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Abstract. Understanding of the dynamics of the top meters of the ocean requires an improvement 
of present knowledge about interactions between wind waves, mean sheared current, and 
turbulence. To achieve this goal, a key point lies in relevant definitions and evaluations of orbital 
and turbulent motions. The aim of this paper is to build and validate a separation technique 
allowing one to distinguish all three crucial contributions of the fluctuating motion, namely the 
potential and rotational parts of the orbital motion, as well as turbulent fluctuations. The whole 
method is first developed and tested for periodic rotational waves. The first step of this technique 
consists of a determination of the instantaneous stream function associated with the potential 
motion induced by the waves in presence of a linear sheared current. The second step consists of a 
linear filtration of the remaining motion from which the orbital rotational motion is extracted. The 
strong hypotheses involved in the technique are then carefully checked and shown to be relevant in 
the case of laboratory wind waves. The method is finally applied to experimental data obtained by 
laser Doppler velocimetry measurements in a wind-water laboratory facility. Influence of the mean 
sheared current on the prediction of orbital velocities is pointed out, and the orbital rotational 
contribution is found to have a significant magnitude. 

1. Introduction 

When wind blows over a water surface initially at rest, it 
creates a pattern of random gravity waves. Study of surface 
waves is usually performed within the framework of classical 
potential theory which experiences largely success in 
describing many observed phenomena. However, it has been 
suspected for a long time that in the presence of wind the 
assumption of irrotationality is only approximately valid. 
The pioneering field measurements of Shonting [1964, 1970], 
Yefimov and Khristoforov [1971 a, b], and Cavaleri et al. 
[1978] showed that the phases of the orbital velocity 
components measured with respect to the wave elevation 
deviate significantly from linear theory predictions. Things 
appeared even clearer some years later in two remarkable series 
of experiments. In the f'u'st one, Cavaleri and Zecchetto [ 1987] 
performed measurements in the Adriatic Sea near Venice and 
confirmed unambiguously that the phase shift between 
horizontal velocity fluctuation and wave elevation is far from 
being zero in presence of wind leading to important downward 
momentum fluxes. In contrast, the same authors observed that 
under swell conditions the results were coherent with the 

predictions of the classical theory. Cheung [ 1985] and Cheung 
and Street [1988a] confirmed the existence of an orbital 
vorticity by using sinusoidal, mechanically generated waves 
ruffled by a slight wind; they observed the existence of an 
orbital shear stress of the same order as the surface stress. In 

the same investigation they noted an abnormally high 
turbulence level below the waves (between three and four times 
the level in a classical boundary layer), and it seems obvious 
that both features are closely related. Another proof of the de- 
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parture of wind waves from irrotationality is the development 
of Langmuir circulations. It was shown by Craik and 
Leibovich [1976] (see also Leibovich [1983] for a review) that 
the interaction between an initially irrotational surface wave 
field and a wind-driven current leads to the existence of a weak 

vorticity correlated to the wave motion and can explain the 
occurence of quasi-steady vortices aligned with the wind 
direction. 

All these results appear as converging indications of the 
existence of an orbital vorticity below waves when wind is 
present. Even weak, this vorticity is able to change 
dramatically the mean momentum balance (as is shown by the 
existence of Langmuir circulations) or the turbulence balance 
(as it appeared in the results of Cheung and Street [1988a]). 
This is due to the fact that wave energy is generally much 
greater than energies associated with mean current or turbu- 
lence, so that any departure from the potential behavior can 
have very strong consequences. It is thus clear that 
understanding and description of the orbital rotational motion 
is an essential point for the determination of fluxes at the 
atmosphere-ocean interface, as well as for the knowledge of 
small-scale dynamics of the surface layer in lakes and oceans. 

When dealing with experimental results, the central 
problem is then to build a method allowing extraction from 
any velocity measurement of the orbital potential and 
rotational contributions. Things would be relatively easy if 
the fluctuating motion below wind waves was restricted to the 
orbital motion. Unfortunately, this How is known to be 
turbulent, even at very weak wind speeds. The major problem 
of signal processing is then to separate two random orbital 
motions out of a random fluctuation containing a turbulent 
contribution. Many attempts have been made to perform this 
kind of separation between an orbital and a turbulent motion, 
but two methods seem to emerge as the most powerful. They 
both require the simultaneous measurement of wave elevation 
and velocity at the same fetch. 
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The first method derived by Benilov and Filyushkin [1970] 
is called the linear filtration technique (hereinafter referred to 
as LFT). In this method, which works in the frequency domain, 
the orbital motion is assumed to be linearly related to the 
surface displacement via a convolution process, while 
turbulence and orbital motion are assumed to be uncorrelated at 

first order. 

