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In this study we develop a time-dependent wave equation for waves propagating with a current over
permeable rippled beds. As well known, Bragg resonance occurs when the incident wavelength is
twice the wavelength of the bottom ripple undulation and no current is present. However, the current
in the near-shore region changes the resonance condition. A one-dimensional wave field is solved
numerically based on the derived equation to study the effect of current on the Bragg resonance
condition. Nonlinear wave—wave resonant interaction theory provides an explanation of the effect
on Bragg resonance. Numerical results also indicate that the maximum reflection coefficient
increases as current velocity increases from a negative to a positive value. Furthermore, the velocity
of the current affects the position of the maximum reflection coefficient.2000 American
Institute of Physicg.S1070-663(000)02806-3

I. INTRODUCTION condition, Kirby*® derived a more general wave equation to

_ analyze wave transformations over a mildly sloping sea bot-
~ Inthe nearshore region, bottom topography and currentgom with a rapidly varying undulation. O’Hare and Davies
Slgnlflcantly affect wave transformations. BerkHadssumed also examined this prob]em by app|y|ng their successive-
the bottom of the sea varies mildly and used the PeftUrbaﬂoﬁpplication-matrix model, and Chamberlain and Péftdid
method to develop the well-known mild-slope equation.the same with their modified mild-slope equation. Mean-
Smith and Sprinksused the Green’s second identity to de-\yhile, Guazzelliet al* experimentally investigated higher-
rive the ,Same mild-slope equation as that obtained byrger Bragg resonant interactions between linear gravity
Be_rkhoff. However, the equation derived Wltho_ut iNCcorpo- \yaves and doubly sinusoidal beds. Recently, Liu andYue
rating current effects may not accurately pr.ed|c5 éhe Nealstydied generalized Bragg scattering of surface waves over
shoﬁre wave'transformatmn. Thgrefore, B&erby' '.and wavy sea bottoms. In their study, a nonlinear wave—wave
Liu u_sed dlfferer_n methodologies to obtain the mild-slope; . -tion theory was imposed to analyze different Bragg
equation accounting for the presence of a current. HoweveFewnance conditions. They considered different combina-
the wave transformations over a mild-slope sea bottom wit ions of waves and undulations, including one bottom and
rapidly varying undulations C‘?‘”r?"t 'be accurately predicte wo surface wave components iwo bottom and two surface
using the above theory. An intriguing phenomenon calle wave components, and one bottom and three surface wave

Bragg resonance was found during wave transformations in- . . .
; : components. Apparently, nonlinear wave—wave interaction
volving this latter bottom topography.

A wave propagating over a wavy mild-slope bottom Ioro_theory can explain and predict the Bragg scattering very ac-

duces reflected and transmitted waves. When the transmitted! rately. .
In reality, some seabeds may be permeable, and the

wave height is reduced significantly and the reflected wave i , .
height grows to its maximum, significant standing waves ap_aforementmned theories that do not account for permeability,
’ t describe consequent dissipation. Although Izuthiya

pear in front of the rippled seabed. This phenomenon i£21M° . .
called Bragg resonance. Davies and Heatherdstudied derived an extended mild-slope equation for a_permeable
this problem both experimentally and theoretically for a hori-Submerged breakwater, the equation is only suitable for a
zontal bottom with sinusoidal undulation. These researcher@lildly varying bottom slope. Therefore, Mast al'® ob-
found their theoretical results well matched with their experi-tained a wave equation for waves propagating over one-
mental results. They also highlighted that the Bragg resodimensional and two-dimensional permeable rippled beds. In
nance occurs when the wavelength of the incident surfactheir paper, various seabed permeability conditions were
wave is twice that of the bottom undulation. However, theirconsidered in some detail. They also demonstrated that per-
theory breaks down near the Bragg resonance condition. T@eability causes significant wave energy dissipation. How-
overcome this drawback, NFeideve|oped wave evolution ever, their neglect of the presence of currents in the near-
and reflection theory at and near Bragg resonance conditioghore in their derivation may affect the Bragg resonance
for shore-parallel sinusoidal bars. Naciri and R&irther ~ condition. Therefore, in this study we derive a more gener-
studied Bragg scattering by a two-dimensional doubly peri-alized wave equation and to examine numerically how the
odic seabed. Unsatisfied with only knowing the resonanceurrent affects Bragg resonance.
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z velocity, of O(e), wheree=ka (the wave steepnesis as-

T/\y /{7 SWL. sumed to be smalli.e., O(e)<1]. Accordingly, the total
velocity can be represented by

