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ABSTRACT

The presence and pattern of Langmuir circulation can be detected using side-scan sonar. The circulation
creates bands of subsurface bubbles, scatterers of high-frequency sound, in the downwelling region beneath the
surface convergence. The bands are clearly visible in sonographs. A common process of development is for
them to join in pairs.

The stability of the circulation pattern is examined, making a number of simplifying assumptions. In particular,
we represent the Langmuir cells as linear vortices. These are subjected to small disturbances. When these are
restricted to two-dimensional motions normal to the axes of the vortices, stable modes are found in part of the
parameter range in which the windrow separation is large in comparison to an appropriate depth scale, such as
the depth of the vortex core in a very deep mixed layer or the depth of the thermocline or lake when this is
finite. These modes are destabilized to collective instabilities when three-dimensional motions are permitted.
The dominant mode of instability in the parameter range in which Langmuir circulation is mostly found is,
however, a pairing mode (consistent with the sonar observations), having an axial wavelength similar to the
observed downwind extent of windrows.

The growth rates of the instability agree favorably with those expected from observations. Further study is
appropriate in view of the possible importance of this instability as a mechanism for dispersion of floating
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material or diffusion of soluble matter in the sea.

1. Introduction

The role of Langmuir circulation in promoting ver-
tical transport and diffusion in the upper-ocean
boundary layer has been described at length (Langmuir
1938; see also reviews by Pollard 1977 and Leibovich
1983), although its effects are still poorly understood
or quantified. Its possible importance in horizontal
dispersion has, however, been recognized only rela-
tively recently (Csanady 1974; Faller and Auer 1987).

Langmuir circulation consists of a quasi-steady pat-
tern of parallel vortices, usually oriented downwind,
and of alternating sense of circulation or vorticity.
Flotsam accumulates on the surface of the water in the
convergent motion between alternate vortex cells,
where “windrows” are formed above downward-mov-
ing water at the cell boundaries. This floating material
will remain in the intercell position and separated from
that in adjacent windrows, but being carried downwind,
until it is cast upon the leeward shore or, as we shall
suppose here, until the local circulation pattern breaks
up. Similarly, a passive, neutrally buoyant tracer may
tend to be contained within one circulation cell and
so constrained in its dispersal zone; it will be passed
only slowly to neighboring cells by intercell turbulence
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on scales smaller than the cell dimensions, at least until
the circulation pattern breaks down, when a relatively
rapid lateral dispersion to adjoining cells may occur.
Dispersion across the wind direction of floating ma-
terial, passive tracers, or even dissolving and rising
bubbles or swimming organisms may thus depend crit-
ically on the breakdown of the circulation pattern, how
often this occurs, and on the transfers that then take
place between neighboring cells. This mechanical con-
cept of medium-scale lateral dispersion (medium be-
tween the subcell-scale and mesoscale eddy turbulence
of a scale much larger than the cell dimensions) offers
the possibility of improving the parameterization of
subgrid-scale effects in models of turbulent diffusion
in the ocean mixing layer and of extending their pre-
dictive application to tracers of different kinds.

How then do the circulation cells break up or amal-
gamate? Advances in the application of sonar to the
study of the upper ocean (Thorpe and Hall 1983;
Thorpe et al. 1985) have the potential to address this
question. Figure 1, kindly provided by M. Curé, illus-
trates the information now available. This is a sono-
graph obtained using side-scan sonar mounted on a
fixed tripod on the steeply sloping side of freshwater
Loch Ness at a depth of 40 m. The mean depth is 150
m. The 90-kHz sonar produces a beam that is tilted
up at 20° from the vertical. The beam is some 2 deg
wide in the horizontal and 46 deg in the vertical plane.
It points across the 1-km-wide loch and is approxi-
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FiG. 1. Sonograph showing range of acoustic targets versus time made from a sonar pointing across the wind direction in wind speeds of
13 m s~'. The bands are due to linear clouds of bubbles in the surface convergence zones and neighboring descending current regions of
Langmuir circulation cells. Convergent patterns are seen, for example at A. These patterns may be seen more clearly by viewing the figure

from the left at a low angle.

mately normal to the loch axis. The sonograph was
made in a wind speed of about 13 m s™' and fetch of
some 20 km. It is a range-versus-time display, and
shows bands due to sound reflected from clouds of
subsurface bubbles caused by breaking waves and car-
ried into zones below the windrows (themselves often
composed of floating bubbles) by the locally convergent
pattern of flow set up by the Langmuir circulation.
There they form acoustic targets with large scattering
cross sections to high-frequency sound, which are vis-
ible on the sonograph (Thorpe 1984).

