assumed to be small (3 � 1, m � 1),
whereas the ambient current and its surface elevation are allowed to be of any
order g.
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 on January 11, 2012rspa.royalsocietypublishing.orgDownloaded from 

https://domicile.ifremer.fr/,DanaInfo=rspa.royalsocietypublishing.org+
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Current velocities are usually smaller or comparable with wave orbital
velocities, but these two flow types have a fundamental difference. Within the
typical time order of surface waves, the ambient current can be regarded as a
steady flow. Therefore, the decoupling of the two types of flows are not related
to different orders of magnitudes but rather to different Fourier components
(e.g. the decoupling of Voronovich 1976). The ambient flow is taken as a mean
component, whereas the linear wave is taken as an oscillating component. The
ordering using the steepness small parameter 3 relates only to the oscillating part
of the derivation and not to the ambient current. The assumption of a small
steepness is used in this derivation for restricting the formulation for linear waves
and neglecting the nonlinear wave interactions, hence the ambient current velocity
can be of any magnitude with respect to the wave orbital velocities. This allows
us to omit g for simplicity. Nevertheless, the current formulation of surface water
waves does not hold the physics of waves propagating over a hydraulic jump,
which occurs in the transition between subcritical and supercritical flow types.
Still, in oceanic flows, the ambient currents are subcritical, so for these types of
problems, there is no need for modelling the transitional flow regions, and the
flow hereinafter is assumed to be subcritical.

Following equations (2.6) and (2.7), Hamilton’s canonical equations (2.4) and
(2.5) remain valid for the two parts (see Dingemans 1997, §3.2),

r
vhj

vt
= dH

dfj
, j = 1, 2, (2.8)

and

r
vfj

vt
= −dH

dhj
, j = 1, 2. (2.9)

Notice that in equation (2.9), the vertical profile f should be normalized to 1 at
the free surface.

Substituting equations (2.6) and (2.7) into equations (2.2) and (2.3) yields

V = 1
2rg(h2

0 + 23h0h1 + 32h2
1) (2.10)

and

T = 1
2

r

∫h0+3h1

−h
[|Vf0|2 + 23Vf0 · V (f f1) + 32|V(f f1)|2 + 32f 2

z f2
1]dz . (2.11)

Applying Taylor’s series around h0 to equations (2.10) and (2.11) up to the order
of O(32) and substituting the result into equation (2.1) allows the Hamiltonian
density within a linear flow work-frame to be written in the following manner:

H = H0 + 3H1 + 32H2, (2.12)

H0 = 1
2

r[gh2
0 + (h + h0)|Vf0|2], (2.13)

H1 = r

[
gh0h1 + 1

2
|Vf0|2h1 + (Vf0 · Vf1)

∫h0

−h
f dz + f1Vf0 ·

∫h0

−h
Vf dz

]
(2.14)

Proc. R. Soc. A (2012)
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Extended time-dependent MSEs and WAEs 189

and H2 = 1
2

r

[
gh2

1 + |Vf1|2
∫h0

−h
f 2dz + f2

1

∫h0

−h
f 2
z dz + f2

1

∫h0

−h
|Vf |2dz

+ 2f1Vf1 ·
∫h0

−h
f Vf dz + 2h1(Vf0 · Vf1)f |z=h0 + 2h1f1Vf0 · Vf |z=h0

]
.

(2.15)

The separation of the Hamiltonian density given in equations (2.12)–(2.15)
enables the inspection of each of its parts separately. As only linear instances
of h1 and f1 occur in equation (2.14), the horizontal integration of H1 0s (see
Kirby 1984 for the Lagrangian formulation and Dingemans 1997, §3.2 for the
Hamiltonian one). Hence, H1 will be neglected from this stage.

