
A method to observe the reflection and tunneling
of ocean waves at a submarine canyon∗

Jim Thomson
WHOI-MIT Joint Program in Oceanography, Woods Hole, Massachusetts, USA

Steve Elgar
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA

T.H.C. Herbers
Naval Postgraduate School, Monterey, California, USA

In contrast to methods used to estimate the amount of reflection from impermeable structures [Dickson

et al., 1995], estimation of the reflection of a canyon must also account for transmission. Here, inverse

techniques [Coleman and Li, 1996] are used to determine the reflection (Rs, Rn) and transmission (Ts,

Tn) coefficients, as well as the incident directional spectra (Ds, Dn) and reflected phases (ψs, ψn) of the

wave fields on the south (s) and north (n) sides of the canyon that are most consistent with observations

of pressure and velocity.

The random wave fields on the north (n) and south (s) sides of the canyon consist of incident, reflected,

and transmitted (from the other side of the canyon) waves such that the surface elevations ηs and ηn can

be written as integrals over wave components at each frequency and direction, given by Eqs. 4 and 5,

and repeated here for convenience:

ηs =

∫

ω

∫ π

2

θ=−π

2

ds

(

ei(mx+ly−ωt) +Rse
i(mx−ly−ωt+ψs)

)

+ dn

(

Tne
i(mx−ly−ωt)

)

, (A1)
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where ds and dn are the complex-valued differential amplitudes of the incident wave components at radian

frequency ω and direction θ relative to the cross-canyon coordinate y. The variables Rs, Rn and Ts, Tn

are reflection and transmission coefficients, x is the along-canyon coordinate, and t is time. The along-

canyon (x) and cross-canyon (y) components of the wavenumber vector are m = k sin θ and l = k cos θ,

respectively. In this two-quadrant (−π
2 < θ < π

2 ) system, the direction of y propagation is given explicitly

by the sign of the exponent in e±ly because l is always positive.

Assuming specular reflection, the reflected wave fields have amplitudes Rsds and Rndn that propagate

away from the canyon (i.e., e∓ly) with phase shifts ψs and ψn relative to the incident wave field. Conserving
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energy, the remaining (i.e., nonreflected) portion of the wave field is transmitted across the canyon with

amplitudes Tsds and Tndn.

The cross-canyon velocity v, along-canyon velocity u, and pressure p fields induced by surface waves

(Eqs. A1 and A2) can be determined from a linear, hydrostatic momentum balance (appropriate for

infragravity waves in 20-m water depth) given by

∂v

∂t
= −g

∂η

∂y
,

∂u

∂t
= −g

∂η

∂x
, p = ρgη, (A3)

where g is gravitational acceleration and ρ is density.

Substituting ηs and ηn into the momentum balance (Eq. A3), using the Fourier transformed result,

and applying the identities 2i sin(iα) = e−α−eα and 2 cos(iα) = eα+e−α yields the following expressions

for the frequency cross-spectra of the colocated pressure and velocity time series south (s) of the canyon

〈ps(ω) ·u?s (ω)〉=ρgκ
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〈us(ω)·v?s (ω)〉=κ2
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where κ = gk

ω
, ? is the complex conjugate, and 〈〉 is the expected value. Similarly, the auto-spectra are

〈ps(ω)·p?s (ω)〉=(ρg)2
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〈vs(ω)·v?s (ω)〉=κ2
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The incident wave directional spectra Ds and Dn are defined as

Ds(ω, θ) =
〈ds · d

?
s〉

dωdθ
, (A10)

Dn(ω, θ) =
〈dn · d?n〉

dωdθ
. (A11)

The incident waves fields on the north and south sides of the canyon are independent of each other, and

thus 〈ds · d
?
n〉 = 〈dn · d?s〉 = 0.

Expressions for cross- and auto-spectra at the north side of the canyon are obtained by exchanging

all subscripts (s↔n) in the expressions above (Eqs. A4-A9) and changing the sign of the integrand in

Eqs. A5 and A6.

