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Abstract

A full-depth numerical model solving the free surface flow induced by linear water waves propagating with collinear vertically sheared
turbulent currents is presented. The model is used to estimate the wave amplitude decay rate in combined wave current flows. The decay rates
are compared with data collected in wave flumes by Kemp and Simons [J Fluid Mech, 116 (1982) 227; 130 (1983) 73] and Mathisen and
Madsen [J Geophys Res, 101 (C7) (1996) 16,533]. We confirm the main experimental finding of Kemp and Simons that waves propagating
downstream are less damped, and waves propagating upstream significantly more damped than waves on fluid at rest. A satisfactory
quantitative agreement is found for the decay rates of waves propagating upstream, whereas not more than a qualitative agreement has
been observed for waves propagating downstream. Finally, some wave decay rates in the presence of favourable and adverse currents are
provided in typical field conditions. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Combined flows of water waves and slowly varying
currents being the predominant hydrodynamic characteris-
tics of coastal areas have prompted a large amount of work
to testify the major review articles by Peregrine [19],
Jonsson [8], and more recently by Thomas and Klopman
[28]. These reviews were mainly concerned with the
kinematics, rather than the dynamics, of wave current
flows, which reflects the fact that viscous effects in wave
current flows have been largely disregarded in the literature.
It must be acknowledged that many important phenom-
ena, such as wave refraction by currents, are explained
within the frame of inviscid theories. Inviscid models
are also known to provide good estimates for the wave-
length in the presence of currents and to give accurate
predictions of the wave-induced velocities far from
boundaries [5,27].

However, fluid-friction effects play a significant role near
the boundaries of wave current flows. The development of
bed forms and sediment movement in coastal regions are
generally ascribed to turbulence generated at the seabed.
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Bed turbulence is also the main cause of non-breaking
wave attenuation in shoaling depths. A useful approach to
study near-bed turbulence generated by waves and currents
has been to develop bottom boundary layer models (see the
review in Ref. [23]). This type of approach has met large
success in providing the wave friction factor f, usually
defined as twice the squared ratio of the maximum friction
velocity to the wave free-stream velocity, for combined
wave current flows. The wave friction factor is indeed a
parameter of central interest in wave-propagation models,
and in more general circulation models of coastal waters. In
contrast, boundary layer models actually do not solve the
wave motion. Therefore, they cannot predict directly the
wave amplitude attenuation rate, or alternatively the mean
wave decay rate s = dA/dx;, which is a measure of the wave
amplitude decrease in the direction of wave propagation, x;.
This is somehow regrettable in terms of validation of these
models since the experimentalist has direct access to the
decay rate s with wave gauges. It is always possible to
find a relation between the friction factor f,, and the decay
rate s, yet this is a task involving a number of assumptions
when waves are superposed with a vertically sheared
current. For instance, one has to admit that separated energy
budgets for the waves and the current can be written.
Furthermore, when using the wave action equation to arrive

0141-1187/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0141-1187(01)00014-1



126 L. Thais et al. / Applied Ocean Research 23 (2001) 125-137

Free surface
n=R, {ae‘(“l““")]

T9

Mean current
Ll (.’l’z)

------------------------------------ Uy = —+a

,,,,,,,,,,,,,,,,,,,,,,,,,,,, ———— 12 =

""""""""""""" Iy = —Q
_xy=-D

Fig. 1. Sketch of combined wave current flow with coordinate system used (here, waves propagating with a favourable current).

at s, a velocity scale representative of the sheared current
must be chosen, and this is usually taken as the depth-
averaged current without further justification (see Refs.
[16-18,22]).

This paper presents a full-depth numerical model for the
combined flow of regular waves and turbulent shearing
currents. Our main intent here is to compute directly the
wave amplitude decay rate by solving the wave motion in
the primitive pressure-velocity formulation. This avoids
resorting to the energy budget outlined above. To achieve
this goal the boundary layer approximation is abandoned
and the complex-valued wave number is computed directly
as the eigenvalue of the problem. The real part of the wave
number provides the wavelength, the imaginary part
accounts for the wave attenuation. This is to some extent
a generalisation of full-depth inviscid models in which the
wave number was real-valued [27]. To keep things as simple
as possible, we shall restrict ourselves to first order in the
wave steepness of small amplitude regular waves collinear
with the current, i.e. waves propagating with or against the
current. Full-depth models for viscous wave current flows
have appeared in the last few years but remain few.
Klopman [12] derived the flow equations to second order
in wave steepness with a one-equation turbulence
closure, whereas Madden et al. [15] have developed a
similar model with a stream-function formulation. We
complete these works by improving the turbulence
closure and making careful comparisons with available
laboratory data.

The paper is organised as follows. The model assump-
tions, field equations, and boundary conditions are presented
in Section 2. The numerical solution of the boundary value
problem is outlined in Section 3. In Section 4, the present
model predictions for the flow kinematics are qualitatively
compared with Klopman’s data [13]. In Section 5, wave
decay rates are then quantitatively compared with Kemp
and Simons’ [10,11] and Mathisen and Madsen’s [17]
laboratory measurements. Generic results for wavelengths
and wave attenuation rates in field conditions are also given

in this section. Finally, the results are discussed and conclu-
sions are given in Section 6.

