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a b s t r a c t

Nonlinear interactions between sea waves and the bottom are a main mechanism for energy transfer
between the different wave frequencies in the near-shore region. Nevertheless, it is difficult to account
for this phenomenon in stochastic wave models due to its mathematical complexity, which consists of
computing either the bi-spectral evolution or non-local shoaling coefficients. Recent advances allowed
the localization of the nonlinear shoaling coefficients, setting a simpler way to apply this mechanism in
these models for one-dimensional interactions. This was done by taking into account only mean energy
transfers between the modes while neglecting oscillatory transfers. The present work aims to improve
these localized coefficients in order to make them more consistent with the dominating resonance
mechanism—the class III Bragg resonance. The approximated stochastic models are tested with respect
to a deterministic nonlinear mild-slope equation model, where a significant advantage of the improved
coefficients is observed.

© 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

Nonlinear energy transfer is a dominant process that affects
the evolution of wave spectra both in deep water and in the
shoaling region. The nonlinear interactions in deep water consist
of wave quartet interactions at leading order. These wave quartets,
which act at cubic nonlinearity in wave steepness, satisfy resonant
conditions of thewave frequencies andwave numbers. This type of
evolution is rather a weak one that requires large spatial distances
(time) of thousands of wavelengths (wave periods) in order to
have a considerable effect. In intermediate to shallow water, the
nonlinear interactions act much faster with significant energy
transfers between triads of waves. This is possible due to the
influence of the bottom that enables us to satisfy the resonant
conditions already in quadratic nonlinearity. Furthermore, when
waves shoal their steepness increase, and as nonlinear interactions
are proportional to the wave steepness, the nonlinear energy
transfer becomes even larger in this region.

Various wave models address the problem of nonlinear
interactions in the near shore environment. Boussinesq-type
equations reduce one spacial dimension assuming the depth is
small compared to the wavelength. These equations can compute
the nonlinear time-domain problem with great accuracy (see,
e.g. [1]), but result in a very high computer effort. Other methods
assume a set of slowly evolving harmonicwave componentswith a
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vertical profile that fits the linear motion over a flat bottom (mild-
slope-type assumptions). This approach results in a set of evolution
equations for each harmonic that are coupled with quadratic
nonlinear terms. These equations can be hyperbolic (e.g. [2]),
elliptic and parabolic (e.g. [3–5]).

The advantage of using a stochastic approach is the signifi-
cant reduction in calculation effort, as the Nyquist limitation no
longer restricts the numerical solution. Several works on stochas-
tic wave models that account for nonlinear interactions were
presented. Agnon and Sheremet [6,7], Kofoed-Hansen and Ras-
mussen [8], Eldeberky and Madsen [9] presented stochastic evo-
lution equations based on hyperbolic models taking into account
one-dimensional interactions. Herbers and Burton [10] derived
stochastic evolution equations starting from a Boussinesq-type
model while presenting as well two-dimensional calculations for
the quasi-one-dimensional problem (no bottom changes in the
lateral direction). Janssen et al. [4] derived a stochastic model,
using a Fourier transform in the later direction. Their model in-
cludes diffraction effects, while accounting for two-dimensional
quadratic nonlinear interactions that allowmild changes in the lat-
eral direction.

The common and most widely used forecasting models are
based on a stochastic hyperbolic wave action equation. In these
models, simplified one-dimensional parametric source functions
are used to describe the triad interactions (see [11,12]). In these
source functions there is only energy transfer to higher harmonics
of each spectral component (self-interactions) without accounting
for other transfers of energy of different triad combinations and
energy that is transferred to lower harmonics. This approach
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enables an easy inclusion of simplified nonlinear energy transfers,
but may lead to a physically inappropriate evolution of the
spectrum (see [13,12]). In addition, the derivation of parametric
source functions consists of a local flat bottom approximation.
As oscillating bottom components, which enable satisfaction of
wave number resonance conditions, come as well from the bottom
profile’s derivatives, it inherently fails to accurately model the
dominating energy transfer—the class III Bragg resonance.

Here lies a wide gap. On one hand there are stochastic models
such as [4] that take into account the directional spreading of the
triad interactions, but on the other hand this physics is not applied
to the wave forecasting models even for the one-dimensional
case. The problem in including the two-dimensional quadratic
interaction model of [4] is that it is based on a Fourier transform
in the lateral direction that poses a problem in applying it to
the hyperbolic formulation of the wave action equation models.
Furthermore, for these forecasting models even the calculation
of the one-dimensional quadratic interactions is costly for its
inclusion, as thesemodels are run in real time for very large spacial
and temporal domains. Hence, a lighter quadratic nonlinear model
is required in order to present an alternative approach that still
grasps the essence of this important phenomenon.

