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A second order nonlinear frequency domain model extending the linear Complementary
Mild-Slope Equation (CMSE) is presented. The nonlinear model uses the same stream-
function formulation as the CMSE. This allows the vertical profile assumption to accu-
rately satisfy the kinematic bottom boundary condition in the case of nonlinear triad
interactions as well as for the linear refraction-diffraction part. The result is a model
with higher accuracy of wave-bottom interactions including wave-wave interaction. The
model’s validity is confirmed by comparison to accurate numerical models, laboratory
experiments over submerged obstacles, and analytical perturbation solutions for class III
Bragg resonance.
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1. Introduction
The irrotational flow of an incompressible homogeneous inviscid fluid is generally

a three-dimensional problem. However, for practical water wave problems, this three-
dimensional formulation is usually reduced to a two-dimensional one. Among the most
common types of approximated equations that allow for this reduction lies the Mild-
Slope (MS) type equations, which are posed in the frequency domain, and are essentially
linear. In these equations, a vertical structure, which relates to the horizontal bottom
case, is assumed, and the problem is averaged over the depth to enable the elimination
of the vertical coordinate.

One of these MS-type equations is the Complementary Mild-Slope Equation (CMSE),
which was presented by Kim & Bai (2004). Its main difference is that it is derived in terms
of a stream-function vector rather than in terms of a velocity potential or the surface
elevation. This enables the vertical structure to satisfy exactly the kinematic boundary
condition on the uneven bottom. Whereas, in the case of the potential vertical structure
assumption, which is used by other MS-type equations, the bottom boundary condition
is only satisfied on a horizontal bottom.

For two-dimensional problems, the CMSE was shown to give better agreements with
the exact linear theory compared to other MS-type equations (Kim & Bai (2004)). In the
three-dimensional case, using the CMSE is essentially different, as it becomes a vector
equation. For this problem to be well-defined, the equation needs to be reformulated and
supplemented with additional boundary conditions. These difficulties were accounted for,
and the superior accuracy of the CMSE model was reassured in the three-dimensional
case as well (Toledo (2008)).

For solving nonlinear problems, Kaihatu & Kirby (1995) extended the work of Agnon
et al. (1993), and constructed a model consisting of a set of MS equations coupled by
quadratic nonlinear terms, which account for resonant triad interactions. Still, the po-
tential formulation, which does not satisfy exactly the bottom boundary condition, was
used in these nonlinear models. These equations were later used to study stochastic triad
interaction (Agnon & Sheremet (1997), Eldeberky & Madsen (1999) and Stiassnie &
Drimer (2006)).

Using Cosserat surfaces, Green & Naghdi (1976) developed an alternative approach
for modeling incompressible fluid dynamic problems. Among other flow problems, it was
as well applied to water waves (see, for example, Ertekin & Becker (1998)). Constricting
this approach for sheet-like flows, Kim et al. (2001) have derived the Irrotational Green-
Naghdi (IGN) Equations. Further more, a Lagrangian description of the IGN equations
specifically for water waves was written using the stream-function formulation (Kim et al.
(2003), Kim et al. (2007)).

The main objective of this work is to construct a nonlinear model using a stream-
function formulation. The nonlinear model is to be consisted of a set of CMSEs coupled
by quadratic nonlinear terms. This model is expected to have an improved accuracy in
both the linear and the nonlinear parts due to the exact satisfaction of the kinematic
boundary condition on the uneven bottom.

The paper is organized as follows: in section 2 the IGN Lagrangian is presented; a
superposition of solutions with a vertical profile approximation is applied in section 3;
and the nonlinear CMSE model is constructed under the assumption of time-harmonic
waves in section 4. Finally, in section 5 the model’s numerical results are compared
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to accurate numerical simulations, laboratory experiments and analytical perturbation
solutions.

