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On the existence of a wave of greatest height and 
Stokes's conjecture 

BY J. F. TOLAND 

Fluid Mechanics Research Institute, University of 
Essex, Colchester C04 3SQ, U.K. 

(Communicated by T. B. Benjamin, F.R.S. - Received 4 November 1977 - Revised 
17 March 1978) 

It is shown that there exists a solution of Nekrasov's integral equation 
which corresponds to the existence of a wave of greatest height and of 
permanent form moving on the surface of an irrotational, infinitely deep 
flow. It is also shown that this wave is the uniform limit, in a specified 
sense, of waves of almost extreme form. The question of the validity of 
Stokes's conjecture is reduced to one of the regularity of the solution of 
Nekrasov's equation in this limiting case. 

1. INTRODUCTION 

In this paper we study a nonlinear integral equation 

3Js =I 7C Tr~k== k (1/it)+ fsinq~(w) dw . 

,, , I fJf 1 sinkssinkt sin((t) d 

which Nekrasov (1920) introduced in the course of his investigation of the free 
surface of a deep, inviscid heavy flow acted on by gravity. Using it he was able to 
show that such a free surface can take the form of a periodic travelling wave-train 
of permanent shape which moves with constant velocity c. Here we only give an 
outline of the derivation of (1.1) from the free surface problem, but the details are 
to be found in the book by Milne-Thomson (1968) or the monograph (in English) 
by Nekrasov (1967). 

The basic idea is this. Suppose that, on an infinitely deep flow which is at rest 
at infinite depth, the profile of the free surface is that of a periodic wave of per- 
manent form travelling with velocity c. Then we can use a hodograph transformation 
to map the region under one period (wavelength A) onto the unit disk in the complex 
w-plane. This mapping takes the free surface onto the unit circle, and the point at 
infinite depth onto the origin of the w-plane. Then Bernoulli's free surface condition 

implies that if q(s) is the slope of the wave profile at the point corresponding to the 

point els, s e [ - , ], on the unit circle, then 0 satisfies (1.1) with 

(1//) = 2nQ3/3gAc. 
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Here Q denotes the speed of particles at the wave crest relative to coordinates 

moving with the wave. 
Now this derivation can be reversed and it can be shown that the existence of a 

solution of (1.1) for given ,t corresponds to the existence of a flow with periodic free 
surface. So it can be argued, as it is done in the works cited above, that (1.1) is 

equivalent to the existence of periodic waves on the free surface of an infinitely 
deep flow. 

It is evident from the oddness of the kernel in (1.1) that any solution 0 is odd. 
This is one of the assumptions made in the derivation of (1.1), but it is justified, as 
was shown by Levi-Civita (I925), since any periodic free surface of the water-wave 

problem must be symmetrical about the crest (this is precisely what the oddness 
of 0 indicates). 

Recently there has been much interest, both theoretical and numerical, in the 

qualitative features of solutions of the water-wave problem when / is large. The 
case Q = 0 (/ = oo) corresponds to the presence of a stagnation point at the wave 

crest, and it was claimed by Stokes (I880) that in this limiting case a wave exists, 
the so-called wave of greatest height. Moreover, for this wave he suggested an 

argument to show that lim )(s)= - = lim 0(s). In other words he proposed 
s-+O + s-+O - 

that the wave of greatest height is a sharp-crested wave, and not smooth crested, 
as waves for finite u are known to be. 

Stokes's method is to find a local solution of the free surface problem in a neigh- 
bourhood of the stagnation point and to show that such a solution exhibits the 

sharp-crestedness which we mention above. But there has always been some 

question as to whether this local solution can be matched onto a solution elsewhere 
in the flow. Recently the nature of' the singularity for waves close to the wave of 
greatest height has been investigated theoretically by Grant (i973) and compu- 
tationally by Schwartz (i974). 

Recent numerical investigations (Longuet-Higgins & Cokelet 1976; Longuet- 
Higgins & Fox 1977; and Cokelet 1977) have examined solutions of (1.1) for large 
values of ,t in the belief that the wave of greatest height is the limit of a sequence of 
such solutions as t - oo. 

