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ABSTRACT

it is shown that a simple relation, E* = 5.1 x 102 o%™3, for describing the conditions of growing
wind waves, is supported by various available data, where E* = g?E/u *‘ is dimensionless energy,
oh=u *Um/g the dimensionless angular frequency at the maximum of the energy spectrum, g the ac-
celeration of gravity and u, the friction velocity of the air. This expression is an alternative form of
the relation between dimensionless wave height and period, H* « T*32, which was previously proposed
by the author (Toba, 1972) for energy-containing waves, and is extended to individual waves in the
wind-wave field in a statistical sense. It is also shown, supported by various data, that the essential
part of the one-dimensional energy spectra of growing wind waves should have the form g ] *a-“ for
the high-frequency tail of the frequency spectrum, where g . 18 g expanded to include the surface tension.
This is the form previously proposed by the author (Toba, 1973b) as the one-dimensional spectral form
consistent with the above power law relationship, instead of the g?o—3 form proposed by Phillips (1958).
By use of the power-law relationship for E*, it is shown that the proportion of that part of momentum
which is retained as wave momentum to the total momentum transferred from the wind to the sea can be
expressed by a function of o}, which has essentially the same physical meaning as C/U, the ratio between
the phase velocity of the energy containing wave and the wind speed. The value of the proportion
decreases from about 6% in the form of an error function of C/U. A prediction equation for the growth
of wind waves by a single-parameter representation is proposed, in which the rate of change of E* is
expressed by a formulation including the error function or by a simple stochastic form. The integration
of the equation for the case of fetch-limited conditions is in excellent agreement with data compiled by
Hasselmann et al. (1973). Reviewing results of recent wind-wave tunnel experiments, emphasis is given on
the fact that wind waves are strongly nonlinear phenomena, especially for C/U < 1. A discussion is
presented from this standpoint as to the physical basis for the existence of the simple power law
relationship, the spectral form of g_u _o~* and the stochastic form of the growth equation, and a systematic
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derivation of these relationships and equations is attempted.

1. Introduction

Quantitative study of the growth of wind waves
was first initiated by Sverdrup and Munk (1947)
through the introduction of the concept of the
significant wave height. Since the 1950°’s (e.g.,
Pierson, 1952), irregular fluctuations of water level
in wind waves have been treated by Fourier
analysis techniques, assuming a superposition of
free water waves. Since free waves may be gen-
erated at a still water surface, it has been pos-
tulated that the motion is irrotational, and that a
pressure variation along the air-water interface is
essential for the generation of wind waves. These
assumptions became the foundation of modern
theories, as represented by the mechanisms of wind-
wave generation proposed by Phillips (1957) and
Miles (1957), although the mechanisms have not yet
been verified experimentally. The fact that the time
scale of the generation and decay of the wind-wave
field is large compared with wave period, has been
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the basis for the treatment of wind waves as an ex-
pansible into dispersive components and weakly
nonlinear phenomenon (e.g., Hasselmann, 1968).
Hasselmann et al. (1973), through a computation of
nonlinear energy transfer using the empirical form
of the spectrum obtained in an intensive observa-
tional project (JONSWAP), concluded that the
energy flux across the peak of the spectra is
due mainly to nonlinear resonant interactions
among component waves, and plays the domi-
nant role in the development of the wind-wave
spectrum, although the mechanism of the mo-
mentum transfer from the air to the wind-wave
field and the dissipation processes remain to be
clarified.

On the other hand, efforts to experimentally
determine these processes occurring at the real air-
water interface have received considerable em-
phasis (e.g., Kunishi, 1957, 1963; Shemdin, 1972;
Wu, 1975; Banner and Phillips, 1974; Banner and
Melville, 1976; Imasato and Ichikawa, 1977). Based
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on findings by Wright and Keller (1971) that wind
waves in the gravity-capillary region evolve from
the wind-induced surface drift in water, Valenzuela
(1976) revised the Miles mechanism by introducing
shear flows on both sides of the air-water interface
to describe the early stage of the generation of
wind waves. Toba et al. (1975), Okuda et al. (1976,
1977) and Kawai (1977) demonstrated, by flow
visualization studies of wind waves in wind-wave
tunnels, that immediately (on the order of 1 s) after
the initial generation of more regular waves by the
wind they change into irregular wind waves, and
the transition seems to occur through the following
processes. A large nonuniformity in the distributions
of the tangential stress of the wind and of the wind
drift surface flow appears relative to each momen-
tary crest of surface undulations. The tangential
stress is concentrated at the crest and its windward
face, and a convergence of the surface flow and a
consequent downward thrust of water occurs near
the crest, and somewhat to the leeward face,
irrespective of whether or not the waves are break-
ing. Consequently, wind waves are always accom-
panied by forced convections, relative to the
momentary wave profiles, producing a turbulent
mode. Recent work by Rikiishi (1978) has demon-
strated, through well-controlled experiments in a
wind-wave tunnel, that the dispersion relation
breaks down for component waves.