Two scales of structure can be seen in the bands. At
A, for example, bands with a relatively small separation
(typically 2-6 m) have an apparent motion toward a
larger-scale, more persistent neighboring band. They
amalgamate with the larger band in about 2-3 min.
Some of these small bands are bubble clouds left by
waves breaking in, or close to, the sonar beam that do
not have extensive downwind extent. Their cross-wind
advection does, however, provide a measure of con-
vergence speed in the larger-scale structure, typically 5
cm s~!. Multiple scales of windrows have frequently
been observed before, for example, at sea (Weller and
Price 1988) and in the laboratory (Faller and Caponi
1978), and they are found in numerical models (Lei-
bovich and Paulucci 1980). The smaller scales appear
to be advected by the larger scales.

The bands with larger separation seen in the sono-
graph are typically 15-20 m apart and persist for 15—
30 min. They are usually associated with floating foam,

which is visible in windrows on the surface. They are
observed to have a downwind extent of order 10 times
their separation scale. Curé has used an objective pro-
gram to identify the mean pattern of the larger bands
visible in Fig. 1, and this is shown in Fig. 2. Several
particular features are evident. The bands appear to
amalgamate or join in pairs (e.g., at places marked by
arrows), but not to bifurcate. Some bands appear to
terminate with no amalgamation, and this occurs about
as often as does pairing. There is also a generally ob-
served drift of the bands in a direction to the right of
wind direction—a tendency observed and remarked
on earlier (Thorpe and Hall 1982) in relation to wind-
rows. This may be a Coriolis effect. It seems unlikely
to be due to waves or instability, which would be ex-
pected to force motion equally in either direction. It
is, however, with the termination and amalgamation
of the larger-scale bands that we are concerned here.
In the theoretical discussion that follows, we imagine
that the pattern of flow found in Langmuir circulations
has already been established in a quasi-steady state and
can be represented by a linear array of parallel, equally
spaced vortices of alternating signs lying on a plane
parallel to the water surface and representing the large-
scale patterns observed in the sonograph. Our objective
is to provide a basis for understanding the possible
modes of breakdown of the circulation pattern, and
hence, how and on what time and space scales lateral
diffusion may occur, by examining the stability of the
vortex array. We shall suppose that the mechanism
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FIG. 2. The banded pattern seen in Fig. 1 showing the amalgamation or pairing of bands. This was obtained by identifying and connecting
regions of maximum backscatter. Arrows mark places where major bands amalgamate, and crosses where they terminate.

that generated the vortices is no longer operative, or
rather that forcing is no longer coherent or is dimin-
ished to such an extent that the established vortices are
free to interact. The precise generation mechanics of
Langmuir circulation (reviewed by Leibovich 1983) are
still poorly understood. The assumption that forcing is
no longer dominant at the time of observation of the
instability of the cells may in general be unjustified,
but it offers simplification as a first step toward a more
exact description in which some balance between forc-
ing and instability will have to be considered. We shall
conclude that two classes of instability appear most
likely: the first is a pairing mechanism similar to that
observed in the instability of a vortex sheet or free shear
layer, and the second a collective mode in which many
vortices may be involved. We estimate the magnitude
of the growth rates of instability and discuss the pre-
dictions in the light of observations.

The approach here is distinct and quite different
from that of Leibovich and collaborators (Moroz and
Leibovich 1985; Leibovich et al. 1989), who have ex-
amined the nonlinear stability of flows in which cells
develop, using a truncated set of equations and con-
fining attention to two-dimensional disturbances. A
variety of possible states has been described in that
analysis, including period-doubling bifurcations and
period-doubling cascades to chaotic motion. Some
conditions found in constrained flows are not repro-
duced when lateral boundary conditions are relaxed,
and traveling waves and other novel steady states be-

come evident. (The traveling waves are of particular
interest in view of the commonly apparent cross-wind
migration of windrows.) Features of the analysis absent
in this study are the maintenance of constant and con-
tinual forcing by stress or by thermal boundary con-
ditions and finite (eddy) viscosity. Here we neglect the
effects of forcing and of the turbulent diffusion of mo-
mentum, but include those three-dimensional effects
that, in view of the foreseen application to lateral dis-
persion, are essential.