2. The Irrotational Green-Naghdi Lagrangian
Define Ψ as a stream function vector

Ψ(x, z, t) ≡
z∫

−h

u(x, ζ)dζ, u = (u, v), x = (x, y), (2.1)

where u is the horizontal velocity vector and x is the horizontal position vector. From
(2.1) the velocity field is defined as

u =
∂Ψ
∂z

, w = −∇ ·Ψ. (2.2)

The equations governing the irrotational flow of an incompressible inviscid fluid with a
free surface over a horizontal bottom can be constructed using the Irrotational Green-
Naghdi Equations derived from Hamilton’s principle, see Kim et al. (2001, 2003). The
Lagrangian is given by

L =
∫ ∫

Ldxdy,

1
ρ
L = φ (ηt +∇ ·Ψ + Ψz · ∇η)z=η +

1
2

η∫

−h

(
|Ψz|2 + |∇ ·Ψ|2

)
dz − 1

2
gη2. (2.3)

Here ∇ =
(

∂
∂x , ∂

∂y

)
, h = h(x) is the water depth, η = η(x, t) the surface elevation and

φ = φ(x, t) is a Lagrange multiplier function. The origin is on the undisturbed water
level and z is positive upward.

Taking the first variation of the Lagrangian with respect to φ, η and Ψ gives three
Euler-Lagrange equations:

δL

δΨ
: ∇(∇ ·Ψ) + Ψzz = 0 −h < z < η (2.4)

δL

δη
: φt + 1

2 (Ψz)
2 + 1

2 (∇ ·Ψ)2 + gη = 0 z = η (2.5)

δL

δφ
: ηt +∇ ·Ψ + Ψz · ∇η = 0 z = η (2.6)

By using this formulation, Kim & Bai (2004) showed that the impermeable bottom
boundary condition on z = −h(x, y) is satisfied exactly, and the definition of Ψ can be
used to construct a Dirichlet boundary condition,

Ψ = 0 z = −h. (2.7)

This together with lateral boundary conditions form a complete set of equations and
boundary conditions that govern the irrotational flow of an incompressible inviscid fluid
with a free surface. Equation (2.5) implies that φ, the Lagrange multiplier for the kine-
matic boundary condition on the free surface, is actually the velocity potential on the
free surface, as shown by Kim et al. (2001).
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3. The approximated Euler-Lagrange equations
Expanding equation (2.3) around z = 0 by use of the Taylor series up to O

(
(ka)2

)
gives

1
ρ
L = φ (ηt +∇ ·Ψ + Ψz · ∇η +∇ ·Ψzη)z=0 +

+
1
2

0∫

−h

(
|Ψz|2 + (∇ ·Ψ)2

)
dz +

1
2
η

(
|Ψz|2 + (∇ ·Ψ)2

)
z=0

− 1
2
gη2 (3.1)

In order to eliminate the z-coordinate and construct a MS-type equation the vertical
profile can be assumed to consist of a superposition of solutions:

Ψ(x, z, t) =
N∑

l=1

fl(kl, h, z)Ψl(x, t). (3.2)

Following Kim & Bai (2004), the vertical profiles are chosen as in the linear solution of
the horizontal bottom problem

fl(kl, h, z) =
sinh(kl(h)(z + h))

sinh(kl(h)h)
, ω2

l = gkl tanh(klh). (3.3)

Substituting (3.2), the Lagrangian (3.1) becomes

1
ρ
L = φ

(
ηt +

N∑

l=1

∇ ·Ψl +
N∑

l=1

f̄lΨl · ∇η +
N∑

l=1

(∇f̄l ·Ψl + f̄l∇ ·Ψl

)
η

)
+

+IntLinPart +
1
2

N∑

l=1

N∑
m=1

(
f̄lf̄mΨl ·Ψm + (∇ ·Ψl) (∇ ·Ψm)

)
η − 1

2
gη2 (3.4)

where

f̄l ≡ ∂fl(kl, h, z)
∂z

|z=0, (3.5)

IntLinPart ≡
N∑

l=1

N∑
m=1

(
1
2
d̄Ψl ·Ψm + b (∇h ·Ψl)∇ ·Ψm+

1
2
c (∇h ·Ψl) (∇h ·Ψm) +

1
2
ā (∇ ·Ψl) (∇ ·Ψm)

)
. (3.6)

Taking the first variation of the Lagrangian (3.4) with respect to φ, η and Ψn for n =
1, 2, ..., N yield 2N + 2 Euler-Lagrange equations:

δL

δΨn
: −∇φ−∇φf̄nη + LinPartn +

(
N∑

l=1

f̄lΨl

)
f̄nη −

−
N∑

l=1

(∇ (∇ ·Ψl) η + (∇ ·Ψl)∇η) = 0 (3.7)