However, the wave of greatest height (i.e. a solution of (1.1) with , = oo) has not 

yet been proved to exist. The Russian mathematician Yu. P. Krasovskii (1961), 
using a variant of (1.1) proved that, for each fi, 0 < P < -n there exists a solution 
of (1.1) for some oo > ,/ > 3 which is positive on ]0, n[ with the property that 

sup 10(s)1 = fl. More recently, Keady & Norbury (I978) have shown that, for 
se[-1T, '-] 

each ,/ > 3 there exists a solution 0 of (1.1) which is positive on ]0, n[ such that 

sup I(s)I < 1 . 
se[--T, rT] 

In this paper we prove that there does exist a solution of the equation 

f 1" I sin kssin kt sin (t) 
Jtkl i fsinA( dt 

Trs~ L sin 0 (w) dw (1.2) 
Jo 
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The existence of a wave of greatest height 

which is continuous on [- t, n] except at 0 where it has a point of discontinuity. 
Furthermore we shall show that for each e > 0, 0 is the uniform limit on [- tc, 

-e] U [e, n] of a sequence {qS} of solutions of (1.1) corresponding to a sequence 
{) n}Un. -A 00. 

It is significant in the light of Stokes's claim mentioned earlier that we can prove 
the following: for each e > 0, sup I (s)l I> tC. 

se[-e, 6] 

Unfortunately all this is not enough to decide the question of the local behaviour 
of the wave of greatest height at its crest. The reason is that we have not resolved the 
nature of the discontinuity of 0 at 0. If 0 has a simple jump discontinuity at 0 then 

we shall show that indeed lm (s lim 0P(s) = -7. 
s->O + 

If 0 does not have a jump discontinuity then lim 0(s) has no meaning. Thus the 
s--> + 

question of the shape of the wave of greatest height at its crest is reduced to one of 
whether or not it has an infinite number of ripples in a neighbourhood of its crest and 
this question is so far unanswered. 

Our approach to the existence problem for (1.2) is functional-analytic. Because 
the operator in (1.2) is non-compact the usual topological fixed point methods do 
not apply. The result follows from first principles by showing that a sequence of 

solutions of (1.1) corresponding to a sequence {/gf}, n-*->oo, converges in L2 to a 

non-trivial function 0. The existence of this sequence {qn} is guaranteed by the 

following theorem (Keady & Norbury 1978). 

THEOREM 1.1. For each ,I > 3 there exists a solution q5 of (1.1) with the following 

properties: 
(i) 5 is conttnuous on [- rt, n] and is odd; 
(ii) ((s) > O, s]0,i, [, 5(7i) = Oand d0(s)l < -n,se[- n, 7]. 
The weak convergence in L2 of a sequence {On} of solutions of (1.1) corresponding 

to a sequence {,a}, /, -+ oo, is then immediate, and our first task is to show that this 

weak limit is non-trivial. That this weak limit is a solution of (1.2) follows from the 

a-priori estimates of ? 4 which ensure that {yn} converges strongly in L2 to its weak 

limit. 
The other properties which we claim for 95 are proved in ? 5 using some rather 

deep results from the theory of Fourier series (Zygmund i959). 
In ? 6 the Stokes's conjecture is discussed and it is shown that if q5 has a jump 

discontinuity at 0, then lim 0(s) = n. In ? 7, we discuss briefly the implications 
s-0 + 

of hydrodynamic comparison theorems for this problem. 
Throughout this paper we restrict our attention to the free surface water-wave 

problem over an infinitely deep flow. In Keady & Norbury (1978) and Krasovskii 

(1961) the Nekrasov equations for both the finite and the infinite-depth problems 
are treated (in the finite-depth problem the kernel of the integral equation is more 

involved). It is clear that the analysis of this paper can be extended to cover the 

finite-depth problem as well. 
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472 J. F. Toland 

2. PRELIMINARY RESULTS ABOUT FOURIER SERIES 

In choosing our notation for Fourier series we have followed Zygmund (I959) 
even when he disagrees with other standard works, e.g. Hardy & Rogosinski (1962). 

As usual, LP, p > 1, is used to denote the space ofpth power integrable functions 
on the closed interval [- 7, 7]. The space of continuous functions on [- , n], 
endowed with the maximum norm, is denoted by C. 

