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Local Balance in the Air-Sea Boundary Processes
III. On the Spectrum of Wind Waves™*

Yoshiaki ToBA**

Abstract: A combination of the three-second power law, presented in part I for wind waves
of simple spectrum, and the similarity of the spectral form of wind waves, leads to a new
concept on the energy spectrum of wind waves. It is well substantiated by data from a
wind-wave tunnel experiment.

In the gravity wave range, the gross form of the high frequency side of the spectrum
is proportional to §ux ¢~%, where ¢ represents the acceleration of gravity, ux the friction
velocity, ¢ the angular frequency, and the factor of proportionality is 2.0%X 1072, The wind
waves grow in such a way that the spectrum slides up, keeping its similar form, along the
line of the gross form, on the logarithmic diagram of the spectral density, ¢, versus 6.
Also, the terminal value of ¢, at the peak frequency of the fully developed sea, is along a
line of the gradient of ¢ ¢

The fine structure of the spectrum from the wind-wave tunnel experiment shows a
characteristic form oscillating around the o~*line. The excess of the energy density concen-
trates around the peak frequency and the second- and the third-order harmonics, and the deficit
occurs in the middle of these frequencies. This form of the fine structure is always similar
in the gravity wave range, in purely controlled conditions such as in a wind-wave tunnel.
Moving averages of these spectra tend very close to the form proportional to ¢~°.

As the wave number becomes large, the effect of surface tension is incorporated, and
the o~*line in the gravity wave range gradually continues to a o%%line in the capillary
wave range, in accordance with the wind-wave tunnel data. Likewise, the ¢-%-line gradually

~17/3

continues to a ¢ -line.

Also, through a discussion on these results, is suggested the existence of a kind of

general similarity in the structure of wind wave field.

1. Introduction

Although the wind waves are a kind of water
waves, they are special phenomena, in a sense
that their interactions with the surface skin
flows, caused by the surface friction by the
wind, are very strong. The wind waves thus
have a character of turbulence, or strong non-
linearity, and it will be essentially impossible
to treat the growth of individual waves in a
deterministic manner.

In parts T and II of the present series of the
articles, growth equations for wind waves were
presented based on a new conception. Namely,
the above-mentioned turbulence in the wind
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wave field was eliminated by conceptional
averaging operation, and the significant wave
was used as the abstract representation of the
wind wave field. This was based on the fact
that the energy of the wind waves concentrates
at the spectral peak frequency, which corre-
sponds approximately to the significant wave.
The increase of the wave energy was treated
as the rate of work done to the wave by the
momentum transferred from the wind to the
water, and the growth equations were formu-
lated by the use of the restrictions that water
waves have, namely, the relations between the
dimension of the wave and the wave current,
and between the wave momentum and the
wave energy.

In the course of the derivation of the growth
equations, the three-second power law for wind
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waves of simple spectrum was proposed, con-
cerning the dimensionless period and the height
of the significant wave, and was substantiated
by some data.

In this article, the three-second power law
is extended to discuss the spectral form of pure
wind waves, and a new concept of the spectral
form is presented including the capillary-gravity
wave range. The concept is examined by the
use of data from wave records in a wind-wave
tunnel, and also some discussion is given con-
cerning the comparison of the new concept of
the spectral form, with the existing concepts,

2. Form of energy spectra of wind waves

The same notations are followed from parts
I and II, for dimensional and dimensionless
variables. Since the spectral form of wind
waves is considered in the present article, the
angular frequency, g, or the wave number, &,
and the energy spectrum density, @, are in-
corporated to our system of the variables. The
spectral peak frequency, gp, may now be sub-
stituted approximately for the significant wave
period, T, with the relation,

2
= @.1)

The significant wave height, H, is expressed
by ¢ by the use of
o H? H?