2. Model formulation
2.1. Basic notations and assumptions

We consider a regular wave with amplitude a, absolute
wave period T (as seen by a stationary observer), and wave
number k travelling in the positive horizontal direction x; on
water of constant finite depth D (see sketch in Fig. 1). The
coordinate system (x1, x,) denotes the directions parallel and
normal to the horizontal flat bottom, respectively, where x,
is counted negative downwards between the mean water
level x, = 0 and the bottom x, = —D. The wave number
k =k, + ik; is allowed to be complex-valued, with i =
\/—_l, whereas the absolute radian frequency, w = 27/T,
is imposed to be a real quantity, i.e. only the spatial wave
decay is considered. This is relevant to forced progressive
waves in a flume, or freely travelling swell in the field.

The wave frequency w is supposed to be known and
constant, whereas the wavelength and the attenuation rate
are computed in the presence of a current, which means that
k, and k; are unknowns of the problem. The wave steepness
alk| = ak, is further assumed sufficiently small so that the
free surface elevation with respect to the mean water level is
a circular function of the form

n= Re[aei(kx] 7wt)], (1)

where R, stands for the real part of the bracketed expression
and ¢ is the time. The above equation implies that the wave
amplitude A(x;) at position x; is exponentially damped
according to

Ax)) =ae ™™, x =0, )

where it can be seen that a is actually the wave amplitude
taken at the origin x; = 0.
The velocity components are denoted by (U, U,) in the
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respective horizontal and vertical directions (x,x,). The
wave propagates with, or against, a vertically sheared
horizontally uniform collinear current U;(x,) (Fig. 1). This
profile is clearly an approximation since a pumped current
in a channel necessarily induces a mean surface slope, i.e.
the depth of the flow must change and there must be an x;
dependence of U, together with secondary circulations to
satisfy continuity. We adopt a general hypothesis that the
horizontal length scale over which U, varies is much longer
than the wavelength, which means that we stay within the
frame of a local analysis description.

The pressure is denoted by P. In most situations, turbu-
lence will be generated near the flat bed. The turbulent
kinetic energy is denoted by K and its dissipation rate by €.

2.2. Phase-averaged equations

The turbulent wave current flow field has three components:
a mean time-independent current, a periodic organized wave
contribution, and random turbulent fluctuations. The phase-
averaging operator (F) = (1/N) S %" F(t + kT), applied to
any flow variable F and repeated over N regular waves with
period T, filters the turbulent fluctuations from the mean and
wavy flow fields (see Refs. [20] or [26] for details). This
operator produces phase-averaged Reynolds equations from
which the present model is derived

19—, 3
Y
2
Uy +(U) Uy _ 1 &P) n () . Va <Ui>‘ @)
ot 0x; p ox; 0x; 9x;0x;

We take 1 =i, j = 2 and Einstein’s summation applies
over the repeated index j. In these equations, v is the
kinematic viscosity of water, p its density, and <T,:/-> is the
shear-stress components which are determined from
the phase-averaged strain rate tensor according to the
Boussinesq hypothesis

(&)

(r) = <u,>[ Xy, 2 ]
Xi

J

The eddy viscosity (v,) will be evaluated with Chien’s
low-Reynolds number ‘K—e€’ turbulence model [3]. The
turbulence regime in the field is usually fully rough, yet
laboratory measurements can span the whole range from
smooth laminar to rough turbulent. Chien’s model is able
to predict unsteady flows in the vicinity of smooth, transi-
tional and rough beds [24]. A better prediction of turbulence
close to the bed is also expected in a low-Reynolds number
formulation because of flow reversal within the wave
boundary layer. Chien’s transport equations for the

turbulent moments are

oK) HK) _ 9 (1) | HK) HU)
o U T o [(V+ a—,() ox, ]+<T’f> ox,;
-2 & o, ©

2

S 2l ]
(7

(K) 6<U> 2v ()
+ Cq ( >< 1]> (g)<€>—cezf2®.

The phase-averaged eddy viscosity following from this
pair of transport equations is

2
(n) = Cof, <f>> ®)

The damping functions appearing in the above equations
are

fu=1—exp(=0.0115x,,), )
2 2

Lh=1- ) exp[—(R7/6)71, (10)

J3 = exp[—(x24/2)] (11)

and the model constants take the values
(Ch,Ca, Cq, 0k, o) = (0.09,1.35,1.8,1.0,1.3). (12)

The dimensionless number R; = (K)*/1X€) of the damp-
ing function f; is a local turbulence Reynolds number, and
X3+ = (D + x,){us)/vis a wall coordinate, with origin at the
bed, scaled with the friction velocity (ur) = v/|(1,)|/p. The
eddy viscosity is not damped in the vicinity of the free
surface in the absence of any better information. The
near-surface decrease of (v,) will be enforced via the surface
boundary conditions for (K) and (€) (see Section 2.4).

2.3. Wave-like equations

Any phase-averaged flow variable (F) is split into a time-
independent zero-order mean contribution F and a
wave-like first-order contribution f according to the
expansion

(F)(x1,2,1) = F(x) + f(xp)e!® ™, (13)

where f is a complex-valued wave-like amplitude, having
zero mean, that represents the wave motion. The wave-like
equations are obtained upon substituting Eq. (13) in the
phase-averaged equations, and retaining the first-order
terms (terms linear in f), the main mathematical benefit of
the substitution being to transform partial differential
equations in a system of linear ordinary differential equa-
tions in the independent variable x,. This is a lengthy, yet
straightforward process, and we therefore state the results
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directly without further development. It should be added
that the approximation U; = U;(x,) is consistent with
neglecting the vertical current U, in the following equations.
The wave-like continuity equation is
dii,
ikii, + — = 0. 14
kU dx, (14)