δL

δη
: φt +∇φ

N∑

l=1

f̄lΨl + gη −
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−1
2

N∑

l=1

N∑
m=1

(
f̄lf̄mΨl ·Ψm + (∇ ·Ψl) (∇ ·Ψm)

)
= 0 (3.8)

δL

δφ
: ηt +

N∑

l=1

∇ ·Ψl +
N∑

l=1

∇ · (f̄lΨ
)
η +

N∑

l=1

∇η · (f̄lΨ
)

= 0 (3.9)

where

LinPartn = d̄Ψn −∇ (ā (∇ ·Ψn) + b (∇h ·Ψn)) +
+b (∇ ·Ψn)∇h + c (∇h ·Ψn)∇h,

and the definitions of ā, b, c and d̄ are

ā(h) =

0∫

−h

f2dz, b(h) =

0∫

−h

f
∂f

∂h
dz,

c(h) =

0∫

−h

(
∂f

∂h

)2

dz, d̄(h) =

0∫

−h

(
∂f

∂z

)2

dz. (3.10)

As was shown in section 2, φ represents the velocity potential on the free surface, therefore

∇φ = Ψz|z=η=
N∑

l=1

f̄lΨl + O
(
(ka)2

)
. (3.11)

Substituting (3.11) in equations (3.7), (3.8) and (3.9) yields

δL

δΨn
: −∇φ + LinPartn −

N∑

l=1

(∇ (∇ ·Ψl) η + (∇ ·Ψl)∇η) = 0 (3.12)

δL

δη
: φt + gη +

1
2

N∑

l=1

N∑
m=1

(
f̄lf̄mΨl ·Ψm − (∇ ·Ψl) (∇ ·Ψm)

)
= 0 (3.13)

δL

δφ
: ηt +

N∑

l=1

∇ ·Ψl +
N∑

l=1

∇ · (f̄lΨ
)
η +

N∑

l=1

∇η · (f̄lΨl

)
= 0 (3.14)

4. Time-harmonic wave propagation
The first step toward a formulation solely in terms of Ψ is to eliminate η from the

nonlinear parts. In order to achieve that, linear relations can be applied, and η will be
defined in terms of Ψ using a linearization of the kinematic boundary condition (2.6).
In contrast, ∇η will be constructed by taking the gradient of the linear dynamic free
surface boundary condition (2.5) together with (3.11). This allows for a low order of
spatial derivatives of Ψ:

η = −
N∑

l=1

∫
∇ ·Ψldt + O

(
(ka)2

)
, (4.1)

∇η = −1
g

N∑

l=1

f̄l
∂Ψl

∂t
+ O

(
(ka)2

)
. (4.2)
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Using the linear relations (4.1) and (4.2), equations (3.12), (3.14) and (3.13), the depen-
dence on the surface elevation η can be factored out to yield 2N + 1 coupled evolution
equations of Ψn and φ

−∇φ + LinPartn +
N∑

l=1

N∑
m=1

(
∇ (∇ ·Ψl)

∫
∇ ·Ψmdt +

1
g

(∇ ·Ψl) f̄m
∂Ψm

∂t

)
= 0 (4.3)

φtt = g

N∑

l=1

∇ ·Ψl −
N∑

l=1

N∑
m=1

(
g∇ · (f̄lΨl

) ∫
∇ ·Ψmdt + f̄lf̄mΨl

∂Ψm

∂t

)

−1
2

N∑

l=1

N∑
m=1

∂

∂t

(
f̄lf̄mΨlΨm − (∇ ·Ψl) (∇ ·Ψm)

)
. (4.4)

The free surface elevation can be calculated afterwards using the relation

ηt +
N∑

l=1

∇ ·Ψl −
N∑

l=1

N∑
m=1

(
∇ · (f̄lΨ

) ∫
∇ ·Ψldt +

1
g
f̄l

∂Ψl

∂t
· (f̄mΨm

))
= 0 (4.5)

In order to construct time-harmonic evolution equations, we assume Ψl to be of the form

Ψm(x, t) = ψm(x)e−iωmt + ψ∗m(x)eiωmt (4.6)

where (*) denotes the complex conjugate. The free surface elevation η and the velocity
potential at the free surface φ can be assumed as a superposition of time-harmonic
solutions as well