The vertical profile for the oscillatory part is taken as one of the analytical
solution for linear waves propagating over a flat bottom,

f (z , k, h, h0) = cos[k(h + z)]
cos[k(h + h0)] , (2.16)

with

s2 = gk tanh k(h + h0), (2.17)

u = s + k · U (2.18)

and U ≡ Vf0. (2.19)

Here, k is the wavenumber vector (k1, k2)T, and the wavenumber k is given by
|k|. u is the absolute wave frequency for harmonic waves, and s is the intrinsic
frequency, which relates to u through the Doppler shift (2.18), and allows the
calculation of the wavenumber k through the linear dispersion relation (2.17).
In addition, the vertical profile given in equation (2.16) is normalized to 1 on
z = h0. Note that the definition given in equation (2.16), which follows Dingemans
(1997, §3.2) takes into account both the bottom profile and the current-induced
surface elevation. It retains its accuracy also for current-induced surface elevation
of O(1).

Applying equation (2.16) to equation (2.15) yields

H2 = 1
2r[gh2

1 + q1|Vf1|2 + q2f2
1 + q3f2

1 + 2f1Vf1 · q4

+ 2h1(U · Vf1) + 2h1f1U · q5], (2.20)

q1 =
∫h0

−h
f 2 dz = 1

g
ccg, (2.21)

q2 =
∫h0

−h
f 2
z dz = 1

g
(s2 − k2ccg), (2.22)

q3 =
∫h0

−h
|Vf |2 dz , q4 =

∫h0

−h
f Vf dz (2.23)

and q5 = Vf |z=h0 = −m
s2

g
Vh0. (2.24)

Proc. R. Soc. A (2012)
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Here, c and cg are the phase and group velocities, respectively. Both are calculated
using the total water depth h̄ = (h + h0). Coefficients q1, q2, q3, q4 and q5 are given
in more detail in appendix A. Equations (2.8) and (2.9) can now be used together
with equations (2.1), (2.12), (2.13) and (2.20) to construct two sets of canonical
equations describing the coupled ambient current flow and the oscillatory wave
component.

(b) The canonical equations for the ambient current

The equations governing the motion of the ambient flow can be formulated
by writing the canonical equations (2.8) and (2.9) for j = 1. Upon neglecting
terms of order O(32), we arrive at the usual shallow water equations in potential
formulation,

vh0

vt
+ mV · [(m−1h + h0)Vf0] = 0 (2.25)

and
vf0

vt
+ 1

2
|Vf0|2 + gh0 = 0. (2.26)

Equation (2.25) is the vertically integrated continuity equation for the ambient
current, and the gradient of equation (2.26) yields two momentum equations
for the current. In order to account for wave-induced currents, which arise from
linear wave motion, terms of O(32) should be retained. In this case, the canonical
equations take the form

vh0

vt
+ V · [(h + h0)Vf0] = 32V · (h1Vf1 + h1f1q5) (2.27)

and
vf0

vt
+ 1

2
|Vf0|2 + gh0 = −1

2
32[p1|Vf1|2 + p2f2

1 + p3f2
1 − V · (p4f2

1)

+ 2f1Vf1 · p5 − 2V · (f1P6Vf1)], (2.28)

where

p1 = vq1

vh0
, p2 = vq2

vh0
, p3 = vq3

vh0
, (2.29)

p4 = vq3

vVh0
, p5 = vq4

vh0
and P6 = vq4

vVh0
, (2.30)

and coefficients q1, q2, q3, q4 and q5 are given in appendix A.

(c) The canonical equations for the oscillatory component

The equations governing the motion of the wave component are formulated by
writing the canonical equations (2.8) and (2.9) for j = 2,

vh1

vt
= (q2 + q3)f1 + Vf1 · q4 + h1U · q5 − V · [q1Vf1 + Uh1 + f1q4] (2.31)

and
vf1

vt
= −gh1 − U · Vf1 − f1U · q5. (2.32)

Proc. R. Soc. A (2012)
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Extended time-dependent MSEs and WAEs 191

Equations (2.31) and (2.32) can be rewritten as

Dh1

Dt
= (q2 + q3)f1 + Vf1 · q4 + h1U · q5 − V · [q1Vf1 + f1q4] + h1V · U (2.33)

and

Df1

Dt
= −gh1 − f1U · q5, (2.34)

where

D
Dt

= v

vt
+ U · V. (2.35)