The wave-like momentum equations in directions x; and
X, can be written in the convenient form
kv, — o)y + i, +ikp= (v + ) &z, K i
1 — wu — U 1 = (v V —_— u
1 1 dx 2 P t dx% 1
_dy, U,  dw, dU,

ta— +p——L =L 15
Y, a2 | dn dy (15)

dp d’i
i(kU; — w)ii, + a”z =+ V’)(d):t; - kzﬂz)
dVZ dﬁQ dU]

+a o ik
2

1
@, d, (16)

The conservation equations for the turbulent kinetic
energy and its dissipation rate are

. dK d*k .
e <V+ i)(— —kzk)

2
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— st T 26V, —
Ok dJCQ d)C2 dx2 de d.X'2 dX2
auv, \> [ 2v
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In Egs. (15), (17) and (18) we have set
dii
a = @y, i) = de; + ik, (19)

The first-order eddy viscosity 7, in the same equations

arises from the linear expansion of Eq. (8), namely

o k_ &
D, = V,|:2(?) < ] (20)

The present model is a wave model in the sense that it just
predicts the modifications of the wave kinematics by a given
current distribution; it is not aimed at predicting the zero-
order terms appearing in the wave-like equations.' This
means we do not attempt to predict changes of the current
under wave action, we shall compute the wave motion as
‘reaction’ to a mean current altered by waves, and which
must be considered as input to the wave model. Therefore,
the zero-order terms in the wave-like equations need to be
specified before seeking a solution for the wave-like
amplitudes. Mean currents in the presence of waves can
be specified from measurements, if available, computed
with boundary layer type models, or computed with
‘generative’ wave current models as recently developed
by Groeneweg and Klopman [6]. For the purpose of the
present work they have been evaluated with a numerical
boundary layer wave current model [25]; details about the
numerical model for waves with no current can also be
found in Ref. [24]. This numerical boundary layer model
is built on the same ground as the model of Davies et al. [4]
but includes Chien’s turbulence closure. Boundary layer
type models can predict the slowing down of the mean
current in the bed region due to wave mixing, but are
known to behave poorly in the near-surface region. Turbu-
lent sheared currents in the presence of waves are the object
of another study under way and will not be considered
within this paper which is focused on the wave motion.

2.4. Boundary conditions

2.4.1. Phase-averaged boundary conditions

The bottom boundary conditions are naturally imposed at
the bed level. They specify impermeability of the bed and
equilibrium conditions for the turbulent moments

<U1> = <U2> = 0, (21)
(K) = (ue)* BRy), (22)
3/4 3/2
<€> = ﬂ5 Xy = _D’ (23)
K2

where k = 0.4 is the Karman constant. The bed has a rough-
ness length z; and an equivalent sand roughness height k; =
30zy. The bottom boundary conditions for the turbulent
moments depend upon the roughness Reynolds number
Ry = (ug)k /v through the function

-2

Cc'”T 30 90 C,\"
B(Rk):K—‘;[R—k+ R_%JFK_; . 24)

' This is a ‘reactive’ wave current model in the parlance of Thomas and
Klopman [28].
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These expressions are valid for smooth, transitional and
rough boundaries [24].

The free surface boundary conditions raise two kinds of
complications. The first difficulty is due to the oscillatory
nature of the free surface whereas we need to apply the
boundary conditions on a flat coordinate line. This will be
addressed with a Taylor series expansion in Section 2.4.2.
The second, and major, difficulty comes from the little
knowledge that we have of the turbulence behaviour near
a free surface. Eddies near a free surface are known to be
damped, inducing higher dissipation than in a free stream.
The practical implication for models is that turbulent
closure schemes must reflect the decrease in the eddy
viscosity (or equivalently in the turbulent length scale) in
the near-surface region. Full symmetry conditions, i.e.
d(K)/dx, = d(e)/dx, = 0, lead to eddy viscosity profiles
erroneously increasing towards the surface. This is in
contradiction with measurements in channel flows. To
take this into account we have adopted the scheme proposed
by Celik and Rodi [2], which consists of imposing the level
of dissipation rate at the free surface.

To summarise, in the absence of wind traction and surface
tension effects being neglected, the upper boundary
conditions applied on the surface level x, = n(x, 7), are

<7'12> =0, (25)

(m2) = (P), (26)

&K)

3, = 0, (27)
K 3/2

@="8" o= e8)

Following Celik and Rodi [2] we take y = 5.87 in the
empirical expression (28).

2.4.2. Wave-like boundary conditions

Similarly to the field equations, the wave-like bottom
boundary conditions are derived from the first-order
expansion of the phase-averaged expressions. We get
straightforwardly

iy =iy = 0, (29)

~ T

k= = B(Ry). (30)
p
3 CHE2

é = —(“7 k, X, = —D, (31)
2 KZo

where 7.,/p is the first-order tangential stress

7 dUu

T2 — v+ m)a@, i) + 7, (32)

p dx,

evaluated at the bed level; &(ii, ii,) was defined in Eq. (19).
The wave-like surface boundary conditions are obtained

with a two-step procedure. The phase-averaged expressions
(25)—(28) for any quantity (F) are projected onto the mean
surface level x, = 0 according to the Taylor series

(Fhopon = (Fhoo + a(%’?) ~ (33)

and the first-order terms are then retained from these expres-
sions. For the tangential stress this reads

7 d dy, d
Tz _ —a[(v+ 1/,)—U1 + . —Ul
p

—_— , =0. (34
dx% dXz dx2 ] X2 ( )