η(x, t) =
N∑

l=1

(
ηl(x)e−iωlt + η∗l (x)eiωlt

)
, (4.7)

φ(x, t) =
N∑

l=1

(
φl(x)e−iωlt + φ∗l (x)eiωlt

)
. (4.8)

Substituting equations (4.6) and (4.8) into equations (4.3) and (4.4), eliminating φ and
taking into account only resonant triad interaction (i.e. the nonlinear terms that have
the same angular frequency as of the linear part) yields a set of evolution equation for
each harmonic ψn :

−∇ (a (∇ · ψn) + b (∇h · ψn)) + (b∇ · ψn + c∇h · ψn)∇h− kn(h)2aψn −

−
n−1∑

l=1

(
i

ωn−l
∇ (∇ · ψl) (∇ · ψn−l)− iωn−l

g
(∇ · ψl) f̄n−lψn−l

)
−

−
N−n∑

l=1

(
i

ωn+l
∇ (∇ · ψ∗l ) (∇ · ψn+l)− i

ωl
∇ (∇ · ψn+l) (∇ · ψ∗l )−

− iωn+l

g
(∇ · ψ∗l ) f̄n+lψn+l +

iωl

g
(∇ · ψn+l) f̄lψ

∗
l

)
+∇φNL

n = 0 (4.9)

φNL
n =

1
ω2

n

n−1∑

l=1

(
ig

ωn−l
∇ · (f̄lψl

)
(∇ · ψn−l)−
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−i

(
ωn−l +

1
2
ωn

)
f̄lf̄n−lψlψn−l + iωn (∇ · ψl) (∇ · ψn−l)

)
+

+
1

ω2
n

N−n∑

l=1

(
ig

ωn+l
∇ · (f̄lψ

∗
l

)
(∇ · ψn+l)− i (ωn+l − ωl + ωn) f̄lf̄n+lψ

∗
l ψn+l−

− ig

ωl
∇ · (f̄n+lψn+l

)∇ · ψ∗l + iωn (∇ · ψ∗l ) (∇ · ψn+l)
)

where,

a(h) =

0∫

−h

f2dz − g

ω2
=

coth(kh)

2k

(
1 +

2kh

sinh(2kh)

)
= −gk2

ω4
CCg, (4.10)

b(h) =

0∫

−h

f
∂f

∂h
dz =

1

4 sinh2(kh)

2kh cosh(2kh)− sinh(2kh)

2kh + sinh(2kh)
, (4.11)

c(h) =

0∫

−h

(
∂f

∂h

)2

dz =
k

12 sinh2(kh)

−12kh + 8(kh)3 + 3 sinh(4kh) + 12(kh)2 sinh(2kh)

(2kh + sinh(2kh))2
, (4.12)

This set of N coupled vector equations (2N scalar ones) extends Kim and Bai’s (2004)
CMSE vector equation with the nonlinear triad interaction terms. If needed, φn can be
calculated afterwards using the relation

φn = − g

ω2
n

∇ · ψn + φNL
n . (4.13)

5. Numerical Results
5.1. Superharmonic class III Bragg resonance

Class III Bragg resonance refers to a nonlinear wave-wave-bottom resonant triad inter-
action. Its resonance conditions can be satisfied by an interaction between a single wave
and an undulated bottom. For the 2D problem, the superharmonic resonance creates a
transmitted wave with an angular frequency 2ω and a wavenumber 2k + kb. Here, kb

is the wavenumber of the bottom undulation, and ω and k are the angular frequency
and the wavenumber of the incident wave, which satisfy the linear dispersion relation,
ω2 = gk tanh(kh).

The particular case of class III Bragg resonance over an oscillatory bottom was ad-
dressed using other models as well (Agnon et al. (1998), Liu & Yue (1998), and Madsen
et al. (2006)). Here, the bathymetry for this numerical simulation was taken as in Liu
& Yue (1998): flat bottom with a patch of 5 sinusoidal ripples, where kbd = 0.025 and
kbh = 0.325. The patch starts at x = 0 and d represents its amplitude. The solution
was compared to the analytical perturbation solution and the numerical solution of Liu
& Yue (1998). Note that the analytical solution is an approximation, which does not
contain the bound wave, and is only accurate up to x = O(ε−1).

