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Taylor-Gortler Vortices Expected in the Air Flow
on Sea Surface Waves —II*

Masayuki TOKUDA**

Abstract: The instability of Taylor-Gortler vortices which are expected in the air flow on
water waves was studied in part I, under the assumption that the curvature around the crest
or the trough of water waves, where the instability was expected to take place first, was
constant, namely that the characteristics of the vortices were affected little by the local change
of the curvature along the direction of the progress of water waves (the direction of x-axis)
However, the curvature actually varies from positive to negative, or vice versa. In order
to study this effect, the instability of Taylor-Gortler vortices is examined with respect to the
range of the part of a constant curvature, in the model in which the curvature is positive
constant near the trough and negative constant near the crest, and zero in the intermediate
regions, respectively. It is shown that as the region of the constant curvature becomes
narrower, the instability tends to weaken. For the same example with part I, namely, when
the wind of 12.2ms™ is blowing over swells of 15m in wavelength, if the range of constant
curvature near the trough is taken as a quarter of one wave length, the critical wave height
becomes 0.96 m instead of 0.50 m, and conversely, the wave length and the height of center
of the vortex become 11.9m and 2.1m instead of 24 m and 3.7 m, respectively.

Further, using the energy equations, quantitative estimates are performed of the intensity
of the vortices which develop when the wave height of the swell is 1.05m in the above
described example, and also of the influence of the vortices upon the wind profile when the
equilibrium state is reached. When the vortices are generated and grow to attain to an
equilibrium state interacting with the mean flow, the maximum z-component of velocity in
the vortices is about 1.04ms™. Consequently, the wind profile undergoes a considerable
distortion from the logarithmic one near the level of 2 m height. This distorted wind profile

has a form similar to those sometimes observed above the sea surface.

1. Introduction

In part I, the possibility of the generation of
Taylor-Gértler vortices in the air flow abhove
water waves was proposed. The conditions for
the instability were examined, under the as-
sumptions that the propagating water waves
were of a two-dimensional sinusoidal form with
infinitely long crests, and the profile of turbu-
lent air flow was logarithmic.

There we discussed the question of where
on the wave the instability would occur fastest.
So, we considered only around the crest or
the trough, where vortices were expected to
be generated first, and then assumed that the
curvature was constant. The Gortler param-
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eter, G., became to be a wave steepness, 6y,
since the sinusoidal form and the turbulent
flow were used as the water waves and the air
flow, respectively.

The relation between the wind velocity and
the wave phase velocity was expressed as the
level of matched layer, y., where the two velo-
cities are equal to each other. Accordingly,
the characteristics of the instability of vortices
were determined only by two factors of the
wave number of vortices and the level of
matched layer. The numerical calculations
indicated the possibility of its generation on
the trough of water waves in a state of strong
wind. The following two points, however, were
to be investigated as mentioned in part I:

(1) It was necessary to consider the effect of
the change of curvature along the z-axis on
the characteristics of instability in the vicinity
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of the trough, since there is the reverse of the
sign of curvature between the trough and the
crest of water waves.

(2) The vertical scale of the critical minimum
vortices were comparable with the extent of
constant local curvature. So, it was unreason-
able to neglect the terms depending on the
extent, comparing with terms of the variation
along the vertical axis.

Both of these problems raise the question of
how much the characteristics of vortices vary
with the distribution of the curvature in the
vicinity of the trough. In order to study this
point, we have assumed the distribution of the
curvature as such that it is positive constant
near the trough and negative constant near the
crest, and zero in the intermediate region, and
see how the instability changes by the region
of the constant curvature, This kind of ap-
proach was adopted by ToBAK (1971), in his
study of the local applicability of the Gortler
theory. He specified that the wall, as a boundary,
had a small concave curvature over only a
limited extent in the direction of flow, and it is
plane in the other region. The terms depending
on z-axis could not be neglected in such a
specification. So, he had the idea that the
variable x was eliminated by the introduction
of Fourier transforms with respect to the z-axis,
assuming that the perturbations would die out
both far upstream and far downstream. By a
suitable approximation, he succeeded in deriving
a simple correction to the Gortler critical factor
for the instability, and brought into evidence
the dependence of the factor on the extent of
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Fig. 1. The relation between the velocity of
vortices, ¢/, and the curvature of water
waves, £, under the condition of strong wind.