For the normal stress we arrive at a balance involving the
wave-like pressure field and the acceleration of gravity g,
namely

i
=2+ )2 tag,  x,=0. (35)
dx,

The turbulent kinetic energy and the dissipation rate are
constrained by

dk d’K
7+ 720, 36
dy, a3 (50)
de 3 JK{- dK
e +a— = 2y N2k + a2 =0. 37
€T, 270( “dx2)’ 2 37)

Finally, the kinematic surface condition, specific to the
wave motion, expresses that the free surface is impermeable
and moves vertically with velocity i, namely

ii, =ia(kU, — @),  x, =0. (38)

3. Numerical solution for the wave-like amplitudes

At the first stage of the model the zero-order variables of
the mean current motion, as well as their first and second
derivatives with respect to x,, are evaluated with a cubic
spline interpolation on the grid of the wave problem.
Once this is done, a solution can be sought for the wave-
like amplitudes.

Eq. (14)—(18) form a set of nine first-order linear ordinary
differential equations (ODESs) of the boundary value type for
the complex-valued variables j, iy, ii, k, € together with
the first derivative with respect to x, of the last 4 of these.
The set of ODEs is solved with the double precision built-in
routine DBVPFD of the mathematical package IMSL. The
algorithm is based upon a second order accurate finite differ-
ence relaxation method.

The main difficulty here is to find the eigenvalue of the
problem, namely the wave number k, and especially the
imaginary wave number which is commonly three orders
of magnitude smaller than the real wave number. We found
it numerically efficient to treat k as an additional dependent
variable constant over depth, i.e. satisfying the differential
equation dk/dx, = 0, which was added to the nine original
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ODEs. The final set of ten first-order ODE:s is closed when
subject to an equal number of boundary conditions. Egs.
(29)—-(31) together with Egs. (34)—(38) provide all of
them but one. To close the system the mass conservation
Eq. (14) was enforced at the free surface level, since only its
first derivative is actually used when evaluating the function
derivatives and the Jacobian. In the same time, this choice
avoids computing a velocity field arbitrarily shifted by a
constant from the true physical solution.

The finite difference grid used to solve the problem is
adaptive with logarithmic refinements near the surface and
bottom. Initial guesses for the unknowns are provided by
inviscid linear wave theory.

Klopman et al. [14] present a detailed inter-comparison
study where the consistency of the present model, particu-
larly in terms of accuracy of the computed real and imagin-
ary wave numbers, has been tested against analytical
solutions and other numerical models. The present
numerical algorithm is fast, self-consistent and accurate.
Computational efforts are as small as a couple of
seconds on a basic workstation for a standard grid having
2000 mesh points.

4. Comparison of flow kinematics

Before moving on to the wave decay rate, which is the
main topic of this study, we shall examine the predictive
ability of the present model in terms of flow kinematics over
the full water depth. Klopman [13] made extensive
measurements of combined wave current flows in a wave
flume at Delft Hydraulics. He has provided a very detailed
description of wave current flows measured over the entire
water column with a laser velocimeter.

The results for Klopman’s experiment labelled
DHFCO1 will be considered here. The flow conditions
were D = 0.5 m, with a depth-averaged favourable current
U, = 0.152 m/s flowing with regular waves having a period
T = 1.44 s and an amplitude a = 0.06 m. The concrete bed
of the test flume was roughened with pasted natural coarse
sand. This produced an equivalent sand roughness k, =
1.2 mm leading to transitional turbulent conditions (peak
roughness Reynolds number of order 10).

Fig. 2a displays the amplitude of the horizontal velocity
i, as a function of depth. Fig. 2b is a close-up view of the
wave boundary layer region. Two curves are plotted in Fig.
2b to look more carefully at the boundary layer structure.
The solid curve is the result of the turbulent numerical
model which includes the eddy viscosity evaluated with
the Chien model. The dashed curve is the result of a laminar
model that accounts for molecular viscosity alone, i.e.
setting (¥;) = 0 in the momentum equations and omitting
the turbulent moment equations. In both instances the
molecular viscosity was v = 1.13 X 10~° m%/s. Not surpris-
ingly, the solid curve is a better fit to the data. The laminar
solution predicts a boundary layer extent that is clearly too

narrow. Madden et al. [15] have also shown on the same
data set that an eddy viscosity based upon the current alone,
i.e. neglecting #, but retaining v,, does not work very well
either. The present model, which does include 7,, improves
slightly the near-bed solution but it remains that our predic-
tions still suffer a deficiency in the magnitude of the velocity
overshoot. Wave reflection in the tank and non-linear
interactions, not accounted for in the model, are possi-
ble explanations to the remaining discrepancy. Consid-
ering that the difference between the measurements and
the computed profile remains within the experimental
error bar (of order 0.01 m/s for this particular dataset),
it seems that the present model gives an acceptable
description of the flow kinematics over the entire water
depth.

Fig. 2a and b are also a meaningful illustration of the
usefulness of the present full-depth model. Any boundary
layer model would be typically able to predict this flow in
the near-bed region. Predicting the flow up to the free
surface with a boundary layer model would then require a
matching with an inviscid theory, thereby raising other
difficult questions: Which wave theory should be used?
What is the optimal height to apply the matching? What is
the value of the wavelength? The present full-depth
approach circumvents the above mentioned difficulties and
predicts directly the amplitude decay rate.

