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Abstract

The Complementary Mild-Slope Equation (CMSE) is a depth-integrated equation,
which models refraction and di�raction of linear time-harmonic water waves. For 2D
problems, it was shown to give better agreements with exact linear theory compared
to other mild-slope (MS) type equations. However, no reference was given to 3D
problems. In contrast to other MS-type models, the CMSE is derived in terms of
a stream-function vector rather than in terms of a velocity potential. For the 3D
case, this complicates the governing equation and creates di�culties in formulating
an adequate number of boundary conditions. In this paper, the CMSE is re-derived
from Hamilton's principle using the Irrotational Green-Naghdi equations with a cor-
rection for the 3D case. A parabolic version of it is presented as well. The additional
boundary conditions needed for 3D problems are constructed using the irrotational-
ity condition. The CMSE is compared with an accurate numerical model and wave
tank experiments for 3D problems. The results show very good agreement.
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1 Introduction

The Mild-Slope Equation (MSE), presented by Berkho� [1], assumed, as im-
plied by its name, a mild slope, in two di�erent steps. The �rst is in the
assumption of a vertical structure, which relates to horizontal bottom. The
second is after averaging over the depth, where the second derivative of the
bottom variation and the square of its gradient were neglected. The depth-
averaging procedure allowed the elimination of the vertical coordinate in solv-
ing a refraction-di�raction wave problems.

Many works continued this pioneering derivation (see [2,3]). In particular,
two known extensions are the Modi�ed Mild-Slope Equation (MMSE) and
the Extended Mild-Slope Equation (EMSE). While keeping the same vertical
structure, the two equations improved the MSE in di�erent ways. The MMSE
presented by Chamberlain & Porter [4], took into account the higher bottom
gradient ∇2h and (∇h)2 that were neglected in the original derivation. Kirby's
EMSE [5] assumed a constant mean bottom depth, h0, together with a small
amplitude of rapid variation, δ, which applies mostly to the case of scattering
due to bottom undulation, and the averaging over depth used Green's second
identity.

Agnon [6] used operational calculus to derive the Augmented Mild-Slope Equa-
tion, which gives a wider perspective on the above equations. The AMSE
is a fully accurate mild-slope (MS) type equation that consists of pseudo-
di�erential operators. It can be approximated by a di�erential equation. The
method of approximation, its order and the chosen small parameter construct
an approximated equation. This allows to rigorously derive MS-type equations
such as the MSE, MMSE and EMSE, with good understanding of their nature.

Unlike the above MS-type models, the CMSE, presented by Kim & Bai [7], is
derived in terms of a stream-function vector rather than in terms of a velocity
potential. This enables the vertical structure to satisfy exactly the kinematic
boundary condition on the uneven bottom. In contrast, the velocity potential
vertical structure assumption satis�es exactly the bottom boundary condition
only in the horizontal bottom case. For 2D problems, the CMSE was shown
to give better agreement with exact linear theory compared to other MS-type
equations.
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However, for the 3D case, the stream-function vector formulation complicates
the governing equation by making it a 2D vector equation, rather than a scalar
one, that in addition, contains mixed derivatives. It also creates di�culties in
formulating an adequate number of boundary conditions as two boundary
condition are needed in each impermeable lateral boundary due to the 2D
stream-function vector.

Using Cosserat surfaces, Green & Nahgdi [8] developed an alternative ap-
proach for modeling incompressible �uid dynamic problems in their work on
directed �uid sheets. Their approach, which was later referred to as the Green-
Naghdi (GN) equations, can account for viscosity and rotationality. Kim, et
al. [9] constructed an irrotational model based on the GN equations for irro-
tational and inviscid �ows, which is referred as the Irrotational Green-Naghdi
(IGN) equations.

In this work, the CMSE is re-derived from Hamilton's principle using the
IGN equations with a correction for the 3D case as is shown Section 2. In
Section 3, the needed additional boundary conditions are constructed using the
irrotationality condition, and the mixed derivatives are being de�ned in terms
of second order ones to yield a relation transforming the grad-div operator to
a vector Laplacian one. A parabolic approximation is applied to the CMSE
model in Section 4, and numerical results are presented in Section 5.