According to the above studies, it can be con-
cluded that the growth of wind waves is a phenom-
enon in which strong nonlinearities are essential.
Let us now consider a dimensionless parameter
C/U, where C is the phase velocity of representa-
tive waves and U the wind speed at, say, the 10 m
level. The value of the parameter determines
whether the state of the wind-wave field is growing
or is already in a developed state, i.e., essentially
in a state of equilibrium. This parameter can be
replaced by the ratio of C and the friction velocity
of the air u,, or by T* = gT/u, where T is the
representative wave period and g the acceleration
of gravity. In any case, if C/U is large enough to
achieve the equilibrium state (empirically deter-
mined to be ~1.4 for a steady wind), waves near
the frequency of the maximum spectral density will
satisfy the condition of superposition of free com-
ponent waves. If the wind becomes weak or ceases,
C/U tends to infinity and the wind waves become
swell which can be treated approximately as linear
waves. However, in the case of wind waves of very
small C/U, as is observed in wind-wave tunnels,
nonlinearities are very large and it is almost im-
possible to treat them in a deterministic way. For
wind waves of C/U = 1.4, the condition of strong
nonlinearities will be the same for the higher
frequency part.

The discussion in the present article is presented
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from the point of view that while wind waves are
strongly nonlinear phenomena, regularities in the
gross structure of growing wind waves are sought,
in forms as simple as possible, by invoking an
assumption of a kind of self-similar structure in the
field of the wind waves and by dimensional self-
consistency.

This line of approach is an extension of that of
Kitaigorodskii (1961), who introduced the similarity
law in wind waves, Phillips (1958), who proposed
the g2-f 5 spectral form based on dimensional con-
siderations, and Sverdrup and Munk (1947) who
introduced the concept of significant waves and
dimensionless parameters. With the intent of ad-
vancing the abovementioned point of view ex-
plicitly, the author (Toba, 1972, 1974a) proposed a
3/2 power law [expressed by Eq. (2.1) in the next
section] for growing wind waves, and attempted to
obtain a single-parameter growth equation of wind
waves. Hasselmann et al. (1973) demonstrated the
self-stabilizing nature of nonlinear interactions
among component waves during the evolution of
the spectrum and Hasselmann et al. (1976) pro-
posed a rapid adjustment of the spectrum to a
quasi-equilibrium level after the change of the wind,
on the basis of source terms of nonlinear wave-
wave interactions, and thus have presented a
posteriori a basis for a single-parameter growth
model. It is noteworthy that their treatment, based
on the concept of component waves and weak
nonlinear wave-wave interactions, leads to a similar
single-parameter model. The author has inde-
pendently been revising his own model and ob-
tained (Toba, 1976) a somewhat different scheme of
the single-parameter growth model from that pro-
posed by Hasselmann et al. (1976).

Reinforced by additional information from the
Hasselmann et al. (1976) study, the first half of this
article presents a more simple form of the single-
parameter representation of growing wind waves
along with a stochastic form of the growth
equation. Later, a discussion and a possible inter-
pretation of the physical basis of the scheme is
presented.

2. The single-parameter representation for growing
wind waves

We start with- a description of the empirical
basis of our single-parameter representation. The
author (Toba, 1972, 1974a) has previously proposed
a relation between the dimensionless significant
wave height and period for growing wind waves
which is a power law of the form

H* = BT*%? B = 0.062, 2.1
where

H* =gH/u.? and T* = gT/u,,
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and where H represents the significant wave height
and T the significant wave period. Eq. (2.1) may be
converted to a relation between the total energy
E and the frequency f,, or the angular frequency
o of the spectral maximum, by

E* = Bf%™® B,=21x 10",  (2.2)
or
E* = B,o%™3, B, =5.1 X102, (2.3)

where E* = g®Elu ?, f% =u, fulg, oh =u,0,/8.
In the course of the conversion, the relations

Jm = (1.057)1
after Mitsuyasu (1968) and Toba (1973b), and

(2.4)

E = J d(o)do = H?/16 2.5)
0

after Longuet-Higgins (1952) for narrow-spectrum
waves, were used, where ¢(o) is the spectral den-
sity. The absolute values of the numerical factors
in (2.4) and (2.5) will not be universal, as suggested
by Iwata et al. (1970, 1971) and also as described
by Hasselmann et al. (1973) in terms of the varia-
tion of Phillips’ constant « for individual cases.
Consequently, much emphasis will be given in the
present paper on the basic forms of equations
rather than on values of the numerical factors in
the equations.

Although (2.1) was derived by dimensional
and macroscopic considerations, it is based on
experimental data in a wind-wave tunnel obtained
by Toba (1961, 1972), and on empirical formulas
presented by Wilson (1965) and Mitsuyasu (1968,
1971). Consequently, (2.2) and (2.3) also are based
on these results. Surprisingly, almost exactly the
same expression may be obtained from the Hassel-
mann et al. (1973) JONSWAP formulas

e=1.6x 107, ¢= 10 (2.6)
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and

y = 3.56798 &< |0° Q.7

where
€ = g’FE/U,* = CL2E*, & = gFlU,y?
v=Upgfu/g = fi/(Cp)'"*

and where F is the fetch and C,, the drag coefficient
defined by

>

2 — 2
M* = CDUIO .

