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Abstract
In this paper, using the Fock method of the fifth parameter and weighted Fourier-
transform with respect to the coordinates of the source and observer, an integral
representation is obtained for the wave field in a randomly inhomogeneous
medium without invoking the assumption about small-angle propagation.
Random trajectory variations to a first approximation are taken into account in
calculating the partial wave phase (the expression under the integral sign). The
expressions for the field in a medium with different-scale irregularities and for
the scintillation index, obtained using this integral representation, are compared
with known results. The good agreement with results from the theory of single
scattering in a medium with background irregularities, and with investigations
of the scintillation index made in terms of Rytov’s method and path integrals,
indicates that it is possible to use the approach developed in this study to describe
the effects of simultaneous influence of different-scale irregularities.

1. Introduction

A variety of approximate methods of solving the wave equation are extensively used to describe
wave propagation and scattering in inhomogeneous media. This is because rigorous solutions
of the wave equation in inhomogeneous media are quite few. Such solutions exist mainly for
some stratified inhomogeneous media and are commonly used to analyse some characteristic
properties of wave propagation, and the validity range of approximate methods. An especially
large role is played by the approximate methods in investigating the wave propagation in
random inhomogeneousmedia. When the wave problem is solved using approximate methods,
the presence of a particular small parameter in the problem is used. In some methods, such a
parameter is represented by the relative deviation of dielectric permittivity of the propagation
medium from an ‘undisturbed’one. In other methods, the small parameter is represented by the
ratio of some characteristic scales of the problem. The most widely used technique of the former
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type is the perturbation method (Born approximation), which is extensively used in the single-
scattering theory. The method of the latter type may be exemplified by the ray approximation,
based on using the smallness of the characteristic field scale (the wavelength and the Fresnel
zone) when compared with the irregularity size. Within the small-angle approximation, the
wave equation reduces to a parabolic equation. In this case, using the method of smooth
perturbations [1] it is possible to find the solution taking into account both the diffraction
effects (as in the Born approximation) and the random refraction in an inhomogeneous medium
caused by multiple scattering (as in the ray approximation). However, this method neglects
strong fluctuations caused by multipathing. It is a relatively easy matter to take into account the
random multipathing that appears behind the bounded layer with irregularities, by replacing
it by a certain phase screen. For investigating the wave propagation in an extended random
inhomogeneous medium, it is customary to use asymptotic methods to seek the solution of the
parabolic equation for statistical field moments [2–6]. However, for developing techniques
for optimal processing of signals in communication, navigation and diagnostic systems, it is
often necessary to know not the field moments but the spatial and temporal field structure. The
objective of this paper is to develop a method for describing the field of the wave propagating
in a multiscale inhomogeneous medium.

In [7], for investigating the propagation of radio waves in a two-dimensional
inhomogeneous medium within the small-angle approximation, the parabolic equation is
solved using a double (over the coordinates of the source and observer) weighted Fourier
transform. It is shown that the expression thus obtained for the wave field is consistent
with results from the method of smooth perturbations, the phase screen method, and the
ray approximation; that is, the resulting expression takes into account the Fresnel diffraction
effects and strong intensity fluctuations. In [8], the same problem is solved without assuming
the small-angle propagation; for this purpose, Fock’s method of the fifth parameter is used
to reduce the initial wave equation to a parabolic equation which is solved by the method of
mixed weighted Fourier transform. It is shown that within the small-angle approximation,
results obtained change to the findings from [7], and for weak fluctuations they change to
the Born approximation. However, although the results from [8] transform to corresponding
expressions for large-scale and small-scale irregularities, both irregularities are not considered
simultaneously here.

Taking into account different-scale irregularities simultaneously is possible in the case
of a sufficiently rapidly decreasing irregularity spectrum. In this case the small-scale part of
the spectrum can be taken into account in terms of perturbation theory if the medium with a
large-scale irregularity is taken as an ‘undisturbed’ medium [9]. But the question about the
solution of the unperturbed part of the problem in the case of strong phase fluctuations remains
open, because the usual ray optics is inapplicable in conditions where random caustics and
strong intensity fluctuations appear.