2 The Irrotational Green-Naghdi Equations

2.1 Constructing the equations of motion using the IGN Lagrangian

Let us de�ne Ψ as a stream function vector

Ψ(x, z, t) ≡
(
ΨI ,ΨII

)
≡

z∫
−h

u(x, ζ)dζ, u = (u, v), x = (x, y), (1)

where u is the horizontal velocity vector and x is the horizontal location vector.
From equation (1) the velocity �eld is found from Ψ by:

u =
∂Ψ

∂z
, w = −∇ ·Ψ. (2)

The equations governing the irrotational �ow of an incompressible inviscid
�uid with a free surface over a horizontal bottom can be constructed using
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the Irrotational Green-Naghdi Equations derived from Hamilton's principle,
see Kim et al. [9,10]. The Lagrangian is given as

L =
∫ ∫

Ldxdy,

1

ρ
L = φ (ηt +∇ ·Ψ + Ψz · ∇η)z=η +

1

2

η∫
−h

(
|Ψz|2 + |∇ ·Ψ|2

)
dz − 1

2
gη2. (3)

Here ∇ =
(

∂
∂x
, ∂

∂y

)
, h = h(x) is the water depth, η = η(x, t) is the surface

elevation and φ = φ(x, t) is a Lagrange multiplier function. The origin is on
the undisturbed water level and z is positive upward.

Taking the �rst variation of the Lagrangian with respect to φ, η and Ψ gives
three Euler-Lagrange equations:

δL

δΨ
: ∇(∇ ·Ψ) + Ψzz = 0 −h < z < η (4)

δL

δη
: φt +

1

2
(Ψz)

2 +
1

2
(∇ ·Ψ)2 + gη = 0 z = η (5)

δL

δφ
: ηt +∇ ·Ψ + Ψz · ∇η = 0 z = η (6)

By using this formulation, Kim & Bai [7] showed that the impermeable bottom
boundary condition on z = −h(x, y) is satis�ed exactly, and the de�nition of
Ψ can be used to construct a Dirichlet boundary condition,

Ψ = 0 z = −h. (7)

This gives us the complete set of equations and boundary conditions that
govern the irrotational �ow of an incompressible inviscid �uid with a free
surface. From equation (5), we can see that the Lagrange multiplier for the
kinematic boundary condition on the free surface, φ, is actually the velocity
potential on the free surface as shown by Kim et al. [9].

2.2 Constructing the approximated Euler-Lagrange equations

Expanding equation (3) around z = 0 using Taylor's expansion up to O ((ka)2)
gives

1

ρ
L = φ (ηt +∇ ·Ψ)z=0 +

1

2

0∫
−h

(
|Ψz|2 + |∇ ·Ψ|2

)
dz − 1

2
gη2 (8)
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In order to eliminate the z-coordinate and construct a MS-type equation a
vertical pro�le will be assumed. The vertical pro�les will be chosen as in the
linear solution of the horizontal bottom problem as was done by Kim & Bai
[7] :

Ψ(x, z, t) = f(k, h, z)Ψ0(x, t), f(k, h, z) =
sinh(k(h)(z + h))

sinh(k(h)h)
, (9)

where k is the wave number function and the relation between k and h comes
from the linear dispersion relation, ω2 = gk tanh(kh). Note that the vertical
pro�le f forces Ψ to satisfy the bottom boundary condition (7) as it vanishes
at z = −h. It is normalized to 1 at z = 0, making Ψ0 represent the stream
function vector at the undisturbed water level. By substituting equation (9),
the Lagrangian (8) becomes

1

ρ
L=φ (ηt +∇·Ψ0) +

+
1

2

0∫
−h

∣∣∣∣∣∂f∂zΨ0

∣∣∣∣∣
2

+

∣∣∣∣∣∂f∂h∇h ·Ψ0 + f∇·Ψ0

∣∣∣∣∣
2
 dz − 1

2
gη2. (10)