Eliminating the dimensionless fetch & from (2.6) and
(2.7), we obtain

E* =2.0 x 10743309 (2.8)

or
E* = 5.3 x 1072057393, 2.9)

where the value of C, = 1.0 X 1072, which was
used by Hasselmann et al. (1973) has been used.
These may also be converted to

H* = 0.0617*3-0372, (2.10)

These equations are considered to be identical
with (2.1), (2.2) and (2.3).

A corresponding formula has been given in
Hasselmann et al. (1976) as their Eq. (3.6):

€ =53 X 10767103, (2.11)

Our formulas (2.2) or (2.3) may be converted to the
same form of the expression and yield

€ =7.1X%x 107873, 2.12)

In Fig. 1 is shown a comparison of (2.11) and (2.12)
together with a composite data set presented in
Fig. 10 from Hasselmann et al. (1976). Although
the superiority of (2.12) over (2.11) is not con-
clusive from the figure, it seems that (2.12) cor-
responds slightly more closely to the data.

0l 0.4 02

Fi1G. 1. Reproduction of Hasselmann et al. (1976) Fig. 10-J plus positions of
straight lines of Eqgs. (2.11) and (2.12). The positions are shown only at the right
and left ends. The thin straight line flanked by hyperbolas represents the
regression line for data points and the standard deviation envelope. The line of
(2.12) is almost inside the standard deviation envelope.
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FiG. 2. As in Fig. 1 except for Hasselmann et al. (1976) Fig. 9-J plus positions
of straight lines of Egs. (2.19) and (2.20). The line of (2.19) is inside the

standard deviation envelope.

A form of the one-dimensional energy spectra of
wind waves which is consistent with the above -3
power relation, is gu,o™*, instead of g*~> which
was proposed by Phillips (1958) for the high-fre-
quency side of the spectral maximum {(cf. Toba,
1973a). The essential part of the spectra may be
described by

(o) = a;gu, 07, (2.13)

although some correction factors may be needed to
express the entire spectrum {e.g., a Pierson-
Moskowitz (1964) type factor exp[—constant
(o,./0)*], together with a Hasselmann ef al. (1973,
1976) type peak-enhancement function}. Also, if we
include the gravity-capillary range, g in (2.13) should
be replaced by g, as proposed by Toba (1973b,
1974a), where

g, =80 + SKp,g), (2.149)

where S is the surface tension, k the wavenumber
and p, the density of water. Kawai et al. (1977)
presented experimental support for the (2.13) spec-
tral form, from spectra obtained for growing wind
waves, under ideal onshore wind conditions ob-
tained at the Shirahama Oceanographic Tower Sta-
tion, Kyoto University. The mean and standard
deviation of m, in the form of ¢(o) = a’'c™™,
were determined by the method of least squares and
yielded m = 4.15 + 0.25. Under the assumption of
m = 4, the mean and standard deviation of «; in
(2.13) were determined to be

as = 0.062 = 0.010. (2.15)

Mitsuyasu (1977) also supported (2.13) with (2.14)
for gravity-capillary wave range by a detailed field
observation.

Further support is obtained in the data presented
by Hasselmann et al. (1976). They show in their
Fig. 3 that

A = eva = Ef,Yag? = 1.6 X 1074, (2.16)

where a is the Phillips’ constant for their g2 —®
spectral form

2 ~4 £-5 S(fm)*
b(f) = caghemif > exp| = (=
a\ f
+ ln,yexp[-—(f—fm)ﬁ/2c2fm2]} R (2'17)
where _
¢ = [Cmfsfm
Cps f = fm-
From (2.16) we get
a = 6.25 x 10%v?. (2.18)
Substituting (2.12), we obtain
a = 0.044v = 0.044u, f,,/(Cp)'?g. (2.19)

Although Hasselmann et al. (1976) proposed

a = 0.03223, (2.20)

again it appears that (2.19) corresponds slightly more
closely to the composite data set in their Fig. 9 as
is shown in Fig. 2.

If we assume similarity in the main part of the
spectrum, then the high-frequency part of the
spectra lies on the same line as the peak moves
as the wind waves develop for a constant wind.
Since this assumption is supported by field data by
Kawai et al. (1977), it is considered from the shape
of (2.19) that the g% ~° form of the spectrum is
reasonably replaced by gu, f™. Thus the level of
the spectrum is proportional to u,, and independent
of the fetch, as supported by the results of Toba
(1973b) and Kawai et al. (1977).

The next section will start from the premise that
the relation expressed by (2.3) [or Egs. (2.2) or
(2.12)] holds, and that the main high-frequency part
of the spectrum has the form of (2.13).
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3. Partition of wind stress to waves and current and
the stochastic form of the growth of wind waves

Beginning with relation (2.3), by which the
process of the growth of wind waves may be treated
simply by a single dimensionless parameter, the
parameter o is used initially and then converted
to E*. The reason will be developed in due course.