In this paper we develop the results of [8] to obtain an integral representation for the field
of the wave propagating in an inhomogeneous medium in which large-scale and small-scale
irregularities are present at the same time. For this purpose, in section 2 we find the integral
representation for the wave field in an inhomogeneous medium, as is done in [8] using the
fifth-parameter Fock’s method and the method of mixed integral representations. Unlike in [8],
here we take into account the variations of the trajectory along which the eikonal equation
is integrated. Next, in section 3, we compare the resulting equation with known results.
Section 3.1 shows a good agreement of our results with those from the hybrid approach for
the propagation of the wave in an inhomogeneous medium with different scales. Section 3.2
compares the results from the present approach and from the method of path integrals derived
from investigation the scintillation index. Concluding remarks are made in section 4.
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2. Integral representation for the field of a point source in an inhomogeneous medium

Within the limits of a scalar approximation, a wave equation for the field U(r, r0) of a harmonic
point source located at the point r0 in an inhomogeneous medium has the form

�U(r, r0) + k2ε(r)U(r, r0) = δ(r − r0), (1)

where k = ω/c is the wavenumber, c is the velocity of light in a free space, ω is angular
frequency and ε(r) = 1 + ε̃(r) is dielectric permittivity of the medium.

Following Fock’s method of the fifth parameter (see, for example, [10]), we represent the
solution of (1) as an integral over the parameter τ :

U(r, r0) = − i

2k

∫ ∞

0
Uτ (τ, r, r0) dτ. (2)

It is easy to see that Uτ (τ, r, r0) satisfies the parabolic equation

2ik
∂Uτ

∂τ
+ �Uτ + k2ε(r)Uτ = 0 (3)

with the initial condition

Uτ (0, r, r0) = δ(r − r0). (4)

In a homogeneous medium where ε(r) ≡ 1, equation (3) takes the form

2ik
∂Uτ0

∂τ
+ �Uτ0 + k2Uτ0 = 0. (5)

It is an easy matter to find the solution of (5) with the condition (4):

Uτ0(τ, r, r0) =
(

k

2πτ

)3/2

exp

{
ik

[
τ

2
+

(r − r0)
2

2τ

]
− i

3π

4

}
. (6)

To solve (3) and (4), we use the method of weighted Fourier transform [7]. To do this, we
introduce an auxiliary function

V (τ, r, r2, r0, r02) = Uτ (τ, r, r0)U
∗
τ0(τ, r2, r02), (7)

where U∗
τ0(τ, r2, r02) is the complex conjugate of the field at the point r = r2 of the point

source located at the point r02 in a homogeneous medium, i.e. U∗
τ0(τ, r2, r02) satisfies the

equation

2ik
∂U∗

τ0

∂τ
− �U∗

τ0
− k2U∗

τ0
= 0, (8)

U∗
τ0
(0, r, r0) = δ(r − r0). (9)

If we introduce the new variables

r+ = 1
2 (r + r2), r0+ = 1

2 (r0 + r02), r− = r − r2, r0− = r0 − r02, (10)

then from (3), (4) and (8), (9) it is possible to obtain the following equation for (7):

∂V

∂τ
= i

k

∂2V

∂r+∂r−
+

ik

2

[
ε

(
r+ +

r−
2

)
− 1

]
V , (11)

V (0, r+, r−, r0+, r0−) = δ(r+ − r0+)δ(r− − r0−). (12)

To solve (11), we pass from V (τ, r+, r−, r0+, r0−) to the Fourier transform with respect to r0+,
which is similar to using the interference integral method [6, 11, 12] and the Fourier transform
with respect to r−, which is similar to the approach of the Maslov method [6, 11, 12]. As a
result, we obtain

V (τ, r+, r−, r0+, r0−) =
∫ ∞

−∞

∫ ∞

−∞
V̄ (τ, r+, p, s, r0−) exp[ik(r− · p − r0+ · s)] d2s d2 p, (13)
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where V̄ (τ, r+, p, s, r0−) is the solution of the equation