Sections on water wave.

(AB)and (BC) and

4
(AA ) (A/BI) (BICI)
Vortices’ Small
velocity, wut’’ Non-zero non-zero Zero
Positive Negative
Curvature, £ const. Zero const.
The product, xu:”’ Non-zero Zero Zero

wall curvature.

By using his idea, we may investigate the
generation of these vortices above water waves
in case of strong wind. It became clear in
part I that the vortex instability occurred only
around the trough in this case. It will be
reasonable to assume that the vortices would
decay sufficiently rapidly both upstream and
downstream from the trough, (BC) and (B’C’),
as indicated in Fig. 1. Consequently, our prob-
lem may be made coincide with Tobak’s study,
about the product of the velocity component
of vortices, w:”, and the constant curvature
around the trough, «.

Next, by using the energy equation, we may
perform the quantitative estimates of the inten-
sity of vortices, and of the influence of the
vortices upon the profile of the mean wind flow
for the equilibrium state, which could not be
done from the linear theory of part I. As
STUART (1958) and LANDAU-LIFSHITZ (see
MONIN and YAGLOM, 1971) attempted to ex-
tend a linear theory to a non-linear theory, we
introduce the following assumption: even though
the generated vortices grow over the range of
infinitesimal amplitude (the critical state) into
that of finite amplitude (the super-critical state),
the basic flow merely intensifies the amplitude
without changing appreciably the distribution
of vortices. Using this assumption, the profile
and the intensity of vortices may be determined
from the energy equation on the basis of the
linear theory in part I.

In our description below, the same notations
for variables will be used as those in part I.

2, Change of curvature of water wave surface

By means of the method mentioned in section
1, we will consider only the conditions of strong
wind, in which the vortices are expected to be
generated on the trough of water waves. Of
course, the conditions of gentle wind can also
be treated similarly.

Let us introduce the curvilinear co-ordinate
system as shown in Fig. 2, and the equations
for a secondary flow, following the method of
part I, except for the point that the terms
depending on the z-axis are not neglected in
this paper. In Fig. 2, (—a, @) denotes the range
of the constant curvature near the trough, the
U and C, the basic flow and the phase velocity
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Fig. 2. Schematic picture of the form of vortices
and the range of constant curvature, {~a, a),
on water waves and the curvilinear co-ordinates,
for the condition of strong wind.

of water waves, respectively., Since it was
indicated in part I that the characteristics of
vortices were almost independent of the Rey-
nolds number, we assume for convenience that
the Reynolds number is constant of

_ U 1
=% r 016 =6.25 @.n
In this case, the eddy kinematic viscosity, vr,
becomes from Eq, (3.13) in part I,

__ Eallx 0.16 Ub
T ke ke @2

where &. indicates von Ké&rman constant, us
the friction velocity, kw the wave number of
water waves and U the reference value of
wind velocity. This assumption does not affect
the conclusion of this paper. Also the exchange
coeflicient, 4, becomes

A dimensionless form of A is defined as

M= @.3)

pvr

By using (2.2) and (2.3), we can obtain M=y
easily, and assume that the curvature along the
z-axis is constant, although this is not exact
at the points B/, A’, A and B in Fig. 1.
Reducing the equation of motion to a dimen-
sionless form with the same reference values
as those in part I yields

o o AU,
o i g’ o
M 0"\ 1 dM{ow v
2o, e ef BN
+Re( “ 2”6x>+Re dy(6y+6x)
4 7 Vs
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with r=7du"e ¥ cos z, where x and 8,* denote
the curvature and the steepness of water waves,
respectively. The eigen value in this problem
is indicated by the asterisk to distinguish it
from 8, of part I. The dimensionless forms,
', v", w’, p¥ and U are the z-, the y-, and
the z-component of velocity, pressure of
vortices, and the z-component of velocity of
mean flow, respectively. These do not include
the Reynolds number for convenience, being
different from equations in part I. The forms
o vortices are assumed as in the case of part
I as

u’ =et cos kzulz, y)
v” =e't cos kz v(z, y)
w” =e! sin kz wlx, y)
2’ =e't cos kz plz, y)