The integral on the depth can be applied to the coe�cients that contain f
and its derivatives to give

1

ρ
L=φ (ηt +∇ ·Ψ0) +

1

2
d̄ |Ψ0|2 + Re {b (∇h ·Ψ0)∇ ·Ψ∗

0}+

+
1

2
c |∇h ·Ψ0|2 +

1

2
ā |∇ ·Ψ0|2 −

1

2
gη2, (11)

where ā, b, c and d̄ are de�ned as

ā(h) =

0∫
−h

f 2dz, b(h) =

0∫
−h

f
∂f

∂h
dz,

c(h) =

0∫
−h

(
∂f

∂h

)2

dz, d̄(h) =

0∫
−h

(
∂f

∂z

)2

dz.

Taking the �rst variation of the Lagrangian with respect to φ, η and Ψ gives
us three Euler-Lagrange equations:

δL

δΨ
: −∇φ+ d̄Ψ0 −∇ (ā (∇ ·Ψ0) + b (∇h ·Ψ0)) +
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+b (∇ ·Ψ0)∇h+ c (∇h ·Ψ0)∇h = 0 (12)

δL

δη
: φt + gη = 0 (13)

δL

δφ
: ηt +∇ ·Ψ0 = 0 (14)

From equations (13) and (14), we �nd φ as a function of Ψ0,

φtt = g∇ ·Ψ0, (15)

and then, by regarding the solution as harmonic in time, equation (15) becomes

φ = − g

ω2
∇ ·Ψ0. (16)

Ψ0 and φ now represent only their harmonic amplitude and no longer change
in time. Substituting equation (16) into (12) yields

−∇ (a (∇·Ψ0) + b (∇h ·Ψ0)) + (b∇·Ψ0 + c∇h ·Ψ0)∇h− k(h)2aΨ0 = 0, (17)

a(h) =
0∫

−h

f2dz − g

ω2
=

coth(kh)
2k

(
1 +

2kh

sinh(2kh)

)
= −gk2

ω4
CCg, (18)

b(h) =
0∫

−h

f
∂f

∂h
dz =

1
4 sinh2(kh)

2kh cosh(2kh)− sinh(2kh)
2kh + sinh(2kh)

, (19)

c(h) =
0∫

−h

(
∂f

∂h

)2

dz =

=
k

12 sinh2(kh)
−12kh + 8(kh)3 + 3 sinh(4kh) + 12(kh)2 sinh(2kh)

(2kh + sinh(2kh))2
. (20)

Here, Ψ0 = Ψ(x) and the relation d̄(h) = −k(h)2a was used for simpli�cation.
For further use, note that equations (18) and (19) yield the relation ∇a =
2b∇h.

We can see that from the IGN Lagrangian we derived the same linear equation
as Kim & Bai [7] did (i.e. the CMSE - complementary mild-slope equation)
with one correction in the c-coe�cient term as can be seen by comparing
equation (17) and the CMSE as it was given by Kim & Bai [7]:

−∇(a (∇·Ψ0) + b (∇h·Ψ0)) + b∇·Ψ0∇h+
(
−k(h)2a+ c∇h ·∇h

)
Ψ0 = 0.(21)

6



The CMSE was also derived using the Lagrangian given by Kim & Bai [7]
and yielded the same results as equation (17), thus correcting an error in their
derivation. In the 2D case, for which they have presented numerical results,
their equation coincides with the corrected equation.

