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Bragg scattering of surface waves over permeable rippled
beds with current
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In this study we develop a time-dependent wave equation for waves propagating with a current over
permeable rippled beds. As well known, Bragg resonance occurs when the incident wavelength is
twice the wavelength of the bottom ripple undulation and no current is present. However, the current
in the near-shore region changes the resonance condition. A one-dimensional wave field is solved
numerically based on the derived equation to study the effect of current on the Bragg resonance
condition. Nonlinear wave–wave resonant interaction theory provides an explanation of the effect
on Bragg resonance. Numerical results also indicate that the maximum reflection coefficient
increases as current velocity increases from a negative to a positive value. Furthermore, the velocity
of the current affects the position of the maximum reflection coefficient. ©2000 American
Institute of Physics.@S1070-6631~00!02806-3#
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I. INTRODUCTION

In the nearshore region, bottom topography and curre
significantly affect wave transformations. Berkhoff1 assumed
the bottom of the sea varies mildly and used the perturba
method to develop the well-known mild-slope equatio
Smith and Sprinks2 used the Green’s second identity to d
rive the same mild-slope equation as that obtained
Berkhoff.1 However, the equation derived without incorp
rating current effects may not accurately predict the ne
shore wave transformation. Therefore, Booij,3 Kirby,4,5 and
Liu6 used different methodologies to obtain the mild-slo
equation accounting for the presence of a current. Howe
the wave transformations over a mild-slope sea bottom w
rapidly varying undulations cannot be accurately predic
using the above theory. An intriguing phenomenon cal
Bragg resonance was found during wave transformations
volving this latter bottom topography.

A wave propagating over a wavy mild-slope bottom pr
duces reflected and transmitted waves. When the transm
wave height is reduced significantly and the reflected w
height grows to its maximum, significant standing waves
pear in front of the rippled seabed. This phenomenon
called Bragg resonance. Davies and Heathershaw7 studied
this problem both experimentally and theoretically for a ho
zontal bottom with sinusoidal undulation. These research
found their theoretical results well matched with their expe
mental results. They also highlighted that the Bragg re
nance occurs when the wavelength of the incident surf
wave is twice that of the bottom undulation. However, th
theory breaks down near the Bragg resonance condition
overcome this drawback, Mei8 developed wave evolution
and reflection theory at and near Bragg resonance cond
for shore-parallel sinusoidal bars. Naciri and Mei9 further
studied Bragg scattering by a two-dimensional doubly p
odic seabed. Unsatisfied with only knowing the resona
1381070-6631/2000/12(6)/1382/7/$17.00
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condition, Kirby10 derived a more general wave equation
analyze wave transformations over a mildly sloping sea b
tom with a rapidly varying undulation. O’Hare and Davies11

also examined this problem by applying their successi
application-matrix model, and Chamberlain and Porter12 did
the same with their modified mild-slope equation. Mea
while, Guazzelliet al.13 experimentally investigated higher
order Bragg resonant interactions between linear gra
waves and doubly sinusoidal beds. Recently, Liu and Yu14

studied generalized Bragg scattering of surface waves o
wavy sea bottoms. In their study, a nonlinear wave–wa
interaction theory was imposed to analyze different Bra
resonance conditions. They considered different comb
tions of waves and undulations, including one bottom a
two surface wave components, two bottom and two surf
wave components, and one bottom and three surface w
components. Apparently, nonlinear wave–wave interact
theory can explain and predict the Bragg scattering very
curately.