The aim of this section is to formulate a single equation that governs the flow
of the wave component. This is done as follows: a material derivative is applied
to equation (2.34), the term Dh1/Dt is substituted using equation (2.33), and
instances of h1 are eliminated using the original form of equation (2.34). This
results in the following equation:

D2f1

Dt2
+ (V · U)

Df1

Dt
− V · (gq1Vf1) +

[
g(q2 + q3 − V · q4)

+D(U · q5)
Dt

+ (U · q5 − V · U)U · q5

]
f1 = 0, (2.36)

which after substitution of equations (2.21), (2.22) and (2.24) yields

D2f1

Dt2
+ (V · U)

Df1

Dt
− V · (ccgVf1) + [s2 − k2ccg + R]f = 0 (2.37)

with

R = g(q3 − V · q4) − m2s2

g

(
D(U · Vh0)

Dt
+ (U · Vh0)2 − (V · U)U · Vh0

)
. (2.38)

Equation (2.37), including the function R, is the contribution of this section.
Neglecting R leads to the equation of Kirby (1984).

The first term of equation (2.38) can be written in the following form:

g(q3 − V · q4) = r1V2h + r2|Vh|2 + r3Vh · Vh0 + r4Vh · Vs + r5|Vs|2
+ r6|Vh0|2 + r7Vh0 · Vs + r8V2s + r9V2h0, (2.39)

where ri , i = 1, . . . , 9, are coefficients that depend on the wavenumber k and on
the total water depth h̄ = (h + h0) and may also depend on the current velocity
(figures 1 and 2). Setting the current to 0 while retaining r1 and r2, together with
the assumption of a time-harmonic flow, reduces equation (2.37) to the modified

Proc. R. Soc. A (2012)
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Figure 1. The high-order coefficients with respect to the total water depth kh̄ = k(h + h0). (a) r1/k
(solid) and r2 (dashed). (b) r3/k (solid),

√
kr4 (dashed), r5 (dotted-dashed) and k3/2r8 (dotted).

MSE by Chamberlain & Porter (1995), as well as to the MSE by Massel (1993),
when the evanescent modes are neglected. When an ambient current is present
in the equation, these coefficients improve the one-equation of Belibassakis et al.
(2008) by taking into account the changes in the surface level owing to the ambient
current and the changes of the intrinsic frequency owing to changes in the Doppler
shifts.

Note that coefficients r1, . . . , r4 are reduced to 0 in deep water. This is not
surprising as these coefficients relate directly to the bottom slope and curvature,
which should have an effect only in shallow to intermediate water depths.
Coefficients r5, . . . , r9 and the second part of equation (2.38) are significant in any
water depth and should allow a better prediction of the effects of the ambient
current on the waves.

3. The extended wave-action equation

In this section, a deterministic WAE will be derived from the extended time-
dependent MSE (2.37). This will be done while taking into account changes in
the intrinsic frequency and the wavenumber rather than using the more simplistic

Proc. R. Soc. A (2012)
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r6 k
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6
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Figure 2. High-order coefficients with respect to the total water depth kh̄ = k(h + h0). (a) r6/k
(solid) and

√
kr7 (dashed). (b) r9 (solid). The coefficients are plotted for the non-dimensional

values kU 2/g = 0, 0.05, 0.1, 0.15, 0.2.

ray theory definitions. This approach, which was given by Kostense et al. (1988)
(see also a short discussion given in Dingemans 1997, §3.2), extends the one
that was used by Jonsson (1981), Kirby (1984), Dingemans (1985), Mase (2001),
Holthuijsen et al. (2003) and Hsu et al. (2006a). Here, it is followed with a minor
correction.