(2.5)

The boundary conditions are

u(z, ), vlx, ), wlz,y) and
LG ) N . (2.6)
0x

Now, the variable z in (2.4) may be eliminated
by the introduction of the Fourier transforms:

"
a(y; o) =j u(z, Ye ierdz,

+o00
=g, I wedims @D
Similarly, 9(y; w), @W(y; @) and P{y; @) are de-
fined. We substitute Eq. (2.5) in (2.4), and

obtain, using the neutral condition, y=0, to-
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gether with the relation indicated in Fig. 1,
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ﬁe U and the

suffix ¢ denoting differentials with respect to y.
The substitutions

S -
IMF u—zx—zvy

s 112 P (2.9)

e

where o?=a?(y; @) =k*+a®+iw

3]

and the successive elimination of P and @ yield
a pair of equations involving @, ¥ and integrals
of # and v, omitting a negligibly small terms
in Uyy and a?y:

M{itgy(y;0)— Py ; @)} + Myt (y ;@)
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From the substitutions of (2.9), the dimension-
less forms become the same as those of part 1.
To obtain the similar solution to those obtained
in part I, we must put =0 in Egs. (2.10) and
(2.11). It yields a pair of homogeneous differ-
ential eqations for 7% (y;0) and ¥(y;0) with I;—0,
k2—Fk? and &—a:

M{dy,(y;0)— K2y ;0)} + My diy(y;0)= Uyd(y; 0)
M{Gyyyy(y; 00— 2620y (y; 0) + £y ;003
+2My {(Tyy(y;0) — £, y; 0)}
sina

= 27:5*wce‘y{—11r—(a+ 2tan™l—

l—cosa

— T UEREAy;0) (2.12)

The implicaticn is that when @ in (2.11) and

(2.12) is put equal to zero in solving the eigen

value problem, the integrands of I, and I; are

significantly modified by the variations in @ (y;

) and ¥(y;w) only in the vicinity of w;=0.
Putting a=7 and §*we—dwe in (2.12)

My (y;0)— K2y s 00} - Myl (y;0) = Uyt ;0)
M{Byyyo(y; 0)— 2620y (y; 0)+- £y ;0))
+2My {(Tyyo(y ;00— BT, (y; 00}

= — 27 duwee YUK Re2ii(y ;0) (2.13)
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The perturbation Eqgs. (2.13) coincide with those
of part I. Hence, the solutions in part I mean
the condition of which the curvature of water
waves has a constant curvature everywhere
over one wavelength. From comparing (2.12)
with (2.13), we may see that these equations
are formally identical, by the following relation:

a*wc :f(k, a)awc (214)
10
9
8 a=w/g
-
- 6
-
s 5
<. .4
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Fig. 3. Correction factor, fla, k), given by Eq.
(2.15), for several values of the extent of
constant curvature, a.
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Fig. 4. Critical wave steepness, 8%ye, for several
values of the extent of constant curvature, a,
for the same condition of Aw=15m and u*=
0.6 ms™*, as the case of E in part L.

where
Sk, a
T
= . - (2.15)
_, _sina sinh k(z —a)
a+2tan l—cosa sinh k7

Eq. (2.14) shows how the critical eigen value,
0%y, is modified by the extent of constant
curvature, a. So, we have only to correct the
value of 6y, obtained in part I using the cor-
rection factor (2.15), without changing the
solution in part I substantially. The distribution
of correction factor, f{k, @), inceases rapidly as
a and k decrease. The results are illustrated
in Fig. 3. So, from (2.14), the 6*y. is modified
significantly only when a and & are small. It
is indicated from these results that a larger
value of the critical wave steepness than that
obtained in part I is required to initiate insta-
bility, in the same manner as Tobak’s result.