First we consider the duration-limited case, in
which we define the proportion G, of that part of
momentum which is retained as the wave mo-
mentum M to the total momentum transferred
from the wind to the sea, as

G = 1 dM

T dt

where 7 is the wind stress and ¢ the wind duration.
From the definition (1 — G) is the proportion of
the wind stress which is accumulated as the mo-
mentum of the drift current. The momentum AM
of the component waves between ¢ and o + Ac
may be expressed as

AM = A(E/C) = p,gA22C = p, A2, (3.2)

where C is the phase velocity, p, the density of
water and A, the wave amplitude of the component
waves. Using (2.13)

A2 = p(o)Ao = agu, oA,

) (3.1

and consequently (3.2) becomes

AM = a.p,gu, 07 %Ac. . (3.3)
Finally we obtain
M=YAM-= SMJ APy 8U, 0 do
= S0 Ppgl, oy M2, (3.4)

The factor 8, has entered since the lower limit of
the above integral has been taken as o, instead of
zero, and is a constant as long as the spectra exhibit
similarity.

Under the condition where u, is constant, (3.1)
is then expressed by use of (3.4) as

GolaM _ 1 doi)
T dt R, dr*
2
R,=—P_ | (3.5)
6Maspw

where * = gt/u, and p, is the density of the air.
If the values in (2.15) of «, = 0.062, p, = 1.21
x 1073 (for 15°C), p,, = 1.03 (for 15°C, 35%s) and
8y = 4/3 are used (the value of 8, for the case where
the spectral form is symmetrical, in a logarithmic
diagram, with respect to the peak frequency can be
easily derived), the value of R, becomes
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R, = 0.028. (3.6)

For the fetch-limited case, if we approximate the
velocity of transport of the wave energy by the
group velocity at the peak frequency C,,, = g/20,,
the duration ¢ may be converted to the fetch F by

dF = C,,dt,
and it follows that
dar* = 20% dF*, 3.7
where
F* = gFlu,?.

Since the dispersion relation for component waves
may not always hold, as mentioned in the Intro-
duction, and since this situation may also be true
for component waves in the directional spectrum
as demonstrated by Rikiishi (1978), a better formu-
lation of the above is not expected in the present
situation. Consequently, we use (3.7) and obtain

1 d(ox—2
- How®) | 3.8)
2R, o dF*
Egs. (3.5) and (3.8) may also be converted to
2
-—l— ) 3.9
R, dr*
and
2
= - d(T) , (3.10)
4wR; dF*
where by use of (2.4)
R; = 27w/1.05)*R, = 36R,,,
r = (27/1.05) 3.11)
Ry = 2m)%/(1.05)*R, = 34R,,
or for (3.6),
R; = R; = 1.0. 3.12)

It should be noted that the equivalent form of
these equations may be derived by use of (2.1) for

the significant waves; namely, using C = g7/2w
and A,%2 = H?16,

M = EIC = p,gAI2C

may be reduced to

M = wp,,H?*/8T,
and by use of (2.1) we obtain
1 d(T**
G=— () , (3.13)
R} dr*
T d(T*2)

, (3.14)

47 Ry dF*



R} = 8p,/7p,B%, B = 0.062. (3.15)
The same values of p, and p, as before give R%
= (.78, which is 20% different from (3.12). How-
ever, this discrepancy will not affect the fetch-
limited prediction equation since the value of G
will be determined empirically, as will now be
developed.

The empirical formula of Wilson (1965),
CH2T* /2%

= 1.37{1 — [1 + 0.008(C,F*)'3]-5}, (3.16)

can be substituted into (3.10), together with a value
of

Cp= 12 x107% (3.17)

yielding G-T* plots as shown by the open cir-
cles in Fig. 3, which are well represented by the
following form including the error function as
shown by the full line in Fig. 3:

G = Gy[l1 — erf(brT%)], . (3.18)
or

G = Gy[1 — erf(bso%™)], 3.19)
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F1G. 3. Variation of G, the proportion of that part of momentum which is retained as the wave
momentum to the total momentum transfered from the wind to the sea, with dimensionless wave
period T* or angular frequency o*. Values derived from (3.10) by substituting (3.16) are shown
by the open circles; values derived from (3.8) by substituting (3.24) and (2.7) are given by the dashed
line and broken line, respectively; and the average value and the standard deviation obtained by
applying the author’s wind-wave tunnel data to (3.10) are shown by the cross mark. The full line
represents (3.18) with (3.20) and (3.23).
where where

erf(x) = j " exp(-2)dL.

2
(77-)1/2 o

Here G, represents the maximum value of G, viz.,
the value of G when wind waves are underde-
veloped. The value of G decreases with increasing
oi™1 or T* consistent with the form of the error
function, or as a simple stochastic form. The value
of br (or b;) has been determined by the condition
that the value of G reduces to 1% of G, at C/U
= 1.37 or

T* = 1.37 x 2w/Cp'? = 248(=TY),

which corresponds to fully developed conditions
from (3.16). This value corresponds approximately
to the limiting frequency of v = 0.14 by Hasselmann
et al. (1976). To be more precise, C/U = 1.37
corresponds to » = 0.11 and » = 0.14 corresponds
to C/U = 1.1. The b; and b, then become

by = 1.82/248 = 7.3 x 1073, (3.20)
by = (2m/1.05)by = 4.4 X 1072, (3.21)