A trigonometric series, 
00 

aO + , (akcos ks + bk sin ks), (2.1) 
k=- 

is said to be the Fourier series of a function f: [- ~, n] -> R if 

ao = f(x) dx; 

1 2n 

ak = f (x) cos kxdx; 
CJ -Tr 

bk =- f(x)sin kxdx. 

If (2.1) is the Fourier series off we write 

o0 

f - aO + (ak cosks +bksinks). (2.2) 
k=1 

Only when the series in (2.2) converges for a given s e [- n, n] tof(s) will we write 

oo 

f(s) = a+ E (ak cos ks+bksinks). (2.3) 
k=l 

The question of the pointwise convergence of Fourier series is a vexed one and we 
will return to it in a moment. But first we introduce the notion of the conjugate 
of a trigonometric series. 

The trignometric series 
co 

] (aksinks -bkcosks) (2.4) 
k=1 

is the conjugate of the series (2.1). The series (2.4) is not necessarily a Fourier series, 
but if it is, and if (2.1) is the Fourier series off, then we write 

Cf - (aksinks-bkcosks).t (2.5) 
k=1 

t We adopt this definition (Zygmund 1959) for the sake of consistency. It is more usual in 
water-wave problems to follow Hardy & Rogosinski (I962) in taking the negative of (2.4) 
as the conjugate Fourier series of (2.1). Thus in (5.3) we have a minus sign in front of 3CS, 
whereas no such minus appears in, say, Krasovskii (1961). 



The existence of a wave of greatest height 

Now we are in a position to collect those theorems on Fourier series which we use 
in the analysis of the subsequent sections. If f: [- i, ] - R we define f(x), when 
it exists, as follows: 

f(x) - 
(x 

2n 

f- t dt. (2.6) 

THEOREM 2.1. If, for se [- c, n], 

r If(s+ t)f(s- t) - 2f(s) dt (2.7) 

Jo 2 tan -t( 

is finite, then (2.3) holds. 
If,for se[--i, i], I, 

If(s +t)-f(-t) dt (2.8) 
Jo 2 tan t 

is finite, then (2.4) converges tof(s). 

Remark. This is thm 6.1, of chapter 2 of Zygmund (1959). Since the conjugate 
of a Fourier series is not necessarily a Fourier series we cannot assert, under the 
above hypotheses, that Cf exists. 

THEOREM 2.2. Suppose that f is continuous in the closed interval [a, b] c [- -, n] 
and let 

Co)(8)= sup If(x)-f(y)l. 
Ix-yl < 

., y e[a, b] 

Then if w(8)/8 is integrable near 6 = 0 and if the integrals 

If(a)-f(a-t)I dt and JIf(b+t)-f(b)I dt 
t t 

are both finite, then (2.1) and (2.4) converge uniformly in [a, b] tof and respectively. 
This theorem, which is a uniform version of theorem 2.1, is again to be found in 

Zygmund (I959), thm 6.8 of chapter 2. 
The next theorem is the celebrated theorem of M. Riesz on conjugate Fourier 

series. 

THEOREM 2.3. If feLP, 1 < p < co, then f eLp, and there exists a constant Ap 
such that 

If (x)lPdx < AP If(x) Idx. 

Moreover, f = Cf, i.e. the Fourier series off is the conjugate of the Fourier series off. 
This result is thm 2.4 of chapter 7 of Zygmund (I959) and the next result is 

thm 2.11 of the same chapter. 

THEOREM 2.4. (i) If If I < 1, then 

exp (A I (x) 1) dx < 47/cos A 

for 0 A < A t. 
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474 J. F. Toland 

(ii) Iff is continuous on [- 7t, n] then 

fr exp (A f(x) )d 
J -r 

is finite for all A > O. 

Finally we introduce some special trignometric series which are central in the 
analysis to follow. Throughout we shall use the notation 

k i sin ks sin kt 
k(s, t) = I - (s, t) c [- n, ] x [- , ]. 

k=1lC k; 

k has some important properties, the most important of which, for our purposes 
is that 

K: k(s,t)= In 1 - cos (s-t) ' 

which is non-negative on [0, n] x [0, n]. 

3. A priori ESTIMATES 

In this section we will prove some pointwise estimates about a solution 0 of 
(1.1) which depend on the parameter /u. It will be our task in the next section to 
show that these estimates hold uniformly for a sequence of solutions of (1.1) 
corresponding to a sequence /n tending to oo. 