Let us apply a wave-like structure to the velocity potential

f1 = Re
{
B(mx , my, mt) exp

[
i
m

S(mx , my, mt)
]}

. (3.1)

Here, both B and S are real functions, which correspond to the velocity potential
amplitude and phase, respectively. For simplicity, from this point, the subscript
of the wave component of the velocity potential will be omitted (i.e. f1 → f).
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Substituting equation (3.1) into equation (2.37) and multiplying by −Be−im−1S

yields, after some manipulations,

−
{

m2 D2B
Dt2

+ m(V · U)
DB
Dt

− mV(ccg) · VB − m2ccgV2B

+
[

s2 −
(

DS
Dt

)2

+ (|VS |2 − k2)ccg + R

]
B

}
B

+ im
v

vt

[(
−DS

Dt

)
B2

]
+ imV ·

{[
ccgVS +

(
−DS

Dt

)
U

]
B2

}
= 0. (3.2)

In order to satisfy equation (3.2), both the real and the imaginary parts should
be 0 independently. Solving the real part for |VS |2 yields the following eikonal
equation:

K 2 = |VS |2 = k2 + 1
ccg

(S2 − s2 − R) − 1
Bccg

×
[

m2 D2B
Dt2

+ m(V · U)
DB
Dt

− mV(ccg) · VB − m2ccgV2B
]
, (3.3)

whereas the imaginary part yields the following transport equation:

v

vt
(SB2) + V · [(ccgK + SU)B2] = 0. (3.4)

Here, an ‘effective’ wavenumber vector was defined as

K = VS , (3.5)

and by considering monochromatic progressive waves, i.e.

vS
vt

= −u, (3.6)

an ‘effective’ intrinsic frequency is given by

S = −DS
Dt

= u − K · U. (3.7)

Applying new wave-action and wave-action velocity definitions,

N = SB2 (3.8)

and

Vg = ccg
K
S

, (3.9)

allows equation (3.4) to be written in a simplified manner as

vN
vt

+ V · {[Vg + U]N } = 0. (3.10)
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Equation (3.10), together with equations (3.3) and (3.5)–(3.9), forms the
deterministic extended WAE (EWAE) model in the xy-space for the velocity
potential amplitude. Note that equation (3.10) can be used as well as a stochastic
phase-averaged equation because it contains no information on the phasing.
A description of this model in terms of the surface elevation amplitude is given
in appendix B.

Let us inspect the relations between the EWAE model and former represen-
tations. By neglecting both low- and high-order refraction/diffraction terms of the
EWAE, i.e. setting K = k (and therefore also S = s), the extended model reduces
to the one of Bretherton & Garrett (1968). This means that all diffraction effects
are neglected, and only lower order refraction effects are retained for very slow
bottom–current variations. The case of no currents, where the higher order term
R is also neglected, reduces the EWAE model for steady problems to the one of
Holthuijsen et al. (2003). This case is also similar to the model of Mase (2001).
Mase also used Berkhoff’s MSE for the derivation of the wavenumber. For the
transport equation, a parabolic approximation to the MSE was applied, assuming
that the waves were propagating mainly in a prescribed direction.

In the presence of currents, the derivation given in the appendix of Holthuijsen
et al. (2003) substitutes the new wave velocity into the transport equation of
Bretherton & Garrett (1968) with no rigorous derivation. This results in an
inconsistent model because Holthuijsen et al.’s effective wavenumber does not
depend on currents. This issue was resolved by Hsu et al. (2006a) with the
addition of two high-order terms relating to the bottom curvature and slope
(r1 and r2, respectively). Still, in both cases, the starting equation was a time-
harmonic one (i.e. accurate only for steady problems), and did not contain
the Doppler effect of the effective wavenumber and wave direction (i.e. setting
S = s, even though K �= k). In addition, both of these models did not use a
vertical profile that depends on the surface elevation changes owing to the
ambient current and neglected other high-order terms that relate to the ambient
current.

4. The extended wave-action equation in a frequency-direction spectrum

In this section, the EWAE derived in §3 will be transformed to fit stochastic
phase-averaged wave models with a frequency-direction spectrum. In order to do
so, the action advection velocities should be given, as well in the additional S and
q coordinates representing the frequency-shifting owing to the Doppler effect and
the turning rate of the wave component. The wave-action definition N (x , y, t)
will be substituted by a sum of wave actions N (q, S, x , y, t) for each frequency
and direction.