2. The models

a. An array of vortices near a boundary in water of
infinite depth

Consider an array of line vortices each parallel to
the y axis and of alternating sign. The vortices are lo-
catedat x = nl;n =0, =1, £2, - - - and lie in a hor-
izontal plane, z = —A, so that each is distance / from
its neighbor and all are at a distance 4 from a rigid,
free-slip boundary located at z = 0. We represent the
free surface of the ocean or lake by this rigid plane and
ignore vertical displacements, recognizing that in prac-
tice those generated by the motions associated with
Langmuir circulation, although sometimes in excess
of 20 cm s™! (Weller and Price 1988), are small. The
fluid is supposedly inviscid and homogeneous with no
density variation. The flow field may be represented
by an unbounded fluid in which a second array of ““im-
age” vortices of signs opposite to the first is located at
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x = nl, z = h (Fig. 3). The velocity at the position of
the rigid boundary, z = 0, is then everywhere in the
horizontal plane, so satisfying the boundary condition
of zero vertical flow. The vortices are supposed to be
perturbed by a wave in the x-direction (a two-dimen-
sional disturbance) or by a disturbance with compo-
nents in both x and y. We may represent any general
disturbance by Fourier superposition, and it is therefore
necessary to consider only disturbances that are peri-
odic in x and y.

Lamb (1932) provides a thorough description of a
procedure to establish the stability in the case of two-
dimensional disturbances to an array of vortices all of
the same size, referring to earlier work, particularly
that of von Karméan (1911, 1912). The extension of
the procedure to include three-dimensional perturba-
tions, developed by Rosenhead (1930) and Crow
(1970), is carefully described by Robinson and Saffman
(1982, hereafter referred to as RS), who present an
extensive review of the literature, much of which was
directed toward an understanding of the stability of the
Karman vortex street. We shall here closely follow the
notation and method adopted by RS, to which the
reader is referred for details, and for brevity offer only
an outline of the procedure. The geometry considered
is similar to the symmetric double row of vortices ex-
amined by RS, the main difference being that here the
signs of the vortices alternate. Because of its symmetry,
the undisturbed state is one in which the vortices are
at rest; the net motion induced at the position of any
vortex 1s zero.

Consider first a two-dimensional perturbation, as
described by Lamb, in which the vortices are moved
to positions (n/ + x,, —h + z,) in the (x, z) plane. To
satisfy the boundary condition the image vortices move
to positions (n/ + x,, h — z,). The velocity induced at
position (x, z) by a vortex of strength T located at the
origin is

'y —I'x
2x(x? + y?) 2a(x? + y?))
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The motion of an individual vortex is then found by
summing the contributions of all other vortices, in-
cluding the image vortices, to determine the motion at
its location. Linearization is then carried out supposing
that the displacements (x,, z,) are small, to derive an
expression relating the rate of change with time of the
position of a selected vortex, say, that originally at (0,
—h), which subsequently has coordinates xp and z; as
a linear function of the displacements of all vortices.
We now put

X, = a€™ and z,= fe™, (1)
where 0 < ¢ < 27 is related to the wavenumber of the
disturbance along the line of vortices, ¢//, or to the
wavelength, 2x//¢. The equations then take the form

2x1? do
T _Ba+(C-4 2
T a+( )B 2
and
2xl% dB
o _U4+Cla-B 3
T 4+ O 8, 3
where
w2 1 1 &?
4= 4 [coshzkw + sinhzkw} 2°
B = i [2w¢ coshk(m — 2¢)  , sinh2k¢
4 sinhkn ™ sinh’kr
_ w¢ sinhk(r — 2¢)  «° sinh2k¢
2 coshkr 4 cosh’kw |’
C= w¢ coshk(r — 2¢)  «* cosh2k¢
B 2 coshkw 4
1 1 _ T sinhk(m — 2¢)
cosh’kr  sinh%kn 2 sinhkx '
/ 1’) \\ \:} I\%%css
SURFACE == ——mmmmmmmm e .
o e o et
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F1G. 3. Sketch of the vortex pattern and model image field for a set
of parallel vortices at a distance 4 from a plane boundary.
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and k = A/l. [The coefficients may be derived from
formulas given by Lamb (1932), recognizing that the
configuration of vortices is a combination of two sym-
metric arrays of corotating vortices with spacing 2/, the
sets being offset by /, or derived using summation for-
mulas given by Bromwich (1955).]