3 The stream function representation in the 3D case

3.1 The impermeable boundary condition

In the stream function formulation, a set of two coupled di�erential equations
for ΨI

0 and ΨII
0 needs to be solved. This implies that boundary conditions

are needed for both components. When regarding the impermeable boundary
condition, for example, a wall at y = 0, the restriction v = 0 together with
the de�nition of Ψ (1) yields one boundary condition:

ΨII
0 = 0. (22)

The boundary condition for ΨI
0 can be found using the irrotationality condition

in the ẑ direction. Note that from the de�nition of Ψ, irrotationality is satis�ed
naturally in x̂ and ŷ directions, but not in the ẑ one. Using the horizontal
irrotationality condition and the Leibnitz rule of di�erentiation of integrals
we get

[
ΨI

y −ΨII
x

]
z=0

= ∂y

0∫
−h

udz − ∂x

0∫
−h

vdz =

=

0∫
−h

(uy − vx) dz + [hyu− hxv] z=−h =

=
(
hyΨ

I
0 − hxΨ

II
0

)
∂zf |z=−h. (23)

For the case of a wall at y = 0, equation (23) together with the boundary
condition (22) yield a boundary condition for ΨI

0:

∂yΨ
I
0 = hyΨ

I
0 ∂zf |z=−h, (24)

where

∂zf |z=−h =
k(h)

sinh(k(h)h)
(25)
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Nevertheless, it is problematic to use the boundary condition given in (24) for
the CMSE (17). ΨI

0 is di�erentiated with respect to y only to the �rst order and
the boundary condition (24) is appropriate for a second order di�erentiation.
The derivatives with respect to y come as mixed derivatives ΨI

xy and ϕI
xy

resulting from the grad-div operator. This operator (∇∇·) can be transformed
into the vector Laplace operator (∇2) in order to have second order derivatives
that allow the use of boundary conditions such as (24). Two ways to derive
this transformation will be shown in the next two subsections.

3.2 Substituting the mixed derivatives by the use of mass conservation

The operator (∇∇·) operates on the stream function vector Ψ and gives mixed
derivatives.

∇(∇ ·Ψ) =

ΨI
xx + ΨII

xy

ΨI
xy + ΨII

yy

 , Ψ =

 ΨI

ΨII

 . (26)

From the de�nition of Ψ, equation (1) and the Leibnitz rule of di�erentiation
of integrals, a relation between the mixed derivative of the stream function on
the undisturbed surface and the second order derivatives in x and in y can be
constructed. Let us derive the Laplace operator of Ψ:

[
ΨI

zz +∇2ΨI
]
z=0

=

0∫
−h

uzzdz +∇2

 0∫
−h

udz

 =

=

0∫
−h

(
uzz +∇2u

)
dz +

[(
∇2h

)
u+ 2∇h · ∇u− (∇h · ∇h)u

]
z=−h. (27)

Here, ∇2 = ∂2
x + ∂2

y . The horizontal velocity u satis�es the Laplace equation,
as can easily be shown by taking the x-derivative of the Laplace equation
of Φ, that represents the di�erential conservation of mass. u on the bottom
(z = −h) can be now represented using the stream function approximation
given in equation (9). Applying both relations to equation (27) and using
equation (4) yields the relation

∂x∂yΨ
II
0 = ∂2

yΨ
I
0 −

[(
∇2h

)
∂zf + 2 (∇h · ∇h) ∂z∂hf

]
z=−hΨ

I
0. (28)

In the same manner the mixed derivative of ΨI
0 can be constructed,

∂x∂yΨ
I
0 = ∂2

xΨ
II
0 −

[(
∇2h

)
∂zf + 2 (∇h · ∇h) ∂z∂hf

]
z=−hΨ

II
0 . (29)
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And in the vector form

∇(∇ ·Ψ0) = ∇2Ψ0 −
[(
∇2h

)
∂zf + 2 (∇h · ∇h) ∂z∂hf

]
z=−hΨ0, (30)

we can see that the grad-div operator is equal to the Laplacian operator with
a correction for non-�at bathymetry. The coe�cients given in terms of the
vertical pro�le f in equations (28), (29) and (30) are

∂z∂hf |z=−h =
k(h)

(
k(h) + k

′
(h)h

)
sinh (k(h)h)

(
k

′
(h)− coth (k(h)h)

)
, (31)

∂zf |z=−h =
k(h)

sinh (k(h)h)
. (32)

Kim & Bai [7] showed that prior to applying the vertical pro�le approximation,
the linear equations of motion using the ψ representation satisfy both the
continuity equation and the irrotational condition. Nevertheless, after applying
the approximated vertical pro�le the situation changes. By inspecting equation
(30), we can see that for the 2D problem, where Ψ = (ψ, 0), ψ does not satisfy
Laplace's equations thus, the 3D case does not degenerate to the 2D case. It
has a correction term that relates to the bottom slope and curvature. In order
to coincide with the 2D case, the mixed derivatives should be substituted using
a di�erent relation.