= (2.2

So o= =558~ 16

In part I, the three-second power law for
wind waves of simple spectrum was derived in
the form

I* = BT*3/2 (2.3)

where H*=gH/u,® and T*=gT/u,, and B
was the lst universal constant having the value
of

B=6.2x10"2 (2.4)

Equation (2.3) may be written in a dimensional

form as
H?=Bgu, T? (2.5)

Now the fourth concept is introduced:

The 4th concept: As to the form of the energy
spectrum of pure wind waves, there is a
similarity, namely, if the speciral density, ¢,
is normalized by its peak value ¢p, and the
angular frequency, o, by the spectral peak
Frequency op, the spectrum has the same
form in the gravity wave range.

It will be shown later in section 3 that this

concept is in good accordance with the experi-

mental fact in the wind-wave tunnel.
From this concept the following derivation

may be possible. The ¢ is normalized by @5,

namely,

— =¢' 2.6
. ¢ (2.6)
The ¢ is normalized by o,, namely,

— =g’ 2.7)

Then the 4th concept demands that

quﬁ’da’ = Sw¢dazconstant:A 2.8
0 0

Ppop

From Equations (2.8) and (2.2), it follows that
H?=16A¢p0, 2.9)

From Equations (2.5) and (2.9), together with
Equation (2.1), the form of @, is given by

miB?

Po=apgusop*, Ap=—— 2.10)

Since the theoretical form of the spectrum is
not known at this stage, A is an indeterminate
coefficient. From actual data, which will be
presented in the next section, the coefficient ap
in Equation (2.10) may be assigned empirically
as
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ap,=1.17*B*=0.13 2.11)
Namely, the empirical value of A4 is to be 0.45.
Now the conclusion is that wind waves, in the
gravity wave range, grow in such a way that
the energy spectrum slides up along the straight
line of Equation (2.10) on a log¢-loge diagram,
keeping its similar form, with the peak point
on the straight line. This situation may be
compared to an electric train climbing up a hill
with the top of the pantograph on an aerial
line.

As will be shown in the next section, the
fact is that the high frequency side of the
spectrum, within the gravity wave range, tends
to a straight line parallel to the line of Equation
(2.10). If we regard the new straight line as
a gross form of the spectrum, it may be ex-
pressed empirically by

o= augiiga™, agz—éﬂ332=‘—2.0><10“2 2.12)

the subscript g representing the gross form.
From Equations (3.26) and (3.27) in part I,
namely from

K=T*2=216x10"5 2.13)

the spectral peak frequency of the fully devel-
oped sea, g1, is given as a function of uy by

dr=

&r_: 2pgK1/2 _ 0.029¢9 ©.14)
1 Uy .
where K is the second universal constant intro-
duced in part I. The subscript 1 stands for
the fully developed sea. Elimination of %, from
Equations (2.10) and (2.14) is possible since oy
is a special case of 0, Then, also by the use
of Equation (2.11), the form of @(ar) or ¢y,
namely, the contour of the ¢, for the fully

developed sea, is given by

Pi(o1)=ag?s,™8 (2.15)

where oy is another universal constant having
the form of

ay=2.2n*BK1/? (2.16)

Equations (2.10), (2.12) and (2.15) may be
expressed by the wave number, ¢, where

2.17)

The spectral density ¢.(x) on the g-space should
be expressed by ¢(s) multiplied by do/dk, by
the relation

¢x(rc)dx=¢(a)—jf:—dx (2.18)
Namely, it follows that
— l —1/2, —5/2
Pen= o Ky 2.19)
R P
¢:a“‘ E‘agg Ui (2.20)
and
1 -3
Pear(rer) = 5 a1k (2.21)
respectively.

For the range where the surface tension plays
a significant role, the acceleration of gravity,
g, in all equations hitherto used may be replaced

by

gy = g+ —— (2.22)

Ow

from the infinitesimal wave theory, where S
represents the surface tension, and p. the den-
sity of water. Applying this extension, Equa-
tions (2.10), (2.12) and (2.15), or, (2.19), (2.20)
and (2.21) become

(2.23)