∂

∂τ
V̄ = −p · ∂

∂r+
V̄ +

ik

2
ε̃

(
r+ − 1

2ik

∂

∂p

)
V̄ , (14)

V̄ (0, r+, p, s, r0−) =
(

k

2π

)6

exp[−ik(p · r0− − s · r+)]. (15)

We seek the solution of the problem of (14) and (15) in the form of a Debye series

V̄ (τ, r+, p, s, r0−) =
∞∑

m=0

A(m)(τ, r+, p, s, r0−)

(ik)m
exp[ikϕ(τ, r+, p, s, r0−)]. (16)

On substituting (16) into (14) and equalizing terms with identical powers, we obtain the eikonal
equation for 	(τ, r+, p, s, r0−)

∂ϕ

∂τ
+ p · ∂ϕ

∂r+
− 1

2
ε̃

(
r+ − 1

2

∂ϕ

∂p

)
= 0, (17)

ϕ(0, r+, p, s, r0−) = s · r+ − p · r0−, (18)

and a system of recurrent transfer equations for A(m)(τ, r+, p, s, r0−). Next, we confine
ourselves to the first term in (16), for which A(τ, r+, p, s, r0−) = A(0)(τ, r+, p, s, r0−) satisfies
the equation

∂ A

∂τ
+ p · ∂ A

∂r+
+

A

4

∂2

∂p∂r+
ε̃

(
r+ − 1

2

∂ϕ

∂p

)
+

∂ A

∂p
· ∂

∂r+
ε̃

(
r+ − 1

2

∂ϕ

∂p

)
= 0 (19)

A(0, r+, p, s, r0−) =
(

k

2π

)6

. (20)

With the known solution for equation (17), it is easy to find the solution to the first-order linear
equation (19).

Solving (17) by the method of characteristics, we obtain

ϕ(τ, r+, p, s, r0−) = ϕ̄(τ, r+, p, s, r0−) + ϕ̃(τ, r+, p, s, r0−), (21)

where

ϕ̄(τ, r+, p, s, r0−) = −s · pτ + s · r+ − p · r0−, (22)

ϕ̃(τ, r+, p, s, r0−) = 1

2

∫ τ

0
ε̃[r̄(τ ′) + r̃+(τ

′) + r̃−(τ ′)] dτ ′

− 1

2

∫ τ

0
r̃−(τ ′) · ∂

∂r
ε̃[r̄(τ ′) + r̃+(τ

′) + r̃−(τ ′)] dτ ′. (23)

Here

r̄(τ ′) = p(τ ′ − τ ) + r+ + (r0− + sτ ′)/2 (24)

and r̃+(τ
′), r̃−(τ ′) are the solutions of the same system of ray equations

dr̃+,−
dτ ′ = p̃+,−

dp̃+,−
dτ ′ = 1

4

∂

∂r
ε̃[r̄(τ ′) + r̃+(τ

′) + r̃−(τ ′)]
(25)

but with different boundary conditions:

r̃+(τ
′ = τ ) = p̃+(τ

′ = τ ) = 0, (26)

r̃−(τ ′ = 0) = p̃−(τ ′ = 0) = 0. (27)
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It is assumed that the medium is weakly inhomogeneous, that is, the permittivity variance σ 2
ε

is small. We can then solve equations (19), (20) and (25)–(27) using the perturbation method
to give

r̃+(τ
′) � −1

4

∫ τ

τ ′
(τ ′ − τ ′′)

∂

∂r
ε̃[r̄(τ ′′)] dτ ′′ + O(ε̃2), (28)

r̃−(τ ′) � 1

4

∫ τ ′

0
(τ ′ − τ ′′)

∂

∂r
ε̃[r̄(τ ′′)] dτ ′′ + O(ε̃2), (29)

A(τ, r+, p, s, r0−) =
(

k

2π

)6

+ O(ε̃2). (30)

From this, in view of (16), (21)–(30), it is easy to find the solution to equation (14) and
then from (13), (7) and (6) to find Uτ (τ, r, r0); next, substituting r2 − r02 = −(r + r0),
s → 2s, p → −p and Uτ (τ, r, r0) into (2) we obtain the following expression for the field:

