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Abstract
The present study proposes an approach for robust estimation of the
instantaneous motion field from a time-lagged pair of PIV images. The
method is based on phase correlation, where the phase of the Fourier
components is used for motion parameter estimation. Unlike the cross
correlation-based techniques, this technique uses ‘whitening’ FIR filters to
sharpen the cross correlation maxima, thereby improving the accuracy of
identification of the peak. The proposed method also combines the
advantages of the phase correlation and the cross correlation techniques in
determining the reliability of the estimates, thus providing a method of
filtering out a significantly large number of spurious vectors. This reliability
metric helps reduce the possibility of over-smoothing the flow field when
performing data validation. With regard to the efficiency of the technique,
both phase correlation and cross correlation are derived from the Fourier
components of the same image region. Each of the estimates can thus be
obtained in parallel, without increasing the computational complexity of the
system. Unlike many region-based methods that are currently available, the
entire motion is decomposed as a global and a local motion field, which
helps accurately obtain high interrogation resolution estimates for the local
motion field.

Keywords: PIV, motion estimation, phase correlation, cross correlation,
image multi-scale hierarchy

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Particle image velocimetry (PIV) is a non-intrusive
measurement technique used to obtain spatially dense maps
of instantaneous velocities from time-lagged images of a
flow field [1]. As described by Christensen [9], the main
advantage of using PIV in studying complex flow phenomena
is that PIV can be used to measure two- or three-dimensional
instantaneous flow over a planar domain.

In a regular PIV experiment, the flow is seeded with tracer
particles and illuminated with a sheet or volume of light from
a pulsed laser. The light scattered off from the particles is

captured in the form of a moving pattern, an analysis of which
provides an accurate measure of the flow [32].

Typically, algorithms that have been developed for the
analysis of moving patterns of tracer particles are region-
based methods that compute the cross correlation between
the interrogation regions obtained from the two images [2, 43].
Region-based techniques estimate the average motion of small
groups of particles, thereby making the method noise tolerant
and robust [28]. Among the various modifications to the
region-based method, Scarano and Riethmuller [35] proposed
an algorithm where the displacement is predicted and corrected
by means of an iterative procedure. As reported by the authors,

0957-0233/05/030865+13$30.00 © 2005 IOP Publishing Ltd Printed in the UK 865

http://dx.doi.org/10.1088/0957-0233/16/3/031
http://stacks.iop.org/mt/16/865


M Thomas et al

the window displacement iterative multigrid (WiDIM) method
is extremely robust due to the use of this iterative prediction-
correction scheme. The method proposed in this paper is very
similar to the WiDIM method; however it has an additional
advantage wherein the total motion is decomposed into a
global motion field and a local motion field. This increases
the robustness in the estimation of the moving patterns of the
tracer particles.

Unlike the region-based methods, where the intra-region
motion is assumed to be accurately modelled as a translation
of coherent groups of particles, the intensity-based differential
methods [31] estimate the motion via the optic flow equation
(equation (1)). The motion parameters are extracted using
some form of regularization such as smoothness of the flow
field. In [12], Corpetti et al discuss a minimization-based
motion estimation algorithm for fluids based on the brightness
constancy equation and fluid dynamics based regularization
parameters. The biggest disadvantage with the differential
methods is the requirement of strong gradient information in
the images for the displacement estimates to be accurate. In
synthetic images, this condition can be easily fulfilled but in
real images this requirement is frequently violated leading to
inaccurate results.

The estimation of motion in most PIV experiments has
been found to suffer from many bias errors [9]. ‘Peak Locking’
errors are the most significant, where particle displacements
are biased towards full or half pixel values and it arises mainly
due to the choice of the sub-pixel estimator. As peak-locking
presents a serious limitation to the performance of any digital
PIV system, a number of solutions have been put forth. Gui and
Wereley [15] introduced a window-shift technique to reduce
the peak locking effect. The proposed method estimates very
small particle image displacements by continuously shifting
the interrogation window and using bilinear interpolation of
the grey values, along with a correlation-based interrogation
method. In spite of the improved accuracy attained by
this method, the biggest disadvantage is the increase in
computational complexity in interpolating the grey scale
values.