The second method derived by Dean [1965] and updated by 
Jiang et al. [1990] is a nonlinear least squares resolution in 
the time domain of the full kinematic and dynamic equations 
written at the free surface. It assumes that the orbital motion is 

two-dimensional and potential. 
The aim of the present paper is to present a somewhat more 

general separation method enabling us to estimate the orbital 
rotational motion below laboratory wind waves, as well as the 
orbital potential motion and the turbulent contribution. This 
method is based on the following remark: since LFT allows the 
orbital motion to carry vorticity when the Dean [1965] 
method does not, it appears theoretically possible to combine 
both of these methods to obtain separately all three 
contributions. Nevertheless, as the propagation of wind waves 
is greatly affected by the wind-induced mean current, it is not 
possible to compute accurately the orbital motion without 
taking into account the main characteristics of this current. 
Thus it is first necessary to reconsider the Dean method so as 
to adapt it to random waves propagating on a sheared current. 
Furthermore, since the orbital rotational contribution is a 

priori much smaller than its potential counterpart, its 
determination requires a very careful discussion of the hy- 
potheses and the limits of each step of the procedure. This 
discussion and the tests presented below show that under 
suitable conditions fulfilled in laboratory experiments the 
present method gives a reliable estimation of the orbital 
rotational effects. It is then possible to use experimental data 
to compute various correlations crucial for the understanding 
of wave-current and wave-turbulence interactions. On the basis 

of these correlations a physical analysis of these interactions 
is presented in a companion paper [Magnaudet and Thais, this 
issue] (hereinafter referred to as MT). 

2. Foundations of the Method: Two-Dimensional 
Periodic Waves 

2.1. Triple Decomposition of the Fluctuating 
Motion 

As previously explained, our goal is to devise a method al- 
lowing a physical analysis of the velocity field below 
laboratory wind waves. For the sake of clarity it seems 
necessary to explain and check the method first with two- 
dimensional periodic waves, then to discuss its extension to 
wind-generated waves. Consequently, in this section we 
consider the case of two-dimensional periodic waves su- 
perimposed on a turbulent shear flow. This physical situation 
is encountered, for example, when waves are generated by 
means of a wave maker while a slight wind blows over the 
surface. 

The total fluctuating velocity v measured below the waves 
can be regarded as the sum of the turbulent motion v' and the 
orbital motion •. We define • using the phase-averaging 
method proposed by Reynolds and Hussain [1972]. Denoting 
the wave period T and its phase 0 with respect to an arbitrary 
time, the phase-averaged contribution contained into the 
instantaneous velocity field V is defined as 

1 Nv 
< V > (x,0) = Y. V(x,0 + nT) (1) 

N w n=l 

where Nw is the number of available wave groups, assumed to 
be large. The mean velocity V is obtained from (1) by 
integrating <V> along 0 as 

1 2n 
V(x)= I< v > (x,0) (2) 

2•r 0 

The orbital velocity g is finally given by 

•(x,0) =< V > (x,0)- V(x) (3) 

The turbulent contribution v' is simply the nonperiodic part 
of V. This definition implies that no phase correlation can 
exist between v' and the wave elevation •1, so that 

v'n=0 (4) 

Equation (4) does not mean that turbulent fluctuations are 
not affected by waves; phase correlation can occur between 
wave elevation and higher-order turbulent quantities like the 
Reynolds stresses <v'v'> (defined by applying the phase 
average procedure to the tensor v'v'). 

Since the experimental and theoretical studies reviewed in 
the Introduction have shown the orbital rotational motion to 

be of particular interest, the orbital motion is split in two 
parts as 

•(x,0)= •,(x,0) + •n(x,0) (5) 

where }•, and •a denote respectively the potential and rotatio- 
nal contributions to 7. Note that (5), which expresses the 
Helmholtz decomposition of •, does not define in a unique 
way •, and •a since an arbitrary gradient can be added to 7v t, 
and substracted from •a. This ambiguity will be removed in 
the following subsection. 

Combining previous decompositions, the total fluctuating 
water motion v measured as a function of time t can finally be 
written as 

v(x,t) = •e (x,0) + •va(x,0) + v'(x,t) (6) 

The general problem we have in mind is now to obtain a 
reliable estimate of •e, •a and v'. 

2.2. Governing Equations of the Orbital Motion 

Let us denote by <0•> and 0Y the vorticities associated with 
<V> and v', respectively. The momentum balance of <V> is 
given in the inviscid limit by 

2 i}<V> <V> 2 <v' > <P> 
+V( + + + gz) (7) i•t 2 2 p 

+< 0•> x< V> + < •' xv' >= 0 

where z is the vertical coordinate directed upward, while g and 
P denote gravity and pressure, respectively. 