The example of curve E in part I is shown
in Fig. 4, using the correction factor (2.15)

m

.3.2.IO,I2‘33.4.5,6.783I.0

Fig. 5. The profiles of disturbances in the critical
minimum state, under the same condition as
Fig. 4. The ratio of components may be
calculated, but the absolute magnitude may
not, on account of the linear theory.
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with several values of a*. For this case, the
critical minimum wave numbers, %.,=0.631,
and 1.26 indicate the extents, e=x and r/4,
respectively. We can obtain the results from
Fig. 4 that kwm=Cw/le)en~126 and *,em
~0.064 for a@==/4, indicating the followings.
When a wind of about 12.2m st at 10m level
is blowing over water waves of the wave length
of 15m, the vortices are generated in the critical
state of the wave height of about 0.96m, or
0%uem=0.064. The critical wave length and the
height of the center of the vortices are about
11.9m and 2.1 m, respectively. The values are
about 2 and 1/2 times those of part I, respec-
tively. The profile is shown in Fig. 5. The
value of correction factor, flk, a), is also a con-
stant value of about 1.59, since the value of
kem 1s constant as indicated in section 1. So,
0*wem 1s corrected to about 1.59 times that of
a=r,

From the above-described results, we may
consider that better solutions than those of part
I have been obtained, although it is not an
exact answer to the questions discussed in
section 1.

Lastly, we calculate the special case of the
above example with zero phase velocity where
the water wave surface is fixed. This case may
be treated in a similar way as the above case.
Putting the phase velocity of water wave, C,
zero in (3.11) of part I,

U,

U= =ln X
20

(2.16)

with y,=20=8x1073 ky 2,2, where U; denotes
the wind velocity.

From Eq. (2.16), the non-dimensional
critical level, ., becomes to be equal to the
non-dimensional roughness length, zs. There
is no significantly different point between the
cases of non-zero phase velocity and zero phase
velocity, except for the point that the latter has
a lower matched level, g, than that of the
former. Hence we may calculate the instability
of this case, using the neutral eigen value of
Fig. 7 in part I and the correction factor (2.15),
and may anticipate that in this case it is more
unstable. The calculation indicates that for the

* “Curve D’ on p. 251 of part I should all be
replaced by “Curve E”.

wave height of swells of about 0.46m, the
vortices may be generated with the wave length
of about 9.46 m. So, we may conclude that
the phase velocity in the direction of the wind
velocity, Cuw, act as the stabilizing factor, being
due to the increase of the value of the critical
level, y..

3. Estimation of intensity of the vortices by

energy equations

It is believed from a theory of instability that
the instability is not expected to occur until
the eigen value of applied disturbance attains
the critical minimum value. As mentioned in
section 1, we may calculate the intensity of
vortices and the influence upon the mean flow
in the vicinity of the critical minimum state.
The following approximation is obtained from
calculation of part I and the discussion in
section 2. The disturbance equation for the
condition of the constant curvature may be
applicable to conditions around the critical
minimum state of the present problem, by
introducing the corrected eigen value, 6%,. So,
the basic equations of the air flow, (2.4), can
be simplified, using this approximation, as the
following.

bu  Ou  Ou_ (ﬁu_+ 62“%%
" Uy Ve Nogr e ) oy

dv dv v

w2 gv 25, #\o—Vy,2
6t+v8y +wﬁz +(TRe20w*)e Vu

(Tl
0y

0y yﬁ—yz 022
w  JOw 0w
i oy oz
__0p Pw 6271)) ow
=Tt G T )Ty
dv  Ow

Now let

u=Ult,y)+u"{t,y, z)

v= v (¢, y, 2)