THEOREM 3. 1. If 0 is anon-trivialsolution of (. 1 )for some I > 3, and0 < 0(s) < 1n 
for 11 s E [0, rt], then there exists , > 0 such that for s E [0, rc], 

0(s) '> 8 sins. 
Proof. 

(s) =3 k(s,t) -+ sin0(w) dw 
t 

oo^ Jo '3 
M\ k(s,t) )7(t)dt, where M = 3 , ,4-j .for sE[O,n]. 

00 

Now if ~ ak sin ks, 
k=l 

then 0(s) = aksinks, 
k=l 

and so for s E[0, 7], 

7kl ()00 ak 



The existence of a wave of greatest height 

For m > 1 and s8 [O, n], 

(s8) (1)\a , () sin ks 
2) (k= 

(M)m { c kla.kl M a\ s -- s k sins. 

Since S > 0 on a set of positive measure in [0, n], a1 > 0, and so we can choose m 

sufficiently large that the term in chain brackets is positive, and the proof is 

complete. 

THEOREM 3.2. If 0 is a non-trivial solution of ( .1 )for some # > 3 and0 < - q(s) < in 

for all s E [0, 7], then 

ca = sup j+ sin (w) dw = + sin (w) dw >3 
- 

Proof. Let q be such a solution of (1.1) and let 

X(t) = -+ sin (w)dw. 

By the previous theorem there exists , > 0 such that qs(s) > 8 sin s, s E [0, i]. 

Let , = sup {f' > 0: 0(s) >f' sin s,s e [0, r]}. 

Then 

sins k= ( (s, t)fsint dt < k(s, ) q(t) dt < k(s, t) X (t) t 
2 x(t) 

sin is(t) f k(8, t) 
sin 
J (t) tdt 

< a2| k(s,t) (1//) + 4 sin (w)dw 

a s cs 

Since ,f was chosen to be maximal we may conclude that 

2 
3n 

and the proof of the theorem is complete. 

4. ASYMPTOTIC ESTIMATES AS /t-> 00 

According to theorem 1.1, for each u > 3 there exists a solution, q, of (1.1) corres- 

ponding to that value of / such that 0 is odd on [- 7t, n] and 0 < q(s) < 1Tn for all 
se [0, i]. Let {u,n} be an unbounded increasing sequence of real numbers and let 

{%n} denote the corresponding sequence of solutions of (1.1) as above. Since {0n} 
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476 J F. Toland 

is bounded in L2 it has a subsequence {qn(j)} which is such that both {qn)} and 

{sin Vn(j)} are weakly convergent in L2 asj-+ oo. 
From now on we shall use {0.} instead of {(n(j)} to denote this subsequence, and 

{/tn} to denote the corresponding sequence of real numbers. 
We shall suppose that q, -- q0, and that sin n -- o-, as n->oo, where -- denotes 

weak convergence in L2. It follows easily that both 0 and o are non-negative almost 

everywhere on [0, ic]. 

In addition we shall adopt the following notation: 

for each t [- n, n], n,r(t) =ln {- +f sin (w) dw} 

Since S,n is odd frn is even on [- ir, n]. 

THEOREM 4.1. The weak limit <q of n, is non-trivial. Indeed 

2 rw. - 
f (s)sinsds = a > 0. (4.1) 

Proof. Since sin qn -n oC in L2 as n -> oo, 

1 -- fo? 
- + ( sin n,(w) dw ->j (r(w) dw. 

Hence, by theorem 3.2, 

|r(w) dw > 2/37. (4.2) 

But 

2r f . 2 f" 
- |(s) sins ds = lim- 

2 
T)(s)sinsds 

IrJ n ^--oocJ o 

2 f'' 2 f"" > lim 2 f sinOn(s)sinsds - X r(s)sinsds > 0, 
n--+ooJ ICjo 

since o is a non-negative element of L2, and (4.2) holds. This completes the proof 
of the theorem. 

We are now in a position to prove an asymptotic version of theorem 3.1. 

THEOREM 4.2. Let {j)n} and {/n} be as before. Then there exists f > 0 (independent 
of n) such that 

On(S) > fsins, 
for each sE [0, n]. 