In handling the peak locking problem, Westerweel [42]
showed that the Gaussian sub-pixel estimator was better than
the quadratic. Marxen et al [25] compared the Gaussian
particle centre estimator for the particle tracking velocimetry
using the analytical solution and the least-squares Gaussian
parameter estimation. It was found that the analytical solution
for sub-pixel estimation using a 3-point Gaussian behaved
like the least-squares parameter estimation framework with
a minimum position error of 0.03 pixels. The authors
recommended the use of the analytical solution since the
computation was 100 times faster than the least-squares
fit. Roesgen [34] recently presented the ‘sinc’ kernel for
estimating the sub-pixel displacements, and showed that the
bias errors were completely suppressed. Despite the apparent
efficiency of the kernel in suppressing the bias errors, there is
a sparsity of research in utilizing the ‘sinc’ kernel to remove
bias errors and further investigation would be beneficial.
In developing our algorithm, we have used the analytical
Gaussian sub-pixel estimator and the comparative results with
the ground truth vectors indicate minimal bias errors.

Even with accurate sub-pixel estimators to deal with
bias errors, a consequent and almost always necessary post-
processing step involves the detection and replacement of
spurious displacements that arise from image ‘noise’ or
deficiencies in the evaluation method [41, 32]. For example,
the occurrence of spurious vectors can result from a locally low
particle image density or background noise from reflections
[18]. In [26], Nogueira et al describe various post-processing
steps for validating the estimated displacements in a PIV
experiment and also provide algorithms for the correction
of spurious vectors using interpolating filters. In the PIV
validation technique presented by Green et al [14], forward
and reverse projected vectors are computed at chosen analysis
points and the projected vectors are used to test the validity
of the vector estimated at the analysis point. This coherence-
based validation scheme provides accurate results. However,
the estimation of the forward and reverse projected vectors
causes a three-fold increase in the computational complexity.

In this paper, we present a method that estimates the
motion by first computing a global motion field and then uses
the global motion field as an initialization in estimating the
local motion. This decomposition into a two-level hierarchy
of flow estimation helps achieve very high spatial resolution
accurately. The global motion field is estimated using phase
correlation [38] while the local motion is obtained using a
robust voting scheme composed of phase correlation and cross
correlation in order to accurately identify possible spurious
vectors.

The organization of the paper is as follows. In section 2,
we describe the motion estimation technique that is being used.
This is followed by the details of the implementation where
the global and local motion estimation modules are described.
The results of the experiments with the standardized images
from JPIV [27] and the PIV Challenge 2001 [37] are presented
to test the validity of the scheme.

2. Motion estimation techniques

When a time-lagged pair of images is viewed under
the constraint of a small spatio-temporal difference, the
‘correspondence problem’ can be cast as the problem of
estimating the apparent motion of the image brightness
pattern [39]. Estimating this apparent motion or the optic
flow leads to the fundamental equation of motion analysis,
the image brightness constancy assumption, dE(x,y,t)

dt
= 0,

where E(x, y, t) is the image intensity, (x, y) are the spatial
coordinates and t is the time.

The first-order Taylor expansion of the brightness
constancy assumption gives the optic flow equation,

∂E

∂x

dx

dt
+

∂E

∂y

dy

dt
+

∂E

∂t
≈ 0 (1)

where dx
dt

and dy

dt
are the components of the motion to be

estimated from the image pair. Under the assumption of small
temporal resolution, the optic flow equation is considered valid
and many techniques have been developed to estimate the
apparent flow field between the two images [17].

Among the various techniques developed, differential
techniques derive directly from (1). Due to inherent
difficulties in performing numerical differentiation, region-
based matching techniques provide a possible alternative in

866



PIV motion estimation

estimating the displacement vector field [5]. This is done by
either minimizing an error criterion such as ‘sum of squared
difference’ (ε), or maximizing a similarity measure such as
‘normalized cross correlation’ (ρ) between the current image
block and potential candidates within a predefined search
window in the previous frame.

ε =
∑
x,x′

[E(x, t) − E(x′, t + �t)]2 (2)

ρ =
∑

[E(x,t)−E(x,t)][E(x′,t+�t)−E(x′,t+�t)]√∑
[E(x,t)−E(x,t)]2

∑
[E(x′,t+�t)−E(x′,t+�t)]2

(3)

where x and x′ are the spatial positions in the time-lagged (�t)

images, E()̇ is the mean of the region under consideration and∑
is defined over all x′(x′ = x + d) within a predefined search

window with d being the displacement to be estimated. The
phase correlation algorithm presented in section 2.1 falls under
the general class of region-based motion estimation.