—3 x\/*’ * * W

— ater

—g PRY Region | V(xy,z,t) =U(X,y) + €V (X,y,Z,), (6

=YX and the free-surface displacement is written as

Porous Layer n=€nw(X,y,t), )

PR Region 2 S

< where V3= (dldx,dl dy,dl 9z). Here,U(Xx,y) is given as a
mean velocity vector without variations in ttedirection,

Impermeable Bed and satisfies the zeroth-order boundary value protlieen
FIG. 1. Definition sketch of the problem. O(€%], such that discussion of th®(e®) problem is ex-
cluded.
Upon substitution of Eq6) into the continuity equation,
Il. DERIVATION OF WAVE EQUATION the linearized governing equation and boundary conditions

. . . of O(e') in region 1 are obtained as follows:
Consider surface gravity waves traveling over slowly

varying permeable ripple beds with a currémbiform in the 2

w

z direction. A definition sketch of the problem is shown in v Pwt ——=- =0, —h=z<0; ®
Fig. 1. Cartesian coordinatex,f/,z) are fixed on the still

water level(S.W.L.) with the origin placed at the start of the D2d,, ad,,

ripple variation. The free surface elevation is denotedrby oz T95, =0 =0 ©
and U(x,y) represents the current velocity vector. The

slowly varying mean water depth(x,y), is defined as the P

v Vh—V. —_w@ _
distance between the S.W.L. and the mean position of the 52 +VO, - Vh=V-(5Vd,)=W", 2 h; (10

rapidly varying small ripple undulatiorj(x,y). The actual

water depthh’(x,y), the distance between S.W.L. and 1)_ D, -
8(x,y), satisfies Pii==—p| 5 tUVOy|, z=-h (11
h'(x,y)=h(x,y) = 8(x,y). (1) Equation(8) is the governing equation. Equati¢8) repre-

The thickness of the porous layeér,(x,y), is the distance Sents the combined free surface boundary condition, where
betweens(x,y) and the impermeable sea bottom. Thus, thethe total derivative is defined as

slowly varying mean thickness of the porous layey(x,y), D2 g — J
can be described by D= (ﬁ+ u-v E+ u-v|. (12
hS(X7y):hé(X1y)_5(X1y)- (2) . . . .
] ) Equation(10) is the kinematic permeable bottom boundary
The following assumptions are made: condition, wherew® is the discharge velocity at the inter-
Vh facez=—h. At z=—h in region 1, the pressure denoted by
O(m) ~0(ko)<1, ) PP is given by Eq.(12).

In region 2, the fluid is also assumed to be irrotational.

V(h+hy) The flow motion in this porous layer is mainly due to the
O(T)~O(k5)<1, @ \wave motion in region 1, since the mean current effect is
negligible. Adopting the momentum equation used by Sollit
and and Cros¥ and Maseet al® and following the same proce-
dure as that used for region 1, we obtain the governing equa-
O(E)No(l)a (5 tion and boundary conditions @(e') in region 2 as fol-

lows:
where V denotes the horizontal gradient operator )

(alox,dl ay), andk represents the wave number. The domain 2 v _ .

of interest consists of two regions. Region 1 is the fluid do- vebr+ 97° =0, (h+hg<z<-—h; (13

main above region 2, which latter region represents the po-

rous layer lying above the impermeable sea bottom, as ﬂ _ W2 .

shown in Fig. 1. o +VW¥-Vh-V-(sV¥)=W'“  z=-—h; (14
In region 1, the fluid is assumed to be inviscid and in-

i ion is i ' i TV o
compressible, and the wave motion is irrotational. In this PO= o[ Lt %y, 2= —h; (15)
region, the mean current velocity vectdd(x,y), coexists n Jt n
with small-amplitude wave motion, which is represented by
the velocity potential, ®,,(x,y,z,t). The magnitude of ﬂ:_ . _
U(x,y), of O(1), is greater than the magnitude of wave Jz V-Vihthy, z==(h+hy), (16
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whereW is defined as the discharge velocity potentials
the porosity,7 is the inertia coefficientf is the linearized
friction factor, andw is the absolute angular frequency. At

Ting, Lin, and Kuo

n
T+if’

y= (27)

the interfacez= —h, the kinematic and dynamic permeable andi is the imaginary unity. Also, the dispersion relation is

boundary conditions are given by E¢l4) and Eq.(15),
respectively. W) is the discharge velocity at the interface
between region 2 and region R{? is the first-order pressure
in region(2). Equation(16) is the bottom boundary condition
at the impermeable sea bottom.