Among the aforementioned stochastic works a main advance-
ment in reducing the bi-spectral calculation costs was made by
Agnon and Sheremet [6]. They presented an analytical definition of
the bi-spectra that allows its substitution into the evolution equa-
tionswithout the need for its direct numerical calculation. Still, due
to this operation the resulting interaction coefficients became non-
local, and therefore, difficult to apply to forecasting models.

In a later work, Agnon and Sheremet [7] improved the accuracy
of the nonlinear triad interactions. In addition, they localized
the non-local coefficients by assuming the bottom to be a sum
of oscillating components. More recent progress was made by
Stiassnie and Drimer [14], who managed to localize the non-
local shoaling coefficients of [6] by neglecting harmonic back and
forth energy transfers between the modes and accounting only
for the mean energy transfer. This progress paves the way for
applications of this approach for one-dimensional interactions
also in two-dimensional wave action equation-type forecasting
models, as it significantly lowers the computational effort, while
still incorporating themean energy transfer between all wave triad
combinations.

The present work aims to apply the method of Stiassnie and
Drimer [14] to the more accurate one-dimensional non-local
shoaling coefficients of Agnon and Sheremet [7]. This simplistic
approach is not supposed to compete with more accurate models
such as the ones of Herbers and Burton [10], Agnon and Sheremet
[7] and Janssen et al. [4] but rather improve another line of work—
the simpler localized nonlinear interaction terms appropriate for
wave forecastingmodels given by Elderbeky andBattjes [11], Becq-
Girard et al. [12] and Stiassnie and Drimer [14].

The paper is constructed as follows. In Section 2, an overview
is given on resonant interactions in the near-shore region.
The stochastic model of Agnon and Sheremet [7] is presented
in Section 3 together with the non-local nonlinear shoaling
coefficients. In Section 4 the non-local shoaling coefficients of [7]
are inspected. Then, new local shoaling coefficients are derived and
compared together with the coefficients of [14] to the non-local
coefficients of Stiassnie and Drimer [7]. Numerical calculations are
presented in Section 5, and the work is summarized in Section 6.

2. Resonant interactions

In order to better understand the nonlinear interactions in
the shoaling region, it is helpful to observe the problem in the
frequency and wavenumber domains with respect to resonant

interactions. These resonant interactions (as well as near resonant
ones) represent the majority of energy transfer within the wave
spectrum. For a wave field in deep water, interactions among
different wave components become resonant at order m (in
wave steepness), if the wavenumbers kj and the corresponding
frequencies ωj satisfy resonance conditions. This requires the sum
of wavenumbers and frequencies to satisfy the following relations

ω1 ± ω2 ± · · · ± ωm+1 = 0, k1 ± k2 ± · · · ± km+1 = 0,
m ≥ 1.

(1)

As thewave number and the frequency of eachwave are related
through the dispersion relation, the satisfaction of Eq. (1) in deep
water can not occur atm = 2 (i.e. betweenwave triads). Therefore,
the leading order interaction is of a quadruplet of waves atm = 3,
which is supplemented by weaker interactions at m = 4, 5, . . . .
In shallow to intermediate waters, a bottom-induced free-surface
interference, which does not abide by the dispersion relation, can
allow the satisfaction of this resonance relation (1) even at order
m = 1. These resonant interactions, which consists of bottom
components in addition to surface wave ones, relate to the so-
called Bragg resonance.

The linear class I and class II Bragg resonances occur at order
m = 1 with one bottom component and with two bottom compo-
nents respectively. The nonlinear class III Bragg resonance occurs
at orderm = 2with one bottom component. The class I and class II
Bragg resonances are the wavenumber representation of the main
linear reflection and refraction effects, whereas the class III Bragg
resonance is the main wavenumber representation of the nonlin-
ear triad interactions in shallow to intermediate depths. Eq. (1) can
be used to describe higher orders of linear and nonlinear interac-
tions with more bottom components, but these interactions usu-
ally have a lesser effect. Different terms in wave equations can be
ordered using this classification. For simplification purposes, these
equations can be truncated in a consistent way above a chosen
Bragg class resonance order.