Seeking solutions proportioned to exp(p?) we find p
= (I2xl5)[-B = (42 — CH'?, so, noting that B is
pure imaginary, positive real roots are found only if
A?> C?. Instability occurs only if this condition is sat-
isfied, and the growth rate is then I'/2x [%(4% — C?)'/2,
Other disturbances are neutral. Substituting ¢ = 7.X
and 27k = Y it may easily be shown that the condition
for instability is

X?sinhY \2
2
> (coshXY coshY — X sinh XY sinhY 2 (4)

and 0 < X < 1, this is satisfied for

(coshY -

in0<Y<w
all X if

Y > cosh™!3. 5)

Figure 4 shows the stability curve, derived numeri-
cally from Eq. (4), and the nondimensional growth rates
(4% — C?%)'2, The vortex separation, /, corresponds to
the Langmuir cell width so that the separation of sur-
face convergence zones (or windrows) is 2/. If the depth
of the center of the vortices, 4, is less than 0.281/, the
vortex will be stable to all two-dimensional distur-
bances. The most unstable mode, that having the largest
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FIG. 4. The stability curve and growth rates for two-dimensional
disturbances to a vortex array at distance & from a plane boundary.
The horizontal coordinate is Y = 2wh/l where [ is the separation of
the vortices, and the vertical coordinate is X = ¢/r where ¢ = 2xl/
(wavelength of the disturbance). The number, N, of vortices per
wavelength is shown at the right. The dimensional growth rates are
found by multiplying the values shown by I'/27P.
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growth rate for fixed Y = 2xh/l, is the one with X = 1
(¢ = =). This is also the first mode of instability to
become unstable as Y increases to a value greater than
cosh™!3 and corresponds to a disturbance with wave-
length 2/, similar to the “pairing” mode of instability
observed to dominate in the growth of a free shear
layer represented by a line of parallel vortices all of the
same sign.

A three-dimensional perturbation involves both the
displacements in x, and z, described above and a fur-
ther y displacement, y,, of a vortex element. The cor-
responding displacements of the image vortices are (x,,
Vs —2n). The major source of complexity is that, as
described by Crow (1970) and RS, a vortex will now
suffer from a self-induced interaction that produces
singularities. These can be avoided by supposing that
it has a finite core of radius a. Following RS we suppose
that within the core the vorticity is uniform (in their
notation, f= 1) and that the core radius is small com-
pared to the separation length /.

We derive three equations describing the motion of
a selected vortex element in the three directions x, y,
and z, which are linearized as before. We can now
specify disturbances to the position coordinates x;, y,,
z,, which are proportional to «, 3, and v times exp(ing
+ imp,, respectively, where p,, is a Lagrangian variable,
—o0 < p, < 00, and m is an axial wavenumber. The y
equation decouples from the x and z equations, which
can then be written as expressions relating « and 8,

27l? do
T 4 —(4 — C—n)B — Ba, 6)
2xl? dB i _
TZ- A4+ C+ na— BB, @)
where
_ @  wlcoshkw 2 Y(gs) cosgp
4= 6 + sinhkw 25( by 7 ’
s [X(7) + ¢ .
B =2i El (-1 ST ( q: T Kz)(zT)] sing¢,
X(xml) ml) q* — KX
c=-2% +2El( l)"[—‘%ﬂ'%)y(f—)lcosq@
X(x) = xKi(x), ¥(x) = x*Ko(x) + xK;(x),
k=2h/l, T=(q*+ «*)"*ml,

and where K, K, are the modified Bessel functions of
the second kind,

(mi)? In 2 1
n= P ma v+ 4

where v, = 0.5772 is Euler’s constant. The quantities
with tildes can be found by interchanging X and ¢ in
the expressions for 4 and C. [These equations are de-
rived with a little algebra from (2.9) to (2.15) given by
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RS.] These equations reduce to the set of equations (2)
and (3) found above if m/ tends to zero, that is, if the
wavelength of the axial disturbance, 2wx/m, tends to
infinity.