— ~4
Pp = Up4UxTp

Go=Ogutiy0* (2.24)
and

Pr{o) =augylor™® (2.25)
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or
— 1 -1/2 —5/2
¢w’—3apg* UyKp (2.26)
_1 ~1/2,, ,—5/2
Peg= ang* Uk (2.27)
and
1 -3
Gr1(k1) = G (2.28)
respectively. Since g, contains &’s, in order

to express Equations (2.23), (2.24) and (2.25)
purely as functions of ¢’s, the solution of the
cubic equation
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Fig. I. Peak values of the energy spectrum of
wind waves grow along the dotted lines, ex-
pressed by Equation (2.23). The thick line is
the terminal of Equation {2.23), and is expressed
by Equation (2.25) for the fully developed sea.
The gross form of the spectrum, expressed by
Equation (2.24), which is proportional to ux,
is shown by the thin line.

pilc3+gﬁc—02:0 (2.29

w

is further used. The solution is given by

(2.30)

where

f(a*):{a*2+(0*4+ l)uz}l/a
27

o e, 172208
+i0*2—|o +-2-,—7 (2.31)

and where
g w
=7 =3 (2‘1—) (2.32)
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Fig. 2a. An example of the energy spectrum
of the wind waves in the wind-wave tunnel.
The solid line shows Equation (2.24) and the
broken line Equation {(2.25).
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The on is the value of ¢ where the second term
of the right hand side of Equation (2.22) is
equal to the first term.

NEUMAN and PIERSON (1966) described an
alternative form of Equations (2.30) and (2.31).
It seems to have been obtained through a cubic
equation of L/Ln. The difference is that in
Equation (2.30) the f-function, which is much
simpler, appears in the numerator, and on?
instead of ¢? appears outside the f-function.

For the capillary wave range where

2
g<<—§"—; (2.33)

Equations (2.26), (2.27) and (2.28) are reduced
to

l Ow 1/2
¢m=5ap(g) ey (2.34)

1/2
¢W=%ag(p—§’) w2 (2.35)
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Fig. 2b. The same with 2a.

and
_1
Griler)= -z—aua (2.36)

These equations are expressed in terms of ¢'s

by

S 1/3

¢p=ap(—~) waay S (2.37)
S 1/3

Bo= aq( ;7—) U083 (2.38)

and
S \2/3
¢1(01):051(-p—> a” 7% (2.39)

In Figure 1 are shown Equation (2.23) for
u4, =100, 50 and 20cmsec™! by dotted lines,
Equation (2.24) for u,=50cmssec™® by a thin
line, and Equation (2.25) by a thick line, on a
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Fig. 2c. The same with 2a.
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log ¢-log ¢ diagram, Lines for various values of
u, may be drawn by vertical displacement of
the dotted and the thin lines. The only point
isTthat the dotted lines must stop at the thick
line. It is noted that the dotted and the thin
lines have a gradient of ¢7%, or in k-space, of
«~%/2, and the thick line ¢™° or «73, in the gravity
wave range, and the gradients gradually change
to 0783 or £77/2 and to o7 7/3 or £79, respectively,
in the capillary wave range.

3. Comparison with wind-wave tunnel data
and discussion

In this section, the derivation of the energy
spectrum of wind waves in the preceding section
is compared with some data from a wind-wave
tunnel experiment performed by the author
(ToBaA, 1961). The main data concerning the
characteristic waves was shown also in Table
1 of part I. The data of the spectrum compu-
tations are twenty-one wave records digitized
at 0.025 second intervals for an average of 40
seconds (average record 1,600 points).

1. Gross form

In Figures 2a, 2b and 2¢ are shown three
examples of the spectra. Equation (2.24)
entered in the figures as thin lines. Although
the spectrum has an oscillating character, as
will be discussed later, the gross form is in
excellent agreement with the line including the
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capillary wave range. For comparison, the line
of Equation (2.25) for o:, which has a gradient
of 6% in the gravity wave range, is also entered
as broken lines.

Although not shown explicitly by figures, the
level of the gross form of the spectrum actually
shifts with the change in ., just as predicted
by Equation (2.23) or (2.24).

In Figure 3 are shown two examples of the
deviation of the actual spectra from the gross
form of the spectrum expressed by Equation
(2.24). The ordinate indicates the ratio of the
actual spectra to the Equation (2.24), and the
abscissa is ¢ normalized by ¢,. It is seen that,
althougn oscillating, the points lie around the
value of unity.