In reality, some seabeds may be permeable, and
aforementioned theories that do not account for permeabi
cannot describe consequent dissipation. Although Izumiy15

derived an extended mild-slope equation for a permea
submerged breakwater, the equation is only suitable fo
mildly varying bottom slope. Therefore, Maseet al.16 ob-
tained a wave equation for waves propagating over o
dimensional and two-dimensional permeable rippled beds
their paper, various seabed permeability conditions w
considered in some detail. They also demonstrated that
meability causes significant wave energy dissipation. Ho
ever, their neglect of the presence of currents in the ne
shore in their derivation may affect the Bragg resonan
condition. Therefore, in this study we derive a more gen
alized wave equation and to examine numerically how
current affects Bragg resonance.
2 © 2000 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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II. DERIVATION OF WAVE EQUATION

Consider surface gravity waves traveling over slow
varying permeable ripple beds with a current~uniform in the
z direction!. A definition sketch of the problem is shown i
Fig. 1. Cartesian coordinates (x,y,z) are fixed on the still
water level~S.W.L.! with the origin placed at the start of th
ripple variation. The free surface elevation is denoted bh
and U(x,y) represents the current velocity vector. T
slowly varying mean water depth,h(x,y), is defined as the
distance between the S.W.L. and the mean position of
rapidly varying small ripple undulation,d(x,y). The actual
water depthh8(x,y), the distance between S.W.L. an
d(x,y), satisfies

h8~x,y!5h~x,y!2d~x,y!. ~1!

The thickness of the porous layer,hs8(x,y), is the distance
betweend(x,y) and the impermeable sea bottom. Thus,
slowly varying mean thickness of the porous layer,hs(x,y),
can be described by

hs~x,y!5hs8~x,y!2d~x,y!. ~2!

The following assumptions are made:

OS“h

kh D'O~kd!!1, ~3!

OS“~h1hs!

kh D'O~kd!!1, ~4!

and

OS“d

kd D'O~1!, ~5!

where “ denotes the horizontal gradient opera
(]/]x,]/]y), andk represents the wave number. The dom
of interest consists of two regions. Region 1 is the fluid d
main above region 2, which latter region represents the
rous layer lying above the impermeable sea bottom,
shown in Fig. 1.

In region 1, the fluid is assumed to be inviscid and
compressible, and the wave motion is irrotational. In t
region, the mean current velocity vector,U(x,y), coexists
with small-amplitude wave motion, which is represented
the velocity potential,Fw(x,y,z,t). The magnitude of
U(x,y), of O(1), is greater than the magnitude of wav

FIG. 1. Definition sketch of the problem.
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velocity, of O(e), wheree5ka ~the wave steepness! is as-
sumed to be small@i.e., O(e)!1#. Accordingly, the total
velocity can be represented by

V~x,y,z,t !5U~x,y!1e“3Fw~x,y,z,t !, ~6!

and the free-surface displacement is written as

h5ehw~x,y,t !, ~7!

where“35(]/]x,]/]y,]/]z). Here, U(x,y) is given as a
mean velocity vector without variations in thez direction,
and satisfies the zeroth-order boundary value problem@i.e.
O(e0)#, such that discussion of theO(e0) problem is ex-
cluded.

Upon substitution of Eq.~6! into the continuity equation,
the linearized governing equation and boundary conditi
of O(e1) in region 1 are obtained as follows:

¹2Fw1
]2Fw

]z2 50, 2h<z<0; ~8!

D2Fw

Dt2 1g
]Fw

]z
50, z50; ~9!

]Fw

]z
1“Fw"“h2“"~d“Fw!5W~1!, z52h; ~10!

P1
~1!52rS ]Fw

]t
1U"“FwD , z52h. ~11!

Equation~8! is the governing equation. Equation~9! repre-
sents the combined free surface boundary condition, wh
the total derivative is defined as

D2

Dt2 5S ]

]t
1Ū"“ D S ]

]t
1U"“ D . ~12!

Equation~10! is the kinematic permeable bottom bounda
condition, whereW(1) is the discharge velocity at the inte
facez52h. At z52h in region 1, the pressure denoted b
P1

(1) is given by Eq.~11!.
In region 2, the fluid is also assumed to be irrotation

The flow motion in this porous layer is mainly due to th
wave motion in region 1, since the mean current effect
negligible. Adopting the momentum equation used by So
and Cross17 and Maseet al.16 and following the same proce
dure as that used for region 1, we obtain the governing eq
tion and boundary conditions ofO(e1) in region 2 as fol-
lows:

¹2C1
]2C

]z2 50, 2~h1hs!<z<2h; ~13!