As to the value of G,, it should be noted that,
since (3.10) contains R,, the substitution of (3.16)
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gives an empirical value of the product R,;G. Con-
sequently, we obtain only an empirical value of
GoRy instead of the value of G, itself. Using an
average value of the drag coefficient of Cp = 1.2
X 1073, we obtain

GoR; = 0.062. (3.22)

This value of Cp, has been adopted since Toba’s
(1972) wind-wave tunnel data also gives a value of
GoR; = 0.062. Moreover, Kondo (1975) has recently
reported a value of 1.2 X 1072 as representative of
Cp. If we adopt the value of R, = 1.0 given by

or

Likewise, if we use the Hasselmann et al. (1973),
JONSWAP empirically derived formula (2.7) for
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G = 0.046T*0%,

¢ =< 10* with (3.8), we obtain
G = 0.0350% 093

or

G = 0.0377%79-93,

(3.12), we obtain

G, = 0.062.

However, since the final form of the prediction
equation contains G, in the form only of the product
G,R, the estimate of G, itself does not affect the

essential story.

On the other hand, if we use Mitsuyasu’s (1968)

empirical formula,
o
with (3.8), we obtain

1.00 F*-0.330 ( F*=102~10°¢),

where the value of R, = 0.028 has been used. Eqs.
(3.26) and (3.28) are entered in Fig. 3 by a dotted
line and a broken line, which indicate that G has
an almost constant value of approximately 4 and 3%,
respectively. However, if we consider the existence
of an equilibrium nondimensional peak frequency,
it is reasonable that the value of G has the form
of a decreasing function of T*, such as in Eq.
(3.18). It is concluded that although the empirical
formulas (3.16), (3.24) and (2.7) themselves are quite
similar, especially for smaller dimensionless fetches,
large differences exist between (3.18), (3.26) and
(3.28) since they have been obtained through

(3.23)

(3.24)

G = 0.0440%0-03 (3.25) differentiation procedures.
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FiG. 4. Comparison of the integrated form of the fetch-limited prediction equation with data.
The full line represents the integration of (3.29) with the substitution of (3.19) with (3.6) and
(3.23); the dashed line is the JONSWAP formula (2.7). Most of the data points are reproduced
from Fig. 2.6 of Hasselmann ez al. (1973), and the author’s wind-wave tunnel data are added.
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FiG. 5. As in Fig. 4 except that the ordinate is expressed by E*. Most of
the data points are reproduced from Fig. 2.10 of Hasselmann et al. (1973), and
the author’s wind-wave tunnel data are added.

From (3.8), the growth of fetch-limited wind
waves may be expressed as

d(o7.7%)

= 2R, Go},.
dF

(3.29)

Substituting (3.19) into (3.29) and performing the
required integration gives the fetch graph, as is
shown by the full line of Fig. 4. The integration
has been performed by a Runge-Kutta method in a
logarithmic form, with an interval of A(logF*)
= (.5, from the initial condition of of = 2.809 at
F* = 8.333 which satisfy (3.16). The original
formula of Wilson [eq. (3.16)] may be entered in
Fig. 4 at almost entirely the same position with
the full line up to F* =~ 10%. The integration is
also compared with the integration of (3.29) with
the substitution of (3.27), which is also (2.7), in
Fig. 4. Most of the data points and the line of
(2.7) are reproduced from Fig. 2.6 of Hasselmann
et al. (1973) and the author’s wind-wave tunnel
data (Table 1 of Toba, 1972) have been added. It
seems that the curve which represents the integra-
tion of (3.29), with the substitution of (3.19),
corresponds well to the data points.

The author’s wind-wave tunnel experiment data

may be applied to (3.10) to obtain experimental
values of G. Although the experimental range of
T* is limited, the average values and the standard
deviation of G thus obtained are included in Fig. 3,
and can be seen to coincide with the curve of (3.18).
The dotted line seems to correspond to the mean
value of the left half of the full line, the broken
line to the mean value of the total of the full
line, and the full line comes to approximately zero
at T* = 250. Consequently, it is assumed that
calculated values of G, as expressed by the error
function form, are reasonable.

The prediction equation may then be expressed by

doh™ 1 8oh™
o1+ dF*
= GoR,[1 — erf(b,o%™)]. (3.30)

In the course of the derivation of (3.5), it was
assumed that 4, was constant. If the time variation
of the wind is not rapid, we may assume stepwise
changes in the dimensionless variables for the
purpose of the integration. However, it is con-
sidered that the quantity which is conserved during
changes in the wind, and the resulting rapid
adjustment of spectrum, should be the energy E of

20%



502

the wind wave field and not the peak frequency
o, or T, Since we have the relation (2.3), it
seems reasonable to convert (3.30) to the form

Q(E*23)  FX18 g E*213)
+
ar* a aF*
= G,R[1 — erf(bE*'®)], (3.31)

where
a = 2B,'*= 0.74.

GoR = GyR,B,*® = 2.4 x 107
b = b,B,"1? = 0.12.

as the final form of the prediction equation, which
is also applicable for a changing wind field.