Writing equation (3.10) for a single frequency-direction component N reads

vN
vt

+ v

vx
(CxN ) + v

vy
(CyN )

+ vCq

vq
N + vCS

vS
N + vN

vq
Cq + vN

vS
CS = 0, (4.1)
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where

[Cx , Cy , Cq, CS] =
[
dx
dt

,
dy
dt

,
dq

dt
,
dS

dt

]
. (4.2)

Equation (4.1) is the action balance equation on a four-dimensional infinitesimal
volume in time. Its last two terms represent the chain rule derivatives of q and S
with respect to time resulting from the first term of equation (3.10), whereas the
two previous terms represent the flux balance of the four-dimensional infinitesimal
volume in the q and S directions. A more detailed derivation can be found in
Rasmussen (1998), appendix E.

After a minor simplification, the WAE for the frequency-direction spectrum
takes the form

vN
vt

+ v

vx
(CxN ) + v

vy
(CyN ) + v

vq
(CqN ) + v

vS
(CSN ) = 0, (4.3)

where the wave action N is classically defined as 〈A2〉/s, with 〈· · · 〉 denoting
the ensemble average operator; S classically collapses to s and q is the angle of
the wave propagation in the counter-clockwise direction starting from the x-axis
(e.g. Komen et al. 1994). In our case, the phase-averaged wave action is defined
by averaging equation (B 9) in appendix B as

N = 〈A2〉
S

. (4.4)

This wave-action definition resembles the one of Bretherton & Garrett (1968),
but with the more accurate ‘effective intrinsic frequency’ (3.7). These wave-
action definitions, which relate to the ratio between the energy and the intrinsic
frequency, are valid for linear waves. For a problem without a small wave steepness
assumption, a different wave-action definition should result.

The horizontal advection speeds can be easily written from equation (3.10) as

Cx = Vg cos q + U1 and Cy = Vg sin q + U2, (4.5)

where U1 and U2 denote the x- and y-components of the ambient current vector
U, respectively; Vg = |Vg| and q defines the direction of K as seen in figure 3.

The relation between the local coordinates along the wave crest and the wave
direction to the x and y Cartesian coordinates (figure 3) are given as

x = n cos q − m sin q (4.6)

and
y = n sin q + m cos q, (4.7)

which yield their derivative relations as

v

vn
= cos q

v

vx
+ sin q

v

vy
(4.8)

and
v

vm
= − sin q

v

vx
+ cos q

v

vy
. (4.9)
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m

S y

n

x

q

Figure 3. A diagram for the curved coordinate system: m is the coordinate along the wave crest,
n is the coordinate normal to the wave crest and s is the coordinate along the streamline of the
ambient currents.

The turning ratio owing to the bottom and current changes is given as (e.g.
Holthuijsen 2007)

Cq = dq

dt
= vq

vn
vn
vt

− vUn

vm
. (4.10)

Here, Un is the projection of the current vector on the normal to the wave crest
given by the effective wave direction as

Un = U · K
K

, (4.11)

and m is the coordinate in the direction of the wave crest. The ẑ-component of
the curl of equation (3.5), together with definitions (4.8) and (4.9), yields the
following relation:

vq

vn
= 1

K
vK
vm

. (4.12)

Substituting equation (4.12) and the propagation velocity of the wave front with
equation (4.10) gives the turning speed as

Cq = Vg

K
vK
vm

− vUn

vm
. (4.13)

Note that Cq given in equation (4.13) resembles its classical definition, but uses
the new properties of the wave-action speed, wavenumber and wave direction.