2.1. Phase correlation

Phase correlation, like cross correlation, is derived from the
Fourier shift theorem which states that the time lag of a one-
dimensional signal is equivalent to a phase change in the
frequency domain. Thus, for two continuous functions f (x)

and g(x) in the two-dimensional Euclidean space, related
by g(x) = f (x + d) where d is the displacement, the cross
correlation between the two can be obtained as the inverse
Fourier transform of the product of the individual Fourier
transforms

Rfg(d) = F−1(F(f (x)) × F(g(x))�)

= F−1(F (u)F �(u) e−j2πuT d) (4)

where F(u) and G(u) are the corresponding Fourier
transforms of f and g with � being the complex conjugate
and u being the frequency components in the Fourier space.
From the shift theorem, we have G(u) = e j2πuT dF(u).

Given the correlation surface, motion is estimated by
finding the position of the maximum. But due to the aperture
problem [17], there are situations where the correlation surface
contains multiple peaks. Selecting the maximum from the
correlation surface in those cases does not provide the best
estimate. A solution to this problem is to sharpen the true
cross correlation peak by using ‘whitening’ zero-phase FIR
filters, H1 = |F(u)| and H2 = |G∗(u)| [24]. Thus prior
to computing the inverse transform in (4), we eliminate the
magnitude components from F(u) and G∗(u) using the FIR
filters. This modified correlation equation provides a Dirac
delta function centred at the translation parameters, which can
be estimated easily and more accurately.

℘fg(d) = F−1

(
F(u)

H1

G∗(u)

H2

)

= F−1

(
F(u)

|F(u)|
F�(u) e−j2πuT d

|F�(u)|

)

= F−1(e−j2πuT d)

= δ(x − d). (5)

Extensive studies on the use of phase correlation for
motion estimation have been provided in [38, 40], and in
general the technique is extremely robust when estimating
large displacements. An important advantage of motion
estimation methods based on phase correlation is their
insensitivity to illumination variation since the magnitude
terms are removed by the whitening filters [24]. Algorithms
based on the ‘cross correlation’ metric, however, perform
a selection which is biased towards points having higher
intensities and thus could provide incorrect displacements
represented by local maxima. The phase-based techniques
are also characterized by their insensitivity to correlated and
frequency-dependent noise which render them robust in the
estimation space [13].

The other notable advantage of phase correlation is that
the affine parameters, such as rotation, shear and scale, which
are coupled in the spatial domain, are separated from the
translation components into the magnitude and the phase
spectrum respectively in the Fourier domain. This is evident
from the affine Fourier theorem as proposed by Bracewell
[8], which provides the generalization to the Fourier shift
theorem under an affine transformation. Thus, given an affine
transformation between the two continuous functions, g(x) =
f (Ax + d) with d being the displacement and A = (

a b

d e

)
being the affine matrix, the relationship governing the Fourier
transformation of the two continuous functions is

G(u) = 1

�
e j 2π

�
(uA

T d)

∫ ∞

−∞

∫ ∞

−∞
f (x′) e j 2π

�
(uA

T x′) dx′

= 1

�
e j 2π

�
(uA

T d)F (uA) (6)

where � = ae−bd = det(A) and uA = �(A−1u). The affine
Fourier theorem describes the separation of the affine terms
and the linear terms in the frequency space. The estimation
of the displacement parameters can thus be performed in the
phase spectrum while the parameters of the motion governed
by the affine parameters can be estimated from the magnitude
spectrum [23, 33, 20].

Under the assumption that the local motion is linear,
the affine Fourier theorem gives way to the Fourier shift
theorem from which most region-based matching techniques
are derived. Thus, in the case where the local motion can
be approximated as linear, both cross correlation and phase
correlation would have a peak at the correct location. If the
underlying motion contains strong affine components, most
region-based techniques would provide the average motion
of the region that is analysed by the interrogation block.
Being a sharpened version of the cross correlation peak,
phase correlation is more sensitive to the presence of affine
components in the motion field. It thus provides a stronger
metric in determining the presence of nonlinear motion within
the interrogation block.