Obviously, in the frame of reference moving with the phase 
speed c of the periodic wave, the time derivative of <V> 
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vanishes. The free surface then becomes a streamline, 
implying that the normal velocity (<V>-c).n is zero on this 
surface (n being the unit normal). Let us denote by t the unit 
vector tangent to <V> on the free surface, and by ds the arc 
element of this surface in the plane (t,n). Using the foregoing 
remarks, the momentum balance (7) integrated along ds on the 
surface leads to the Bernoulli equation 

2 
1 <v' > <P> 
-(< V >-c) 2 +•+•+ 
2 2 p 

+ ! < co' xv' >. t ds = constant 

(8) 

Assuming that the mean flow is also two-dimensional, the 
three parts of the phase-averaged motion can be written as 

I i 

V-c =-jxVq • (9a) 

•v =-JxV•v (9b) 

•'n =-J x Vq•n (9c) 

where j is the unit vector defined so that (t, n, j) is right- 
handed. All three stream functions are related to the mean and 

orbital vorticities • and •) through 

V2• =-• (10a) 

the coupled system (10)-(12) for a given wave record. This 
approach was used by Thomas [1990] to study the interactions 
between a mean sheared current and a periodic wave train. 
Unfortunately, the same way cannot be followed here because 
the generation of • is due not only to mean current, but also to 
wave-turbulence interactions [Magnaudet and Masbernat, 
1990]. Thus (10c) is of no use in the present framework, and 
the effects of the orbital vorticity have to be determined 
indirectly. Furthermore, (11)-(12) show that no rigorous 
separation exists between • + •p and other quantities related 
to the orbital rotational motion or to the turbulent motion. In 

order to determine • + •p without knowing •n and v' on the 
surface, it must be assumed that the variations of •n, <P>, 
<v'2> and <co'xv'>.t along the surface are weak. This can be 
viewed as an asymptotic expansion of the total motion with 
respect to a small parameter representing the ratio between the 
magnitude of •n+v' and that of V+•,p; in this expan- 
sion, ß + •p determines the unperturbed solution, whereas •n 
and v' can be obtained at first order from the measured fluc- 

tuation v once gp is known. Thus under the foregoing 
assumption ß and •p satisfy at leading order 

V2• =-• (14a) 

V 2 •tIJp --0 (14b) 

V 21.lJp -- 0 (1 0b) 

V2•n =-& (10c) 

i 

•l'+•p =•, z--q (15) 

z-• (16) 

On the free surface z = q, they also obey the kinematic and 
dynamic boundary conditions 

i 

• + •'P + •n = •0 (11) 

i 

W - cz -• 0 z --o- oo (17a) 

2 

I[V(•+Wv+•n)]2 <v' > <P> -- + +•+gq 
2 2 p (12) 

+j'< co' xv' >.t ds= gQ 

where W0 and Q are two constants denoting the flow rate and 
the energy density of the total motion, respectively. Finally, 
at large depth the stream functions are assumed to satisfy the 
conditions 

i 

Ud - c z -o 0 z -• - oo (13a) 

ß p•O z-•-•, (13b) 

ß n--• 0 z --> - oo (13c) 

At this point, it is necessary to stress that the orbital 
vorticity • cannot generally be determined directly. Expe- 
rimentally, its measurement looks extremely difficult to 
achieve with confidence, even though new techniques like 
digital particle image velocimetry (DPIV) [Willert and Gharib, 
1991] give reasonable hope for estimating this quantity in 
future works. Another solution could be to solve numerically 

•p---> 0 z ---> _oo (17b) 

From (15)-(16) there is no more ambiguity in the definition 
of •p and qn; •t, is now forced to satisfy conservation 
properties on a given free surface. Note that in (15)-(16) the 
constants • and Q• differ a priori from their counterparts, W0 
and Q, which appear in (11)-(12); below waves, mass 
transport is known to be closely related to vorticity, so that 
the flow rate and the energy associated with the velocity field 
V + •p are certainly different from those associated with the 
total phase averaged motion < V >= V + •p + •n even if •n i s 
weak. The total flow rate W0 is generally imposed by 
experimental conditions (for example, in a closed tank, 
W0=0). In contrast, as is well known in the study of Stokes 
waves on still water, %IJ1 Can have different values depending 
on the assumption made to fix Q•. It is clear that this 
assumption can influence the absolute magnitude of •n. 
However, the most natural choice is guided by the fact that our 
primary aim is to device a method allowing treatment of ex- 
perimental data. Since the surface elevation q is the key 
experimental data and since all velocity measurements are 
referred to the mean water level I !, it appears natural to define 
Q• and W• so that q= 0. This definition will be used for the 
remainder of the present work. 
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2.3. Extraction of the Potential Contribution re t, 