Form = 2 with one bottom component, Eq. (1) takes the form:

ω1 ± ω2 ± ω3 = γ , k1 ± k2 ± k3 ± Kn = δ. (2)

Here, Kn is a bottom component, and small detuning parameters,
δ and γ , have been added in order to represent the near
resonant interactions. Eq. (2) describes the class III Bragg resonance
conditions.

3. Stochastic models

In this section the development of [6,7] is presented. For the
one-dimensional case Agnon and Sheremet obtained the following
equation:

d
Bf

2
dx

= 2

f1


f2

W̃(0,1,2)ℑm

×


B∗

f Bf1Bf2e
−i
 x
−∞

∆0:1,2dx′


δf ,f1+f2

− 2

f1


f2

W̃(0,−1,2)ℑm

×


B∗

f B
∗

f1Bf2e
−i
 x
−∞

∆2:0,1dx′


δf2,f+f1 . (3)

Here,

Bf = Cg1/2
f Af (4)

with Cgf as the modal group velocity from linear theory and Af as
the modal amplitude. The notation ⟨· · ·⟩ represents an ensemble
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average; ℑm represents the imaginary part; ∆0:1,2 = kf − kf1 − kf2
is the triad wave number mismatch, and the kernel W̃ is given by

W̃(0,±1,2) =
g

8

Cgf Cgf1Cgf2

1/2
×


±

2 − Γ ±


kf1kf2 +


1 − Γ ±

 ω2
f1
ω2

f2

g2

+ k2f1
ωf2

ωf
± k2f2

ωf1

ωf
∓

1 − Γ ±

 ω2
f ωf1ωf2

g2


. (5)

The relation between the modal frequency ωf and the modal wave
number kf is subject to the linear dispersion relation

ω2
f = gkf tanh kf h,

and Eldeberky and Madsen’s [9] correction to the original kernel
of [6] is given as

Γ ±
= 2Cgf


kf ∓ kf1 − kf2


/ωf .

Note that this nonlinear correction applies for transferring the
potential amplitude to the wave elevation amplitude, i.e. when
Γ ±

= 0, Af relates to the velocity potential’s amplitude instead
of the surface elevation’s one.

In Eq. (3), the evolution of
Bf

2 in the l.h.s is related to third
order nonlinear interactions in the r.h.s., which are proportional
to the bi-spectra. Solving these bi-spectral interactions is time
consuming. If one tries to substitute it using the evolution equation
of Bf , it results in a residue containing four wave nonlinear
interactions and so on. Hence, in order to solve this problem a
closure relation is needed.

Agnon and Sheremet [6,7] used a closure given by the theory
of weak turbulence of [15]. For leading order energy transfer,
this closure condition relates four-wave nonlinear interactions to
products with repeated indices, and enables construction of an
evolution equation for the bi-spectra as

d
dx


B∗

f Bf1Bf2


= 2i


W̃(0,1,2)

Bf1

2 Bf2

2
+ W̃(1,−2,0)

Bf2

2 Bf
2

+ W̃(2,−1,0)

Bf1

2 Bf
2

× ei
 x
−∞

∆0:1,2dx′δf ,f1+f2 , (6)
d
dx


B∗

f B
∗

f1Bf2


= −2i


W̃(0,−1,2)

Bf1

2 Bf2

2
+ W̃(1,−0,2)

Bf2

2 Bf
2

+ W̃(2,1,0)

Bf1

2 Bf
2

× e−i
 x
−∞

∆2:0,1dx′δf2,f+f1 . (7)

Eqs. (6) and (7)were solved and applied to Eq. (3) to yield a one-
dimensional model for stochastic waves propagating over uneven
topography:

d
Bf

2
dx

= 4

f1


f2


ℜe

K0:1,2

 Bf1

2 Bf2

2
+ ℜe


K1:−2,0

 Bf1

2 Bf
2

+ ℜe

K2:−1,0

 Bf2

2 Bf
2

× W̃(0,1,2)δf ,f1+f2

+ 8

f1


f2


ℜe

K0:−1,2

 Bf1

2 Bf2

2
+ ℜe


K1:−0,2

 Bf2

2 Bf
2

+ ℜe

K2:1,0

 Bf1

2 Bf
2

× W̃(2,1,0)δf2,f+f1 , (8)

where the shoaling interaction function K appearing in Eq. (8) is
defined as

K0:1,2 = e−i
 x
−∞

∆0:1,2dx′
 x

−∞

W̃(0,1,2)ei
 x′
−∞

∆0:1,2dξdx′. (9)