]C

]z
1“C"“h2“"~d“C!5W~2!, z52h; ~14!

P1
~2!52rS t

n

]C

]t
1 f

v

n
C D , z52h; ~15!

]C

]z
52“C"“~h1hs!, z52~h1hs!, ~16!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1384 Phys. Fluids, Vol. 12, No. 6, June 2000 Ting, Lin, and Kuo
whereC is defined as the discharge velocity potential,n is
the porosity,t is the inertia coefficient,f is the linearized
friction factor, andv is the absolute angular frequency. A
the interfacez52h, the kinematic and dynamic permeab
boundary conditions are given by Eq.~14! and Eq. ~15!,
respectively.W(2) is the discharge velocity at the interfac
between region 2 and region 1.P1

(2) is the first-order pressur
in region~2!. Equation~16! is the bottom boundary conditio
at the impermeable sea bottom.

At the interfacez52h, the pressure and the vertic
discharge velocity should be continuous; therefore, the
lowing conditions must be met:

P1
~1!5P1

~2! , z52h, ~17!

and

W1
~1!5W1

~2! , z52h. ~18!

Using Eqs.~10!, ~11!, ~15!, and~16!, Eqs.~17! and~18! can
be rewritten as

]Fw

]t
1U"“Fw5

t

n

]C

]t
1 f

v

n
C, z52h, ~19!

]Fw

]z
1“Fw"“h2“"~d“Fw!

5
]C

]z
1“C"“h2“"~d“C!, z52h. ~20!

By analogy to the solutions from Maseet al.,16 we assume
the solutions for velocity potentials,Fw andC, as follows:

Fw~x,y,z,t !5 f ~1!~x,y,z!f̃~x,y,t !

1~nonpropagating modes!, ~21!

C~x,y,z,t !5 f ~2!~x,y,z!w̃~x,y,t !

1~nonpropagating modes!. ~22!

Since nonpropagating modes~evanescent modes! are not rel-
evant to this study, a discussion is not given herein.

To obtain the vertical distribution functions off (1) and
f (2), we follow the derivation procedures used in Gu a
Wang18 and assume a horizontal bottom~i.e.,“h5“hs50!.
Then, the expressions off (1) and f (2) can be obtained a
follows:

f ~1!5
1

Q Fvs coshkhs coshk~h1z!

1g sinhkhs sinhk~h1z!G , ~23!

f ~2!5
1

Q
g coshk~h1hs1z!, ~24!

where

s5v2k"U ~ the intrinsic frequency!, ~25!

Q5coshkhs coshkhS v

s
1g tanhkhs tanhkhD , ~26!
Downloaded 16 Jun 2001 to 131.120.107.70. Redistribution subject to A
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and i is the imaginary unity. Also, the dispersion relation
obtained:

s25gk

v

s
tanhkh1g tanhkhs

v

s
1g tanhkh tanhkhs

. ~28!

Substituting Eqs.~21! and~22! into Eq.~19! and considering
only propagating modes, yields

f̃5w̃. ~29!

Following Smith and Sprinks,2 Kirby,10 and Mase
et al.16 and using the Green’s second identity forFw and
f (1), Eq. ~30! can be obtained; thus

E
2h

0

f ~1!
]2Fw

]z2 dz2E
2h

0 ]2f ~1!

]z2 Fwdz

5S f ~1!
]Fw

]z
2

] f ~1!

]z
FwD

2h

0

. ~30!

Integrating the above equation, we can obtain Eq.~31! by
applying the boundary conditions and neglecting the hi
order terms of the bottom slope:

¹•E
2h

0

f ~1!2
“f̃dz1k2E

2h

0

f ~1!2
f̃dz

5
1

g S D2f̃

Dt2 1~“"U!
Df̃

Dt
1s2f̃ D 1 f ~1!2

“~d“f̃ !u2h

1 f ~1!W~1!u2h2f̃ f ~1!
] f ~1!

]z U
2h

. ~31!

Similarly, applying the Green’s second identity forC and
f (2) yields

E
2~h1hs!

2h

f ~2!
]2C

]z2 dz2E
2~h1hs!