Figure 1 presents the numerical results of equation (4.9) with 2 harmonics except in
the case of ka = 0.06, which was calculated using 4 harmonics. The agreement with
the analytical growth of the transmitted wave amplitude is excellent for lower values
of ka (0.01, 0.02, 0.03). For ka = 0.06, we can see that toward the end of the patch
the transmitted wave amplitude growth starts to decrease comparing to the analytical
perturbation solution. This is expected as the analytical solution becomes less accurate
at this distance. However, the initial growth of the amplitudes agree.
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For ka = 0.03, 0.06 Liu & Yue (1998) solved this problem as well using a High-Order
Spectral (HOS) method. It appears that the bound wave was filtered out of their results
as their 2nd harmonic starts with no energy, and therefore their results contain no steep
undulations as the ones of the Nonlinear CMSE. In figure 1, their graphs were shifted up
in the magnitude of the Nonlinear CMSE’s bound wave to allow an easier comparison
of the 2nd harmonic amplitude growth. Note that in any MS-type equation the bound
waves are not approximated well due to the assumption of a free wave’s vertical structure.
Still, it is the free wave evolution that is the most important.

The exact linearized class III condition for the above problem is (k/kb) = 2.031. In
the Nonlinear CMSE the condition for ka = 0.03 was the exact one, and for ka = 0.06
it was 2.06. In the HOS calculations the conditions for ka = 0.03, 0.06 were 2.021 and
2.025 respectively. We can see very good agreement for the free wave solution between
the Nonlinear CMSE and the HOS in both cases.

Mei (1985) presented a multiple-scales perturbation solution for Class I Bragg reso-
nance, where he showed that the resonant wave gains energy from the incident wave, and
then transfers it back in a harmonic way as it continues to resonate on the sinusoidal
patch. The same mechanism applies to the case of class III Bragg resonance, so the linear
transfer of energy is expected to apply for the lower wave steepness (ka) calculations,
because the patch of 5 bottom wave-lengths lies still within x 6 O(ε−1). For higher ka
or longer patches the analytical solution should apply only as the initial growth of the
transmitted wave amplitude. Figure 2 presents the resulting transmitted wave amplitude
for ka =0.05, kbd = 0.03 and a patch of 22 sinusoidal ripples, where we can see the
transfer of energy back and forth.

5.2. Submerged one-dimensional obstacle

Beji & Battjes (1993), Dingemans (1994) and Luth et al. (1980) conducted wave tank
experiments of monochromatic waves propagating over a trapezoidal bar using different
scalings. The relatively shallow water together with the changes in bathymetry give rise
to near resonant interactions, which transfer energy to higher harmonics.

The experimental set-up of Dingemans (1994) consists of a trapezoidal shoal region
with an up-slope and down-slope of 1:20 and 1:10 respectively from a constant depth
of h0 = 0.8m to the shallow flat bar-crest at the depth of hbar = 0.2m and back. The
bathymetry and the monitored sections are shown in figure 3. The incident wave height
was H = 4cm and the period T = 2.86sec.

The nonlinear CMSE model (4.9) was used for the calculation taking into account 4
harmonics. The results for the numerical experiment together with the wave tank ones
are given in figure 4. The numerical results for the first and second harmonics seem
to excellently agree with the experimental results. The accuracy of the third and forth
harmonics is not expected to be high, because the nonlinear part of the model is accurate
up to O

(
(ka)2

)
. Still, the high harmonics behave qualitatively well. Quantitatively, after

the shoal area, the error of the third harmonic wave is between 10% to 20%, and the
error of the fourth is greater.