3.3 Substituting the mixed derivatives by the use of irrotationality

Let us derive the Laplace operator of Ψ using the horizontal irrotational con-
dition given in (23). Taking its x and y derivatives, the mixed derivatives of
ΨI

0 and ΨII
0 can be constructed respectively to yield

∂x∂yΨ
I
0 = ∂2

xΨ
II
0 +

(
hy∂xΨ

I
0 − hx∂xΨ

II
0

)
∂zf |z=−h −

−
[(
hxyΨ

I
0 − hxxΨ

II
0

)
∂zf +

(
hyΨ

I
0 − hxΨ

II
0

)
hx∂z∂hf

]
z=−h, (33)

∂x∂yΨ
II
0 = ∂2

yΨ
I
0 −

(
hy∂yΨ

I
0 − hx∂yΨ

II
0

)
∂zf |z=−h −

−
[(
hyyΨ

I
0 − hxyΨ

II
0

)
∂zf +

(
hyΨ

I
0 − hxΨ

II
0

)
hy∂z∂hf

]
z=−h. (34)

where,

∂z∂hf |z=−h =
k(h)

(
k(h) + k

′
(h)h

)
sinh (k(h)h)

(
k

′
(h)− coth (k(h)h)

)
, (35)
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∂zf |z=−h =
k(h)

sinh (k(h)h)
. (36)

And in the vector form

∇(∇ ·Ψ0) = ∇2Ψ0 + F (f, h,Ψ0) , (37)

where the vector function F is de�ned using equations (33) and (34).

4 A Parabolic approximation for the CMSE

For various problems, where the re�ected waves can be neglected, it is plausi-
ble to assume a progressive wave �eld to the �rst order. The wave amplitude
can contain the smaller deviations from the �rst order wave �eld. The result-
ing equation becomes parabolic instead of elliptic. This enables to extensively
reduce the computer storage and CPU time needed for the numerical solution
as the wave �ow problem can be solved as a moving front. There are various
ways of applying parabolic approximations. In this section a parabolic approx-
imation will be formulated for the CMSE following a method used by Kaihatu
& Kirby [11].

Let us assume the problem to have the form of a progressive wave �eld, so the
stream function has the behavior of the following form:

Ψ0 = A(x, y)ei
∫

k(x,y)dx, A =

 AI

AII

 . (38)

Here, A is a complex vector slowly varying in x and y that represents the
stream function complex amplitude. Applying equation (38) to the building
blocks of equation (17) yields the relations:

∇ ·Ψ0 =
(
AI

x + ikAI
)

ei
∫
k(x,y)dx +

(
AIIei

∫
k(x,y)dx

)
y

∇h ·Ψ0 = hxAIei
∫
k(x,y)dx + hyA

IIei
∫
k(x,y)dx

∇ (∇ ·Ψ0)=


(
AI

xx + 2ikAI
x − k2AI

)
ei
∫
k(x,y)dx +

((
AII

x + ikAII
)

ei
∫
k(x,y)dx

)
y((

AI
x + ikAI

)
ei
∫
k(x,y)dx

)
y

+
(
AIIei

∫
k(x,y)dx

)
yy



∇ (∇h ·Ψ0)=


(
hxxAI + hxikAI + hxAI

x + hxyA
II + hyikAII + hyA

II
x

)
ei
∫
k(x,y)dx(

hxyA
I + hyyA

II
)

ei
∫
k(x,y)dx+hx

(
AIei

∫
k(x,y)dx

)
y
+hy

(
AIIei

∫
k(x,y)dx

)
y



10



∇2Ψ0 =
(
Axx + 2ikAx − k2A

)
ei
∫
k(x,y)dx +

(
Aei

∫
k(x,y)dx

)
yy

(39)