The real-valued terms describe the progressive wave field, and the imaginary (i) terms (i.e., the

quadrature in the cross-spectra 〈p · v?〉 and 〈u · v?〉) describe the partial standing wave patterns owing to
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sums of incident and reflected waves. In practice, the expressions for cross- and auto-spectra apply only

to observations near the canyon walls, because over large distances (i.e., many wavelengths) standing

wave patterns are obscured within a finite-width frequency band.

For computational efficiency, the incident directional spectra (Eqs. A10 and A11) at each frequency

band are modeled as [Donelan et al., 1985]

Ds(θ) = Ms cos2Ss

(

θ − Θs

2

)

, (A12)

Dn(θ) = Mn cos2Sn

(
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2

)

, (A13)

where Θs and Θn are the centroidal directions, Ss and Sn describe the spread in direction about the

centroid, and Ms and Mn are the spectral peak values. The results are insensitive to the specific unimodal

shape used for the incident directional spectra. The centroidal directions Θs and Θn were used to separate

the data sets (at each frequency band) into normally (|Θ| < 20◦) and obliquely (|Θ| > 30◦) incident waves.

Assuming directionally narrow spectra, the reflection (Rs, Rn) and transmission (Ts, Tn) coefficients are

assumed to be independent of direction at each frequency. The spreading parameters (Ss, Sn) were used

to weight individual estimates of R2 before averaging over the collection of data runs (e.g., the symbols

in Figure 2).

The phase shifts ψs and ψn of the reflected waves relative to the incident waves were allowed to vary

over each directional spectrum by assuming

ψs(θ) = 2∆ysk cos θ, (A14)

ψn(θ) = 2∆ynk cos θ, (A15)

where ∆ys and ∆yn are the (unknown) distances between the reflector and the instrument locations (i.e.,

ψ is the phase change associated with propagating toward and back from the reflector). The resulting

inverse estimates of ∆ys and ∆yn are consistent with the measured distances (Figure A1). The small

deviations from theory may be caused by incorrectly assuming all the reflection takes place at a single

location.

Assuming energy is conserved (i.e., R2
s + T 2

s = 1, R2
n + T 2

n = 1), the inverse method finds the north

(n) and south (s) values of Θ, S,M,R, and ∆y that are most consistent with the cross- and auto-spectra

of the observed time series by minimizing a normalized root-mean-square error [Dickson et al., 1995]

ε =

√

∑

(obs− derived) · (obs− derived)?
∑

(obs)(obs)?
, (A16)

where
∑

is the sum over the six spectral values from the south side (Eqs. A4-A9) and the six spectral

values from the north side. Applying recent improvements to Newton’s method [Coleman and Li, 1996],
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the inverse algorithm begins with an initial guess for each unknown, and solves a locally linearized version

of the equations for the cross- and auto-spectra to find the small change in each unknown that produces

the greatest reduction in ε (i.e., the method iterates down-slope in ε until the minimum is found). Initial

guesses for Θ, S, and M are provided by estimates of directional moments of the wave field based on the

measured pressure and velocities [Kuik et al., 1988], and the initial guesses for R are based on long-wave

theory [Kirby and Dalrymple, 1983]. The results are not sensitive to the initial values, and the same

inverse solutions are obtained with random initial guesses (although computational time is increased).

The residual errors (Eq. A16) approximately follow the expected χ2 distribution of fluctuations in

spectral estimates from finite length data records [Wunsch, 1996]. The percent of observed variance

captured by the inverse method (defined as 100 × [1 − ε2]) is 90% when averaged over all infragravity

frequency bands for all 50 data sets.
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Figure A1: Distance (m) between the reflector and the instrument location versus frequency (mHz) and
period (s) at the (a) south and (b) north sides of the canyon. Symbols are estimates from the nonlinear
inverse method and solid lines are the measured distances from the steepest portion of each canyon slope to
the instrument site at that side. Instrument locations were determined within ± 10 m (the width of the solid
lines) with differential GPS. The theory assumes that waves propagate from the instrument site to a vertical-
canyon-wall reflector along a line of constant y and back, neglecting possible phase shifts at the sloped walls.
Vertical lines are ± one standard deviation of the estimates.
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