This idea forms the basis of our reliability measure, i.e.
given the phase correlation peak and the cross correlation peak,
the estimate is considered extremely reliable under the cases
where the peaks of the two estimated metrics coincide. If
the peaks of the two surfaces do not coincide, the region
under consideration does not have a unique linear velocity
and any linear model would only provide an approximation of
the motion.
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Figure 1. Creation of an image pyramid using a 3 × 3 filter.

The important advantage of this robust voting scheme is
that both the similarity metrics are derived from the Fourier
components of the same regions under consideration. Thus
performing the 2D fast Fourier transform (FFT) [11] once
does not significantly add to the computational complexity
over other cross correlation-based techniques.

3. Algorithm and implementation

In computing the optic flow, all techniques face two
interdependent problems which arise due to the choice of
the analysis window. The smaller the analysis window, the
greater are the number of potential candidates that have a
high correlation with the interrogation block. On the other
hand, there is a higher probability of having a combination of
various motions when the window size is large. This problem
is called the ‘generalized aperture problem’ and defines the
upper bound on the availability of accurate motion estimates
at high spatial resolutions [17].

One approach used in dealing with this problem is by
handling the motion estimation at multiple resolutions [4, 6].
This enables percolation of information from a coarser
resolution to a finer resolution in a computationally efficient
fashion. The disadvantage with this hierarchical process is
that any motion smaller than the degree of decimation is lost
during the process of creation of the resolution hierarchy.

The method implemented here has three processing
components. The first component estimates the global motion
that is taking place between the image pairs using a multi-
resolution image hierarchy [7]. The second component
estimates the sub-pixel level local rectilinear motion and
the third component performs the outlier removal and data
validation.

3.1. Global motion estimation

The global motion field is estimated by performing phase
correlation at each level of the image pyramid hierarchy
(figure 2). The image pyramid is computed for each image
of the image pair using a Gaussian filter followed by a 1:2
signal down sampling. This helps reduce the aliasing artefacts
that otherwise arise due to the down sampling [30]. This is
shown in figure 1 where a 3 × 3 neighbourhood is used in
creating the image pyramid.

At each level of the pyramid, the down-sampled image
pair is divided into a tessellation of blocks and the motion
field is computed, by performing phase correlation, over the

Figure 2. Flow chart for the estimation of the global motion field.

entire tessellation of blocks. The global displacement field so
obtained is median filtered to remove spurious vectors before
percolating the estimate from the coarser levels of the pyramid
towards the finer resolutions. At the finest resolution of the
image hierarchy, the global motion field is obtained [3].

Due to the periodic nature of the discrete Fourier
transform, the maximum measurable displacement using the
Fourier transform of a signal within a window of size W is
W/2. Thus, to capture translations of magnitude d, the window
size should be at least 2 max(dx, dy) where dx and dy are
the components of the displacement along the two coordinate
directions.

3.2. Local motion estimation

The global motion field obtained from the previous stage
provides the initial estimate for the local motion estimation.
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Figure 3. Reliability verification using (a) cross correlation (b) phase correlation.

Figure 4. Image blocks undergoing nonlinear motion. (a) Block from image 1. (b) Block from image 2.

The local motion field is obtained in a similar manner as the
global motion estimation in that phase correlation is performed
on a tessellation of blocks over the entire image. To improve
the accuracy of the estimate, the position of the peaks obtained
by phase correlation is verified by comparing the position
of the peak from the cross correlation surface, 	(d) =
[E(x, t)−E(x, t)][E(x′, t + �t)−E(x′, t + �t)].

Both 	 and ℘ can be computed from the Fourier transform
of the image block and each is used to cross verify the accuracy
of the other. If the positions of the two peaks are unchanged,
the estimate can be considered a very reliable estimate within
the region of comparison as shown in figure 3. Thus, it
provides a strong verification metric on the reliability of the
estimate.

The presence of a mismatch between the peaks indicates
the possibility that the region under consideration has
significant nonlinear motion. This is evident from the affine
Fourier theorem (6), where the affine parameters affect the
phase term to a greater extent. This can be seen in figure 4,
where two interrogation blocks from a region undergoing

motion are shown. Regions shown in the ellipses have been
picked manually to give an indication of the nonlinear motion
taking place within the region.

Given the two image blocks (figure 4), the peaks of
the cross correlation and phase correlation have a positional
mismatch and as can be seen in figure 5, the maximum of the
phase correlation has another strong component in the vicinity.
This positional mismatch indicates the possibility of multiple
motions being present in the interrogation blocks. Any linear
region-based scheme would provide an average estimate of the
motion within the window which would be inaccurate.