The conversion of the thick line of Fig. 4 by use
of (2.2), that corresponds to the integration of (3.31)
for the fetch-limited case, is shown by the thick
line in Fig. 5 in which most of the data points
[and the line of (2.6) as the thin line] are repro-
duced from Fig. 2.10 of Hasselmann et al. (1973),
and the remaining points are extracted from the
author’s wind-wave tunnel data (Toba, 1972), where
the mean wave height H has been converted to
H by H = 1.6 H and used (2.5) to obtain E*. For
a sufficiently large value of F*, the thick line
approaches a maximum value for E* of 3.7 x 103,
which corresponds to the equilibrium peak fre-
quency of f% = 3.8 X 1073,

(3.32)

4. Physical implications of power law, spectral form
and stochastic growth equation

It has been shown in the preceding sections that
there is an accurate yet simple relationship describ-
ing the overall structure of a growing wind-wave
field which can be expressed by (2.3), (2.1) or (2.2).
This enables us to construct a single-parameter
prediction equation (3.31) for the growth of wind
waves. What is the physical basis for the existence
of the simple relationship? From the point of view
that wind waves are dispersive, weakly nonlinear
phenomena, Hasselmann et al. (1976) presented
results of computations of wave-wave interactions
showing that the characteristic relaxation time for
the shape stabilization of the energy spectrum
and the adjustment of the spectrum to its equilibrium
level is reasonably short. However, as mentioned
in the Introduction, we believe that wind waves
are strongly nonlinear phenomena, very different
from a simple superposition of component waves. It
was from this point of view that the author (Toba,
1972, 1973a, 1974a,b) has previously pointed out
the existence of the simple relation (2.1), and has
tried to use macroscopic considerations in its
interpretation.

By use of a wind-wave tunnel and flow visualiza-
tion techniques, our recent experimental studies
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(Toba et al., 1975; Okuda et al., 1976; Kawai,
1977; Okuda et al., 1977) have revealed several
facts on the behavior of real wind waves. For
example, immediately after a wind of, say, 6 m s™!
starts on a still surface of water, a surface skin
flow is produced in a layer of up to 2 mm in thick-
ness with a large vertical velocity shear. Shortly
thereafter, regular waves of around 1.7 cm in wave-
length are generated whose phase velocity is near
the minimum seemingly produced by an instability
mechanism. Within a couple of seconds after that,
a downward thrust of the skin flow with consequent
forced convection commences on the lee side of
crest, and the transition of the surface layer to a
turbulent state occurs. The growth of ordinary
wind waves of irregular nature commences from this
state (Okuda et al., 1976, Kawai, 1977). At the
surface of the wind waves, there is a strong
variation of the tangential stress exerted by the
wind. The stress value is several times larger
than the average value of the wind stress at the
windward side of the crest, and it becomes
negligible at the lee side of the crest. Also, it
seems that most of the wind stress is in the form
of tangential stress (Okuda et al., 1977). As
long as the wind is blowing, wind waves appear
to be accompanied by forced convections irrespec-
tive of whether or not the waves are breaking in
the usual sense. Small particles of neutral buoyancy,
placed just beneath the water surface prior to the
start of the wind, are quickly dispersed into the
water column by forced convection to a depth of
one-half of the wavelength (Toba et al., 1975).

An observed irregularity of wind waves, espe-
cially for smaller C/U, does not stem physically
from a random superposition of free component
waves of the dispersive nature, nor from the super-
position of turbulence from some independent
origins, in an expansible manner, on a wave system
of small amplitudes, but the irregularity is a
character inherent in wind waves.

It is believed that individual undulations at any
location in the real wind-wave field have a specific
structure, accompanied by phase distributions in
the tangential stress of wind and the wind drift
surface current, and consequently by the forced
convection. Since the convection structure travels
on the water surface together with the crests of
the ‘‘individual waves’’, the motion of water is
naturally characterized as turbulent. This is the
origin of the irregularity of wind waves. In a
limiting expression, wind waves for small values
of C/U may be regarded as an ensemble of these
“‘substantial waves’’, which have a specific internal
structure which is unsteady and unclosed as men-
tioned above, and which have a lifetime longer
than their period, but of the order of, say, several
times the period, in a sense that they lose their own
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identity due to the strong nonlinearities. For
large value of C/U also conditions will be the
same for high-frequency parts.

Support of this view of wind waves is rein-
forced by the study of Rikiishi (1978) who car-
ried out wind-wave tunnel experiments on the phase
velocity of component waves. He developed an
experimental technique for the determination of the
directional structure of the phase velocity of
component waves without pre-assuming a dis-
persion relation, and found that the phase velocities
do not satisfy the dispersion relation of free-water
waves. Rather they are independent of the local
frequency and have the same value as that of the
waves at the spectral maximum at respective
fetches. Yefimov et al. (1972), Kato and Tsuruya
(1974), Ramamonjiarisoa (1974) and Ramamon-
jiarisoa and Coantic (1976) also reported similar
results in a study of one-dimensional phase
velocities. These experimental results are inter-
preted as indicating that the assumption of wind
waves as expansible into free-component waves
with weak nonlinearity is not appropriate for grow-
ing wind waves. It should be added here that Grose
et al. (1972) reported anomalous dispersion rela-
tions from the observation of wind waves in the
Atlantic Ocean.