U = C
∫ ∞

0
τ 3/2 dτ

∫ ∞

−∞

∫ ∞

−∞
d3s d3 p exp

{
ik

[
τ

2
+

(r + r0)
2

2τ

+ 2(s · pτ − s · r0 − p · r) + ϕ̃(τ, s, p)

]}
. (31)

Here C = 4
k ( k

2π
)9/2 exp( i3π

4 ), and ϕ̃(τ, s, p) is determined by (23), (28), (29) with r̄(τ ′) =
p(τ − τ ′) + sτ ′.

The resulting expression (31) is similar to the expression obtained in [8]. The only
difference is that in [8], for calculating the eikonal, the integral is taken along a straight
unperturbed ray, whereas in the case under consideration it is taken along the ray trajectory
in an inhomogeneous medium. This difference leads to the fact that, as will be shown below,
unlike the results from [8] that make it possible to describe the effects of both small-scale and
large-scale irregularities, the expression (31) can be used to take into account these effects at
the same time. Note that this case uses two systems of rays satisfying the same equation, but
with the initial conditions at different points. A single system of rays could be used. But then
we would obtain boundary conditions of the mixed type that make the solution of the trajectory
problem difficult.

3. The relation of the resulting solution to known results

To obtain the integral representation (31), a number of approximations were used: (i) only
the first term is left in the Debye expansion (16); and (ii) perturbation theory was used to
determine the eikonal and amplitude of this term. In asymptotic methods, because of the great
complexity of the subsequent approximations, the validity range of an approximate solution
is usually not determined through a comparison with them. The validity range is normally
determined through a comparison with results from other methods for which the validity range
is known. Here we avail ourselves of just such an approach and compare our results with those
from the hybrid approach [9], and with results of an asymptotic integration of path integrals.

3.1. The scattering of fluctuating waves from small-scale irregularities

When trajectory variations are small in comparison with characteristic scales of irregularities,
these variations can be neglected in (23) to obtain the expressions for the field investigated in [8],
where it was pointed out that these expressions change to results of the Born approximation for
small-scale irregularities and ray approximation for large-scale irregularities. In a multiscale
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inhomogeneous medium, situations are possible where trajectory variations are of the same
order of magnitude as or larger than the irregularity scales from the high-frequency part of the
spectrum. In this case we perform an analysis of the solution (31) by representing, as is done
in [9], the random irregularity field ε̃(r) as the sum of two random uncorrelated fields:

ε̃(r) = ε̃1(r) + ε̃2(r). (32)

Here ε̃1(r) is the large-scale field, and ε̃2(r) the small-scale field.
Then

ϕ̃(τ, s, p) = ϕ̃1(τ, s, p) + ϕ̃2(τ, s, p), (33)

where

ϕ̃i = 1

2

∫ τ

0

{
ε̃i [r̄(τ ′) + r̃+(τ

′) + r̃−(τ ′)] − r̃−(τ ′) · ∂

∂r
ε̃i [r̄(τ ′) + r̃+(τ

′) + r̃−(τ ′)]
}

dτ ′

i = 1, 2. (34)

Taking into account the rapid decrease of the irregularity spectrum, it is possible to choose
such a separation of (32) where

kϕ̃2(τ, s, p) � 1 (35)

at least in the region of importance for integrating in (31). On substituting exp{ikϕ̃2} ≈ 1+ikϕ̃2

into (31), we obtain

U(r, r0) = U1(r, r0) + U2(r, r0) + O(ε̃2
2), (36)

where

U1 = C
∫ ∞

0
τ 3/2 dτ

∫ ∞

−∞

∫ ∞

−∞
d3s d3 p exp

{
ik

[
τ

2
+

(r + r0)
2

2τ
+ 2(s · pτ − s · r0 − p · r)

]}

× exp{ik[ϕ̃1(τ, s, p)]}, (37)