Having defined the orbital potential motion by (15)-(17) 
and keeping in mind that our experimental data are x I and the 
total velocity v+V, we must first determine the "experi- 
mental" potential contribution g t,. A powerful method to 
compute the potential motion induced by an experimentally 
known wave field composed of a sine wave and its harmonics 
was developed by Dean [1965]. Briefly, the method, assuming 
that the wave motion is two-dimensional, consists of a least 

squares determination of the Fourier components of a pres- 
cribed form of the stream function W•, describing the orbital 
velocity field. The calculation is performed in the frame of 
reference (x'=x-ct, z) moving with the constant phase 
velocity c of the wave train and •Ft, is constrained to satisfy 
the full nonlinear kinematic and dynamic boundary conditions 
along the free surface. Wt, is assumed to be of the form 

N 

•Ft,(x',z)= Y. exp(nkoz ) (X2n_l cosnkox'+Xznsinnkox') (18) 
n=! 

where k o is the wave number of the carrier wave and N the num- 
ber of Fourier modes retained in the approximation. In his 
original work, Dean [1965] did not consider any mean current. 
In contrast, Dalrymple [ 1974] improved the method in order to 
take into account the effects of estuarine currents on surface 

waves. For this purpose, he introduced in (15)-(16) a stream 
function •F corresponding to a linear sheared current with 
known characteristics. However, the mean vorticity was weak 
and the overall effects of the current were small. 

The situation is completely different here since the mean 
currents we are interested in are induced by the wind. These 
currents are known to influence greatly the characteristics of 
surface waves and especially the form of the dispersion 
relation (see, for example, Thomas [1979] and Kirby and Chen 
[1989]). In laboratory experiments the Eulerian surface drift 
ranges between 2 and 3% of the air free-stream velocity 
[Phillips and Banner, 1974 ß Wu, 1975] which corresponds 
frequently to 20 or 30% of the absolute phase velocity of 
young wind waves. Thus it appears that in presence of wind, 
no reliable estimation of gt, can be obtained without taking 
into account the current. 

Possible forms of •F are restricted by the fact that the 
vorticity • must be constant for •F t, to satisfy (14b); 
according to the Rayleigh equation, this is the only case where 
the occurrence of a mean vorticity is compatible with a strictly 
potential orbital motion [Peregrine, 1976]. Taking into 
account this property, we consider a constant mean shear U• 
and assume: 

2 

•t'(z) = (C-Uo) z- Ug • +C (19) 

or in equivalent terms 

U(z) = Uo + z u' o (2o) 

In (19) the constant C is defined so that • satisfy (17a) at 
large depth. It is clear that (20) does not describe the real wind- 
induced mean current over a large depth. However, this is not 
too serious of a problem because ß is only involved in the 
boundary conditions (15)-(16). What is necessary to obtain 
W t, is simply an accurate approximation of the mean current 

within the surface region, so that •F only needs to be 
meaningful in that region. Nevertheless, it is not obvious to 
relate U0 and U• to measurements for several reasons. The 
time-averaged, streamwise velocity that can be determined 
from a fixed point measurement at z=0 differs from the mean 
current because in this twO-phase region the average of the 
orbital velocity differs from zero. The mean current which is 
measured below the twø-phase region cannot be extrapolated 
up to z=0 because its vertical gradient is too strong. Thus it 
appears that only wave-following measurements can be easily 
related to U0 and U•. A first idea would be to perform such 
measurements at various distances from the real free surface in 

order to average the result s in the plane z = 0. This was done 
by Cheung and Street [1988b] for a mechanically generated 
periodic wave, but it appears as a very difficult technical 
challenge. The only wave-following measurement that can be 
easily performed is that of the Lagrangian surface drift U t. This 
quantity is readily determined by measuring the time necessary 
for paper punchings dropped on the surface to travel a known 
distance and it can be shown (see appendix A) that if the mean 
current is assumed to decay linearly with depth, Utcan be 
expressed in terms of c, Uo, U•, and wave-related quantities. 
More precisely, denoting by Co the relative phase velocity 
c-U o, one finds for a sine wave of amplitude a and wave 

number k 

a 2 U t =U 0 +a2k2co + /2U'o(2k+U' o/Co) (21) 