5. Wave decay rates in the presence of currents
5.1. Mean wave decay rate

From the experimental results available [1,10,11,17] the
wave amplitude decay rate in the presence of currents seems
to remain exponential, as it is for waves alone in a channel
[7]. This implies Eq. (2) does seem relevant to wave current
flows. However, experimental results have often been
presented in terms of a mean amplitude decay rate s =
dA/dx; [10,11,17]. This amounts to a straight-line fit
through the experimental points over a distance L covered
by wave gauges, instead of fitting an exponential curve. For
the sake of clarity we shall stick to this approach. Therefore,
the experimental wave decay rates will be compared with
the computed decay rates s. averaged from Eq. (2) over the
distance L, namely

s. = %(e’“ -1, (39)

where it is recalled that the imaginary wave number k; is
directly output by the numerical model. For k;L = o(1), Eq.
(39) reduces to s, = —ak;.

The model predictions coming from Eq. (39) still cannot
be compared with the raw experimental decay rates s, since,
in a channel, the side-walls account for part of the attenua-
tion. Following Hunt [7], Simons et al. [22], and Mathisen
and Madsen [17] the side-wall decay rate will be evaluated
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Fig. 2. Wave-like horizontal velocity amplitude in Ref. [13] DHFCOI experiment: (a) full-depth view, (b) close-up view of the bottom 1.2 cm; —, model
prediction with Chien turbulence closure, - - -, model prediction for laminar flow (v = 1.13 X 1076 m%ss, v; = P, = 0); +, experimental points.

with
Vv a,w
=—,— = 40
S = =y 30 Be, (40)

Here, ¢, is the group velocity of small amplitude regular
waves (see e.g. Ref. [16]), and B is the channel breadth, and

_ ( sinh 2k,.D )
“m = 9\ Bk, + sinh 2k,D

is an amplitude representative of the wave motion. Eq. (40)

(41)

accounts only for purely viscous effects. It has been derived
for waves alone, and Simons et al. [22] have raised doubts
about its use for combined waves and currents. The wave
energy dissipation rates at the bed and the sidewalls are
linear functions of the wave amplitude. Therefore, the
experimental wave decay rates related to bottom friction
presented further down, and noted s.,, have been evaluated
from the raw measured decay rates s, through the difference
[17]

Seb = Se T Ses- (42)
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5.2. Comparison with laboratory data

5.2.1. Kemp and Simons’ data

Detailed measurements of the flow kinematics and
dynamics of waves in the presence of collinear favourable
and opposing currents were carried out by Kemp and
Simons [10,11]. They worked with linear 1s-waves in
water depth of 20 cm over both a smooth plate and an artifi-
cially roughened bed. Their test flume was 0.457 m wide
and had side-walls of smooth plate-glass. Their main finding
regarding wave attenuation was that, with respect to waves
alone, the wave decay rate was greatly increased for waves
propagating against the current, and moderately decreased
for waves propagating with the current. This appeared to
hold for smooth and rough beds. For the opposing current
this finding corroborates a comment by Yih [29] who had
pointed out earlier that waves propagating upstream may
become damped out.

Fig. 3 depicts the raw measured wave decay rates, their
values corrected for side-wall effects, and the computed
decay rates. In Table 1, Kemp and Simons’ [10,11]
measured decay rates and the corresponding computed
values have been collected to make the interpretation easier.
In this table, we have distinguished between the raw experi-
mental values s., the side-wall contribution s., evaluated
with Eq. (40), and the resulting bed contribution issued
from Eq. (42). The two right-most columns in this table
should be compared. The sidewall wave decay rate contri-
butes in-between 5 and 10% of the raw measured values.

Considering the four waves alone reference experiments
WRI1 through WRS, there is a tendency of the model to
under-predict the wave decay rate in proportion of around
15-20%. The agreement is better for the WDR adverse
current experiments (except WDRS which had the steepest
wave), the model predicting successfully a significant

Table 1
Wave amplitude decay rates in the experiments of Refs. [10,11]

increase in the wave decay rate with increasing wave ampli-
tude. The favourable current cases (experiments WCR)
exhibit somewhat less satisfactory results. The tendency
of the model is again to under-predict the wave decay
rate, yet the relative decrease in wave damping with respect
to waves alone is at least qualitatively reproduced.

5.2.2. Mathisen and Madsen’s data

Mathisen and Madsen [17] have only considered waves
on a favourable current. These authors worked in a rough
bed wave flume, in water depth of 60 cm with waves 2.2,
2.6, and 2.9 s in period. Here, the flume breadth was B =
0.76 m and the sidewalls were made of smooth glass. They
published wave decay rates corrected for sidewall effects in
the same way as in Eq. (42). Table 2 compiles the results for
10 of their experiments which we have computed. The wave
current values are displayed in Fig. 4.

Mathisen and Madsen find the same qualitative behaviour
as in Kemp and Simons’ experiments, namely the wave
decay rates in the presence of favourable currents are smal-
ler than on fluid at rest. However, the decrease in the decay
rates with respect to waves alone is markedly less than in the
Kemp and Simons’ study.

In the three waves alone experiments our predicted wave
decay rates are on average 30% smaller than the estimated
experimental values. When looking at the wave current
experiments one sees that the model prediction is also on
average 30% less than the wave decay rates estimated from
the data for values of the wave current strength ¢ less than
unity. The best agreement between the model results and the
experimental data is found at large values of {. Yet, the marked
increase in the experimental decay rates at the highest wave
current strengths seems rather difficult to understand, and the
present model is certainly unable to predict this feature.