In the work of Agnon and Sheremet [6] the kernel W̃ was assumed
to be varying slowly, and Eq. (9) was approximated as

K0:1,2 = W̃(0,1,2)J0:1,2, (10)

J0:1,2 = e−i
 x
−∞

∆0:1,2dx′
 x

−∞

ei
 x′
−∞

∆0:1,2dξdx′. (11)

As can be seen in Eqs. (9) and (11) the shoaling coefficients are
non-local (i.e. containing spatial integrations). These coefficients
are difficult to apply in two-dimensional models. In this case,
the bi-spectrum is not evolving along a straight line in the
manner that was presented in Eqs. (6) and (7), but rather as a
two-dimensional field, where the wave ray paths are unknown
a priori. This prevents us from using this non-local approach.
Nevertheless, these coefficients consist of local effects in addition
to the non-local ones. These local parts pose no difficulty in
their application to two-dimensional forecasting models. This
should allow construction of an approximated one-dimensional
nonlinear triad interaction source term for waves that are
propagating in the same direction also for a two-dimensional wave
field.

4. The local shoaling coefficients

Let us inspect the non-local shoaling coefficient K . A differen-
tial equation definition equivalent to the integral one of Eq. (9) can
be written as

dK0:1,2

dx
+ i∆0:1,2K0:1,2 = W̃(0,1,2). (12)

When the wave numbers are constant as in the case of deep water
or a flat bottom, an analytical solution can be given. This solution
consists of a homogeneous part and a particular part as follows

K0:1,2 = e−i∆0:1,2x + W̃(0,1,2)


πδ

∆0:1,2


−

i
∆0:1,2


. (13)

The wavenumber components of the wavenumber mismatch ∆

are subject to the dispersion relation and their corresponding
frequencies close to zero. Therefore, the wavenumber mismatch is
always nonzero, and the particular solution is purely an imaginary
number. As only the real part of K is taken into account in Eq. (8),
the contribution in this case is solely of the homogeneous part,
which is an oscillating function. This shows that in deep water
or over a flat bottom, energy transfers back and forth between
the modes in a harmonic manner, and no mean energy transfer is
present.

In the near-shore region, variations of the kernel W̃ due to
changes in the bottom depth result in a nonzero real part of the
particular solution, which signifies a mean transfer of energy. This
can be seen as well in the wave number domain, where W̃ is
written as a sum of oscillating components. Several components
of this sum satisfy the resonance (and near resonance) conditions
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(2), and cause a significant energy transfer between the modes
on top of energy that is shifting continuously back and forth.
The same logic applies to derivatives of W̃ as they also yield
components that satisfy the resonance condition. This implies that
the approximation given in Eqs. (10) and (11) is unjustified.

In order to account for the additional contribution of the
derivatives of W̃ , let us apply the method of Stiassnie and
Drimer [14] for localizing the shoaling coefficient given in Eq. (9)
without the approximation (10). The first step is to change the
integration variable of Eq. (9) yielding

K0:1,2 = e−iζ (x)
 ζ (x)

0

W̃(0,1,2)

∆0:1,2
eiζ

′

dζ ′, (14)

where

ζ (x) =

 x

−∞

∆0:1,2dx′, dx = ∆0:1,2dζ . (15)

Then, by applying integration by parts, Eq. (14) takes the form

K0:1,2 = −e−iζ (x)


iW̃(0,1,2)

∆0:1,2
eiζ

′

ζ (x)

0

+ ie−iζ
 ζ (x)

0

d
dζ ′


W̃(0,1,2)

∆0:1,2


eiζ

′

dζ ′. (16)

The same procedure can be applied again to the integral in Eq. (16)
to yield

K0:1,2 = e−iζ


−

iW̃(0,1,2)

∆0:1,2
+

d
dζ ′


W̃(0,1,2)

∆0:1,2


eiζ

′

ζ

0

− e−iζ
 ζ

0

d2

dζ ′2


W̃(0,1,2)

∆0:1,2


eiζ

′

dζ ′, (17)

and so on. This actually follows the same approach that is used
for deriving the Taylor series. The resulting non-local shoaling
coefficient is

ℜe

K0:1,2


=

d
dζ


W̃(0,1,2)

∆0:1,2


−

d3

dζ 3


W̃(0,1,2)