Proof. For each n let 
00 

O n , an) sin ks, 
k=l 

and so On (s) = X a,n sinks, s [0, t]. 
k=1 



The existence of a wave of greatest height 
It then follows, as in the proof of theorem 3.1, that for s e [0, n], 

(AfIm ( -oo q(Lf) \\ 

qn>,(s j a jam) - C k- sins, 
k=2 k 

where M = 4/n(l + 3n), and m > 1. Since n,-n a as n->oo, 

2 rn 2 2" 
a() =- ,n(s)sin s ds-- (s)sinsds = a > 0, 

by theorem 4.1. Hence there exists N > 0 such that for all n > N 

ai) 3 ;a. 

We can choose m independently of n so large that 

E |< ia. 
k=2 k a. 

So for this value of m, and n > N, 

n(s) > {1M}m a sins. 

By theorem 3.1, for each n < N there exists fin > 0 such that 

5n(s) > in sins. 

We put f = min {(fM)m la, /i, f2, ..., iN} to complete the proof of the theorem. 

5. THE WAVE OF GREATEST HEIGHT: ITS 

EXISTENCE AND ITS PROPERTIES 

This section begins with a proof of the existence of a wave of extreme form. In 
other words we prove that there exists a solution of the Nekrasov equation in the 

limiting case when 1//, = 0. Once the existence result is in hand we consider what 
can be said about the properties of this limiting wave. We prove that the wave is 
not smooth-crested (as waves for finite a are known to be), and that it is the limit 
in an intuitively desirable sense of waves of almost extreme form. 

The first result below is of independent interest since it establishes the link 
between (1.1) and the version of the Nekrasov equation which Krasovskii (I96I) 
used in his treatment of the water-wave problem. 

THEOREM 5.1. If S is a solution of (1.1) for some /z > 3 and 

r+(t) = ln ( + sin 5(w) dw, te[-n,n] 

then - 3 = C/r, (5.1) 

3C = V-ao, (5.2) 

Vol. 363. A. 17 
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478 J. F. Toland 

and 0(s) = ? k(s,t)exp(-3Cb) sinO (t)dt, (5.3) 

( rf 
where ao =- | (t)dt, and v= exp(-a0). 

Remark. We shall make no explicit use of the connection between (1.1) and (5.3) 
in what follows. It is worth noting however that (5.3) is actually equivalent to 

(1.1) (( satisfies (1.1) for some u > 3 if and only if 0 satisfies (5.3) for some v > 0). 

Proof. If b satisfies (1.1) then Fubini's theorem implies that 
00 

~ ] ak sin ks, 
k=1 

where~1*~1 IT sinktI lin (t) 
where ak I f1 { . dt 

3 37c k q+ sinm(w) dw 

3 -7 cos kty'r(t) dt. 
36K J_- 

Hence - 30 = Ck, and 3CoS = f--a0. Since 

+ sin (w) dw = exp (- (t)), 

(5.3) follows immediately from (1.1) by substitution. This completes the proof of 
the theorem. 

THEOREM 5.2. Let {0}n), {n)} and {jtu be as in the previous section, i.e. n - 0, 
sin n - r in L2 as n-oo, and - 30, = Cfn (by theorem 5.1). 

Then 0n -> 0, sin n, -- = sin 0 and 3n -> ?r in L2 as n- oo, where 

(t)=ln f sin (w)dw), te[-t,i]. 

Proof. Since sin q-- or in L2 as n-> o, it follows that for each te[-n, t], 

lVn(t) -> (t) where f (t) = In f jf (w) dw, 

By theorem 4.2, for each t E [0, n], 

r1 r1 2 rt 2# t sinq| n(w)dw sin(innw)dw - 86sin wwdw = -(1-cost). 

Hence, for each t E [0, t], 

|fn(t)I < max{|ln (l +t), |n2?(l-cos t)/n|)}. 
Now the Dominated Convergence Theorem implies that n -> in L2 as n -o. 
By theorem 5.1, CVn = - 3O, and so theorem 2.3 implies that -n-q in L2 as 
n -> oo. It remains only to show that or = sin 0. 