Equation (21) closes the determination of ret,. Once the wave 
elevation xl(x0,t) is recorded at a given fetch x0 and the 
absolute phase velocity c as well as the Lagrangian surface 
drift Ut are measured, ß + Wt, given by (18)-(19) and satis- 
fying (21) can be determined. This is achieved by a least 
squares method whose constraints are equations (15)-(16), 
whereas the 2N+3 unknowns are the Fourier coefficients X,, 
the surface value W• of the stream function, and the 
characteristics of the mean current U 0 (or in an equivalent way, 
Co) and U•. Once this is realized, the resulting stream function 
• + •t, can be differentiated with respect to x' and z to obtain 
both components of gt,. In the following, •t, will be often 
split into a linear part re m and a nonlinear part •t,2. The linear 
orbital potential velocity re t, • is defined as the solution of the 
linearized form of (15)-(16) (see (B2)-(B3) in appendix B) 
applied to the same wave elevation x I. 

2.4. Extraction of the Rotational Contribution re n 

If the assumptions of weak turbulent and orbital rotational 
effects are satisfied, then the method previously described is 
capable of building re t, in the time domain. Coming back to 
(6), it is then possible to remove re t, from the total fluctuation 
v and to obtain a new velocity signal T defined as 

T = v - •, = v' + •e n (22) 

The problem is now to separate the two remaining 
contributions v' and *e n without knowing any of them. Consi- 
dering the limitations pertaining to the determination of • the 
only simple way to obtain informations about v' and re n is to 
take advantage of the correlation property between re n and x I. 
For the periodic waves considered in the present section a 
straightforward separation method could be performed by 
applying the phase-averaging procedure to T. In view of a 
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direct extension to random waves we prefer to explore a more 
general method. The idea is to apply the linear filtration 
technique (LIEF) of Benilov and Filyushkin [1970] (see also 
Benilov et al. [1974]) to T and not to the total signal v as is 
usually done. 

Let us first recall the guidelines and assumptions of the 
classical LFT. In this approach the total fluctuating motion is 
split as 

v = v o + v, (23) 

where the orbital motion v o is defined as the part of v which is 
linearly coherent with the surface displacement measured at the 
same fetch. Under this assumption the power spectrum of any 
component Vol of Vo can be computed without reconstructing 
the realization Voi(t ) by the expression 

Sv,n Sv•n 
Svo,Vo = Snn (24) 

where Svir I is the cospectrum between the wave elevation and 
the component v i of the total velocity fluctuation (the star in 
(24) stands for complex conjugation). Since the remaining 
contribution v r (not to be confused with •R)satisfies 
necessarily VrYl= 0, the assumption of linearity implies 

Svoiv,i = Sv,iVoi = 0 (25) 

can be concluded that the contribution •Vn2 is at least 2 orders 
of magnitude smaller than •t,•- This means that •'n2 is 
negligible from an energetic point of view and that (27) 
contains the leading part of the total orbital rotational 
contribution •n- Obviously, •n2 is rejected into vt. Thus this 
latter quantity is not strictly identical to the turbulent 
fluctuation v' defined by (6). However, in practical appli- 
cations, v' is at least of the same order of magnitude as •vn•. 
Consequently, v t is a good approximation of v'. 

The determination of •n• based on (27) has two 
shortcomings. The first is that since rvn• is obtained through a 
filtration technique without any input of physics, there is no 
proof a priori that the extracted velocity field carries the 
vorticity of the orbital flow. This must be proved a posteriori, 
and in the section 2.5, '•n• (which hereafter will no longer be 
distinguished from '7n) will be shown to bear the desired 
features. The second limitation of (27) is, of course, that only 
the power spectrum of •n is obtained, whereas the signal 
,7n(t ), as well as c3, remain unknown. As a consequence, 
correlations involving •v n cannot be directly computed. 
However, since the instantaneous signals •t, and T are 
available, this difficulty can be easily overcome. From (4) and 
the definition of •vt, • as the linear part of 7vt,, the correlation 
Om0tnj can be obtained as 

Ti•tnj = (•n + v' )i•m/ = •ni•m/ (29) 

The spectrum of the remaining "turbulent" contribution is 
thus given by orthogonality as 

Sv,iv,i = Svivi - SvoiVo, (26) 

It must be kept in mind that since the method is linear, the 
definition of the orbital motion Vo resulting from (24) 
corresponds only to the linear part •t,•+•n• of • 07n• being 
the rotational counterpart of •t,•). All the nonlinear orbital 
contributions (•v2+•n2) are thus projected onto v,. 