∆0:1,2


+ · · ·

+ (−1)l−1 d2l−1

dζ 2l−1


W̃(0,1,2)

∆0:1,2



+ ℜe


e−iζ


−

iW̃(0,1,2)

∆0:1,2
+ · · ·


ζ=0

+ i2le−iζ
 ζ

0

d2l

dζ ′2l


W̃(0,1,2)

∆0:1,2


eiζ

′

dζ ′


. (18)

Let us inspect the last term in Eq. (18). It consists of an
oscillating term and a residual term of the above process. The
oscillating part, which relates to the homogeneous solution of
Eq. (12), should result in a transfer of energy back and forth
between the different wave harmonics. As we are interested
in local coefficients that account for mean energy transfer, this
term can be neglected. The residual term is a combination of an
oscillating term and higher order derivatives of W̃/∆ that continue
the series, which approximates the particular solution, for orders
higher than l up to infinity. These terms consist of high-order
derivatives of the bottom profile and multiplications of lower-
order ones, which relate to high-order nonlinear Bragg resonance
terms (such as ones containing two ormore bottom components in
Eq. (1)).

Fig. 1. A comparison between the nonlinear shoaling coefficients of ℜe

K0:1,2


:

the non-local coefficient as given in Eq. (9) (solid); the local coefficient of the present
work as given in Eq. (19) (dashed), and the local coefficient of [14] as given in Eq.
(20) (dotted). The local coefficients were shifted up and down in the value of the
non-local coefficient’s amplitude in deep water. This was done in order to better
present how well the local coefficients approximate the evolution of the non-local
coefficient’s envelope. Here, the wave triad conditions are f = 2ω, f1 = f2 = ω,
ω = 2π/T and T = 2 s over a sloping beach of 1/25 ending with a plateau.

Neglecting these higher order Bragg resonance interactions
while applying mild-slope assumptions (i.e. setting l = 1) allows
writing the nonlinear shoaling coefficients (18) as local ones,
which correspond to an approximation to the particular solution of
Eq. (12). After applying the chain rule, which results from Eq. (15),
the shoaling coefficient takes the form

ℜe

K0:1,2


=

1
∆2

0:1,2

dW̃(0,1,2)

dx
−

W̃(0,1,2)

∆3
0:1,2

d∆0:1,2

dx
. (19)

Eq. (19) is a localized nonlinear shoaling coefficient. The same
technique can be applied to all the other shoaling coefficients
required for the solution of Eq. (8).

The result of [14] can be easily reproduced by following the
assumptions given in Eqs. (10) and (11), i.e. W̃(0,1,2) can be taken as
a constant in this approximation. In this case, the local nonlinear
shoaling coefficient (19) collapses to the one of [14]:

ℜe

K0:1,2


= −

W̃(0,1,2)

∆3
0:1,2

d∆0:1,2

dx
. (20)

Fig. 1 presents the approximations that were made in this
section by localizing the non-local nonlinear shoaling coefficient
ℜe

K0:1,2


. The wave triad conditions are f = 2ω, f1 = f2 = ω,

ω = 2π/T and T = 2 s over a sloping beach of 1/25 ending
with a plateau. The non-dimensional water depths in the deep
water start point and the shallow plateau are given as k1h = 7.04,
k2h = 28.17, and k1h = 0.77, k2h = 2.08 respectively. It can be
seen that the new coefficient given in Eq. (19) represents the non-
local coefficient’s envelope evolution much better than the local
coefficient of [14].

5. Numerical results

In order to support the use of the localized coefficient given in
Eq. (19), numerical simulations will be presented in this section.
These simulations will inspect the super-harmonic resonance. The
results of the stochastic (phase-averaged) model (8) with the
localized coefficients (19) and (20) will be compared to the ones
of a deterministic nonlinear mild-slope equation model (NLMSE)
of Kaihatu and Kirby [3, Eq. (22)]. As the input of the following
simulations is a monochromatic wave, there is no need for a
Monte Carlo type calculation, and the results can be compared
as is.