To rectify this, we compute a set of potential candidates
from the phase correlation and cross correlation surfaces if
there is a mismatch between the peaks

C = {phasei}
⋃

{max(	(d))} (7)

where phasei = κ max(℘ (d)) are the positional candidates
from the phase correlation surface (From experimentation we
found that κ = 0.75 provides reasonable candidates) and
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Figure 5. Peak mismatch indicating strong nonlinear motion using (a) cross correlation (b) phase correlation.

max(	(d)) is the position of the maximum from the cross
correlation surface3.

The best candidate is then obtained by computing
‘normalized cross correlation’ (ρ) at these candidate estimates
(C) and selecting the candidate having the highest value of
ρ. This technique does not provide the parametrization of
the higher order motion model but nevertheless, within the
constraint of a piecewise linear motion model, the method
provides the most robust solution possible. Thus, instead of
computing ρ at every pixel within the interrogation blocks,
the algorithm selects a set of candidates to determine the best
among them.

The flow chart for the local piecewise linear motion
estimation is provided in figure 6. As explained before,
computational complexity in computing the two metrics (	
and ℘) does not increase significantly since this could be
accomplished by performing the Fourier transform only once
over the regions under consideration.

Having obtained the integer resolution motion field, sub-
pixel level motion interpolation is done by fitting a 3-point
Gaussian fit [43] over the normalized cross correlation (ρ)
values in the neighbourhood of the best estimate, where the
sub-pixel estimate (δ) is estimated by

δ = ln ρ−1 − ln ρ+1

2(ln ρ−1 + ln ρ+1 − 2 ln ρ0)
(8)

where ρ−1, ρ0 and ρ+1 are the estimates of the normalized
cross correlation in the neighbourhood under consideration.
As suggested by Marxen et al [25], a 3-point Gaussian fit was
used in the sub-pixel estimation scheme due to the Gaussian
profile of the particles in the images.

The main advantage of this scheme is the cross verification
of the motion estimates using the results obtained from the
phase correlation and cross correlation. This voting scheme
improves the reliability of the estimated vectors over any one
method applied alone.

3 The reason that the candidates are selected from the phase correlation
surface as against the cross correlation is because of the reduced surface
spread around each peak in the phase correlation surface.

Figure 6. Flow chart for the estimation of the local motion field.

3.3. Outlier removal and de-noising

Though the voting scheme reduces the possibility of incorrect
estimates, image regions containing low gradient information
due to insufficient seeding could still provide incorrect
estimates. Removal of these spurious vectors is done by using
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Figure 7. Variation of error under synthetic translation.

a modified median filter as proposed by Westerweel [41] where
the velocity vector U2D(i, j) is considered valid if

|U2D(median) − U2D(i, j)| < εthreshold (9)

where U2D(median) is the median of the vectors in the
neighbourhood of U2D(i, j) and εthreshold determines the
reliability of U2D(i, j). (εthreshold) was determined in a manner
similar to the ‘dynamic mean value filter’ [32]. The standard
deviation of the vectors in the neighbourhood, σU(i, j), was
used to weight two constants C1 and C2 as C1 + C2σU(i, j)

(for the dynamic median filter in the local motion estimation,
the constants C1 = 0.6 and C2 = 0.6 were found sufficient for
performing the outlier detection). From computations done
with the standardized images, the ‘dynamic median value
filter’ provided a better local neighbourhood filtering than the
‘dynamic mean value filter’.

4. Results and analysis

The algorithm has been implemented using a prototype written
in Matlab 6.5 R13. For the global motion estimation,
interrogation block sizes were maintained at a constant 32 ×
32 pixels throughout the image hierarchy so as to obtain an
amplified and accurate translation at the finer scales. For
the local estimation, the interrogation block size was 16 × 16
pixels. Both global and local estimations were performed with
a 50% overlap between adjacent blocks.

At each level of the image pyramid, the global motion field
was median filtered using a 3×3 motion field neighbourhood.
Thus, the motion field was smoothed over larger motion
estimates at coarser levels of the pyramid when compared
to the finer resolutions. This over-smoothing of the global
motion field provided for the smoothness regularization in the
estimation of the motion.