p=P(t,y) +p"(t,y, 2 3.2
where #”, v” and p” denote the components of

finite disturbances with zero mean value. Egs.
(3.2) differ from the formulation of section 3 in
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part I, with respect to the following points:
(a) the mean flow, Uz, y), is a function both
of ¢t and 7, and (b) the amplitude of disturb-
ances is finite, in which non-linear terms can
not be neglected. So, the substitution of Eg.
(3.2) in (3.1) yields, with rearranging the non-
linear terms in it using the equation of conti-
nuity, the following equations of motion of total
flow:

a " ¥ aU 6 [/ a o
5 (U+u")+v oy +@(u ")+ az(” ")
G, ouUu on”
_ il P2 L 27
ay(’y % >+y 0" oy
D"
v _{_—6——<7)”2)+i(7)”w”)+73[(625*71((/4' u//>2
ot oy Oz
3] ” "
7 P v MV
w” .., ., a . .
o + ay('u w )+5z—(w )
apl/ a‘wll
. F2o0”
By +yyew” + p
" 0w
T T e =0 (3.3)

A case of undisturbed flow is specified by «”
=v"=w” =0, and U= U(y) is independent of z.
So, the flow becomes from the first Eq. in (3.3)

_d_( d_U)_O
dy\” dy /)
From the above equation, it is indicated that

a mean flow has the following logarithmic
profile for the case of non-disturbed flow.

= In-Y-
Uly)=1n ” 3.4

Taking the average of (3.3) with respect to the
z-axis yields the equations of mean flow for the
case of disturbed flow:

0 3 Gy - 2(4 )
dt +6y(uv>_6y Yoy

5 o
%(z}”)—i- TRe25, e U2+ u"?)

__or (3.5)
dy

0 i 0
— (W= (w"?)=0. The
0z 0z

bar denotes an average over the z-axis. In a
state of equilibrium, we may obtain the following

stationary equations:

with <7 57y =
0z

2 =0, and Ul p)~Uy)

(3.6)
L(W>__‘?_< du, )
ay = dy 4 dy

The boundary conditions are

at y—=zo and at Y=y (3.7)

€

U.=In Y
Y

where the suffix e refers to an equilibrium state.
We use yw as the height where the disturbances

. . . Ve u”’ v
die out. By the approximation of[ (—

zo Yy
=) e Y " o
X dy =~ S (_ﬂf’)dy and ( (»T' )dy
Y Jz Y
¥ u?/,vl/ °
%S (— y— )dy, the solution of (3.6) for the
0

conditions (3.7) is,

Y Wy
Ufy)=In Y {S (~u © )dy
0

Ye

v
]n'y— Sw( u”v”)
N G "7 B
In Q“i;o 0. v

where e is a kind of parameter. Moreover,

putting e—c0 in (3.8) yields

. _ -?!—_ y(_-z-t//-vl/) ‘
Uwo(y)=1In ” SU y dy 3.9
These equations show how the distribution of
mean flow is affected by the Reynolds stress
due to the disturbances. If the amplitude is
finite, the second-order terms can not be neg-
lected, and the distribution of the mean flow
is not logarithmic in the equilibrium state. The
solution of (3.9) is also obtained with the first
boundary condition in (3.7) and {ollowing
boundary condition,

dau, 1

—r— as ’y—)OO

dy vy

indicating that the gradient of U/, (y) coincides
the logarithmic profile at sufficiently high levels.
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The unknown function in (3.8) is only the
intensity of disturbance which is a function of
time, since the forms of disturbance are the
same as those calculated in part I. Let us
obtain this factor, A(z), by using the energy
equation. Before it, we require the pertur-
bation equations of vortices. These are afforded
by the total flow (3.3) and the mean flow (3.5)

%ﬂﬂ’ %Z +Xi=yl” + %t—;i
ag’t TR U+ X
- aéz;/ +g/f72v”+zaaly”-
%JFXS: —~ agz” + 2w’ a—;‘;—
%Ly” % ~0 (3.10)
where