2h ]2f ~2!

]z2 Cdz

5S f ~2!
]C

]z
2

] f ~2!

]z
C D

2~h1hs!

2h

, ~32!

and the integration gives us

“"E
2~h1hs!

2h

f ~2!2
“w̃dz1k2E

~h1hs!

2h

f ~2!2
w̃dz

52 f ~2!2
“"~d“w̃ !u2h2 f ~2!W~2!u2h1w̃ f ~2!

] f ~2!

]z U
2h

.

~33!

Using the relationW(1)5W(2) with f̃5w̃ to combine Eqs.
~31! and ~33!, we obtain
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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D2f̃

Dt2 1~s22ak2!f̃2“"~a“f̃ !

2
g

Q2 coshkhs

v

s S v

s
2g D“"~d“f̃ !50, ~34!

where

a5gS p1
v

s

q

g D , ~35!

p5E
2h

0

f ~1!2
dz

5@~v/s!2 cosh2 khs~sinh 2kh12kh!

1g2 sinh2 khs~sinh 2kh22kh!

1~v/s!g sinh 2khs~cosh 2kh21!#/4/k/Q2, ~36!

q5E
2~h1hs!

2h

f ~2!2
dz5g2~sinh 2khs12khs!/4/k/Q2. ~37!

If U50 ~i.e., there is no current in the wave field!, Eq. ~34!
reduces to

]2f̃

]t2 1~v22ak2!f̃2“"~a“f̃ !

2
g

Q2 coshkhs~12g!“"~d“f̃ !50, ~38!

with the dispersion relation

v25gk
tanhkh1g tanhkhs

11g tanhkh tanhkhs
, ~39!

which is the same as the equations obtained by Maseet al.16

If there are no porous layers and no undulation on the bot
~i.e., hs50 andd50!, Eq. ~35! reduces to

a5
s2

2k2 S 11
2kh

sinh 2khD5CCg , ~40!

and Eq.~34! becomes

D2f̃

Dt2 1~s22k2CCg!f̃2“"~CCg“f̃ !50, ~41!

with the dispersion relation

s25~v2k"U!25gk tanhkh, ~42!

which is the well-known mild-slope equation with curren
To simplify the problem, assumption have been made
monochromatic wave interacting with a current was cons
ered one-dimensionally. Also,O(a/uUu2)@1 ~a has the
same physical meaning asCCg! is assumed to reduce th
original equation to a simple and solvable form. Therefo
Eq. ~35! can be written as

fxx1n21~ax1Mdx12ivU !fx1n21~v22s21ak2!f

50, ~43!

where
Downloaded 16 Jun 2001 to 131.120.107.70. Redistribution subject to A
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M5
g

Q2 coshkhs

v

s S v

s
2g D ~44!

and

n5a1Md. ~45!

Numerical results and discussions follows, according to
above equation.

III. NUMERICAL RESULTS AND DISCUSSIONS

Since Eq.~43! is an elliptic-type equation, its solution
requires closed boundary conditions in an analytical dom
However, in the present problem, shoreward boundary c
ditions cannot be knowna priori. Therefore, the approxima
tion method proposed by Radder19 and Kirby10 is adopted to
transform the elliptic-type equation into coupled parabo
equations for forward- and backward-scattered waves.
transformation allows the problem to be solved numerica
Numerical results for the no current situation were rep
duced to verify the present model. Our results agree sign
cantly with results from Kirby10 and Maseet al.16

The ripple bed models used in all tests are the same
those shown in Fig. 2. The mean water depthh and the mean
thickness of porous layerhs are kept constant. The sma
ripple undulationd is given by

d5D sinkbx, 0<x<ml, ~46!

wherekb , l, D andm are the wave number, the wavelengt
the amplitude of ripples, and the number of ripples, resp
tively. Numerical calculations were carried out with differe
current velocities,U, and permeability conditions. Howeve
the conditions,l 51 m, D50.05 m, m54, D/h50.32, n
50.4, andt51.0 remain fixed in all tests. The calculate
reflection coefficientR and transmission coefficientT are de-
fined as

R5
uBx50u

a0
, T5

uAx5mlu
a0

, ~47!

wherea0 is the incident wave amplitude,Ax5ml is the trans-
mitted wave amplitude measured atx5ml, andBx50 is the
reflected wave amplitude measured atx50.