U2(r, r0) = C
∫ ∞

0
τ 3/2 dτ

∫ τ

0
dτ ′

∫ ∞

−∞

∫ ∞

−∞
d3s d3 p ε̃2[r̄(τ ′) + ρ(τ ′)]

× exp

{
ik

[
τ

2
+

(r + r0)
2

2τ
+ 2(s · pτ − s · r0 − p · r) + ϕ̃1(τ, s, p)

]}
. (38)

Here

ϕ̃1(τ, s, p) ≈ 1
2

∫ τ

0
{ε̃1[r̄(τ ′)]} dτ ′, (39)

ρ(τ ′) = r̃+(τ
′) + r̃−(τ ′) = 1

4

∫ τ

0
|τ ′ − τ ′′| ∂

∂r
ε̃1[r̄(τ ′′)] dτ ′′, (40)

and it is taken into consideration that the main contribution to the ray fluctuations is made by the
large-scale part of the irregularity spectrum. The field component U1(r, r0) is related to large-
scale irregularities only, and is responsible for the appearance of random multipathing and
random caustics. Small-scale irregularities govern only U2(r, r0) that describes the scattering
by these irregularities of the wave propagating in a medium with large-scale irregularities. If
in the neighbourhood of a small-scale irregularity there are no random caustics for sources
located at the points of radiation and observation, then, with the typical scale of a large-scale
(background) irregularity larger than the largest section of the Fresnel volume [12], it is possible
to obtain the following expression through an asymptotic integration of (38) using the method
of stationary phase:

U2(r, r0) ≈ −k2
∫

V
d3r ′ ε̃2(r′)Ugo(r, r′)Ugo(r′, r0), (41)
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where Ugo(r, r′) is the Green function for a medium with large-scale irregularities. The
expression (41) coincides with the formula obtained in [9] by the hybrid method. As pointed
out in [9], in the absence of large-scale irregularities, the expression (41) changes into a usual
Bragg approximation and is its generalization to the case of an inhomogeneous background.
Since the expression (41) describes the enhancement of backscattering [9], it follows that
formula (31) can also be used in investigating the enhancement of backscattering.

3.2. Intensity fluctuations

Let us consider the potential of our approach for describing the wave propagation in a random
inhomogeneous medium. For this purpose, it is necessary to use formula (31) to determine
the statistical moments for the field of the wave propagating in a random inhomogeneous
multiscale medium, and to compare them with existing results. Of these results, the most
interesting findings were derived from investigating the behaviour of intensity fluctuations [1],
as they show up diffraction effects over small distances, the appearance of random multipathing
and random caustics over intermediate distances, and a normalization of the field and saturation
of fluctuations over large distances. Since the published results mainly refer to small-angle
propagation, we shall use here the small-angle approximation of formula (31). To do this,
we choose a coordinate system r = {z, r⊥} in which the axis z passes through the points of
the source and observation, and introduce new notations for the integration variables in (31):
s = {sz, s⊥}, p = {pz, p⊥}. Taking into account klε 
 1 (lε is the irregularity size) and the
smallness of deviation of the trajectory from the axis z (that is, when |s⊥| � 1, |p⊥| � 1),
the integrals over sz, pz and τ in (31) are evaluated by the method of stationary phase to give
a small-angle approximation

U(r, r0) ≈ C2

∫ ∫
d2s⊥ d2 p⊥ exp

{
ik

[
|z − z0| + 2(s⊥ · p⊥(z − z0) − s⊥ · r0⊥ − p⊥ · r⊥)

+ 1
2

∫ z

z0

ε̃[r̄⊥(p⊥, s⊥, z′) + ρ⊥(p⊥, s⊥, z′), z′] dz′
]}

(z − z0). (42)

Here

r̄⊥(p⊥, s⊥, z′) = p⊥(z − z′) + s⊥(z ′ − z0), (43)

ρ⊥(p⊥, s⊥, z′) = 1

4

∫ z

z0

|z′ − z′′| ∂

∂r⊥
ε̃[r̄⊥(p⊥, s⊥, z′′), z′′] dz′′, (44)

C2 = 2k2

(2π)3
exp

{
i
3π

4

}
. (45)

As is known [1], intensity fluctuations are described by the scintillation index

β2 = 〈|U |4〉
〈|U |2〉2

− 1. (46)

In calculating the moments using (42), we again use the hybrid approach [9]. To do this, as is
done in the previous section, we represent the random irregularity field ε̃(r) as the sum (32).