PHILLIPS (1958) presented the form of

Ha)=oasgie™ 3.D

as the spectrum of wind-generated waves. It
was the result of a dimensional analysis in
which the effect of =, was excluded. The
form including 4 is more general. However,
a dimensional analysis cannot give a unique
form, if u, is included. The form given by
Equation (2.23) or (2.24) has been obtained by
invoking the three-second power law for wind
waves for simple spectrum presented in part I,
combined with the assumption of similarity
adopted as the 4th concept in the present article.
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0 ! 2 3 4 5 6 7 8 9 10 1 2
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Fig. 3. Two examples showing the deviation of the actual spectra
from the gross form expressed by Equation (2.24).
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MITSUYASU (1968) and LONGUET-HIGGINS
(1969) discussed that the factor a5 in Equation
(3.1) was to be regarded as a function of F
and w,, or of F*=gF/u,®. However, Phillips’
spectral form was obtained by an assumption
that the effect of w4 and F' did not enter the
spectral form, and their results presumably
came out from a forced application of the
Phillips’ form. Consequently, it is considered
that it means the contradiction contained in
Phillips’ form. In fact, by a close inspection
of Figure 4.8 of PHILLIPS (1966), one may
recognize that the o 3-line is a summation of
individual data which have gradients near to ¢~

The contour of the peak frequencies for fully
developed sea means the elimination of #,. In
this case, the form naturally becomes Equation
(2.25) which does not contain #, nor of course
F.

PIERSON and STAcCY (1972) proposed a con-
cept of the spectral form consisting of five
different frequency ranges. The ranges are (1)
the gravity wave-gravity equilibrium range, (2)
the isotropic turbulence range, or the Kitai-
gorodskii range, (3) the connecting range due
to Leykin and Rosenberg, (4) the capillary
range, and (5) the viscous cutoff range, respec-
tively. The first range is the Phillips’ equilib-
rium gravity-wave range expressed by Equation
3.1) with as;=8.1x10"3. Since the spectrum
in the capillary range has values one order or
so higher than the extrapolation of the first
range, they adopted the two ranges, the second
and the third, as the connection between the
first and the capillary ranges. The Kitaigorod-
skii range was first proposed by KITAIGOROD-
SKIi (1961), as a hypothetical range where the
frequency is somewhat above the equilibrium
range, the small-scale turbulent motions are
such that they are affected only negligibly by
the gravitational force, and the surface tension
and the molecular viscosity do not affect the
phenomena. There is no evidence, however,
that such a hypothetical range really exists. It
is only incidental that the Kitaigorodskil range
has the form similar to Equation (2.10). It is
natural to consider that the spectral form
through the whole range should be derived
from a unified physical principle. The descrip-

tion in the preceding section was along this
line.

As to the capillary range, PIERSON and STACY
(1972) reported that there was no equilibrium
range, and that the spectrum is here a function
of wind speed, or, of u, and is strongly vari-
able according to local wind or gust. It seems
very natural since already in the gravity wave
range, the spectrum is a function of u, as ex-
pressed by our equations. According to PIER-
SON and STACY, the wu,-dependence in the
capillary range is a little different from linearity.
It is considered that this is a second order prob-
lem, which the breaking of waves must be
responsible for.

2. Fine structure

Now we turn to the fine structure of the
spectrum. It is seen from Figures 2 and 3 that
an excess of the energy concentrates at the
peak frequency, and the spectra oscillate with
o, although the gross form of the spectra is
expressed by Equation (2.24). As seen from
Figure 3, the first trough is located at near
o/op=1.5, the second peak at near 2.0, thus
the oscillation of the spectra seems to show
the presence of the harmonics which damps
with the order. For twenty-one wind wave
spectra from the wind wave tunnel, average
values of the ratios of the frequencies of the
peaks and the troughs of the harmonics to that
of the first peak o, have been estimated and
listed in Table 1. Strictly, the peaks and the
troughs here mean the points of maximum
deviation from the Equation (2.24). They are
very close to 1.5, 2.0, 2.5 and 3.0, respectively,
This evidence of the existence of the harmonics
seems to correspond to what MITSUYASU (1969)
reported.