4.1. Standard images—JPIV (PIV-STD project)

The images used for the validation of the algorithm were
obtained from the JPIV (PIV-STD project) [27]. In applying

the algorithm for standard images from JPIV, both the non-
transient and transient cases have been evaluated to determine
the utility of this method.

As described by Prasad [29], bias errors in the estimation
process degrade the accuracy of the estimated flow field. An
important part of a PIV algorithm is its ability to minimize
the bias errors, specifically peak locking, robustly [16].
In investigating the robustness of the method described in
handling the bias errors, the standard images were warped
using known translations and the motion was estimated.

4.1.1. Synthetic translation. In quantifying the errors that
arise either due to the estimation process or the sub-pixel
estimation technique, the first step would be to estimate known
sub-pixel motion using the proposed method. To this end, four
specific JPIV test cases (#004, #005, #006, #007) were warped,
using bilinear interpolations, with translations from the range
[2.0, 2.1, . . . , 8.0]. The four test cases account for a typical
displacement/seeding density scenario in a standard PIV
experiment and thus have been used to verify the processing
method.

• JPIV transient test #004: high particle seeding density
(N − 10000)

• JPIV transient test #005: low particle seeding density
(N − 1000)

• JPIV transient test #006: constant particle size (Paavg −
5.0, P d − 0.0)

• JPIV transient test #007: large particle size (Paavg −
10.0, P d − 4.0)

Histogram plots for a few of the translations are shown
in figure 8 and as can be seen from the plots, the sub-pixel
estimator is considerably robust. Though the existence of
peak locking cannot be ruled out completely when using
the standard Gaussian interpolation function [34], the most
important point to be considered in analysing sub-pixel
estimators is the error significance which can be obtained as
the ratio between the deviation and the actual translation. This
is evident in figure 7 where the percentage deviation has been
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Figure 8. Histogram plots of the estimated displacements.

plotted for the four test cases. The presence of the signal
oscillations indicates the presence of peak locking but as can
be seen, the amplitude of the oscillations is within 2% of the
actual displacement range.

The bias error variations, with increasing/decreasing
seeding density and/or the pixel diameter, agree with trends
observed by Collicott [10] and Prasad et al [29]. With an
increased seeding density (SD), the error seems larger than
with lower SD. With increasing particle size, the bias error
deviations decrease, with bias error being zero at full pixel
and half pixel resolutions. The above results were obtained by
running the simulations using an interrogations window size
of 16 × 16 pixels with 50% overlap.

Shown in figure 8 are the histogram plots for a few selected
displacements in the X and Y directions. The histograms have

been computed from the JPIV test case #07 by warping the two
images by the displacement indicated by ‘Actual tx/ty’ and the
velocity estimates have been computed using a 16 × 16 pixel
interrogation window with 50% overlap.

4.1.2. Non-transient case. Figure 9 is a sample scatter plot
obtained from the magnitude and phase variation between
the estimated and the ground truth displacement vectors for
spatially collocated positions.

The green markers in the scatter plots are the vectors
whose magnitude is within 1 pixel difference from the
standardized vectors while the red markers indicate those
estimates that deviate from the standardized vector by more
than 1 pixel in magnitude. In tables 1 and 2, ncomplete are the
total number of estimates which have been compared with the
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Figure 9. Estimated vectors versus standardized vectors for JPIV test case #001.

Table 1. Comparison of magnitude (in pixels) between the standardized vectors and estimated vectors.

Test no ncomplete ngood RMSEcomplete RMSEgood dcomplete dgood

1 961.0000 875.0000 0.5158 0.3477 0.9321 0.9473
2 961.0000 179.0000 11.8954 0.3596 0.5834 0.9541
3 961.0000 960.0000 0.2517 0.2503 0.8745 0.8749
4 961.0000 909.0000 0.4425 0.3261 0.9436 0.9530
5 961.0000 838.0000 0.5560 0.3661 0.9274 0.9478
6 961.0000 893.0000 0.5160 0.3261 0.9369 0.9516
7 961.0000 906.0000 0.4399 0.3255 0.9421 0.9515
8 961.0000 856.0000 0.5376 0.3431 0.9305 0.9491

ground truth vectors and ngood constitute the estimated vectors
that are within 1 pixel difference from the ground truth.

Two statistical measures of the similarity, the root mean
square error and the index of agreement [44], have been
computed for the magnitude and the phase variation (for both

ncomplete and ngood).