At the interfacez= —h, the pressure and the vertical

obtained:

gtanhkm— ¥ tanhkh,

a?=gk (28)

§+ ytanhkh tanhkh,

discharge velocity should be continuous; therefore, the fol-

lowing conditions must be met:

PU=PP, z=—h, a7

and
W =W@,  z=—h, (18

Using Egs.(10), (11), (15), and(16), Egs.(17) and(18) can
be rewritten as

P v, =L Yty = 19
Tt TUVPwEL I 2= oh (19
I,
—E VD, Vh-V-(6VD,)
A4
=E+V‘If-Vh—V-(5V\I’), z=—nh. (20
By analogy to the solutions from Masa al,'® we assume

the solutions for velocity potentiald,, andV, as follows:

D (xy,2,t)=FD(x,y,2) p(x,y,1)

+ (nonpropagating modgs (21
W (xy,z,)=f2(xy,2)e(x,y,t)
+(nonpropagating modegs (22

Since nonpropagating modésvanescent modgare not rel-
evant to this study, a discussion is not given herein.
To obtain the vertical distribution functions 6f* and

(), we follow the derivation procedures used in Gu and

Wang'® and assume a horizontal bottdire., Vh=Vh¢=0).
Then, the expressions dfY) and f(2) can be obtained as
follows:

llow
f(1)=6 — coshkhs coshk(h+2)

+ y sinhkhg sinhk(h+2) |, (23
1
f<2>=aycoshk(h+ hs+2), (24
where
o=w—k-U (the intrinsic frequency (25

Q=coshkhg coshkh g + y tanhkhg tanhk h) , (26)

Substituting Eqs(21) and(22) into Eq.(19) and considering

only propagating modes, yields
$=70. (29)

Following Smith and Sprink$, Kirby,’® and Mase

et al® and using the Green’s second identity fbr, and
f(1), Eq. (30) can be obtained; thus

0 5D e
w2 Iwy, |2
f_hf 72 dz f_h pe o,dz
b, ofH )0
= f<1>—W——q>W) . (30)
9z 9z .

Integrating the above equation, we can obtain 84) by
applying the boundary conditions and neglecting the high-
order terms of the bottom slope:

0 2~ 0 o~
V-f (b V¢dz+k2f fV pdz
-h —h

g(

+fOWD L BfD
FOWWD| - pf P

D$

Dt

D%

D12 +0'2¢

+(V-U)

+IOV (V)|

(31)

—h

Similarly, applying the Green’s second identity f#r and
£ yields

Th “h 2@
f f(z)—zdz—
~(h+hy  0Z

vdz
f(h+h5) 9z°

ow  gf@ \°h
=(””3;‘ i @
—(h+hg)
and the integration gives us
ey 2| 7 j@%
V- fl9"Veodz+k 9 pdz
—(h+hg) (h+hg)
5 _ _ of@
=—§2 V'(5V‘P)|—h_f(2)w(2>|—h+<Pf(2)
iz |,
(33

Using the relationV™=W® with $=% to combine Egs.
(31) and(33), we obtain
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D24 - -
bz F(o*=ak?)$=V (aV )
g W[ w ~
—62'C05hkh5; ;—’y V'(5V¢)=0, (34)
where
a=¢g p+29>, (35
gy
p= ? 04z

=[(wlo)? coslt khy(sinh 2kh-+2kh)
+ v2 sint? khy(sinh kh— 2kh)
+ (/o) y sinh &hy(cosh kh—1)]/4/k/Q?, (36)

—h
q= f f(2°dz= 42(sinh Kh+ 2khy)/4kIQ2.  (37)
—(h+hg)

If U=0 (i.e., there is no current in the wave figldEq. (34)
reduces to

72¢ ~ -
Wﬂwz— ak?) p—V-(aV )

- %coshkhs(l— Y)V-(8V ) =0, (39)
with the dispersion relation

2_ gk tanhkh+  tanhk hg 39

@ =9%7F tanhkh tanhkh, (39

which is the same as the equations obtained by Mas#!®

If there are no porous layers and no undulation on the bottorﬁ‘

(i.e.,hg=0 and 6=0), Eq. (35 reduces to

B o? 1 2kh B 40
*= 52| 1 Sinhakn) ~ %o (40
and Eq.(34) becomes
D%p L, - -
W-ﬁ—(a’ —k°CCy)¢p—V-(CCyV¢)=0, (41)
with the dispersion relation
o?=(w—k-U)2=gktanhkh, (42)

which is the well-known mild-slope equation with current.
To simplify the problem, assumption have been made.
monochromatic wave interacting with a current was consid
ered one-dimensionally. AlsoQ(a/|U|?)>1 (a has the

same physical meaning &C,) is assumed to reduce the

A
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z L=2r/k

B, m=Number of Ripple Crests
Porous Layer

FIG. 2. Definition sketch of the sinusoidal undulations.

g | w
M= @coshkhsg P (44)
and
v=a+MS§. (45

Numerical results and discussions follows, according to the
above equation.