As to the excess energy that concentrates at

Table 1. Average values of the normalized peak-
and trough-frequencies of the harmonics in the
twenty-one wind wave spectra from the wind
wave tunnel. The subscripts w1, p2, 2 and ps
represent the first trough, the second peak, the
second trough, and the third peak, respectively.

Gut, Fp2 Tuz Ips
Op Op Op p
1.58 2.03 2.42 3.04
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the first peak frequency, there is no systematic
variation in the ratio between the peak value
of ¢ and the value given by Equation (2.24) at
the peak frequency. The ratio is, in an aver-
age, 6.7. The same tendency is seen in the
peaks and troughs of the harmonics, although
the ratio becomes small.

These characteristics of the fine structure of
the wind wave spectra lead to the following
conclusion. The structure of the excess and
the deficit of the energy on the spectra is
always similar for the wind waves of pure
conditions, irrespective of #, and F. This is
the basis of the 4th concept. The energy
spectrum of wind waves grows as if it slides
up along the ¢ *line, with the above described
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Fig. 4. Three examples of wind wave spectra
in the gravity wave range in a normalized
form. The similarity in the fine structure is
clearly seen. The straight line is the o %line
through the point (10°-10°).

fine structure holding the same figure, in agree-
ment with the inference. In Figure 4 are shown
three examples of the spectra in the gravity
wave range. The ordinate represents ¢/a,guy
o,7%, and the abscissa /0. In Figure 4, the
similarity in the fine structure of the spectra
is clearly recognized. The straight lines along
the points have gradients of ¢! for the low
frequency sides, and ¢~ for the high frequency
sides of the oscillations, and the gross form is
just on the ¢ *line through the point (10°-~10°).

If one observes the value of ¢ at a fixed ¢
in the growing stage, the value should be oscil-
lating. This is nothing but the phenomenon
of overshoot and undershoot reported by BAR-
NETT and WILKERSON (1967), SUTHERLAND
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3 = |14 ¢m sec! 1
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Fig. 5. An example of the 11-point moving

average of the spectrum. The data is taken
from Fig. 3. The line entered is Equation
(3.2): Pal0)=0.105 g52075,



Local Balance in the Air-Sea Boundary Processes, 1II 217

(1968), BARNETT and SUTHERLAND (1968),
MiTsuvasu (1968, 1969), TAIRA (1972) and
others.

3. Moving average

It should be noted here that, if we draw a
line through the first, the second and the third
peaks in Figure 4, the line has a gradient of
6% approximately. In the actual ocean, the
wind is always changing. Consequently, the
above described fine structure of the wave
spectra becomes obscured. In these cases, if we
perform some averaging operation of the spectra,
the apparent gross form will tend to approach
the o7 %line, since the above described fine
structure is on the logarithmic diagram.

Actually, in Figure 5 is shown the 11l-point
moving average of one of the data of Figure 3.
The line entered is

Pl =tagy075, @.=0.105  (3.2)

Equation (3.2) has a similar form with Equation
(3.1). But evidently the value of as should be
a function of u4 and F. The above value of
o, approximates the wvalue given by MITSU-
YASU (1973) as a function of ¢gF/u,® Baut, it
is noted that Equation (3.2) is only an empirical
form of the moving average.

Since the high frequency part more quickly
responds to the change in the local wind, the
spectra observed in the sea, where the wind is
always changing, will show fluctuation in the
gradient, ranging from ¢7¢ to, say, o7%,

4, Suggestion of more general similarity

What is the above described very curious
feature of the fine structure? One may con-
sider non-linear interactions of the component
waves. This line of study will be helpful in
the understanding of the problem, on the one
hand. However, on the other hand, although
the spectral analysis is performed on the con-
cept that the wind waves are regarded as a
linear combination of small amplitudes of com-
ponent waves of various frequencies, the wind
waves are phenomena including strong non-
linearity, as already mentioned in the introduc-
tion. Consequently, the problem may be of
very different origin. The fine structure may

be a manifestation of the shape of wind waves,
especially of the primary waves that constitute
the peak frequency.