Experiment ID Wave current Exp. decay rate Exp. decay rate Exp. decay rate Computed
strength (total) (side-wall) (bed) decay rate
{=awlU, sex 10° Ses X 10° e X 10° 5 X 10°
Rough wall, waves alone
WRI1 0 —41.0 -3.8 —-37.2 —30.1
WR3 0 —58.0 -5.0 —53.0 —384
WR4 [ —69.0 -6.2 —62.8 —50.6
WRS5 0 —68.0 —6.6 —61.4 —50.7
Rough wall, adverse current
WDRI1 -0.8 —67.0 —-3.8 —63.2 —51.0
WDR2 -0.9 =75.0 —4.6 —70.4 —62.1
WDR3 —1.1 —85.0 —54 —79.6 =751
WDR4 —-14 —112.0 -6.9 —105.1 —98.4
WDRS5 —-1.7 —170.0 —8.1 —161.9 —117.6
Rough wall, favourable current
WCRI1 +0.4 —20.0 -3.1 —16.9 —11.5
WCR3 +0.5 -27.0 —43 =227 —12.9
WCR4 +0.7 —23.0 -5.6 —-174 —14.3
WCRS +0.8 —26.0 —6.4 -19.6 —15.1
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Fig. 3. Wave amplitude decay rates plotted against wave to current strength ratio ¢, Kemp and Simons’ data: (a) adverse current; (b) favourable current; 4 raw
experimental data; [J experimental data corrected for side-wall contribution; — computed values.

5.3. Wave decay rates in field conditions

The presence of sidewalls in laboratory wave channels, in
addition to scaling effects, raise difficulties when trying to
extrapolate laboratory data to field situations. The aim of the
present section is to provide benchmark values of wave
amplitude decay rates in field conditions. We are not
aware of any field measurements of wave decay rates in
the presence of well-established steady currents, a further
complication of field data being that large areas of constant
depth are scarce, which means that it would be quite difficult
to distinguish between wave attenuation due to bed friction

and wave transformation due to shoaling. Therefore, our
computations will not be compared with experimental
values.

The field parameters chosen are D = 10m, 7T = 8 s, a =
I m and a bed roughness zy = 0.5 cm, corresponding to
typical swell conditions over a rippled bed on the western
Europe continental shelf. Table 3 summarises the depth-
averaged currents which have been considered in the
adverse and favourable current computations. The currents
corresponding to |{| = 0.25 are clearly very strong but this
has been considered to exemplify the influence of currents
on wave damping.
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Table 2

Wave amplitude decay rates in the experiments of Mathisen and Madsen (1992)

L. Thais et al. / Applied Ocean Research 23 (2001) 125-137

Experiment Wave-current Exp. decay rate Exp. decay rate Exp. decay rate Computed

D strength (total) (sidewall) (bed) decay rate
= awlU, se X 10° Ses X 10° sep X 10° sex 10°

Rough wall, waves alone

a 00 —43.6 -3.3 —40.3 314

b 0 —39.6 -2.9 —36.7 —27.3

c 0 —335 -2.6 -30.9 —25.2

Rough wall, favourable current

A +0.9 —339 —3.1 —30.8 —21.4

B +0.8 —29.6 —2.6 —27.0 —18.6

C +0.7 —30.0 —-2.3 —27.7 —16.6

G +1.2 —34.6 —3.1 —31.5 —28.6

H +1.1 —28.9 —2.6 —26.3 —26.2

1 +1.0 —-374 —24 —35.0 —24.1

L +0.6 —21.8 —1.6 —20.2 -9.1

There is an obvious similarity between modifications of

appropriate correction for dispersion [9,19].

wavelength (or real wave number) and modifications of
imaginary wave number in the presence of currents, although
this has not been emphasised in the literature to our knowl-
edge. Fig. 5 displays the real part of the wave number, made
dimensionless with the flow depth D, plotted against the
wave current strength parameter (. For comparison
purposes the solutions to the dispersive equation

(0 — k,U,)* = gk, tanh k,D, (43)

where U, is the depth-averaged current, have been
plotted as continuous lines. The roots of Eq. (43) are
constrained by k, =0 and o — k.U, = 0, which is the
solution that exhibits the Doppler shift effect and the

0 U 1 1 T 1
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Fig. 4. Wave amplitude decay rates plotted against wave to current strength
ratio, ¢, Mathisen and Madsen’ data, favourable current; 4 raw experi-
mental data; [J experimental data corrected for side-wall contribution;
— computed values.

correspond to the so-called ‘equivalent current’ approx-
imation. Also plotted in Fig. 5, and appearing as the
horizontal broken line, is the wave number for waves
alone which is obtained upon setting U; =0 in Eq.
(43). We find from these different solutions the known
result that waves travelling upstream are shorter, and
waves travelling downstream longer, than waves with
the same absolute period travelling on fluid at rest.
The equivalent current approximation is an excellent
fit to the real wave numbers output by the model.
This result is also in agreement with early findings
obtained with inviscid models [27].

Fig. 6 pictures the dimensionless imaginary wave
numbers k; corresponding to Fig. 5. We recall that k; governs
the wave amplitude decay rate as shown in Eq. (2). Once
again, the horizontal broken line is the solution for waves
propagating on fluid at rest. The same qualitative behaviour
as reported in the Kemp and Simons’ experiments are here
observed. Waves travelling downstream have smaller
damping rates than waves alone; waves travelling upstream
have significantly higher damping rates. The vertical asymp-
totic branch of the adverse current curve, when || — 0,
corresponds to another known result that surface waves
cannot travel on an opposing current faster than their
group velocity.