The definition of the propagation speed in the effective frequency space owing
to the Doppler shifting is given as

CS = dS

dt
= vS

vt
+ vS

vn
vn
vt

+ vS

vs
vs
vt

. (4.14)
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Here, s is the direction of the stream line of the ambient current U. Taking
the time derivative of equation (3.5) and adding it to the horizontal gradient
of equation (3.6) yields the conservation of crests relation for the effective
wavenumber,

vK
vt

+ Vu = 0. (4.15)

The definition of S given in equation (3.7) is applied to equation (4.14), while
the derivatives of u are substituted using the relation (4.15). This yields, after
some manipulations, the propagation speed in the frequency space owing to the
Doppler shifting as

CS = −
(

v

vt
+ U

v

vs
+ Vg

v

vn

)
(KUn) − (Vg + U) · vK

vt
, (4.16)

where
v

vs
= U1

U
v

vx
+ U2

U
v

vy
(4.17)

and
U = |U|. (4.18)

The propagation speed CS given in equation (4.16) is different to the classical
Cs, as in the derivation of the latter, s depends only on k and h through the
dispersion relation and this dependency is used to simplify the relation. The
effective intrinsic frequency S relates to s through equations (3.7) and (2.18) in
the following manner:

S = s + (k − K) · U. (4.19)

In addition to the dependency on k and h, equation (4.19) gives a more complex
relation between S and other wave properties through the effective wavenumber
definition (3.5).

5. Numerical results

In this section, numerical calculations are presented in order to check the
significance of the high-order component R. The calculation inspects the class
I reflection coefficients for various monochromatic waves propagating over an
undulating bottom. For the numerical integration, the NDSOLVE function of the
MATHEMATICA 8 software was used.

The bottom profile is taken as in the experiment of Magne et al. (2005),

h(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1.9 − 4
15(x − 5), 5 ≤ x < 8,

1.5 − 0.4 cos
(

2p

2.5
(x − 8)

)
, 8 ≤ x < 18,

1.1 + 4
15(x − 18), 18 ≤ x < 21,

1.9, elsewhere,

as well as the mean ambient current in the flat regions, which is given as
U = 0.4 m s−1.
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Figure 4. Class I Bragg reflection coefficients in the presence of a mean ambient current (U =
0.4 m s−1). The bottom wavenumber kb is 2p/2.5 m and knc is the wavenumber on a mean bottom
level (h = 1.5 m) with no current. Solid line represents the present deterministic model—equations
(3.10) and (3.3); dashed line represents Kirby (1984) (i.e. equations (3.10) and (3.3) with R = 0);
solid circles denote experimental results of Magne et al. (2005).

Equation (3.10), together with equation (3.3), was solved and compared with
the equation by Kirby (1984) (i.e. neglecting R) and with the experimental
results of Magne et al. (2005). The results of the above reflection coefficients
are presented in figure 4 with respect to 2knc/kb. Here, kb = 2p/2.5 m, and knc
is the wavenumber of the mean bottom level (h = 1.5 m) without currents. It
can be easily seen from figure 4 that the higher order coefficient R can have a
very significant contribution. This implies that its neglection in former models
cannot be justified in many surface wave-propagation problems in the presence
of ambient currents.

6. Summary and discussion

In the present work, extended MSEs and WAEs were presented. These equations
retain high-order terms for changes of the bottom profiles and ambient currents.
The extended time-dependent MSEs were derived from first principles, and were
the basis for the construction of the WAEs. Even though it is not mentioned in
previous works, the MS type of equations is less accurate for wave reflections
in the presence of an ambient current. The reason behind this is that owing
to the directionality of the ambient current, the assumed vertical profile is a
good approximation for a single propagation direction because the wavenumber’s
magnitude depends on the wave’s direction with respect to the current’s direction.
Therefore, when reflection occurs, the assumed profile can be accurate only for
the incident wave component, as the reflected wave is characterized by a different
wavenumber. The difference between the wavenumbers of an incident wave and a
reflecting wave in the opposite direction are the largest possible, as they are the
result of double the effect of the Doppler shift. Therefore, it is less advisable to use
it for reflection of strong currents. When the waves propagate mostly in a single
direction (which does not need to be known a priori), the Doppler shift differences
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are small, and the same vertical profile can be a plausible approximation for the
whole wave field. This, of course, also applies to the case where there is no ambient
current because, in this case, the wavenumber is not related to the wave direction
at all.