Seeking again an exponential solution « and 8 o¢
exppt we find p = (T27I>){-B = [4 - C -4+ C
+ 1)}/ so that, since B is pure imaginary, we have
growing solutions provided that V' = (4 — C — )4
+ C + 5) > 0. The growth rate nondimensionalized
with T/2#/% is V12,

We have determined numerically the stability
boundaries ¥ = 0 and nondimensional growth rate at
ml = 0.5 and m/ = 1.0 taking ma = 0.1, and these are
shown in Fig. 5. Comparison with Fig. 4, which cor-
responds to m/ = 0, shows that the introduction of a
degree of freedom in which the vortices can wave or
meander along their length allows an instability to de-
velop in the previously stable zone at small values of
h/l. These have maximum growth rates at zero values
of ¢ and correspond to a collective instability in which
the vortices all meander together. At very small values
of Y there remains a zone of stability. Another effect
of allowing alongaxis waves is to stabilize the unstable
region at large Y and small ¢, raising the stability
boundary from its near zero ¢ position in Fig. 4 to a
value of ¢ = 0.457 at m/ = 1.0 in Fig. 5b.

We have examined the maximum growth rate at ¢
= & as a function of ml. At Y = 5 the maximum growth
rate lies between m! = 0 and m/ = 0.1. However, as Y
decreases the maximum growth rate is found at in-
creasing values of ml, reaching m/ = 0.5at Y = 1.9
and m/ = 1 at Y = 1.82. The mode with the maximum
growth rate in the pairing mode has an axial wavelength
that is very much greater than the vortex separation if

STABLE

of

[ 10

Y

THORPE

355

the vortices are deep (h// large), but that decreases as
the vortices come closer to the surface.

The effect of varying a/! appears to be small. For
example, at X = 0.3 (¢ = 0.37), the stability boundary
at ml = 0.5 varies for Y = 3.9 to 4.2 as a/! varies from
0.05 t0 0.2.

b. A vortex array in a layer of finite depth

In practice the field of motion associated with Lang-
muir circulation is of limited vertical extent, extending
at most to the sea or lake bed or to the thermocline in
stratified waters. Therefore, it is appropriate to consider
the stability of a vortex array confined between hori-
zontal boundaries. For simplicity we suppose that both
are stress free and rigid, separated by a distance # (the
thermocline or lake depth), and that the vortices are
located at middepth. The case considered in section 2a
may be regarded as an appropriate limit in the early
stages of circulation, when mixing has not yet extended
to the depth of a preexisting homogeneous layer, or in
which the depth of the center of the circulation pattern
is much less than the depth, while the present case
applies to the mature, fully evolved circulation pattern,
which is thoroughly mixed to full depth or to the ther-
mocline.

If we now take the position of the vortices in the
arraytobex=nl,z=0withn=20, 1, £2, - - - and
the vortex strength to be (—1)"Q, then the image array
required to satisfy the boundary conditions of no nor-
mal flow through the boundaries at z = +h4/2 is the
infinite array with vortices of strength (—1)"¥Q located
atx=nl,z=jhj=+1,+2 ... (Fig. 6).

The stability of this array to two-dimensional per-
turbations has been considered by Rosenhead (1929;
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FIG. 5. Stability curves and growth rates for three-dimensional disturbances to a vortex array at distance 4 from a plane boundary. (a)
and (b) show m/ = 0.5 and 1.0, respectively, where m is the wavenumber of the alongaxis disturbance and [ is the vortex separation. The

parameter af! = 0.1. The coordinates are as in Fig. 4.
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FiG. 6. Sketch of the vortex pattern and model image field for a set of parallel vortices midway
between plane boundaries separated by a distance A.

he also examined more complex distributions of vor-
tices). Stability is found if /] < 0.709, or if the depth
of the center of the vortices, //2, is less than 0.354/.

This is greater than the value found as the stability

limit in section 2a; an effect of the lower boundary is
to extend the range of stability; that is, to stabilize a
range of vortex depth to vortex separation ratios that
was previously unstable.