Let us now apply the same formal method to T instead of v. 
Since no assumption of irrotationality is made in the LFT, we 
get from (22) and (4) 

S•m 
S7n•i 7n•i = S,lq (27) 

Similarly, following (26) the turbulent fluctuation v, can be 
obtained as 

Svtivti--- S¾i¾i- S•Rli 7Rli (28) 

Equation (27) makes the extraction of the •n• spectrum 
theoretically possible. In the case of a periodic wave train the 
spectrum of T is the sum of a continuous spectrum corres- 
ponding to the turbulent motion and of discrete rays 
corresponding to the orbital rotational motion. Equation (27) 
allows extraction of the energy contained in these rays which 
is associated with the part of the orbital rotational motion 
linearly related to q. Naturally, '•n2cannot be obtained from 
(27). However, it can be shown theoretically [Magnaudet and 
Mashernat, 1990] that 'Tn• and '•R2 are 1 order of magnitude 
smaller than •vt, • and •vt, 2, respectively. Since the part •vt, 2 of 
•7 t, which is nonlinearly related to q is generally itself at least 
1 order of magnitude smaller than its linear counterpart, '•t,•, it 

2.5. Application to a Rotational Periodic Wave: 
The Gerstner Wave 

From a methodological point of view, the principal 
difficulty of the present separation method is that the 
rotational motion, which is a small quantity, is computed as a 
difference between two large quantities (i.e., the total 
fluctuating velocity and the potential part of the orbital 
velocity). Thus before dealing with wind waves, it is of 
primary importance to prove that the computational precision 
of all the steps of the method is sufficient for this small 
quantity to represent a good approximation of the real orbital 
rotational motion. The simplest conclusive test that can be 
made consists of checking the method against a theoretical 
wave solution carrying vorticity. 

As reported by Lamb [1932, p. 422], an exact rotational 
solution to the problem of surface waves was given by 
Gerstner. In this solution, fluid particles describe circular 
orbits, and their trajectories are given as 

x = x o -ae •ø sin(/cx 0 -c•t) (30a) 

z = z o + ae •2ø cos(/oc 0 -c•t) (30b) 

where a is the wave amplitude and (Xo,Zo) denote the mean 
position of the particle. The Gerstner wave is a finite 
amplitude wave traveling at the phase speed c = c•/k = (g/k) m. 
Deriving the equation of the velocity field, it is easy to show 
that (30a) and (30b) lead to a nonzero horizontal mean current 
U (z) given by 

•(z) = -(ak) 2 c e 2•z• (31) 

This second-order, adverse mean current decays 
exponentially with depth, has the same magnitude as the 
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Stokes drift, and thus guarantees a zero net mass transport. The 
second-order vorticity corresponding to the solution (30a) and 
(30b) has a magnitude 

-20 (ak)2 e2•ø l_(ak)2emO (32) 

Only a part of 0• o correponds to the mean current U(z), 
whereas the remaining is the vorticity of the orbital rotational 
motion we want to determine. 

Our test is carried out on a Gerstner wave corresponding to 
ak = 0.25 and a = 7.24 mm. The shape of the free surface 
v!(x,t ), as well as the velocity components u and w at 10 
different depths z i are generated at the fixed fetch x=O. The data 
set v!(0,t), u(O,zi,t ) and w(O,zi,t ) is similar to the experi- 
mental data that would be obtained by recording the surface 
displacement at a given fetch and the velocity fluctuations at 
several depths below the surface at the same fetch. Finally, 
according to (21), U t is set to a value compatible with the 
surface values of the drift current (31) and the vorticity (32). 
The whole set of data is processed through the complete two- 
step separation method described in the previous sections. 

The first result is that the "turbulent" moments • and • 
are found negligibly small. This means that the method 
recognizes, as it has to do, the total velocity fluctuations u and 
w as being correlated to the surface displacement '!. As dis- 
cussed before, the accuracy of the determination of rv R has to 
be proved indirectly since the method is unable to build •. For 
that purpose, let us consider the general identity which holds 
for a two-dimensional flow 

•-•- (u 2 - w 2 )= 2uco+ 2•x (uw) (33) 

Equation (34) provides the basis of the test; • and ½•2 are 
directly computed through (27), while •,•R and ½•,½• arise 
from (29). The result is then differentiated with respect to z and 
compared to the quantity 2• provided by the theoretical 
solution. This comparison is illustrated in Figure 1. It can be 
seen that the left-hand side of (34) given by the separation 
method agrees very well with the theoretical solution over the 
whole depth. This proves that provided the physical 
assumptions made in subsection 2.2 are satisfied, the present 
method is sufficiently accurate to give relevant information 
about the orbital rotational motion, even if this contribution 
is only a small part of the total motion. Furthermore, this test 
allows to verify that the method only requires an accurate 
description of the mean motion in the surface region; in the 
present case a linear shear flow was used to model an 
exponential current without any damage for the determination 
of both potential and rotational orbital motions. 