Since wind waves are presumed to be strongly
nonlinear phenomena, having aspects of turbulence
as well as of water waves, it is not possible to
treat their motion purely analytically. However, we
may assume a kind of similarity structure in the
wind-wave field and seek a regularity in gross
structure by invoking dimensional considerations.

There are several characteristic quantities near
the air-water interface, such as the friction velocity
u, of the air, the average velocity u, of the
wind drift surface current, and the mass transport
velocity u, at the surface, applicable to the mo-
tion of individual substantial waves. We may
assume dimensionally that there is a proportional
relation among these three velocities, as a result
of the strong nonlinearity, of the form,

4.1)

This assumption includes the concept of similarity
structure in the wind-wave field. In fact there are
some experimental results showing that there is a
proportional relation between u, and u, (e.g.,
Kondo et al., 1974; Wu, 1975; Okuda et al., 1976),
the factor of proportionality of u to U being 2—-5%.
If we approximate u, of the individual waves of

amplitude A and the frequency o by that of the
Stokes wave

Ug XUy XU, Or ugu, = constant.

uy, = A%0%/g + higher order terms, (4.2)

and, if we neglect the higher order terms, we obtain
immediately from (4.1) and (4.2)
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A%c® = cgu,, (4.3)

where ¢ is the proportionality factor. Although
each individual wave exhibits some deviation from
the conditions expressed by (4.3), it is expected
that (4.3) holds statistically. If we transform (4.3)
by use of the wave height H and period T of the
individual waves, we have a dimensionless form,

H* = BT*2 (4.4)

which coincides with the form (2.1) first proposed
for significant waves by the author with an em-
pirically determined value of B = 6.2 X 10~% (Toba,
1972). Eq. (4.4) has now been derived for individual
waves. The value of B, however, may not neces-
sarily coincide with the above value for significant
waves.

The form of (4.3) may also be derived in a quite
different manner (cf. Toba, 1974b). Namely, from
the theory of turbulence, it has been well estab-
lished from dimensional considerations that the size
A of an eddy and the variation of its velocity
component V over a distance of the order of A can
be expressed by

V3/A = constant. (4.5)

In the theory of turbulence the constant in (4.5) is
the rate of dissipation of the energy. In wind waves,
there should be two directions in the energy flux —
upward and downward. In any case, if we assume
the form of (4.5) dimensionally for individual
waves, and if we use H(= 2A) as A and 2u(= 2A0)
as V from the orbital velocity of waves, we obtain
A%0® = constant. Further, since we may assume
that the constant is proportional to g and «, and
neglect viscosity, we obtain (4.3) immediately.

In order to relate the height of individual waves
to the spectrum ¢, we may assume the similarity
structure and that

%grqs(a)do A (4.6)

holds statistically for individual waves. This is in an

analogy with (2.5) for significant waves, i.e.,

2

- - H

0 Ty

4.7

where & has entered since the lower limit of the
integral has been taken as o, instead of zero, and
€ is a constant as long as the spectra have a simi-
larity. If we then assume that the o~* spectral
form is symmetrical on a logarithmic diagram with
respect to the peak frequency, it is easily shown
that € = 1.6. The s in (4.6) is also a constant which
might differ from 16 in (4.7). The combination of
(4.6) with (4.3) immediately leads to the form of
(2.13), i.e.,
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Fi1G. 6. Data support of the relation (4.6). Values of o and A for each individual wave in three
examples of growing wind-wave records obtained at sea are determined by the procedure illustrated by
the inset, and values of A? are plotted against f; ¢do with ¢ given by (2.13) and (2.15). The three
examples are shown by three kinds of marks, respectively.

4.8)

Fig. 6 presénts data in support of the relation
(4.6) using three examples of wind-wave records
obtained during a field observation program (Kawai
et al., 1977). Values of A% and o for each individual
wave were determined by the procedure illustrated
by the inset of Fig. 6. A? has been plotted as the
ordinate, and

[ ddo

a

d(o) = a,gu, 0™, a; = 3¢/és.

as the abscissa, where ¢ = a,gu, 0™ and a,

= 0.062. The spectra ¢ obtained from the same
records had the above form on the high-frequency
side of o, as has been reported by Kawai et al.
(1977). The plotted points are distributed along the
45° line shown in Fig. 6, and the value of the
product €s is seen to be about 8.0. It is believed
that (4.6) represents a link between the wind-wave
spectra and the individual waves.

In Fig. 7 is shown an extension of the 3/2 power
law to individual waves. The data source is the same
as that of Fig. 6. The points for very small

- amplitudes, which are expressed as points for
H* =< 2, may not be reliable, partly because the
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data were obtained from numerical wave records
digitized at 0.1 s intervals. Thus, the 3/2 power law
for individual waves appears to be established in a
statistical sense. For comparison, points for
significant waves are entered in Fig. 7 by marks
enclosed by circles. These points represent the
average of the upper one-third of the highest
individual waves for each of the three cases.