The incident wave condition is described by the relat
wave number 2k/kb ~[twice the ratio of transmitted wave

FIG. 2. Definition sketch of the sinusoidal undulations.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1386 Phys. Fluids, Vol. 12, No. 6, June 2000 Ting, Lin, and Kuo
number and ripple wave number!, ranging from 0.5 to 2.5 in
all numerical calculations. However, in the permeable b
tom case, the transmitted wave number measured abov
ripple bed is complex (5kreal1 ik imag). Therefore, thek used
in the relative wave number is simply the real part of t
transmitted wave number,kreal.

Bragg resonance of different permeable bed conditi
with zero current velocity were fully discussed in Ref. 1
Therefore, the zero-current-velocity case is not discus
here in detail. Rather, we focus on the change of the Br
resonance conditions due to the presence of current.

Various combinations of numerical conditions we
tested by the proposed model. Apparently, the lineari
friction factor f and the mean thickness of the porous layerhs

negligibly affect the resonance condition. They only affe
the magnitude of the reflection coefficient. However, curr
velocity affects significantly the location of the resonant re
tive wave number (2k/kb) r ~[the value of 2k/kb at which
the reflection coefficient is maximal!. To see how curren
velocity affects resonance, various current velocities w
tested numerically.

The effect of typical values ofU on Bragg resonance i
shown in Fig. 3, wherehs50.2 m remains unchanged in a
test conditions. Three subgraphs,~a!–~c!, in Fig. 3 represent
the results forU520.15, 0, and 0.15 m/s, respectively. Th
ordinates of each subgraph represents the values ofR andT
and the abscissa represents the value of 2k/kb . Each sub-
graph is composed of eight lines. Two of them with the sa
type of line type represent the effects of a specific permea
condition. The upper line of the two lines represents theT
curve and the lower is theR curve. The line types from top to
bottom represent the results for impermeable,f 510, f 55,
and f 51 conditions, respectively.

Figure 3 obviously reveals that the maximum value oR
andT occur in impermeable case for a given 2k/kb and that
they decrease asf decreases. Also, the same conclusion
that given by Maseet al.16 is obtained: the minimum value
of R and T occur underf 51 condition, at which energy
dissipation is maximum. In Fig. 3~b!, whenU50, the reso-
nant reflection coefficientRr ~[maximum R! occurs at
(2k/kb) r'1. However, whenUÞ0, Rr occurs at (2k/kb) r

Þ1, as can be seen in Figs. 3~a! and 3~c!. Figure 3~a! indi-
cates thatRr occurs at (2k/kb) r.1 whenU,0 ~i.e., current
moves in the opposite direction to that of the transmit
wave!. Figure 3~c! shows thatRr occurs at (2k/kb) r,1
whenU.0 ~i.e., current moves in the same direction as
transmitted wave!. Also, we can see thatRr increases asU
increases from a negative to a positive value. Therefore,
current velocity does affect the Bragg resonance condit
An explanation of the shift of (2k/kb) r due to the current
effect is given in the following paragraphs.

Liu and Yue14 explained the mechanism of Bragg res
nance very well using nonlinear~surface! wave–wave reso-
nant interactions in the absence of bottom undulations. H
our condition is similar to their class I Bragg conditio
Therefore, three-wave resonance is imposed here to eluc
our Bragg resonance with a current present.

Consider the case of an impermeable sea bottom, w
ki is the transmitted wave number,kr is the reflected wave
Downloaded 16 Jun 2001 to 131.120.107.70. Redistribution subject to A
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number, andkb is the wave number of bottom undulation
The associated angular frequencies arev i , v r , and 0. The
following equations must be satisfied to obtain the Bra
resonance:

ki2kr2kb50, ~48!

v i2v r50. ~49!