For practical purposes damping rates can be derived by
simple reading of Fig. 6. For instance, the present model
predicts a 8s-wave meeting the opposing current with { =
—1.5 (i.e. U; = —0.52 m/s, see Table 3) would loose 99%
of its initial amplitude in 24 km. Conversely, the same wave

Table 3

Values of the wave current strength parameter { = aw/U, considered in the
field condition computations. The flow depth is D = 10 m and the wave
parameters are 7 = 8s, a=1m

/] 0.25 0.5 1.0 1.5 2.0 4.0
|T)] (m/s) 3.14 1.57 0.78 0.52 0.39 0.20
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Fig. 5. Dimensionless real-part of the wave number in field conditions,
D=10m, T = 8s, a = 1 m, plotted against absolute value of the relative
wave to current strength parameter {. +, present study, Following current;
O, present study, adverse current. —, uniform current approximation;
- - -, waves alone (no current).

propagating downstream on a current with the same
magnitude would need 64 km to loose the same fraction
of its initial amplitude. Such currents are commonly
encountered in tide-dominated environments. The increase
in damping rate is much more dramatic for the strongest
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Fig. 6. Dimensionless imaginary wave number in field conditions, D =
10m, T=28s, a=1m (same data as Fig. 5), plotted against absolute
value of the relative wave to current strength parameter {. +, Following
current; [, adverse current; - - -, waves alone (no current).

opposing current in Fig. 6. This flow corresponds to a
very high current magnitude (U, = —3.14 m/s, Table 3)
which can be occasionally observed during equinoctial
tides in the English Channel for instance, or at the mouth of
some river outlets. In that particular case the magnitude of U,
is approximately half the group velocity of the wave train.
The present model predicts a 8s-wave meeting this very
strong opposing current would loose 99% of its initial ampli-
tude in 400 m; in clear it would be blocked by the current in a
few wavelengths. Conversely, the same wave travelling
downstream would need 84 km to be damped in the same
proportion.

When extrapolating from Fig. 6 it should be born in mind
that the sole effect of bed friction has been incorporated,
shoaling effects and wave attenuation due to percolation are
not taken into consideration.

6. Discussion and conclusion

A model has been presented that solves the full-depth
flow of free surface waves in the presence of collinear turbu-
lent currents. Currents, which must be input to the present
model, have been here computed in the first place with a
numerical boundary layer wave current model [25]. The
results have been focused on the prediction of the wave
number, the real part of it accounting for wavelength
modifications in the presence of currents, the imaginary
part accounting for wave damping. We have presented
different comparisons between laboratory data and model
predictions. Our computations confirm the findings of Kemp
and Simons, i.e. waves propagating downstream are less
damped, and waves propagating upstream significantly
more damped, than waves on fluid at rest. This result has
been tested against laboratory data and appears to hold in
field conditions (Fig. 6), although here no field data were
used to confirm the hypothesis. It can probably be inter-
preted in terms of an energy balance between the waves
and the current. In a boundary layer approximation, one
can show [16] that the wave friction factor is inversely
proportional to ¢, + U, (cg = wave group velocity, U, =
depth — averaged current). On a following current, the
friction factor should decrease with increasing current
magnitude; for an adverse current the friction factor should
increase with increasing current magnitude, until the waves
get clamped when U, = — o~ The results of the present
model (see for instance Fig. 6), together with the laboratory
experimental evidence, are consistent with this interpretation.

Looking more carefully into the details of the results for
the mean wave decay rates, one can say that there is good to
excellent agreement for the adverse current experiments of
Kemp and Simons (see Fig. 3a). For waves propagating with
a following current our model systematically under-predicts
the decay rates measured by Kemp and Simons and
Mathisen and Madsen. The discrepancy between predicted
and computed wave decay rates can be as high as 50% for
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both data sets; see Figs. 3b and 4 and the corresponding
tables. There is an apparent tendency of the model to give
better results at higher values of the wave current strength
parameter {.

When trying to interpret these favourable current results
one should consider the following points:

e The model results for the waves alone decay rates are
also under-predicting the experimental values, this being
more pronounced with the Mathisen and Madsen’s data.
It would be possible to improve this behaviour by tuning
some of the model constants of the turbulence closure,
but our choice was to keep strictly the same model as
originally derived by Chien [3].

e Although ¢ is in the same range in both data sets the
relative reduction in the wave current decay rates, with
respect to the waves alone decay rates, is clearly more
pronounced in the Kemp and Simons’ experiments.

e Experiments labelled J and K in Mathisen and Madsen’s
paper have markedly smaller wave decay rates, although
their { is the same as in experiments B and C, respec-
tively. The model results for experiments J and K (not
shown in Fig. 4 to avoid confusion) are not better than
those of experiments B and C.

It seems rather difficult to imagine a model that could
explain, and (or) correct, all these features. The different
roughness elements used and the different aspect ratios
of the wave tanks are possible explanations, although
this remains pure speculation. These remarks demand
more laboratory experiments, and surely model
developments.

Whether the present model can be used as it stands now as
a predictive tool is still open to discussion since validation
against data has not been fully satisfactory in different
experimental conditions. This model, appearing as a first
step towards trying to reconcile boundary layer and
full-depth inviscid models, bears many potential improve-
ments. The first obvious phenomenon that has been ignored
is the mean depth setup [21]. However, one should be aware
that Sato found the mean surface setup to contribute a posi-
tive attenuation rate, which means the predicted decay rates
for favourable currents taking this effect into account would
be even farther from the experimental values considered. In
the meantime this author pointed out that bed friction is the
main cause of wave damping in most practical situations.
Finally, there should be no more than technical difficulties
in extending the present formulation to regular waves propa-
gating at an angle with the mean current. The extension to
random waves seems in contrast a rather difficult challenge.