The wave is assumed to be propagating mostly along the positive x-axis and
not in the y-direction. It consists of rapid variation accounted for by the com-
plex exponential given in equation (38). We scale the derivatives of A as follows

∂AI

∂x
= O

(
ε2
)
,
∂AII

∂x
= O

(
ε2
)
,

∂AI

∂y
= O (ε) ,

∂AII

∂y
= O (ε) . (40)

Assuming that the behavior in the x-direction is mostly accounted for by the
complex exponential, and by applying the ordering stated in (40), we can

neglect the higher order terms ∂2AI

∂x2 and ∂2AI

∂x2 , which changes the equation's
nature from elliptic to parabolic. In addition, the dependence of k in the y-
direction should be factored out, since we integrate it only in x. Following
Lozano & Liu [12], we will de�ne a y-averaged wave number function k̄(x) as
a reference, so we can rewrite (38) as

Ψ0 = α(x, y)ei
∫

k̄(x)dx, α =

 αI

αII

 , (41)

which together with equation (38) gives the relation

A(x, y) = α(x, y)ei(
∫

k̄(x)dx−
∫

k(x,y)dx). (42)

Substituting equation (42) to the relations stated in (39) yields,

∇ ·Ψ0 =
(
αI

x + ik̄αI + αII
y

)
ei
∫

k̄(x)dx,

∇h ·Ψ0 =
(
hxαI + hyα

II
)

ei
∫

k̄(x)dx,

∇ (∇ ·Ψ0) =

 2ikαI
x − 2k

(
k̄ − k

)
αI − k2αI + αII

xy + ik̄αII
y

αI
xy + ik̄αI

y + αII
yy

 ei
∫

k̄(x)dx,

∇ (∇h ·Ψ0) =

 hxxαI + hxik̄αI + hxαI
x + hxyα

II + hyik̄αII + hyα
II
x

hxyα
I + hyyα

II + hxαI
y + hyα

II
y

 ei
∫

k̄(x)dx,

∇2Ψ0 =
(
2ikαI

x − 2k
(
k̄ − k

)
αI − k2αI + αII

yy

)
ei
∫

k̄(x)dx. (43)
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For a smooth bathymetry the CMSE (17) can be written as

a∇ (∇·Ψ0) + ak2Ψ0 + b∇ (∇h·Ψ0) + (b∇·Ψ0 + (bh − c)∇h·Ψ0)∇h = 0.(44)

Together with the relations given in (43), a parabolic formulation to the CMSE
is given. In order to take out the mixed derivatives, equations (33) and (34)
can be used to replace the operator ∇∇· by ∇2.

5 Numerical Results

In this section, the CMSE and its parabolic approximation are being numer-
ically solved in comparison with other models and laboratory experiments.
The MATHEMATICA 6 software function NDSolve is used for the numerical
solutions. In subsections 5.1, 5.2 and , the class I and class II re�ected Bragg
resonance numerical experiments and the oblique wave incidence on a plane
beach were conducted as initial value problems starting from the end side
backwards. In subsection 5.4 the parabolic approximation shown in section 4
was applied to allow, as before, solving the problem as an initial value one.

5.1 Class I Bragg resonance - oblique incidence

Class I Bragg resonance is caused by a linear interaction between one wave
component and one undulating bottom components. This type of resonance
has a signi�cant e�ect on linear waves. The CMSE was shown to give excellent
prediction for the re�ection coe�cient resulting of this resonance [7] in the
2D case. The problem of obliquely incident waves propagating towards an
undulating bathymetry patch is a quasi-3D problem. If we set the coordinate
system so that the bottom changes only in the x-direction, the wave component
does not change its wave number in the y-direction and the streamfunction
can be written as

Ψ(x, y) = ψ(x)eikyy. (45)

Applying (45) to (17), yields a 1D di�erential equation for this problem. We
used it in order to show the 2 cases of oblique incidence for class I Bragg
resonance, using the same parameters as in two of the cases given by Kim & Bai
[7] for the non-oblique class I Bragg resonance. The results are shown in Figure
1. Note, that the peak location of the resonance has a small shift relative to the
expected k = 1

2
kb location. The small shift given by the CMSE was shown to

be accurate in comparison to the exact linear theory solution unlike the ones
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of the MSE and MMSE [7]. The bottom undulation in these calculation is of
wave number ratio of kbh0 = 2π

6.4
with a sinusoidal wave patch of 4 wavelengths.