3. Extension of the Method to Laboratory 
Wind-Generated Waves 

3.1. General Considerations 

Having shown that the separation method gives reliable re- 
sults for periodic two-dimensional waves, we turn now to our 
central objective, i.e., its generalization and its application to 
laboratory, wind-generated waves. In this context, the 
definition (1)-(3) of the orbital motion obtained for periodic 
waves through the concept of phase averaging is no more 
applicable. This definition can be made more general by 
considering the orbital motion as the part of v which is related 
to the displacement '! of the free surface, whatever its state of 
coherence. This relation whose exact expression is generally 
unknown can be written under the functional form 

For a peri•odic motion the last term vanishes. Using the fact 
that •2 = ½•2, (33) applied to the fluctuating motion writes 

] az L n wn + 2(•,• - ½•,½R ) = 2•-:• (34) 

0.0 

•'(x,y,z,t)=F[rl(xs, ys,x)], z(xs,y•) • Su, f, x • ]_0% t] (35) 

where S•f denotes the free surface. In contrast no such relation 

is supposed to exist between v ø and r I, so that (4) is assumed 
to remain valid. Having defined the orbital velocity by (35), 
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Figure 1. Correlations involving the orbital vorticity below a Gerstner wave. 
•} / •}z(•'-•- ½"• + 2(•t,•n - ½t,½n )); curve is 2•; normalizing parameter is 1/2a2k3c2. 
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the Helmholtz decomposition (5) can be performed on • and 
the triple decomposition (6) can be applied to the total 
fluctuating velocity v. 

A first extension of the Dean method to a wind-generated 
wave field was made by Jiang et al. [1990]. These authors 
assumed that the whole orbital motion could be described by a 
stream function of the form 

N 

W•,(x',z)= Y•exp(nAkz) (X2,,_lcosnA/cx'+X2,,sinnAkx') (36) 
n=l 

This stream function has the same form as that defined in 

(18), with k0replaced by Ak. However, its meaning is very 
different; while (18) describes the motion of a carrier wave 
(with wave number k0) and its harmonics, (36) is intended to 
build a discrete approximation of a continuous spectnma with a 
spatial resolution Ak. Jiang et al. [1990] applied (36) to 
laboratory data and used the results to investigate wave- 
turbulence interactions. In their work several key hypotheses 
are made, namely that the orbital motion is (1) potential and 
(2) two-dimensional, and (3) that all components of the wave 
spectrum move at the same phase velocity c as the dominant 
wave. Furthermore, the orbital motion is assumed not to be af- 

fected (4) either by the mean shear current (5) or by the 
turbulence. 

As previously discussed, assumptions (1) and (4) are not 
retained in the present work. Assumption (1) implies that the 
orbital rotational motion is rejected into the "turbulent" 
contribution, and this is clearly in conflict with the triple 
decomposition in (6). Assumption (4) seems hardly tenable 
since the wind-induced shear current greatly affects the 
propagation of laboratory wind waves, as pointed out in 
subsection 2.3. Disregarding both these assumptions, a very 
straightforward way to extend our separation method to 
laboratory wind waves would be to use the stream function (36) 
in place of (18) to determine •,. However, this approach is 
acceptable only if the remaining assumptions are proved to be 
valid. Thus we begin by examining both assumptions (2) and 
(3). Assumption (5) which is needed to obtain separate 
governing equations for the orbital potential motion, as in the 
case of periodic waves, will be checked a posteriori. 

To discuss these assumptions and describe the final method, 
we use wind wave data coming from experiments undertaken in 
the Institut de M6canique des Fluides de Toulouse (IMFT) wind- 
water tunnel facility. The characteristics of the facility, as well 
as the experimental procedure, are thoroughly described in the 
companion paper MT. Measurements have been performed at a 
fetch of 13 m for four wind regimes as follows: 4.5, 6.8, 9.0, 
and 13.5 m/s. Water velocity measurements have been carried 
out with a submersible laser optical fiber system, making 
possible measurements of the spanwise component, while free 
surface elevation and phase velocities have been determined 
using two capacitance gauges aligned with the wind direction. 