In the next step, a travelling wave form was applied to the new MS-type
equation. This resulted in an extended deterministic WAE. The derivation
consisted of the Doppler shift in an accurate manner that had taken into account
the corrected wave direction and speed. Furthermore, it yielded a different wave-
action definition for the wave-action transport equation. This equation can be
solved using the iterative method of Kostense et al. (1988), which should result
in a wavenumber direction that is a good approximation to the actual wave field
in each location. In addition, a stochastic (phase-averaged) WAE was derived
for a frequency-direction spectrum in order to present a more precise transport
equation for wave-forecasting models.

Finally, numerical calculations were presented in order to reassure the
significance of the high-order components. The calculation inspected the class
I reflection coefficients for various monochromatic waves propagating over an
undulating bottom in comparison with wave tank experiments. The results
reassured the significance of the high-order terms for the reflection coefficients
owing to the class I Bragg resonance in the presence of an ambient current.
As any bottom profile can be represented by a sum of sinusoidal components,
these high-order terms are expected to be of significance for various shoaling
scenarios.

This work was derived under the assumption of potential flow. For water
waves, this is a common and a reasonable approximation. However, it may
not apply to many realistic flow scenarios of the ambient current, as they are
rotational in nature. Nevertheless, wave-propagation models that include this
assumption have shown to be also applicable for rotational ambient currents
(e.g. Liu 1983; Kostense et al. 1988; Chen et al. 2005). This interesting point,
which was previously mostly overlooked, deserves some explanation. As was
discussed in §3, the extended WAE derived in this paper can be reduced to
the WAE of Bretherton & Garrett (1968). Therefore, these wave-propagation
models are valid for rotational ambient currents in the case of slowly varying
wavetrains. In addition, within the wave-propagation equations, rotational terms
of the ambient current were taken into account, and irrotationality of the ambient
current was not imposed. It can be taken into account that the vortical part of
realistic ambient currents is usually a small parameter and that the contribution
of high-order terms can be of a major significance (as shown in figure 4). This
implies that the improvement of the model of Bretherton & Garrett (1968)
is expected also for rotational ambient currents, even if the equation does
not consider the full contribution of the rotationality. A rigorous derivation of
extended MSEs and WAEs in the presence of rotational flows is, of course,
still required in order to have a consistent model that accounts for high-order
bottom–current effects with vortical ambient flow components.
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Appendix A. Coefficients of high-order current and bottom changes

The gradient of the wavenumber k in the presence of an ambient current depends
both on the bottom profile and on the current. It can be described by taking the
gradient of the dispersion relation (2.17) together with the Doppler shift (2.18).
This yields the relation

Vk = c−1
g Vs − 2k2

2kh̄ + sinh 2kh̄
Vh̄. (A 1)

Equation (A 1), together with equation (2.16), can be used to construct the
coefficients given in equations (2.21)–(2.24). After some simplifications, these
coefficients take the form

q1 =
∫h0

−h
f 2 dz = tanh kh̄ + kh̄ sech2 kh̄

2k
= 1

g
ccg, (A 2)

q2 =
∫h0

−h
f 2
z dz = 1

2
k(tanh kh̄ − kh̄ sech2kh̄) = 1

g
(s2 − k2ccg), (A 3)

q3 =
∫h0

−h
|Vf |2 dz = k sech2kh̄|Vh|2

12(2kh̄ + sinh(2kh̄))2
(A 4)

× {3 sinh 4kh̄ − 4kh̄[kh̄(2kh̄ + 3 sinh 2kh̄) + 3]}

+ tanh kh̄|Vs|2
3gk2(tanh kh̄ + kh̄ sech2kh̄)2

× [2(kh̄)3(cosh 2kh̄ − 2)sech4kh̄ + 3 tanh kh̄ − 3kh̄ sech2kh̄]

+ ssech3kh̄Vh0 · Vs

12gk(tanh kh̄ + kh̄ sech2kh̄)2
× {3 sinh 3kh̄ − 7 sinh kh̄

+ 4kh̄[3 sechkh̄ + kh̄(6 sinh kh̄ + 2kh̄ sechkh̄ − 9 tanh kh̄ sechkh̄)]}

+ ksech6kh̄|Vh0|2
192(tanh kh̄ + kh̄ sech2kh̄)2

× {63 sinh 2kh̄ − 24 sinh 4kh̄ + 3 sinh 6kh̄

+ 4kh̄[4kh̄(3 sinh 2kh̄ − 2kh̄) − 36 cosh 2kh̄ + 9 cosh 4kh̄ + 15]}

+ ssech5kh̄Vh · Vs

12gk(tanh kh̄ + kh̄ sech2kh̄)2
× {−3(sinh kh̄ + sinh 3kh̄)