Now it will be worthwhile reviewing the line
of inference in the present article. The 4th
concept of the similarity on the shape of the
energy spectrum of wind waves stems from the
experimental fact. The 4th concept is then
combined with the three-second power law,
which was presented in part I, and which was
equivalent to the 2nd concept (revised in part
II). The both concepts are very simple in
nature. The combination leads to the conclu-
sion of the sliding-up growth of the spectrum
along the line of Equation (2.23). Tt is in ac-
cordance with the experiment.

There is no need, from this line of inference,
for the gross form to coincide with the line
along which the spectrum grows. But the fact
is the case. It is interpreted suggesting the
existence of some statistical hydrodynamical
ground to be found in the system of wind
waves, namely a kind of general similarity in
the wind wave field itself. It may be analogous
to the inertial subrange in the field of turbu-
lence. Thus suppose tentatively that the three-
second power law, which holds for the signifi-
cant wave or for waves of the peak frequency,
also holds for higher frequencies. This assump-
tion stands on the idea that the above described
fine structure is a manifestation of the shape
of the primary waves of the peak frequency,
and that there is a similarity in the distribution
of the energy of waves of the whole frequency
range. This assumption might require a similar
form with Equation (2.5):

H,=Bgu, T? (3.3)

where H, and T, are not the significant wave
height and the significant wave period, but
values significant for the frequency of ¢. H,
does not stand for the energy of the component

waves. Analogously to Equation (2.2) we may
put

crgzsda:H,z (3.4)
and also
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Tzv:”—_ (3'5)

where ¢ is a certain constant. With Equations
(3.4) and (3.5), Equation (3.3) is expressed as

S:o¢d(f = (ZTﬁBzgu*a_a (3.6)

Differentiating this, it follows
_2 5 ~4
¢= o Bgu.o 3.7

arriving at the same form with (2.10). Com-
paring this with Equation (2.11), it follows that

c=1.8 3.8
For o, from a comparison with Equation (2.2),
it follows that

m_Hy o,
16 — 1.8 H

~L
= 3.9

Consequently, the value of H, for ¢, is one
third of the significant wave height.

Lastly, it is noted that the results of the
present article are interpreted as giving a further
substantiation to the three-second power law.
It is equivalent to say that, in the growth
process of wind waves, conditions expressed by
the 2nd concept do hold as the first-order
problem.

4. Relation between energy spectrum and
significant wave
In Figure 6 is shown the comparison between
the significant wave period, T, which was used
in part I, and the corresponding period, T%,
which is obtained from the peak frequency, o5,
by the relation

Ty=2r/cp “4.D
In Equation (2.1), Tp was equated to 7. The

substantiation has now been given. Strictly,
the peak frequency, and the frequency at which

o6 . . .
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osf ° 69 PO
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ozf ® 1
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o . . . . ,
[*} ol 02 03 04 05 06

2x/ o,

Fig. 6. A comparison between the significant
wave period, T, and the corresponding period
obtained from the peak frequency, op.
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Fig. 7. A comparison between the significant
wave height, H, and the corresponding wave
height H¢ estimated from the energy spec-
trum by the use of Equations (4.3) and (4.4).

the spectral density has the maximum deviation
from the line of the gross form, do not always
coincide with each other, when the peak of
the spectrum is a little flat. In the estimation
of T, here, the frequency of the maximum
deviation is used as op. The relation between
T and T, for the data, is approximately ex-



Local Balance in the Air-Sea Boundary Processes, ITI 219

pressed by
T7=0.957, 4.2)

Also, significant wave height is estimated
from the energy spectrum by

Hy=2.83V25% 4.3)

where

;;?:jjwa (4.4)

and 7 represents water level displacement. In
Figure 7 is shown the comparison between Hy
and H which was used in part I, The relation
is approximately expressed by

H=1.15H; (4.5)

If we use Hy and T} instead of H and T,
the three-second power law is expressed, for
the present case, by

Hg*=B:Tp*2, B,=50x10"2% (4.6)
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