The stability characteristics can be calculated using
the procedure described in section 2a. This leads to
equations similar to Egs. (2) and (3) but in which the
terms, A, B, and C are now infinite series in j, the z
position coordinate. The condition for instability is
again given by 4> > C? where now

cosh2gYX cosh2gY  X? 2

A= q_zl sinh?2qY 4
hd coshqY 2. sinh2¢gXY
— _1 g —_ X —_
El =D sinh?qY Ex sinh2gY
C=x3 sinh(2g + )XY

o sinh(2g + 1)Y

q

_ °z°: cosh(2g + 1)XY cosh(2g + 1)Y
sinh’(2g + 1)Y

q=0

and where Y = wh/l and 0 < X = ¢/7 < 1 as before.

The stability curve and growth rates are shown in
Fig. 7. The most unstable mode, that having the largest
growth rate, is again the pairing mode with a wave-
length 2/. Comparison with Fig. 4 shows that the growth
rates are less than those found in the unbounded fluid
at similar values of 4//; the effect of the lower boundary
is to reduce growth rates or stabilize the instability.

A three-dimensional perturbation may also be an-

alyzed in a manner similar to section 2a with a resulting
pair of equations identical to (6) and (7) but with

A= - z -2 §1 -1 M‘f;znl) cosq¢
-2 E (—1* I:;:;Sz_lz;]g
and
c=4 E:l g (~1) [qz“;;);;i:‘;)’z\f(r)] cosq
_5 é X(Z;:nl) ,

Ais found by writing X for ¢ in the expression for 4,
and C is given by

=23 (- 1)”";’;"?’) —43 (-1
g=1 n=1
o X 2,2
X Lzl il (51?+ :Z:Z)f(r)] °°sq¢] ’

where m is again the axial wavenumber and « = A/l
As before, there is a growing disturbance with nondi-
mensional growth rate V72 if

=UA-C—nd+C+n>0.

Convergence of the series is quite rapid except near
¢ = w, and good numerical approximations may be
computed using available NAG library routines with
generally better than 1% accuracy. Figure 8 shows the
stability curves and growth rates at m/ = 0.5 and m/ =
1.0, taking a/l = 0.1 as before. The general behavior
is similar to that observed in the semi-infinite fluid
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FI1G. 7. The stability curve and growth rates for two-dimensional
disturbances to a vortex array midway between parallel boundaries
separated by distance 4. The horizontal coordinate is Y = wh// where
1 is the distance between vortices, and the vertical coordinate X = ¢/
= (as before). The number of vortices per wavelength of the instability
isN.

(Fig. 5), with the development of collective modes with
large growth rates at the smaller values of Y = nh/l.
At large Y the greatest growth rates are in the pairing
mode, as before. Here, however, near ¢ = v (or X = 1
in the figures) and at Y > 3, larger growth rates occur
at m/ = 0.5 than at m/ = 0 or at m/ = 1.0; the fastest-
growing modes occur at smaller axial wavelengths than
in the semi-infinite fluid. This is confirmed by Fig. 9,
which shows growth rates in the Y versus m/ plane at
¢ = 0.9x. (This value was chosen to avoid any uncer-
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tainty introduced by the slow convergence of series at
¢ = = and is sufficient for our purpose because we are
trying here to provide only semiquantitative results.
We are satisfied that the smooth approach of values to
¢ = = found in constructing Fig. 7 at Y > 3 indicates
that there is no singular behavior at ¢ = = other than
that involved in the slow convergent behavior of the
expressions for C and C, and that the growth rates of
¢ = = are only slightly greater than at ¢ = 0.97.)

The maximum growth rate is found at increasing
values of ml as Y decreases; for a fixed vortex separa-
tion, /, the axial wavelength of the fastest-growing dis-
turbance decreases as the depth of the mixed layer de-
creases. The largest growth rates increase as the depth
increases.

We have examined the sensitivity of these results to
changes in the chosen value a//, which represents the
nondimensional size of the vortex core. As found in
section 2a, the stability boundary is little changed,
varying from Y = 4.7 to 4.95 as a/! varies from 0.05
to 0.2 at ¢ = 0.37, and by a lesser amount at greater
¢. The maximum growth rates at ¢ = 097,3 < Y
< 10, vary by less than 1% for a doubling in a/l. The
largest variation in growth rates were found at ¥ = 1
and m/ = 1, being an increase of about 4% for a change
in g/l from 0.1 to 0.2. Therefore, it appears that the
results are insensitive to the selection of the size of the
vortex core provided that it is small compared to the
disturbance wavelength.