+ 4kh̄[3 cosh3 kh̄ + kh̄(3 sinh3 kh̄ − kh̄ cosh kh̄)]}

+ kVh · Vh0sech6kh̄

48(tanh kh̄ + kh̄ sech2kh̄)2
× {24 sinh 2kh̄ − 3 sinh 4kh̄

+ 2kh̄[2kh̄(2kh̄ + 3 sinh 2kh̄) + 3(1 − 6 cosh 2kh̄ + cosh 4kh̄)]},
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q4 =
∫h0

−h
f Vf dz =

(
1
4
sech2(kh̄) − kh̄

2kh̄ + sinh(2kh̄)

)
Vh (A 5)

− sinh 2kh̄ + 2kh̄(2kh̄ tanh kh̄ − 1)

2gk2(2kh̄ + sinh 2kh̄)
sVs

+
(

− kh̄

2kh̄ + sinh(2kh̄)
+ 3

4
sech2(kh̄) − 1

2

)
Vh0

and q5 = Vf |z=h0 = −k tanh kh̄Vh0 = −s2

g
Vh0. (A 6)

Appendix B. A surface elevation amplitude formulation of the
extended wave-action equation

Equations (3.3), (3.8) and (3.10) formulate the extended wave action in terms
of the velocity potential amplitude. Let us also describe this model in terms
of the surface elevation amplitude. In order to do so, the relation between the
two amplitudes should be derived. The same structure that was assumed for the
velocity potential in equation (3.1) can be applied to the surface elevation,

h1 = Re
{
A(mx , my, mt) exp

{
i
m

[S(mx , my, mt) + g(mx , my, mt)]
}}

. (B 1)

Here, both A and g are real functions, which correspond to the surface elevation
amplitude and the relative phase between the velocity potential and the surface
elevation.

Substituting equations (3.1) and (B 1) in equation (2.34) yields a complex
equation

m
DB
Dt

+ i
DS
Dt

B = −gAeig + B
s2

g
mVh0 · U, (B 2)

which can be written as the following two real equations:

gA sin g = SB (B 3)

and

gA cos g = B
s2

g
mVh0 · U − m

DB
Dt

. (B 4)

The relative phase g can be eliminated by squaring and adding equations (B 3)
and (B 4), which results in a relation between the two amplitudes,

g2A2 = S2B2 + m2
(

B
s2

g
Vh0 · U − DB

Dt

)2

. (B 5)

Note that the second term on the right-hand side (r.h.s.) of equation (B 5) is of
O(m2) i.e.

g2A2 = S2B2 + O(m2). (B 6)
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After applying a square root and Taylor series, while taking into account that
the two amplitudes are positive, a simple definition of B can be given as

B = g
S

A + O(m2). (B 7)

Equation (3.2) can now be rewritten in terms of the surface elevation amplitude
while neglecting terms of O(m3) by using the simplified equations (B 6) and (B 7).
The outcomes are the following eikonal and wave-action definitions:

K 2 = |VS |2 = k2 + 1
ccg

(S2 − s2 − R) − S

gAccg

[
gm2 D2

Dt2

(
A
S

)

+ gm(V · U)
D
Dt

(
A
S

)
− gmV(ccg) · V

(
A
S

)
− gm2ccgV2

(
A
S

)]
(B 8)

and

N = A2

S
. (B 9)

Equation (3.10), together with equation (B 8), the wave action (B 9) and the
velocity (3.9), forms the deterministic EWAE model in the xy-space for the surface
elevation amplitude. Note that equation (3.10) was divided by the constant g2,
which should be applied to its r.h.s. in the case of a non-zero forcing term.
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