Finally, a brief discussion is necessary on the
physical interpretation of the stochastic growth of
wind waves. As discussed above, the wind-wave
field grows under the regulating condition expressed
statistically by (4.1), (4.3) or (2.1), (2.3), and the
rate of growth is expressed by (3.30) or (3.31). The
implication of (3.30) or (3.31) is that the rate of
growth of the dimensionless wind-wave field is
determined by the deficit from the state of saturation.
That the transition of E* is expressed by a form of
the error function makes us interpret the growth
processes of the wind-wave field as a kind of
stochastic processes, where E* approaches a final
state irrespective of the initial conditions, including
a rapid internal adjustment of the state to satisfy the
power-law relationships, as a result of the strong
nonlinearities.

As already mentioned, Toba et al. (1975) and
Okuda ez al. (1976, 1977) have reported that
wind waves are accompanied by forced convec-
tions relative to the instantaneous wave forms of
the individual waves. These convections have the
nature of more or less two-dimensional vortices
with their axes parallel to the crest lines. Con-
sequently, real wind waves may be regarded, in a
sense, as an ensemble of various scales of some-
what two-dimensional convective eddies distributed
along the water surface. When they come close to
each other due to their different traveling velocities,
a mutual coalescence of the eddies will occur as a
result of the turbulent diffusion or dispersion of
the two-dimensional vorticity. This may be one
aspect of the mechanism of upward cascading of
energy in wind waves.

Since the forced convection is caused by the
action of the wind, strong nonlinearity is effec-
tively produced when the phase velocities of
waves are small compared to the wind speed,
namely when C/U or T* or o%~' is small. When
the phase velocity of the wave of the peak fre-
quency becomes comparable to the gust speed on
the crest, convective eddies are not produced, and
mutual coalescence does not occur. The condition
of the termination of wave growth is given by
(3.16) as

C/U = (Cp)'?T*/2w = 1.37,

which corresponds to a reasonable value of the gust
factor near the wave crest (c¢f. Kondo et al.,
1972). It is considered that this is the physical
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basis of the value of 2.5 x 103(=Tf¥) as the
maximum value of T*, and consequently of the
value of b in (3.20).

Now we use E{T*) as a measure of the wind
action which can bring about the upward cascading
of the energy for the wind-wave field between T*
and T* + dT*, due to the total effect of the non-
linear processes. Since we are considering the net
upward cascading, dissipation of energy is included
in the total effect. Since various stochastic factors
are included in the wind action, we assume a
Gaussian distribution as the form of E,, with a
maximum at T7* = 0, and a negligible value at
T* = Tf or boT* = 1.82; namely

E, x expl—(b;T*)*).
The total wind action that brings about the growth
of the wind-wave field will have a form proportional

to the integral of E, in the range of T* greater
than the present value of T*, i.e.,

J E,dT* < [1 ~ erf(byTH)],

T

since the wind-wave field represented by T* can
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naturally grow by the wind action which is still
effective for the wind waves greater than 7*. This
will give the physical basis of the form of (3.18) or
(3.19) and consequently the right-hand side of (3.31).

5. Summary

The 3/2 power law for growing wind waves [Eq.
(2.1)], previously proposed by the author, may also
be expressed as (2.2), (2.3) or (2.12). Although
very simple, these expressions are supported by
various available data including those compiled by
Hasselmann er al. (1973).

As to the one-dimensional energy spectra of grow-
ing wind waves, it is shown that the Phillips’
constant « is proportional to v as expressed in
(2.19); consequently, it is reasonable that the
g% ~® form is replaced by the g u, f* form of Eq.
(2.13) for the essential part of the high-frequency
side of the spectra.

Starting from the premise of (2.3), the proportion
G of that part of momentum which is retained
as the momentum of waves to the total momentum
transfered from the wind to the sea defined by (3.1),
has been expressed by Egs. (3.9) or (3.10). By
applying (3.10) to existing empirical formulas and
data, Egs. (3.18) or (3.19) is proposed as the most
reasonable form of G. The value of G decreases
with increasing T* or C/U in the form of an error
function or in a simple stochastic form, and the
maximum value G, is tentatively estimated as
0.062. The prediction equation (3.31) with (3.32) for
the growth of wind waves, expressed by a single
parameter E*, is proposed.

By reviewing recent experimental studies of real
wind waves especially by use of flow visualization
techniques, emphasis is given to the fact that wind
waves, especially for smaller values of C/U, are
associated with strong nonlinearities, and the con-
cept of substantial waves is proposed. From this
point of view, a discussion has been presented as
to the physical basis for the existence of a simple
power law, spectral form and stochastic form of the
growth equation. The power law, g, u, f™ form of
the one-dimensional energy spectra are derived by
invoking the assumption of self-similarity structure
in the field of the wind waves and by dimen-
sional considerations. In the course of the deriva-
tion, it is shown that (2.1), etc., may be extended
to individual waves in a statistical sense. An idea
is suggested that the upward cascading of the energy
may be caused by the mutual coalescence of two-
dimensional eddies of forced convections accom-
panying wind waves, and an attempt is made for
derivation of the stochastic form of the growth of
wind waves.
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