3. Discussion

The objective of the analysis described above is to
obtain insight into the way in which the pattern of
Langmuir circulation may become unstable. We have
made some gross assumptions to enable us to adopt a
simple approach while retaining some essential features
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FIG. 8. Stability curves and growth rates for three-dimensional disturbances to a vortex array midway between parallel boundaries.
The axes are as in Fig. 7. (a) and (b) show curves at m!/ = 0.5 and 1.0, respectively. The parameter a/l = 0.1.
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FI1G. 9. The growth rates as functions of Y = wh/! and nondimen-
sional axial wavenumber, m/, for vortices separated by distance /
lying at middepth between horizontal planes a distance 4 apart and
at ¢ = 0.9 =. The dashed curve shows the maximum growth rate.
The parameter a/l = 0.1.

of the flow. Not least among the assumptions are that
the vortices are of equal strength, are equally spaced,
are infinite in number and in downwind extent, and
that the forcing that determined their generation is di-
minished or no longer dominant in determining their
mutual interactions. We ignore such effects as cross-
wind drift (section 1), tilted internal structure (Thorpe
and Hall 1982) or other asymmetrical flow structure
within cells, and small-scale turbulence.

A wide range of values of the ratio of windrow spac-
ing, L = 2, to thermocline depth (or, for shallow lakes,
total depth), 4, has been observed. Faller and Caponi
(1978) review oceanic values, which range from about
0.3 to 2, while Leibovich (1983) reports values that
range between 0.66 and 1.66. Smith et al. (1987) found
convergence zones with a separation ratio of about 3.
It appears that the size distribution of the circulation
pattern is generally multimodal, with a variety of su-
perimposed scales as observed in Fig. 1. The higher
values of the ratio probably represent the “dominant™
scales that occur once the structure has developed, and
when a pattern like that sketched in Fig. 6 is produced.
(The smaller scales may be more appropriately repre-
sented by the pattern sketched in Fig. 3.) The range of
values given by Leibovich corresponds to values of Y
in Figs. 7-9 of 9.5 to 3.8, respectively. (Faller and Ca-
poni’s range is broader, from 21 to 3.1.) This range of
Y is one in which the growth rates are generally mod-
erate, between the large values of the collective mode
at small Y and the increasingly large values at large Y.
Perhaps this contributes a reason for the existence of
the circulation pattern’s limited range of scales. In this
range the theory outlined above shows, however, that
the circulation pattern should be unstable, with a fast-
est-growing mode that corresponds to a pairing of vor-
tices with alongaxis wavelength to windrow separation,
w/ml of (taking Leibovich’s range, for example) 8.1 to
4.6, respectively, in reasonable agreement with esti-
mates. The corresponding nondimensional growth
rates are about 4 to 3, respectively. These correspond
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to dimensional values of e-folding growth times of w12/
2T divided by 4 or 3, respectively, where T is the
strength of the equivalent vortex. )

We may estimate I" by noting that the surface cur-
rent, 4, immediately above a vortex core can be found
by summing over the array of vortices shown in Fig.
6. It may be shown (using summations given by Brom-
wich 1955) that

T
L

(=1
 sinh(g + 1/2)Y’

M 8

il

q

which can be determined approximately as 0.6T'/L at
Y = 3.8 or 0.03T'/L at Y = 9.5, and hence, we can
determine the growth times in terms of u as 0.314.L/u
and 0.013L/u at Y = 3.8 and 9.5 or L/h = 1.66 and
0.66, respectively. We conclude, therefore, that given
a separation of windrows of 20 m and convergence
speeds of 5 cm s™! (Fig. 1), the typical time scales for
instability (say 10 times the e-folding time scale) lie
between 0.9 and 21 min. The upper end of this band
corresponding to larger values of /4 seems consistent
with observations described in section 1; the lower end,
corresponding to small values of L/Ah, appears to be
unrealistically small, perhaps implying that cells of such
dimensions can, at best, be transient. A more appro-
priate measure of the unstable nature of the vortex
pattern associated with Langmuir circulation is that
provided by the periods of time (2-30 min; Leibovich
1983) that are taken for a set of windrows to disappear
and for a new set to become reestablished and reorien-
tated following a sudden change in wind direction. The
observed time response for cells of different scales has
been reviewed by Faller and Auer (1988; see their Fig.
3), and is about 11 min for 20-m scales. This period is
consistent with those predicted here for vortices to be-
come unstable if left, without forcing, to interact with
each other.