Using (42), for the intensity squared we obtain

I 2 = |U |4 = |C2|4(z − z0)
4
∫ ∞

−∞
· · ·

∫ ∞

−∞
d2s⊥1 · · · d2s⊥4 d2 p⊥1 · · · d2 p⊥4

× exp

{
ik

[
2

4∑
m=1

(−1)m+1s⊥m · p⊥m(z − z0) + ϕ̃1+ + ϕ̃2+

]}
, (47)
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where

ϕ̃1+ =
4∑

m=1

(−1)m+1

2

∫ z

z0

ε̃1[r̄⊥(p⊥m, s⊥m, z′), z′] dz′, (48)

ϕ̃2+ =
4∑

m=1

(−1)m+1

2

∫ z

z0

ε̃2[r̄⊥(p⊥m, s⊥m , z′) + ρ⊥1(p⊥m, s⊥m, z′), z′] dz′, (49)

ρ⊥1(p⊥, s⊥, z′) = 1

4

∫ z

z0

|z′ − z′′| ∂

∂r⊥
ε̃1[r̄⊥(p⊥, s⊥, z′), z′′] dz′′.

Here we again take into consideration that the main contribution to the ray fluctuations is made
by the large-scale part of the irregularity spectrum, and trajectory variations can be of the same
order of magnitude as the irregularity scales from the high-frequency part of the spectrum.

We assume that a separation of the irregularity of the medium (32) was carried out in
accordance with the applicability of the condition

kϕ̃2+ � 1. (50)

Then

exp{ikϕ̃2+} ≈ 1 + ikϕ̃2+ − k2

2
ϕ̃2

2+. (51)

We now substitute (51) into (47) and average the resulting expression over the realizations of
fast (small-scale) irregularities ε̃2. As a result, we obtain

〈I 2〉|2 ≈ I 2
1 + I 2

2 , (52)

where

I 2
1 = |C2|4(z − z0)

4
∫ ∞

−∞
· · ·

∫ ∞

−∞
d2s⊥1 · · · d2s⊥4 d2 p⊥1 · · · d2 p⊥4

× exp

{
ik

[
2

4∑
m=1

(−1)m+1s⊥m · p⊥m(z − z0) + ϕ̃1+

]}
, (53)

I 2
2 = −k2|C2|4

2
(z − z0)

4
∫ ∞

−∞
· · ·

∫ ∞

−∞
d2s⊥1 · · · d2s⊥4 d2 p⊥1 · · · d2 p⊥4

× exp

{
ik

[
2

4∑
m=1

(−1)m+1s⊥m · p⊥m(z − z0) + ϕ̃1+

]}
〈ϕ̃2

2+〉|2. (54)

Here the notation 〈 〉|2 defines a condition averaging over the realizations ε̃2(r) at a fixed ε̃1(r).
To calculate 〈ϕ̃2

2+〉|2 we use [13] the following representation:

ε̃2[ρ, z′] = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
d2χ d2r ε̃2[r, z′] exp{iχ · (r − ρ)}. (55)

Taking into account (55), the statistical inhomogeneity and the delta correlation in z of the
random field ε̃2(r), we obtain

〈ϕ̃2
2+〉|2 = 2

(4π)2

∫ z

z0

dz1

∫ ∞

−∞

∫ ∞

−∞
d2χ d2r exp{iχ · r}{2A2(r)

− A2(r̄1 − r̄2 + r) exp[−iχ · (ρ1 − ρ2)]

+ A2(r̄1 − r̄3 + r) exp[−iχ · (ρ1 − ρ3)]

− A2(r̄1 − r̄4 + r) exp[−iχ · (ρ1 − ρ4)]

− A2(r̄2 − r̄3 + r) exp[−iχ · (ρ2 − ρ3)]