IlI. NUMERICAL RESULTS AND DISCUSSIONS

Since EQ.(43) is an elliptic-type equation, its solution
requires closed boundary conditions in an analytical domain.
However, in the present problem, shoreward boundary con-
ditions cannot be knowa priori. Therefore, the approxima-
tion method proposed by Radd®and Kirby'® is adopted to
transform the elliptic-type equation into coupled parabolic
equations for forward- and backward-scattered waves. The
transformation allows the problem to be solved numerically.
umerical results for the no current situation were repro-
uced to verify the present model. Our results agree signifi-
cantly with results from Kirb}? and Maseet al®

The ripple bed models used in all tests are the same as
those shown in Fig. 2. The mean water defpind the mean
thickness of porous layeng are kept constant. The small
ripple undulationd is given by

6=D sinkpx, O0=x=ml, (46)

wherek,, I, D andm are the wave number, the wavelength,
the amplitude of ripples, and the number of ripples, respec-
tively. Numerical calculations were carried out with different
current velocitiesl, and permeability conditions. However,
the conditions,|=1m, D=0.05m, m=4, D/h=0.32, n
=0.4, and7=1.0 remain fixed in all tests. The calculated
reflection coefficienR and transmission coefficiefitare de-

fined as

_ |Bx=0| _ |Ax=ml|

original equation to a simple and solvable form. Therefore, B T a, ' (47)

Eq. (35) can be written as
Dot v Hayt M S+ 2iwU) py+ v Y 02— 02+ ak?) ¢
=0, (43

where

wherea, is the incident wave amplitudé\,_ ., is the trans-
mitted wave amplitude measuredxat ml, andB,_ is the
reflected wave amplitude measuredkatO.

The incident wave condition is described by the relative
wave number R/k, (=twice the ratio of transmitted wave
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number and ripple wave numberanging from 0.5 to 2.5 in

all numerical calculations. However, in the permeable bot-
tom case, the transmitted wave number measured above th
ripple bed is complex€ Keqt iKimag) - Therefore, thék used

in the relative wave number is simply the real part of the R/T
transmitted wave numbek,q-

Bragg resonance of different permeable bed conditions
with zero current velocity were fully discussed in Ref. 16.
Therefore, the zero-current-velocity case is not discussed
here in detail. Rather, we focus on the change of the Bragg
resonance conditions due to the presence of current.

Various combinations of numerical conditions were
tested by the proposed model. Apparently, the linearized
friction factorf and the mean thickness of the porous laygr
negligibly affect the resonance condition. They only affect
the magnitude of the reflection coefficient. However, current
velocity affects significantly the location of the resonant rela-
tive wave number (R/k,), (=the value of X/k, at which
the reflection coefficient is maximalTo see how current
velocity affects resonance, various current velocities were
tested numerically.

The effect of typical values df) on Bragg resonance is
shown in Fig. 3, wherdg=0.2 m remains unchanged in all
test conditions. Three subgraplia)—(c), in Fig. 3 represent
the results fold=—0.15, 0, and 0.15 m/s, respectively. The
ordinates of each subgraph represents the valu&sasfd T
and the abscissa represents the value ldkg. Each sub-
graph is composed of eight lines. Two of them with the same g/t
type of line type represent the effects of a specific permeable
condition. The upper line of the two lines represents The
curve and the lower is thig curve. The line types from top to
bottom represent the results for impermealfle,10, f=5,
andf=1 conditions, respectively.

R/T

15

2.5

Figure 3 obviously reveals that the maximum valudRof
andT occur in impermeable case for a givek/R, and that

2k/k,
(c)

they decrease asdecreases. Also, the same conclusion as

that given by Maset al® is obtained: the minimum values

of R and T occur underf=1 condition, at which energy
dissipation is maximum. In Fig.(B), whenU =0, the reso-
nant reflection coefficientR, (=maximum R) occurs at
(2k/kp),~1. However, whenJ #0, R, occurs at (R/Kp),
#1, as can be seen in FigsaBand 3c). Figure 3a) indi-
cates thaR, occurs at (&/k,),>1 whenU<O0 (i.e., current
moves in the opposite direction to that of the transmitte
wave. Figure 3c) shows thatR, occurs at (R/kp), <1

whenU>0 (i.e., current moves in the same direction as the

transmitted wave Also, we can see thd, increases ag/

increases from a negative to a positive value. Therefore, the kj—k,—k,=0,
current velocity does affect the Bragg resonance condition.