In this case of a monochromatic input, the second harmonic
is excited as a self-interaction of the first harmonic, and the
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a b

Fig. 2. The localized nonlinear stochastic models: (dashed) present work, (dotted) [14], and the deterministic nonlinear MSE (solid), for the case of a monochromatic wave
of T = 2 s and k1a = 0.02 shoaling on a sloping bottom ending with a ridge with slopes of 1/25. (a) First harmonic, (b) second harmonic.

a d

b

c

e

f

Fig. 3. The localized nonlinear stochastic models: (dashed) present work, (dotted) [14], and the deterministic nonlinear MSE (solid), for the case of a monochromatic wave
of T = 2 s and two wave steepnesses ((a–c): k1a = 0.02, (d–f): k1a = 0.04) shoaling on a 1/5 sloping bottom ending with a plateau. (a, d) First harmonic, (b, e) second
harmonic, (c, f) third harmonic.

third harmonic is excited by the first and second harmonics.
Note that the evolution model is accurate up to quadratic order,
hence the third harmonic should be underestimated due to
the neglect of the cubic self-interaction of the first harmonic
waves. Nevertheless, the results of quadratic nonlinear models

for the third harmonic self-interactions are still plausible (see
[3,5]).

In this section, the numerical integration is done by using the
Mathematica 6 software, and the amplitudes are compared as the
amplitude of the velocity potential, i.e. using Γ ±

= 0.
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5.1. Waves approaching a mild sloping beach ending with a ridge

The first numerical simulation is of waves propagating on a
sloped beach that ends with a ridge. The bottom profile for this
case is given by

h(x) =


7 m − x/25 x ≤ 162.5 m
0.5 m 162.5 m < x ≤ 180 m
0.5 m + x/25 180 m < x ≤ 182.5 m
0.6 m x > 182.5 m.

(21)

The incident wave is a monochromatic wave with a period of T =

2 s, and deep water steepness of k1a = 0.02. The non-dimensional
depths of the two harmonics are given as k1hdeep = 7.04, k2hdeep =

28.17, k1hbar = 0.77, k2hbar = 2.08, k1hshallow = 0.86 and
k2hshallow = 2.05.

Results of the model of Agnon and Sheremet [7] with the two
localized shoaling coefficients, i.e. Eq. (8) with either Eq. (20) or
Eq. (19), are presented in Fig. 2. The results are normalized to the
deep water first harmonic amplitude A01 and compared to the
NLMSE. It can be clearly seen that the new localized nonlinear
shoaling coefficient performs much better comparing to the one
of [14] in the prediction of the second harmonic evolution.

5.2. Wave approaching a sloping beach

The second numerical simulation is of waves propagating on a
steeper sloped beach that ends with a plateau. The bottom profile
for this case is given by

h(x) =


10 m − x/5 x ≤ 48 m
0.4 m x > 48 m.

(22)

The incidentwave is amonochromaticwavewith period of T = 2 s.
Two deep water wave steepnesses of k1a = 0.02 and k1a =

0.04 were investigated. The non-dimensional depths of the two
harmonics are given as k1hdeep = 10.06, k2hdeep = 40.24,
k1hshallow = 0.68, and k2hshallow = 1.72.

Results of the model of Agnon and Sheremet [7] with the
two localized shoaling coefficients are presented in Fig. 3. As
in Section 5.1, the normalized amplitudes are compared to the
NLMSE. It can be seen that the new localized nonlinear shoaling
coefficients perform much better than the ones of [14] in the
prediction of the second and third harmonic evolution. Note that
parametricmodels describe onlywave self-interactions. Therefore,
they do not yield any energy transfer to the third harmonic. This is
a clear advantage of the above localized models.

6. Summary and conclusions

Improved one-dimensional localized nonlinear shoaling co-
efficients were derived for nonlinear stochastic models. These
coefficients were used for the calculation of super-harmonic non-
linear energy transfer of monochromatic shoaling waves both for

steep and shallow bottom slopes. The results were in fairly good
agreements with a more accurate deterministic numerical model
(NLMSE).

The present derivation showed better analytical accuracy
in grasping the mean behavior of the non-local coefficients.
In addition, it showed significant improvement in numerical
calculations of the second and third harmonics generated from
a monochromatic wave-bottom quadratic nonlinear interaction
for slopes of 1/25 and 1/5. The second harmonic was improved
from an accuracy of 40%–43% using the model of Stiassnie and
Drimer [14] to 73%–83% using the present model comparing to the
NLMSE. For the third harmonic, the improvement was from ∼15%
to ∼58%. Hence, for super-harmonic resonances of this type the
general improvement was between 33% and 43% with negligible
computer effort. These results support the application of these
approximated coefficients as nonlinear triad interaction source
terms in stochastic wave models for practical problems in order
to account for one-dimensional triad interactions.
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