RMSE =
√√√√ 1

K

K∑
k=1

(pk − ok)2 (10)
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Table 2. Comparison of direction (in rads) between the standardized vectors and estimated vectors.

Test no ncomplete ngood RMSEcomplete RMSEgood dcomplete dgood

1 961.0000 875.0000 0.0495 0.0436 0.9441 0.9482
2 961.0000 179.0000 1.5934 0.0414 0.3317 0.9363
3 961.0000 960.0000 0.0456 0.0453 0.9477 0.9479
4 961.0000 909.0000 0.0424 0.0393 0.9520 0.9543
5 961.0000 838.0000 0.0593 0.0522 0.9331 0.9403
6 961.0000 893.0000 0.0427 0.0394 0.9504 0.9528
7 961.0000 906.0000 0.0451 0.0436 0.9489 0.9502
8 961.0000 856.0000 0.0538 0.0464 0.9382 0.9441

Table 3. Comparison of magnitude (in pixels) between the standardized vectors and estimated vectors of #301.

Test no ncomplete ngood RMSEcomplete RMSEgood dcomplete dgood

11 961.0000 942.0000 0.1419 0.1220 0.9758 0.9772
12 961.0000 933.0000 0.1591 0.1302 0.9738 0.9759
57 961.0000 889.0000 0.2472 0.1511 0.9686 0.9766
86 961.0000 935.0000 0.1690 0.1133 0.9731 0.9767

Table 4. Comparison of direction (in rads) between the standardized vectors and estimated vectors of #301.

Test no ncomplete ngood RMSEcomplete RMSEgood dcomplete dgood

11 961.0000 942.0000 0.0661 0.0657 0.9489 0.9504
12 961.0000 933.0000 0.0726 0.0721 0.9464 0.9484
57 961.0000 889.0000 0.0896 0.0847 0.9308 0.9335
86 961.0000 935.0000 0.0694 0.0680 0.9292 0.9307

Figure 10. Estimated vectors versus standardized vectors for the transient case.

dγ = 1 −
[

K∑
k=1

ωk(pk − ok)
γ

]

×
[

K∑
k=1

ωk(|pk − o| + |ok − o|)γ
]−1

(11)

pk are the predicted vectors, ok are the observed ground
truth vectors, wk are the weight functions which are assumed
uniform for this study, o is the mean of the ground truth data
and K are the total number of vectors being compared. γ is the
order of index and according to Willmott [44], γ = 1 is most
robust for comparing results because of its linear approach to
a perfect match.

As can be observed, the algorithm provides accurate
estimates when compared to the ground truth vectors for all
image pairs, except image no 2. The main reason for this
was due to the large non-rigid motion present in the image

pair. Most region-based techniques fail for this pair of images
because of the extreme changes in the position of the particles
and the gradient of the velocity vectors.

4.1.3. Transient case. The test cases for the transient flow
were obtained from image test no 301 (transient 3D flow field
with slit light sheet) with 4000 particles. As in the previous
section, the comparative results of the transient case have been
provided in tables 3 and 4. The ‘good’ estimates in the transient
cases are the estimated vectors having a magnitude difference
of less than 0.5 pixels with the ground truth vectors. As can be
seen from results, the algorithm provides accurate estimates.

A common trend among the transient test cases is the
increased RMSE in the directional components with the
magnitude differences remaining small. This is due to the sub-
pixel level vector differences and is shown in figure 10. As can
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Figure 11. Estimated vectors for the PIV Challenge test case A:
estimated vectors along with the URAPIV vectors using an
interrogation window of 32 × 32 pixels with 50% overlap.

be observed, though the magnitude of the estimated vectors is
less than 0.5 pixels from the ground truth vectors, due to sub-
pixel differences the RMSE for the directional differences is
large.

4.2. Standard images—PIV Challenge 2001

The algorithm has also been tested for the data from the
PIV Challenge 2001 [37]. The two data sets available for
download are the test cases A and B. In testing the validity
of the technique for the images from the PIV Challenge, the
results obtained have been compared with URAPIV routine
[21] due to unavailability of ground truth motion vectors.