X, = _6_<u// o — u”v”)—{- _a_(u//w//)
oy Oz

Xg :_a_(,v/lz___ng)+ _a_(.v//w//)
oy 0z

__6_ Wops W I 4 2
X3= 6y(v w’ —v"w” )+ 6z(w )]

It;;we integrate the disturbance equations to
obtain the energy balance relation, we have,
without approximation,

i

‘agj%(u//2+,vll2+wl/2>dydz

= S S(— u”v") ( éd% +27ERezo‘w*eﬁ1’U)dfydz

~\Juer s nayas 3.11)
where
awlf a,v// aul/ 6””
A _ ’ [,
“E - ay 62 ) 77 ™ 5 and C ay

where the integrands are evaluated over a
volume bounded by (0, o) in the direction of
y-axis and by on wavelength in the direction
of z-axis, and the quadratic terms, Xi, of (3.10)
integrate out. The net rate of increase of
disturbance energy is equal to the difference
between the integral of the product of the

Reynolds stress and the flow shear, which
represents the rate of transfer of kinetic energy
from the mean flow to the disturbance, and
the rate of dissipation of kinectic energy due to
eddy viscosity. Substituting Eq. (3.8) in (3.11),
we may obtain the energy balance equation
composed of the velocities of the disturbed flow
only. From the above, profiles of the dis-
turbance due to the vortices may be expressed
by the following forms:

v’ (¢, y, 2)=A{t)v(y) cos kz

(¢, y, z)=AO)u(y) cos kz
} (3.12)
w” (¢, y, 2)=A@w(y) sin kz

where A(z) denotes the amplitude of disturb-
ances. Substituting Eqgs. (3.12) and (3.11) yields
d|Aj?

= i 2 4
o 2kci A2 —2kal A|

3.13)
where

2kci=(ra—ys+ 0u*ra)/ 11
and 2ka={ys+du*ye)/ 11

= SO %(u2+v2+ whdy, r2= SU F;w) ay

73 ZZTCRezj (—uv)e¥In ldy
0 Ye

oo dw 2 du \2
= -—_— 2,,2 it
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rs:mRe?Sm(~uv)e” {Sy(—~ﬂ)dy1
0 0 Y1
ln—z— oo uw
-0 —— Yy, id 3.14
In y,mgo( yl) yl} 4 ( )

Zo

The differential Eq. (3.13) has the same form
with (2.15) in Stuart’s paper. The A(f) has a
real value, since the instability of Taylor-Gortler
vortices is believed to have no oscillating
solutions. The solution of A(f) depends on its
magnitude, as follows.

For infinitesimal disturbances, putting |A(#)|*
<|A®? in (3.13) yields

dlAl*
de

=2kc;| A2 (3,15)
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Eq. (3.15) agrees with the linear equation. In
a critical state, Eqgs. (3.14) and (3.15) yield

T4—T2
T3

¢;=0 and *u.= (3.16)
The critical eigen value (3.16) is calculated
according to the energy equation. Although it
is a different method from part I, the obtained
value 0.0639 is in close agreement with that of
0.0633, for the minimum critical state for the
example in part L.

For finite disturbances, the general solution
of (3.13) is of the form

Bc; e2kest

2__ _—-*7
VAP = T Ry gk @.17)
1A12—>|A|e2:% as t—oo0  (3.18)

where B is an arbitrary real constant. As
shown in Fig. 6, the amplitude (3.17) is the
result of linear theory as #—>—co and non-linear
theory as t—co. The amplitude factor, |4/,
converges to |A], in a equilibrium state as t—>oo.
In a super-critical state, ¢;>>0, indicated by
a>0 from (3.14), the equilibrium state has the
amplitude (3.18).
Eqgs. (3.14), (3.16) and (3.18) yield

1Al 2=—~D
75+ 0wt 76

for 0%u>6%u.

(5*w— a*wL-)
(3.19)

From (3.19), |Al2 is proportional to the value
(0%, —6%ue). This equation may not be appli-
cable to the range of 6%,>>d%,,, since it is possible
that the higher harmonics of the basic mode
of the disturbance may be generated in this
range. It may be expected that the method
used above will be valid for some range of 0%,
above the critical value, §%..