Figures 1a and 1c present the maximal re�ection coe�cients with respect
to the incidence angle for the cases of ∆H/H0 = 0.32 and ∆H/H0 = 0.64
respectively. The results presented in Figure 1 take into account the shift of the
resonance peak. Figures 1b and 1d represent the full re�ection graph of Figures
1a and 1c for the same cases with respect to the frequency of the incident
wave at an incidence angle of 40o (≈0.7rad). We can see that the CMSE and
MMSE give quite similar results near the class I Bragg resonance conditions.
This is not surprising as both are approximated in a way that should give
good results near the class I Bragg resonance conditions. Nevertheless, they
behave di�erently away from the class I Bragg resonance.

Liu & Yue [13] have developed a high-order spectral (HOS) method and used
it to solve for class I Bragg resonance in the case of oblique incidence as well.
The bottom undulation was taken as ∆H/H0 = 0.16, the wave steepness as
ka = 0.05 and the undulation steepness as kb∆H = 0.31. The results of the
HOS method the CMSE and the MMSE are presented in Figure 1. The results
of both the CMSE and the MMSE give excellent agreement to the ones of the
HOS numerical model. In this case, the bottom undulation is not steep enough
to cause a signi�cant di�erence between the results of the CMSE to the ones
of the MMSE in the class I Bragg resonance case.

5.2 Class II Bragg resonance

Class II Bragg resonance is caused by a linear interaction between one wave
component and two undulated bottom components. This type of resonance has
a minor e�ect on linear waves compared to class I Bragg resonance, but still
can have signi�cant e�ects even for small bottom undulation components, see
Guazzelli, et al. [14]. Kim & Bai [7] presented the CMSE numerical calculations
for class I Bragg resonance. These calculations also apply for class II Bragg
resonance in the case where the incident wave's wavenumber equals the bottom
undulation's wavenumber. In this unique case, the solution presented a good
behavior in the class II Bragg region as well. Here, the CMSE is solved in
comparison to laboratory experiments of Guazzelli, et al. [14] with doubly
periodic bottom undulations. The results in Figure 3, show that the CMSE as
the MMSE and as other MS-type equations is not able to accurately model
this type of phenomenon. This is a common inaccuracy of MS-type equations,
as within the mechanism of the class II Bragg resonance a bottom induced
wave plays a major role. This wave has a vertical velocity structure, which
has a di�erent wave number than the one of the incident wave assumed in
MS-type equations, and that leads to signi�cant errors.
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5.3 Oblique wave incidence on a plane beach

The problem of obliquely incident waves propagating towards a sloped beach
is, as well, a quasi-3D problem. Again, as in subsection 5.1, the 1D di�erential
equation developed by applying (45) to (17) was used to solve this problem.
The results for the numerical experiment of the CMSE and the MMSE together
with an accurate analytical solution of Ehrenmark [15] are given in Figure 4.
We can see that both the CMSE and the MMSE show good agreements with
an advantage to the ones of the CMSE.

5.4 Submerged two-dimensional obstacle

Ito & Tanimoto [16] conducted a wave tank experiment of monochromatic
waves propagating on a �at bottom with a circular shoal area. The chopped
sphere underwater sea mount acts as a lens that focuses the waves and creates a
cusped caustic. For this type of problems, where geometrical ray methods fail,
the MS-type models are plausible to use. The bathymetry and the monitored
sections are shown in Figure 5. The constant bottom depth surrounding the
shoal is h0 = 0.15m. The center of the circular shoal area is located at (xc, yc) =
(1.2, 1.2) giving the shallowest water depth as 0.05m. The water depth at the
shoal area (r ≤ 0.8m) is de�ned as

h(x, y) = 0.05 + 0.15625m−1
(
(x− xc)

2 + (y − yc)
2
)
.