Acknowledgements

This work was undertaken as part of the MAST project
The Kinematics and Dynamics of Wave-Current Inter-

actions. It was funded by the Commission of the European
Union Directorate General for Science, Research and
Development under contract no. MAS3-CT95-0011.
Support is also acknowledged from the research project
Dynamique du systeme cotier du Pas-de-calais (DYSCOP)
funded by the Nord-Pas de Calais regional council under
contracts no. DYSCOP-USTL-2641/9384 and 907/F001.

References

[1] Brevik I, Aas B. Flume experiments on waves and currents I. Rippled
bed. Coastal Engng 1980;3:149-77.

[2] Celik I, Rodi W. Simulation of free-surface effects in turbulent chan-
nel flows. Phys Chem Hydr 1984;5(3):217-27.

[3] Chien KY. Predictions of channel and boundary layer flows with a
low-Reynolds-number turbulence model. AIAA J 1982;20:33-8.

[4] Davies AG, Soulsby RL, King HL. A numerical model of the
combined wave and current bottom boundary layer. J Geophys Res
1988;93(C1):491-508.

[5] Fenton JD. Some results for surface gravity waves on shear flows. J
Inst Math Applic 1973;12:1-20.

[6] Groeneweg J, Klopman G. Changes of the mean velocity profiles in
the combined wave current motion described in a GLM formulation. J
Fluid Mech 1998;370:271-96.

[7] Hunt JN. Viscous damping of waves. La Houille Blanche
1952;7:836-42.

[8] Jonsson IG. Wave-current interactions. In: Le Méhauté B, Hanes DM,
editors. The sea (Ocean Engng Sci), vol. 9(A). New York: Wiley,
1990. p. 65-120.

[9] Jonsson IG, Skougaard C, Wang JD. Interaction between waves and
currents. Proceedings of the 12th Coastal Engineering Conference,
ASCE, 1970. p. 489-508.

[10] Kemp PH, Simons RR. The interaction between waves and a turbulent
current: waves propagating with the current. J Fluid Mech
1982;116:227-50.

[11] Kemp PH, Simons RR. The interaction of waves and a turbulent
current: waves propagating against the current. J Fluid Mech
1983;130:73-89.

[12] Klopman G. Vertical structure of the flow due to waves and currents.
Technical Report H840.30, Part 1, Delft Hydraulics, Delft. 1992,
57p.

[13] Klopman G. Vertical structure of the flow due to waves and currents.
Technical Report H840.30, Part 2, Delft Hydraulics, Delft. 1994,
39p.

[14] Klopman G, Madden N, Thais L, Groeneweg J, Simons RR. An
intercomparison study of complete oscillatory flow models for wave
current interaction, in preparation.

[15] Madden N, Stynes M, Thomas GP. On the development of complete
flow models for wave current interactions. Proceedings of the Coastal
Dynamics Conference, ASCE, Plymouth, UK, 1997. p. 105-41.

[16] Massel SR. Hydrodynamics of coastal zones, Elsevier oceanography
series, vol. 48, 1989. 336p.

[17] Mathisen P, Madsen OS. Waves and currents over a fixed rippled bed
1. Bottom roughness experienced by waves in the presence and
absence of currents. J Geophys Res 1996;101(C7):16,533—-42.

[18] Nielsen P. Coastal bottom boundary layers and sediment transport,
Adv Ser Ocean Engng. Singapore: World Scientific, 1992. 323p.

[19] Peregrine DH. Interaction of water waves and currents. Adv Appl
Mech 1976;16:9-117.

[20] Reynolds WC, Hussain AKMF. The mechanics of an organized wave
in turbulent shear flow 3. Theoretical model and comparisons with
experiments. J Fluid Mech 1972;54:263-88.

[21] Sato M. On the attenuation of waves propagating with a current.



L. Thais et al. / Applied Ocean Research 23 (2001) 125-137 137

Proceedings of the 23rd Coastal Engineering Conference, ASCE,
1992. p. 563-75.

[22] Simons RR, Grass AJ, Kyriacou A. The influence of currents on wave
attenuation. Proceedings of the 21st Coastal Engineering Conference,
ASCE, 1988. p. 363-76.

[23] Soulsby RL, Hamm L, Klopman G, Myrhaug D, Simons RR, Thomas
GP. Wave-current interaction within and outside the bottom boundary
layer. Coastal Engng 1993;21:41-69.

[24] Thais L, Chapalain G, Smaoui H. Reynolds number variation in oscil-
latory boundary layers Part I: purely oscillatory motion. Coastal
Engng 1999;36:111-46.

[25] Thais L, Chapalain G. Reynolds number variation in oscillatory

boundary layers. Part II: Wave-current interactions. MAST Report
(Kinematics and Dynamics of Wave-Current Interactions), Appen-
dix-1II, 1999. 23p.

[26] Thais L, Magnaudet J. Turbulent structure beneath surface gravity
waves sheared by the wind. J Fluid Mech 1996;328:313-44.

[27] Thomas GP. Wave-current interactions: an experimental and numer-
ical study Part 1. Linear waves. J Fluid Mech 1981;110:457-74.

[28] Thomas GP, Klopman G. Wave-current interactions in the near-shore
region. Adv Fluid Mech (Gravity waves in water of finite depth)
1997;6:257-322.

[29] Yih CS. Surface waves in flowing water. J Fluid Mech 1972;51:209—
20.