4.2.1. Case A. This test case (provided by Christian
Kaehler) was obtained from the recording of a wake vortex
formation behind a transport aircraft (DLR ALVAST half
model) in landing configuration (http://www.pivchallenge.org/
pub/readmeA.txt). The estimated vectors have been compared
with the vectors obtained from the URAPIV routine using an
interrogation window of 32×32 pixels with 50% overlap. The
output shown in figure 11 shows the motion field as estimated
from the image pair.

4.2.2. Case B. The synthesized test case (provided
by Okamoto) shows a strong vortex obtained with
different seeding densities and different particle image sizes
(http://www.pivchallenge.org/pub/readmeB.txt). Shown in
figure 12 is the estimated motion field under the constraint of
small particle size (particle image diameter—1.8 pixels) and
low seeding density. Also shown are the vectors estimated
using the URAPIV routine using 32 × 32 pixel interrogation
window with 50% overlap. In spite of the low seeding density,
the estimated vectors correspond very well with the URAPIV
vectors.

5. Discussions

A significant component of the present algorithm is the voting
scheme, which is used to improve the reliability of the

Figure 12. Estimated vectors from the PIV Challenge test case B:
small particle size and low seeding density.

estimated vectors. Cross correlation in itself is not illumination
invariant, but in combination with an illumination invariant
metric such as phase correlation, it provides a more accurate
estimation of the observed flow. The method belongs to a
class of region-based motion estimation methods [5] and the
optimal solution is defined under the constraint of a region-
based metric. The solution obtained by the algorithm can
thus be considered the best possible under the constraints of a
region-based correlation assumption.

One of the advantages of using the hierarchical two-stage
estimation technique is the possibility of obtaining a smooth
and accurate motion field at high resolution. This is shown in
figure 13, where motion has been estimated accurately using
an interrogation window up to 8×8 pixels with a 50% overlap.
Under similar constraint of 50% overlap, the vectors estimated
using the URAPIV routine are also shown. This accurate
motion estimation is due to the initialization of the local
motion field estimation using the global motion. Thus, the
coarse global motion guides the high resolution local motion
accurately.

The URAPIV routine provides accurate estimates at
32 × 32 pixel blocks but at higher resolution the estimates
obtained cannot be considered accurate as shown in figure 13.
The technique described in this paper provides accurate
estimates at a pixel resolution of 8 × 8 pixel blocks using
a 50% overlap as shown in figure 14.

In terms of the computational efficiency, the current
implementation of the algorithm requires ∼ 12.5 s to process
4096 vectors using an interrogation window size of 8×8 pixel
with 50% overlap. The simulation was performed on a P4,
2.4 GHz PC with the code implemented in Matlab 6.5
R13. This could obviously be greatly improved by using an
optimized ‘C’ implementation of the same.
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Figure 13. Estimated output for standardized images, test no 1. Row 1: interrogation window of 32 × 32 pixels. Row 2: interrogation
window of 16 × 16 pixels. Column 1: estimated vectors. Column 2: URAPIV vectors.
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Figure 14. Estimated output for standardized images, test no 1 for
8 × 8 pixels resolution.

6. Conclusions

We have implemented an algorithm by which the motion
estimation on PIV data sets can be performed reliably and

robustly. This algorithm is composed of a two-stage technique,
the global motion field estimation followed by local differential
motion estimation, to provide the best possible estimate that
can be obtained using region-based schemes.

The comparative results between the estimated vectors
and the ground truth vectors indicate that the hierarchical
phase correlation is quite accurate for the estimation of the
motion. This is mainly due to the inherent robustness of phase
correlation to illumination variation. Additionally, the usage
of the fast Fourier transform in the calculation of the phase
correlation term makes the computation significantly faster
than most differential techniques.

The reliability metric developed for this algorithm, based
on voting using phase correlation and cross correlation metrics,
provides reliable and accurate information in determining
positions of a significant number of outliers. This prevents
over-smoothing of the motion field, which would be the case
otherwise if smoothing filters are used.

Results from the JPIV standardized images appear
promising in the utilization of this technique in estimating
motion in PIV imagery. This is also evident in the dispersion
of the estimated vectors with respect to the ground truth vectors
in the magnitude and phase scatter plots.

As a subsequent stage to the current research, the estimate
of the local deformation could be improved using an explicit
regularization parameter. Another possible track for future
research would be to estimate higher order motion, such
as quadratic, in the regions where the linear motion model
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collapses followed by a quad-tree based decomposition to
estimate the best possible motion field.
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