The wave height was given by H = 1.04cm and the period by T = 0.511sec.

The linear parabolic CMSE model given in equation (17) and the parabolic
de�nitions set (43) were used for the numerical run. The mixed derivatives
were substituted using equations (33) and (34). The boundary conditions at
the impermeable walls (y = 0 and y = 2.4) were given as ΨII = 0, which
indicates a zero velocity toward the wall, and ΨI

y = 0, which is the outcome of
the irrotationality condition on the wall given by equation (23). The results for
the numerical experiment together with the wave-tank ones are given in Figure
6, and show very good agreements. Note that the results of Ito & Tanimoto[16]
fail to be symmetric as is expected due to the symmetry of the experiment's
set-up. Therefore, the wave gauge measurements in transections 2 and 3, which
are given in Figure 6, are duplicated as a mirror image in order to present the
results in a symmetric way.
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6 Summary and conclusions

In the present work, the Complementary-Mild Slope Equation was re-derived
using the Irrotational Green-Naghdi Lagrangian with a correction for the 3D
case. The di�culties in solving this equation in the 3D case were presented
and accounted for using the irrotationality condition. This allows to exploit
the superior accuracy of the CMSE model in 3D water wave problems as well.
In addition, a parabolic approximation is applied to the CMSE in order to con-
struct a simpler model, which is applicable to wave problems with insigni�cant
re�ection.

The corrected CMSE model is solved in comparison with an accurate numer-
ical model, an accurate analytical solution and a wave tank experiment of 3D
nature. The results show very good agreements, and extends the use of this
model for practical engineering problems of 3D nature.
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Figure 1. The re�ection coe�cients of the CMSE (solid) and the MMSE (dot-dashed)
for oblique incidence class I Bragg resonance re�ection. Figure (a): the maximal
re�ection coe�cient with respect to the incidence angle for ∆H/H0 = 0.32. Figure
(b): the re�ection coe�cient for a single angle of 40ofor ∆H/H0 = 0.32. Figure
(c): the same as Figure (a) for∆H/H0 = 0.64.Figure (d): the same as Figure (b)
for∆H/H0 = 0.64.

Figure 2. The re�ection coe�cients of the CMSE (solid) and the MMSE (dot-dashed)
for oblique incidence class I Bragg resonance re�ection with respect to numerical
results of Liu & Yue [13] (dotted) for ∆H/H0 = 0.16.

17



Figure 3. The re�ection coe�cients of the CMSE (solid), the MMSE (dot-dashed)
and the laboratory experiment measurements of Guazzelli, et al. [14] (solid circles)
for the case of sea bed with K1 = 0.52cm−1 and K2 = 1.05cm−1, patch length
of L = 48cm and amplitude ratios of ∆H/H0 = 0.4 and mean water depth of
H0 = 2.5cm.

Figure 4. The normalized wave height of the CMSE (solid) and the MMSE (dot�
dashed) with respect to the analytical solution of Ehrenmark [15] (dotted) for a
45◦incidence angle wave on a 45◦ plane beach.

Figure 5. The bathymetry in the experiment of Ito & Tanimoto [16]. The wave maker
is positioned at x = 0. Dashed lines indicate the transections monitored by wave
gauges. All units are stated in meters.
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Figure 6. The normalized wave height for the experiment of Ito & Tanimoto [16].
The numerical results of the CMSE (solid) are given together with the wave gauge
measurements (solid circles). The wave height was given as H = 1.04cm and the
period as T = 0.511sec. The location of the transections are given in Figure 5.

Figure 7. The normalized wave height numerical results of the CMSE for the exper-
iment of Ito & Tanimoto [16]. The wavemaker is positioned at x = 0.

19