A description of the finite-amplitude evolution of
the instability and the breakup of the Langmuir cells
is beyond the scope of the linear, inviscid, small-am-
plitude theory, but we may conjecture on what occurs.
In the “pairing” instability of a vortex sheet, vortices
(all of the same sign) amalgamate in pairs, enhancing
the vorticity at each new center and doubling the dis-
tance between vortex centers. Here, however, the pair-
ing vortices are of opposite signs and pairing, together
with turbulent dissipation, may result in a cancellation
of vorticity. If the pairing, or amalgamation, occurs
between two vortices lying between windrows, the net
circulation in that region will be suppressed and one
might expect a diffusive growth of the neighboring cells
to occur to fill the intermediate region, resulting in an
apparent amalgamation of windrows (Fig. 10a). If,
however, the pairing vortices lie on either side of a
windrow, their amalgamation and the cancellation of
circulation will remove the convergent flow supporting
the windrow and subsurface bubble band, which will
therefore terminate without amalgamation with a
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FiG. 10. (a) Amalgamation of bubble bands by vortex pairing.
“Cells™ or vortices at 4, B in (i) combine as sketched in (ii) with a
weakening and cancellation of the circulation and dissipation of en-
ergy by turbulence. Adjoining cells spread diffusively, carrying the
associated windrows and bubble bands to join together at (iii). (b)
Termination of bubble bands by vortex pairing. The vortex pair 4,
B in (i) amalgamate as sketched in (ii), with the removal of surface
convergence and downwelling leading to the dispersal of bubbles and
the disappearance or termination of the bubble band. Adjoining cells
may spread diffusively as in (iii), but their sense of circulation is not
such as to reestablish the windrow.
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neighboring band (Fig. 10b). Both processes are seen
in Fig. 2. Even in the relatively well controlled envi-
ronment of the laboratory, the amalgamation of vor-
tices by pairing in Kelvin—Helmholtz instability does
" not occur everywhere simultaneously (see, for example,
Thorpe 1971, Fig. 5), so that the disappearance of bub-
ble bands or their amalgamation may occur in a rather
random way, as is observed. There appears to be an
equal likelihood of the pairing of windrows that lie on
either side of a surface convergence or of a divergence
zone, so the termination of bubble bands should occur
about as frequently as does the amalgamation of bands,
as is seen in Fig. 2.
We conclude the following:

(1) There are two favored modes of instability of
uniform vortex arrays taken to represent Langmuir
circulation. The first is found when the vortex sepa-
ration, L, is large in comparison with the depth of the
vortex core or the water, or thermocline, depth, 4. Vor-
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tices then oscillate together collectively with a nonzero
alongaxis wavenumber and large growth rates (Figs. 5
and 8). In the second mode at larger values of /L,
vortices are involved in “pairing.” Here the fastest-
growing mode has an axial wavelength that decreases
as h/L decreases.

(ii) Growth rates are reduced at equivalent values
of h/L, in the presence of a thermocline, with stable
modes occurring when motion is two-dimensional
(zero axial wavenumber) provided A/L is sufficiently
small.

(iii) Within the reported range of values, and for a
mixing layer bounded by a thermocline, the fastest-
growing waves are predicted to correspond to a pairing
mode, and pairing is indeed observed (Fig. 2). The
downwind scale is predicted to be 4.6 to 8.1 times the
windrow separation, with the values increasing as the
windrow spacing decreases in comparison with the
thermocline depth. This prediction is of the right order
of magnitude, but more observations are needed. The
growth rates are predicted to increase linearly as the
circulation increases at fixed scales of L and A, and
have values that appear to be somewhat larger than
observations suggest under conditions of steady forcing,
but that are quite consistent with the time taken for
structure to be lost when changes in wind direction
occur.

The simple theory, however, provides at best an or-
der-of-magnitude estimate of the growth rates, and a
qualitative description of the structure of the unstable
modes, because of the radical assumptions that have
been made to produce this simplistic model. Further
work is essential if the processes causing pairing and
other pattern variations leading to dispersion in Lang-
muir circulation are to be adequately described, quan-
tified, and understood.
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