+ A2(r̄2 − r̄4 + r) exp[−iχ · (ρ2 − ρ4)]

− A2(r̄3 − r̄4 + r) exp[−iχ · (ρ3 − ρ4)]}, (56)
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where
r̄m = r̄⊥(p⊥m, s⊥m, z1),

ρm = ρ⊥1(p⊥m, s⊥m, z1) = 1

4

∫ z

z0

|z1 − z′| ∂

∂r⊥
ε̃1[r̄⊥(p⊥m, s⊥m , z′), z′] dz′,

A2(ρ) =
∫ ∞

−∞
ε2(ρ, ξ) dξ = 2π

∫ ∞

−∞
d2κ	ε2(κ, 0) exp(iκ · ρ).

(57)

ε2(r1 − r2) = 〈ε̃2(r1)ε̃2(r2)〉 and 	ε2(κ, κz) are the correlation function and the spectrum of
the small-scale component of dielectric permittivity, respectively.

Then we substitute (56) into (54) and note that for a smooth irregularity ε̃1(r) it is possible
to make use of an approximate relation

± χ

4k
·
∫ z

z0

|z1 − z′| ∂

∂ r̄m
ε̃1(r̄m, z′) dz ′ +

1

2

∫ z

z0

ε̃1(r̄m, z′) dz ′

≈ 1

2

∫ z

z0

ε̃1

[
± χ

2k
|z − z′| + r̄m, z′

]
dz′. (58)

Now, by averaging (in view of (58)) the intensity-squared (52) over the realizations of large-
scale irregularities ε̃1(r), it is possible to obtain the formula for 〈|U |4〉.

As would be expected, an averaging of the intensity in the same manner shows that
the mean intensity coincides with the undisturbed intensity. As a result, for the scintillation
index (46) we obtain

β2 � β2
1 − (β2

1 − 1)
k2d

2
A2(0)

+ 2πk2
∫ ∞

−∞
d2κ

∫ z

z0

dz1	2(κ, 0)

[
1 − cos

(
κ2(z1 − z0)(z − z1)

k(z − z0)

)]

× exp

{
−πk2

2

∫ z1

z0

H1

[
κ(z − z1)(z ′ − z0)

k(z − z0)

]
dz′

− πk2

2

∫ z

z1

H1

[
κ(z − z ′)(z1 − z0)

k(z − z0)

]
dz ′

}
. (59)

Here

A1(ρ) =
∫ ∞

−∞
ε1(ρ, z′) dz ′ = 2π

∫ ∞

−∞
d2κ 	ε1(κ, 0) exp(iκ · ρ), (60)

H1(ρ) = [A1(0) − A1(ρ)]/π = 2
∫ ∞

−∞
d2κ 	ε1(κ, 0)[1 − exp(iκ · ρ)]. (61)

ε1(ρ, z′) and 	ε1(κ, κz) are the correlation function and the spectrum for large-scale
irregularities, respectively; β2

1 is the scintillation index in a medium with large-scale
irregularities:

β2
1 = k4

(2π)8

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
d2v1 d2u1 d2v2 d2u2

× exp

{
2ik(z − z0)(v1 · u2 + v2 · u1) − k2π

2
B1

}
− 1, (62)

where

B1 = 1
2

∫ z

z0

{2H1[u2(z − z′) + u1(z
′ − z0)] + 2H1[v2(z − z′) + v1(z

′ − z0)]

− H1[(v2 + u2)(z − z′) + (u1 + v1)(z
′ − z0)]

−H1[(v2 − u2)(z − z′) + (u1 − v1)(z
′ − z0)]} dz′. (63)
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The scintillation index (62) in a medium with large-scale irregularities can be investigated
using known [6, 14] asymptotic methods. It should be noted that separating the irregularities
into small-scale and large-scale irregularities depends not only on the irregularity size but also
on a number of other parameters of the problem. In particular, in the case of propagation
in a statistically inhomogeneous medium within small distances from the source, fluctuation
phases are small, and all irregularities satisfy the condition (50) and can be categorized as
‘small-scale’. In this case β2

1 = 0, and for the scintillation index we obtain the expression

β2 � 2πk2
∫ ∞

−∞
d2κ

∫ z

z0

dz1	ε(κ, 0)

[
1 − cos

(
κ2(z1 − z0)(z − z1)

k(z − z0)

)]
, (64)

where

Φε(κ, κz) = Φε1(κ, κz) + Φε2(κ, κz). (65)

This same expression is also obtained from analysing the intensity fluctuations by Rytov’s
method [1].