The existence of a wave of greatest height 

Since -> 0 in L2 as n-oo, there exists a subsequence {(n(j)} such that qn(j)(t) 
- >(t) almost everywhere as n->co. Hence, by the Dominated Convergence 
Theorem, sin n(j) 

- sin 5 in L2 as n - oo. So o( = sin 0, and the proof of the theorem 
is complete. 

THEOREM 5.3. Let 0 be the L2 limit of {(n} as in the previous theorem. Then 

(i) k0 

- 

cos kt (n sin (w) dw dt) sin ks; (5.4) 
k=l 37 i 

(ii) the series in (5.4) above is uniformly convergent on [e, 7r] for each e > O. Hence 
q is continuous on [ - 7, 0[U]O, i]; 

(iii) q is discontinuous at 0; 
(iv) sup I0(s)I > Ait, for each e > 0; 

se[-e, e] 

sin 0(t) 
(v) ()=, 

r k(s,t)isin t(w) dw dt a. e on [- , n]. 

Proof. (i) This follows from theorems 5.2 and 2.3 by taking L2 limits in the 

expression - 3q0 = CCf. 

(ii) Sincef(t) = lnJ sin 0(w)dw, t [-it, n], 

is a continuously differentiable function on [- c, 0[U]0, i] and is integrable on 
[- n, i] all the hypotheses of theorem 2.2 are satisfied when a = e, b =- . The 
result is now immediate from theorem 2.2. 

(iii) By (5.4) and theorem 2.3 

3Co = ln fsin 0(w)dw-ao, 
Jo 

where ao = - ln sin0(w)dw dt. 

So exp (-3CO) = sin q(w) dw exp a0. 

Hence, according to theorem 2.4 (ii), 0 is not a continuous function on [-it, t]. 
It can only be discontinuous at 0, and the proof of (iii) is complete. 

(iv) Suppose that, on the contrary, there exists e > 0 with the property that 

sup [(s)[ = a < In 
se[-e, e]\{0} 

Now put 1(s)= {[ (e)/e]s, II e 
([(f)(e)/e]s] s\ e, 

and put S2(s) = 5(s) - f(s), s e [- i, T]\{0}. 

Then ql(s) is a continuous function on [- t, 7], 02(s)l < c < 1i almost everywhere, 
and qs(s) = q((s)+q02(s). Hence exp {-3Cq} = exp {-3C)1} {exp {-3C52}}. 

I7-2 
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H6lders inequality along with the fact that exp { - 3 Co1} e LP for all p > 1 (theorem 
2.4 (ii)) and exp{-3C02}eL , for all 1 < q < c/6a (theorem 2.4 (i)) implies that 

exp{- 3 C)} E L1. This is a contradiction and so (iv) is established. 
(v) Since qn5->*0 in L2 as n->oo we may suppose, without loss that Oq(x) -> q(x) 

almost everywhere as n->oo (in the next theorem we shall see that much more is 
true). Hence 

sin fn(x) sin 0(x) 

1//tn + fsin n(w) dw f sin q5(w) dw 

almost everywhere, as n-> oo. Now 

2 Tr sin On (t) 
On(s) I k(s, t), dt, 

3? ((1/n) + sin On(w) dw 
o0 

s [0, n], and so, by Fatou's lemma and the positivity of k on [0, i] x [0, 7], 

2 ft sin (t) o(S)0 
s > 

k(s, t) dt, 
f sin 0(w) dw 

Jo 
for almost all s e [0, n]. Hence the odd function X, defined by 

1X f'k(s,t)- sin0 (t) dt,[- X(s) = k(sdt, t) fI-n j], 3-Tr f( sin (w) dw 

is square integrable, and by Fubini's theorem 

(s) sin ks ds = f k(s, t) sin ks i dt ds, 
-T - rsin 5 (w) dw 

IT rT sinkt, sin (t)d 
"3Y 5 k dt, f sin (w) dw 

= lim 
2 

- cs kt n ( sin 0 (w) d dt 

_ sink __ k _ _- -sin /Jf sin (w) dw} 

_= l- i cos ktln sin 0(w)w dw dt 
---since t) sint for a 

since ~(t) > f sin t for all t e [0, nw]. 
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Thus we have shown that 0 and X are L2 functions which have the same Fourier 
series, and the proof of (v) is complete. 