An explanation of the shift of (R’k,), due to the current
effect is given in the following paragraphs.

Liu and Yué* explained the mechanism of Bragg reso-

nance very well using nonlinedsurface wave—wave reso-

FIG. 3. Effect of currents on the reflection and transmission coefficients
over the sinusoidal ripple bottom for the casermf&4, hy=0.2m, and
D/h=0.32.(a) U=—0.15 m/s,(b) U=0 m/s,(c) U=0.15 m/s.[—: imper-
meable, ---: permeablef €10), ———: permeablef&5), ——: permeable

(f=1).]

umber, andk, is the wave number of bottom undulation.

he associated angular frequencies @re w,, and 0. The
following equations must be satisfied to obtain the Bragg
resonance:

(48)
(49

In the case olU=0, Eq. (49 implies |k;|=]|k,|. Therefore,
resonance occurs whek,=|k;|+|k,|=2|k||=2k;, i.e.,
(2k/k,),=1. WhenU >0, Eq.(49) implies|k;| <|k|. Equa-

wi— w,=0.

nant interactions in the absence of bottom undulations. Herdion (48) dictatesk,= |kj| + |k,;|>2|k;|=2k;, which implies

our condition is similar to their class | Bragg condition. resonance occurs as K/X,),<1. Similarly, it is expected

Therefore, three-wave resonance is imposed here to elucidatieat Bragg resonance occurs ak(R,),>1 for U<0. Our

our Bragg resonance with a current present. numerical results clearly accord with this explanation.
Consider the case of an impermeable sea bottom, where Seven different current velocities from0.15 to 0.15

k; is the transmitted wave numbek, is the reflected wave m/s are used in the numerical tests to determine how current
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1.20 — rents, longshore currents. The prediction of near-shore wave
transformation without considering the presence of those
1.10 currents, may thus be inaccurate. Therefore, to mimic the
real near-shore wave transformation, more general wave
(2k/ky), 1-00 equations were derived for the wave propagation over sea-
beds with rapidly varying undulation and currents.
0-90 Various conditions were examined by the present nu-
merical model. According to our numerical results, the cur-
I | rent does affect the Bragg resonance conditionUAsO, the
015 010 005 °~8° 005 010 015 maximum reflection coefficienR, occurs at (R/kp),<1.
When U=0, R, occurs at (R/k,),~1 and R, occurs at
FIG. 4. The effects of current on (2k/ky), . (2k/Kkp);>1 whenU<O0. The shift of (X/k,), is also well
explained by the nonlinear three-wave interaction theory
_ _ mentioned by Liu and Yu& From our results, it is known
velocity affects the resonant relative wave numbedi€), . thatR, increases ab increases from a negative to a positive
Figure 4 summarizes those results, indicating tha/kg);  yajue. However, the current obviously does not afféct
decreases abl increases. Also, the numerical calculations negr the resonance region, the current also significantly in-
show that the linearized friction factéythe mean thickness f,ences the normalized total wave enerd@?+T2. R?
of porous layets, and the inertial coefficient have negli- | 72~ 1 whenU>0 andR2+ T2<1 whenU<0.

gible effects on (R/kp), . _ The present study can be applied to the design of an
To |nvest|g2ate zthe current effect on normalized totalgificial sandbar in a near-shore region to protect the shore
wave energyR“+T7, this study calculates seven different fom wave attack. Figure 3 shows that suitable permeability
current velocities for the case of an impermeable bottom, ags the ripple bottom may significantly redude. and T, .
shown in Fig. 3. Figure 5 displays the resultiR§+T2 In Therefore, we recommend that using a permeable material
this figure, seven lines from top to bottom represent the reyith suitable friction factor to manufacture artificial ripple

sults forU=0.15, 0.10, 0.05, 0--0.05, —0.10, and—0.15  pottoms should be an effective way to reduce the height of
m/s, respectively. As expected, when total wave energy igansmitted waves.

conserved for the zero-current case, the valueRd# T2
equals one, as the solid line in Fig. 5 displays. The figure
also indicates that current significantly affects total wave enACKNOWLEDGMENTS
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