When the distance from the source is increased, there appears a part of the irregularities
that does not satisfy condition (50). Here one must use formula (59). Then, at a large distance
the ‘large-scale’ component of the scintillation index β2

1 tends rapidly to unity, and we obtain

β2 � 1 + 2πk2
∫ ∞

−∞
d2κ

∫ z

z0

dz1	ε2(κ, 0)

[
1 − cos

(
κ2(z1 − z0)(z − z1)

k(z − z0)

)]

× exp

{
−πk2

2

∫ z1

z0

H1

[
κ(z − z1)(z ′ − z0)

k(z − z0)

]
dz′

− πk2

2

∫ z

z1

H1

[
κ(z − z ′)(z1 − z0)

k(z − z0)

]
dz ′

}
. (66)

Thus the scintillation index in the region of saturation of fluctuations is determined here
(see also [15]) by the diffraction of the wave transmitted through large-scale irregularities,
from small-scale irregularities. Noteworthy is the similarity of formula (66) with the formula
obtained in [16] for intensity fluctuations in a turbulent medium as a result of an asymptotic
calculation of expressions obtained using Feynman path integrals. This is no surprise, as a
turbulent medium is characterized by the influence of different-scale irregularities on the wave
propagation. Formula (66) transfers to the results reported in [16] if in the expression under
the integral sign in (66), in view of the inequality (50), H1 is replaced by

H = H1 + H2 = 2
∫ ∞

−∞
d2κ 	ε(κ, 0)[1 − exp(iκ · ρ)] (67)

and if it is taken into consideration that by virtue of the filtering character of the term 1 −
cos[κ2(z1 − z0)(z − z1)/(k(z − z0))] in the spectrum, low-frequency (large-scale) components
disappear and, hence, the following replacement can be done: 	ε2(κ, 0) → 	ε(κ, 0).

4. Conclusion

In this paper we have developed a new method for solving the wave equation. In doing so,
we used the method of the Fock fifth parameter to reduce the wave equation to a parabolic
equation. After that, using a double weighted Fourier transform we found the solution of
the parabolic equation. The resulting parabolic equation is solved using a weighted Fourier
transform relative to the source and observer coordinates. Furthermore, the well-known Debye
procedure is used to solve the equation for partial waves (of the expression under the integral
sign). The resulting eikonal and transport equations are solved by the perturbation method.
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In this case, unlike the other asymptotic integral representations, the integration of the eikonal
equation is performed not along the unperturbed trajectory but along a perturbed (random)
trajectory that is calculated to a first approximation of perturbation theory.

To determine the validity range of the resulting integral representation, we have compared
the results of this representation under different conditions with existing results. We have shown
the transfer to results of the hybrid approach generalizing the Born approximation. Also for
this purpose, the scintillation index was investigated within the small-angle approximation.
We have shown its transition to the results of Rytov’s method over small distances, and to the
results of an asymptotic evaluation of path integrals over large distances.

Thus the combination of an integral representation with perturbation ray theory of the
first approximation provides a means of investigating the effects of the simultaneous presence
of different-scale irregularities in the propagation medium. Large-scale irregularities lead to
strong intensity fluctuations while small-scale irregularities lead to diffraction effects of the
Fresnel type and to the scattering into large angles, including backscattering. A simultaneous
account of the effects of different-scale irregularities opens up new possibilities for investigating
the enhancement of intensity fluctuations in the case of backscattering, incoherent scatter,
the meteor propagation of radio waves, and other mechanisms of radio wave propagation in
conditions of a substantial influence of different-scale irregularities.
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