-0 t +00
Fig. 6. Amplitude growth of vortices in super-
critical case.
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Fig. 7. The distribution of the disturbance flows
{u, —v,w) and the mean flow, Uexn(®), in the
super-critical minimum equilibrium state of
8,=0.07, under the same conditions as Fig. 5.
The height where the disturbances die out, 70,
is taken as ©o (or Yp—o). In a mean flow,
the logarithmic profiles of the heavy line and
the broken line indicate the cases of infinitesimal
amplitude and finite amplitude of disturbance,
respectively.

Let us consider the example in section 2
again, putting 6,=0.07 and yeo—0o0. From the
result in section 2, it is expected that the vor-
tices with the wave steepness of 0.07 grow to
attain the super-critical equilibrium state, inter-
acting with the mean flow. In this state, the
amplitude of vortices and the distribution of
the mean flow are calculated by Egs. (3.19)
and (3.9), respectively, as indicated in Fig. 7.
From the results, the following two points
should be noted. Firstly, about the distribution
of the vortices, the disturbed flow has the
profile which varies sinusoidally with the
amplitude of about 1.04m s at the center of
about 3.80ms™!, in the direction of z-axis,
around a height of 1m. Secondly, the vertical
distribution of the mean flow, which was
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Fig. 8. Same with Fig. 7, but for the condition
oo =T00 m.

logarithmic in the condition of the absence of
the vortices, has a bending or 2 kind of kink
near the wave surface and becomes logarithmic
at heights much larger than the wave height,

4. Discussion

By the use of the boundary conditions (3.7),
together with the condition of 9e=0c0, we have
obtained the solution of U,~(3), as shown in
Fig. 7. These boundary conditions mean that
the gradient of the wind speed at higher levels
does not change by the existence of the con-
sidering vortices, The original logarithmic wind
profile U{y) has shifted to the left in the figure,
or to the side of weaker wind speed, in higher
levels. This does not indicate that the wind
speed at higher levels is weakened by the
occurrence of the Taylor-Gértler vortice, but
may be interpreted as follows. When the
Taylor-Gértler :vortices exist, the same con-
ditions of the wind profile in lower levels cor-
respond to weaker wind velocities at higher
levels. In this example of the calculation, the
disturbance velocity of the order of 1ms™

appears at 1-m level, and the same conditions
of the wind correspond to about 109 lower
wind speed at 10-m level. The same thing will
be said for the water surface wind stress, which
may be determined by the wind conditions at
the lower levels, and expressed by, say, zo. It
should be noticed that there is a significant
bending in the vertical distribution of the mean
wind velocity, or the wind profile, between the
levels of from 0.5m to 3m. There is a pos-
sibility that a kink of the wind profile, which
has been sometimes reported in the observation
above the water waves, corresponds this bending
of wind profile caused by the existence of the
Taylor-Gértler vortices.

For the sake of comparison, a calculation by
use of the other boundary conditions has been
performed. Namely, the Eq. (3.8) for the con-
dition 7»=700m, instead of the condition 7
=co, yields the distribution of vortices and the
mean flow as indicated in Fig. 8. It seems that
there is a noticeable difference in the distri-
butions between Fig. 7 and Fig. 8. In the
latter case, the gradients of the wind speed at
the higher and the lower levels are larger, and
the disturbance velocities are much greater. In
this calculation, however, a little different value
of zo is used for the convenience of the calcu-
lation. But it does not produce a significant
matter for our present consideration to see a
tendency in the change in the disturbance ve-
locity and in the wind profile, since the change
in the gradient of the wind speed at the lower
levels will cause a change in =z, of which we
have no method of prediction as zo is used for
the lower boundary. Also, the selection of the
value of 9w is arbitrary, and the situation varies
large according to the value of 4. Consequent-
ly, it is considered that the former boundary
conditions, yielding the result of Fig.7, are
motre appropriate.
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