So far we have shown that 95 is the L2 limit of a sequence of solutions of Nekrasov's 

equation which correspond to waves of almost extreme form. In our next theorem 
we prove that this convergence is uniform in an intuitively desirable sense. 

THEOREM 5.4. Let {()n, {/un} and 0 be as before. Then 

n(X) ->+ (x) 

uniformly on [- , - e] U [e, n] for each e > 0. 
To prove this theorem we need first of all to prove the following lemma, which 

carries the burden of the proof. 

LEMMA 5.5. Let {fn} be a sequence of real-valued even functions of a real variable 

of period 2n such that 

If f(xf)I dx- 0 

as n->oo. 

Suppose also that 
sup {If|(X)I Ma < oo 

neON, E[C, 2Tr- 8] 

for each 6 > 0 (here ' denotes differentiation). Then 

gn(x) = - - 

fn(y) cos ky sin 
kx 0 k=1 J-7T w 

as n-> o, uniformly on [- t, -6] U [, cn]for each a > 0. 

Proof. According to theorem 2.1, for each x e [8, n], 

\a()i?( t"'f~(x? t)-f1 ^(x-t d+ 2t"an-tdt + f 
I )I 1Jfn(X + t)d-fn(Xt- ft) I 

IJfn(+t) f( )+| 
X 

2ttandt|+ J 2ftant +dfX tl) 

If o- < min {8, ?n} then 

gqn(x)l < - roMA + f Ifn(x+t)l dt+ Jf f(x-t)l dt 

< (Mia + J fA(y) dy}. 

Now given 8 > 0, e > 0 we can choose a sufficiently small that 

-rMy < -ie. 

For this value of C we can find an integer N such that 

27 fn fo2 
a -~ Ifn(y)l dy <2 

for all n >N. 



Hence for all n > N and xe[8, n], Ig,(x)l < e and the proof of the lemma is 

complete. 

Proof of theorem 5.4. 

We need only apply the lemma with 

fn(x)= {ln I + sinq n (w)dw) -ln sin 5(w)dw}. 

f21T 

Clearly jfn(x) dx-> 0 

by theorem 5.2. Furthermore, for x E [6, 271 - 6], 

1f sin n5(x) 1 sin +b(x) l^yi^/1l ^ 
3 *3 

J sin (w)dw f sin (w)dw 

< Ma 

since both n and 0 are bounded below on [0, n] by fisint. This completes the 

proof of the theorem. 

6. ON STOKES'S CONJECTURE 

In the previous section we have proved the existence of a solution of Nekrasov's 
equation in the limiting case when 1 // = 0. This solution corresponds to a pro- 
gressive periodic wave-train which is such that the flow speed at the crest is zero 
relative to a frame of reference moving with the velocity of the free surface profile. 

Recall that the variable #(s) in Nekrasov's version of the water-wave problem 
denotes the slope of the wave at a point parameterized by the point eis on the unit 
circle in the w-plane (see ? 1 for further details). The fact that qf has a discontinuity 
at 0 (theorem 5.3 (iii)) means that the wave corresponding to 0 is not smooth at its 
crest. Indeed we know that its slope takes quite large values (i.e. close to 30?) at 

points arbitrarily close to the crest (theorem 5.3 (iv)). 
So far the nature of the discontinuity of 0 at 0 is not understood. But in this 

section we will prove that the possibilities are still further limited. We will show 
that, if lim 0(s) exists, then its value is it . Thus Stokes's conjecture will be verified 

once it is proved that 0 has a jump discontinuity at 0, and vice-versa. 

LEMMA 6.1. Let X denote thefunction given by 

X 3 1 E"~ sinks sin kt d 
X(s) n; s 

- dt, 
---k=l k t 

then lim X(s) = n. 
s->0 + 

( -( s),s ]0, n], 

Proof. If we put fr(8s) 
= 

0, s-- 0, 
- ,(7c + 8), c [-C, 0[, 
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?then , 1 ? sin ks 
then (s) = k , S e [-7r, 7ri]. 

3s==1 i 

For s [- 7t, ]\{0}, 

X(s) - vf (s) = ( - dt 
3k=1 k J t 

Now Jo (sint - dt= o(/kl+a) 

for any a < 1 (Gradshteyn & Ryzhik I965, p. 929, art. 8.235), and so X-ir is a 
continuous function. This completes the proof of the result. 