In the case ofU50, Eq. ~49! implies ukiu5ukru. Therefore,
resonance occurs whenkb5ukiu1ukru52ukiu52ki , i.e.,
(2k/kb) r51. WhenU.0, Eq.~49! implies uki u,ukr u. Equa-
tion ~48! dictateskb5ukiu1ukru.2ukiu52ki , which implies
resonance occurs as (2k/kb) r,1. Similarly, it is expected
that Bragg resonance occurs at (2k/kb) r.1 for U,0. Our
numerical results clearly accord with this explanation.

Seven different current velocities from20.15 to 0.15
m/s are used in the numerical tests to determine how cur

FIG. 3. Effect of currents on the reflection and transmission coefficie
over the sinusoidal ripple bottom for the case ofm54, hs50.2 m, and
D/h50.32.~a! U520.15 m/s,~b! U50 m/s, ~c! U50.15 m/s.@—: imper-
meable, ---: permeable (f 510), –––: permeable (f 55), –•–: permeable
( f 51).#
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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velocity affects the resonant relative wave number (2k/kb) r .
Figure 4 summarizes those results, indicating that (2k/kb) r

decreases asU increases. Also, the numerical calculatio
show that the linearized friction factorf, the mean thickness
of porous layerhs , and the inertial coefficientt have negli-
gible effects on (2k/kb) r .

To investigate the current effect on normalized to
wave energy,R21T2, this study calculates seven differe
current velocities for the case of an impermeable bottom
shown in Fig. 3. Figure 5 displays the resultingR21T2. In
this figure, seven lines from top to bottom represent the
sults for U50.15, 0.10, 0.05, 0,20.05, 20.10, and20.15
m/s, respectively. As expected, when total wave energ
conserved for the zero-current case, the value ofR21T2

equals one, as the solid line in Fig. 5 displays. The fig
also indicates that current significantly affects total wave
ergy when resonance occurs. Near the resonance region~that
is, when significant reflection occurs!, R21T2.1 whenU
.0 andR21T2,1 whenU,0. Obviously the value ofR2

1T2 increases asU increases from negative to positiv
When away from the resonance region~that is, in the region
of small reflection!, R21T2 remains one, meaning the cu
rent effect on total wave energy is negligible.

IV. CONCLUSIONS

Mase et al.16 discussed in detail the one- and tw
dimensional wave transformations over a permeable rip
bottom with rapidly varying undulations. However, curren
are always present in the near-shore region, e.g., tidal

FIG. 4. The effects of currentU on (2k/kb) r .

FIG. 5. The effect of currents on the normalized total wave energy,R2

1T2. Seven line types from top to bottom represent the results forU
50.15, 0.10, 0.05, 0,20.05,20.10, and20.15 m/s, respectively.
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rents, longshore currents. The prediction of near-shore w
transformation without considering the presence of th
currents, may thus be inaccurate. Therefore, to mimic
real near-shore wave transformation, more general w
equations were derived for the wave propagation over s
beds with rapidly varying undulation and currents.

Various conditions were examined by the present
merical model. According to our numerical results, the c
rent does affect the Bragg resonance condition. AsU.0, the
maximum reflection coefficientRr occurs at (2k/kb) r,1.
When U50, Rr occurs at (2k/kb) r'1 and Rr occurs at
(2k/kb) r.1 whenU,0. The shift of (2k/kb) r is also well
explained by the nonlinear three-wave interaction the
mentioned by Liu and Yue.14 From our results, it is known
thatRr increases asU increases from a negative to a positiv
value. However, the current obviously does not affectTr .
Near the resonance region, the current also significantly
fluences the normalized total wave energy,R21T2. R2

1T2.1 whenU.0 andR21T2,1 whenU,0.
The present study can be applied to the design of

artificial sandbar in a near-shore region to protect the sh
from wave attack. Figure 3 shows that suitable permeab
of the ripple bottom may significantly reduceRr and Tr .
Therefore, we recommend that using a permeable mate
~with suitable friction factor! to manufacture artificial ripple
bottoms should be an effective way to reduce the heigh
transmitted waves.
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