Ohyama et al. (1995) conducted wave tank experiments of monochromatic waves prop-
agating toward a trapezoidal bar as well, but in their experiment the bar had steep slopes
of 1:2. The main qualitative difference of this experiment is that the steep obstacle cre-
ates a significant reflected wave. The experimental set-up consists of a trapezoidal shoal
region with an up-slope and down-slope of 1:2 from a constant depth of h0 = 0.5m to
the shallow flat panel at the depth of hbar = 0.15m. The bathymetry and the monitored
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Figure 1. The results for class III superharmonic Bragg resonance over a patch of 5 sinusoidal
ripples. The wave amplitude is normalized by the 1st harmonic incident wave amplitude and
the position is normalized by the bottom wave length. Figures a, b, c and d refer to ka =0.01,
0.02, 0.03 and 0.06 respectively. Dashed line represents the 1st harmonic of the Nonlinear CMSE
model; Thin solid line represents the 2nd harmonic of the Nonlinear CMSE model including the
bound wave; Thick solid line represents the 2nd harmonic of the High-Order Spectral method
by Liu & Yue (1998); and dot-dashed line represents 2nd harmonic of the perturbation solution
by Liu & Yue (1998) accurate up to x = O(ε−1) without the bound wave.
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Figure 2. The results for the nonlinear CMSE class III Bragg superharmonic resonance over a
patch of 22 sinusoidal ripples for ka =0.05 and kbd = 0.03. The wave amplitude is normalized by
the 1st harmonic incident wave amplitude and the position is normalized by the bottom wave
length. The dashed line represents the 1st harmonic of the Nonlinear CMSE model; and the
thin solid line represents the 2nd harmonic of the Nonlinear CMSE model.
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Figure 3. The bathymetry in the experiment of
Dingemans (1994). The wavemaker is positioned at x = 0 with incident wave height of H = 4cm
and period of T = 2.86sec. The circles indicate the cross-sections monitored by wave gauges.
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Figure 4. The numerical results of the nonlinear CMSE for the experiment of
Dingemans (1994) (solid line) and the gauge measurements of the wave-tank experiment (solid
circles). Figures a, b, c and d show the 1st, 2nd, 3rd and 4th harmonics respectively.

cross-sections are shown in figure 5. The incident wave height was H = 5cm and the
period T = 2.682sec.

The nonlinear CMSE model (4.9) was used for the calculation, again taking into ac-
count 4 harmonics. The results for the numerical experiment together with the wave tank
results are shown in figure 6. The numerical results agree well with the measurements
and also with accurate nonlinear numerical model runs by Ohyama & Nadaoka (1991),
with the exception of some undulations in the transmitted waves. These undulations are
caused by an error in modeling the bound wave. This error is inherent in MS-type models
because the assumed vertical profile is for a free wave that is different in nature than the
profile for a bound wave.
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Figure 5. The bathymetry in the experiment of Ohyama et al. (1995) with incident wave
height of H = 5cm, period of T = 2.682sec and constant depth of h0 = 0.5m.
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Figure 6. The numerical results of the nonlinear CMSE for the experiment of Ohyama et al.
(1995) shown by the solid line. The dashed lines represent the fully nonlinear solution by Ohyama
& Nadaoka (1991). The circles show the wave gauge measurements of the wave-tank experiment.
The wave amplitude is normalized by the 1st harmonic incident wave amplitude and the position
is normalized by the flat bottom depth. Figures a,b,c and d indicate the 1st, 2nd, 3rd and 4th
harmonics respectively

6. Summary and conclusions
The Complementary-Mild Slope Equation was shown to give better agreement with

exact linear theory compared to other MS-type equations (see Kim & Bai (2004)). The
main novel concept behind it is the use of a stream-function formulation which allows
the vertical profile assumption to accurately satisfy the kinematic bottom boundary
condition.

In the present work, the CMSE was extended up to second order to enable nonlinear
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coupling between frequency components. This was done by applying Hamilton’s principle
to the Irrotational Green-Naghdi Lagrangian. The nonlinear CMSE exploits the same
advantages of the linear CMSE also for nonlinear triad interactions resulting in higher
accuracy of the interactions between the waves and the bottom and an improved energy
transfer between modes.

The model’s validity is confirmed by comparison to an accurate numerical model and
laboratory experiments over submerged obstacles, and to an analytical perturbation so-
lution of class III Bragg resonance. The results give good agreements, which reassure the
use of the nonlinear CMSE for practical problems.

This model is elliptic in nature and allows for solving problems that include reflection
and refraction, as in harbor design. It is especially economic for narrow banded wave
spectra, as the number of triad interactions is relatively small. For broad banded waves,
the High-Order Boussinesq models may be more economic, even though they need to be
integrated in the time domain as well.

This research was supported by the US-Israel Binational Science Foundation (Grant
2004-205) and by the Germany-Israel (BMBF-MOST) Joint Research program (Grant
1946).
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