THEOREM 6.2. If 0 is as in theorem 5.3 and 0 has a jump discontinuity at 0, then 

lim 0(s)= - . 
s--O + 

Proof. Let lim sin 0(s) = a. Then for each e > 0 there exists 8 > 0 such that 
s-0O + 

a- e l sin >(t) a+e1 
a+et ft . a-et 

a+ ft s sin 0(w) dw a 

if 0 < t < 8. 
Hence there exist continuous odd functions f, g: [ - i, in] -> I such that 

a- 1 sin (t) a+e 1 

sin0(w) dw a- 

for all t e]0, r]. Now k(s, t)f(t) dt is a continuous odd function of s, as is 

k(s, t) g(t) dt, sincef and g are continuous. Therefore, since we know that k(s, t) 

is non-negative on [0, n] x [0, 7], we can assert that for any e > 0, 

ua-c. , 2 f"T sin (t) a+(e - i <t lim 
2 

k(s, t) r dt < a- 
a+c 

1S-O+ 0 f 
sin O(w) dw 

We conclude then that lim O(s) = -St and the proof of the theorem is complete. 
s-O + 

CoNCLI SION 

In this paper we have proved that there exists a solution of the Nekrasov equation 
corresponding to the existence of a periodic water-wave on deep water which has 
a stagnation point at each of its crests (the case ,t = oo in (1.1)). This solution has 
been seen to be the uniform limit, at points away from the wave crest, of waves of 
almost extreme form (i.e. solutions of (1.1) with /l large but finite). 
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Unfortunately this analysis leaves the important question of the shape of the 
free-surface of the limiting wave in a neighbourhood of its crest unanswered. 
However it has been shown that there are only two possibilities. 

Either the free surface has a well-defined corner at its crest, in which case the free 
surface subtends an angle n with the horizontal on either side of the stagnation 
point; or else the wave crest is the limit point of a sequence of steep ripples, and 
there are no well-defined tangents at the crest. 

If the latter possibility is not ruled out then it necessarily follows (from theorem 

5.4) that solutions of (1.1) become more and more oscillatory as /->oo. In other 
words, waves of almost extreme form can have arbitrarily large numbers of steep 
ripples as /u increases. 

There is nothing in the numerical evidence so far to suggest that water waves 
become more oscillatory as ,/ -oo. None the less there is no theoretical argument 
which excludes the possibility of such poor asymptotic behaviour. 

In an effort to understand the qualitative features of irrotational water-waves 

Keady & Pritchard (1974) suggested (in an appendix) that the Serrin-Lavrientieff 

comparison theorems might prove useful. Their basic argument was as follows: 
Serrin (I952) had shown that, at a point of inflexion in the free surface of an 

infinitely deep irrotational flow the derivative of the flow speed is positive or 

negative according to whether the tangent points into or out of the flow. If the free 
surface satisfies Bernoulli's condition, this rules out the possibility of inflexion 

points with tangents directed out of the flow. 

Keady & Pritchard have very kindly brought to my attention that Serrin's 
result contains an assumption that the tangent at the point of inflexion cuts the 
free surface at one point only. Obviously this cannot be guaranteed when the free 
surface has the form of a periodic wave, and therefore this approach does not 

produce the required result. 
So the question of the behaviour of solutions of (1.1) near the crest as I -> oo is left 

open. What we have succeeded in showing is that the wave of extreme form is the 
limit of waves of almost extreme form, and that its qualitative features away from 
the crest are accurately reflected by the shape of solutions of (1.1) for large but finite 
ut. Whether Stokes's conjecture is true or not, it has been shown that there are 

points arbitrarily close to the crest of the limiting wave which are steep; in fact, 

lim sup 0(s) > n, 
s->O + 

where 0 is the solution of (1.1) with u = co. 

It is a pleasure to thank Dr C. Amick for some useful comments about an 
earlier version of this paper; Professor T. Brooke Benjamin, F.R.S. for some 
very helpful discussions about Stokes's conjecture; Dr G. Keady and Dr W. G. 
Pritchard for telling me about their work on water-waves, and Dr G. Keady and 
Dr J. Norbury for showing me their unpublished manuscript. 
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