3.2. On the Three-Dimensionality of the Wave 
Field 

The question of whether or not laboratory wind waves can 
be satisfactorily regarded as two-dimensional is not easy to 
answer. At sea it is quite well established that conjugate effects 
of variations of the wind conditions and three-dimensional 

wave instabilities produce a pronounced directional structure 
of wind wave spectra. Yefimov et al. [1972] established that 
this structure is fairly well described by a cos219 dependence of 

the directional energy spectrum (t9 denoting the angle between 
the wind direction and the local direction). The situation is 
quite different in laboratory studies. The main specificity of 
laboratory experiments is that wind always blows along the 
same direction and that the lateral walls play the role of a 
waveguide. Clearly, the phases of all components of the wave 
field are forced to satisfy a relation ensuring that spanwise 
motions vanish on the sidewalls. Thereby, compared with 
field situations, the development of spanwise motions is 
reduced, especially when the width of the channel is 
comparable to the dominant wavelength [Longuet-Higgins, 
19901. 

The best illustration of the weakness of spanwise motions 
associated with the waves is probably provided by a 
comparison of the intensities of the spanwise and streamwise 
(or vertical) fluctuating motions. Figure 2 depicts such a 
comparison performed with the data obtained in our facility at 
a wind speed of 9.0 m/s. It is clear that in the entire region 
influenced by the waves the spanwise fluctuation v is smaller 
than the vertical fluctuation w. The typical exponential decay 
of the orbital potential velocity associated with the dominant 
wave is also shown in Figure 2. This decay is very similar to 
that found on the w profile, whereas the v profile exhibits a 
completely different and much more rapid decay. This is a clear 
indication that there is no noticeable orbital component in the 
spanwise direction or more precisely that the orbital motion 
dominates w (except at large distances from the surface), 
whereas the turbulent contribution dominates v. 
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Figure 2. Vertical and spanwise total rms velocities' Wind 
speed U..=9.0 m/s, solid squares indicate spanwise velocity; 
open diamonds, vertical velocity; curve is Ut, , exp(kz), with 
Ut, s defined as the surface orbital velocity estimated from wave 
spectrum. 
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3.3. The Question of Dispersion 10 ø 

In their extension of the Dean [1965] method to wind 
waves, Jiang et al. [1990] assumed that all wave components 
propagate at the phase velocity c of the dominant wave. This 

10 4 
hypothesis seems physically dubious since it goes against the 
well-known dispersive behavior of gravity waves. However, it 
can be appropriate for studying laboratory wind waves because 
of two specificities. The first one is the nondispersi,,e 

10 '2 
behavior of young wind waves reported by Ramamonjiarisoa • 
[1974] and Coantic et al. [1981] and justified theoretically by o ø 
Lake and Yuen [1978]. These studies show that owing to m 

nonlinear interactions, the wave field can be dominated by • 
components behaving as bounded harmonics of the dominant a• 10 '3 
wave. The assumption of a unique phase velocity for this part ..• 
of the wave field is thus fully justified. Recent laboratory • 
studies using bispectral analysis [Leykin et al., 1993] confirm z 
that such wave components carry a significant part of the wave 10'4 
energy, while the other part lies in free waves. The problem of 
dispersion occurs for this second part of the spectrum 
consisting in free waves. This is where the second specificity 
of laboratory wind waves occurs. It lies in the very sharp form 10'5 
of the spectra; even for waves obeying the usual dispersion 
relation, dispersion with respect to the dominant wave 
becomes appreciable only for components lying far from it. 
Since for a sharp spectrum the energy associated with such 1ø'6 
components is weak, dispersive effects can become 
indiscernible in (15)-(16). 

Such an influence of the shape of the spectra on dispersive 
effects can be checked following a simple way. The first step 
is to build numerically a collection of small-amplitude waves 
with random phases in uniform deviates, i.e., 

11(x,t) = I A(k)cos[k.x-lJ(k)t + 0(k)] dk (37) 

where A(k) is the amplitude wave number spectrum. The surface 
elevation rl(x,t) is made up of multicomponent linear waves, 
each of them traveling with its own phase speed as given by 
the linear dispersion relation. The generation of such a wave 
train involves two leading parameters; one is the local energy 
maximum S i of the ith component centered on wave number 
while the other is the relative width of each peak denoted as 
W t =Ak t/k t. Note that such spectra are not intended to 
represent real wave spectra but only to allow a quantitative 
study of dispersive effects on (15)-(16) for a given spectral 
distribution and a perfectly known dispersion relation. Since 
A(k) and 0(k) are arbitrary, (37) cannot represent a nonlinear 
wave field and only linear tests can be performed using this 
distribution. Figure 3 shows two frequency spectra normalized 
by So; both of them correspond to Ak t/k t =0.2. The two 
spectra only differ by the relative amplitude of higher 
harmonics which obeys S t = S o / (i + 1) for spectrum Sx and 
S t = S O / (i + 1) 2 for spectrum S 2 (i • [0,5]). The second step of 
the test consists of solving the linear counterpart of (15)-(16) 
((B2)-(B3) in appendix B), with the aid of the stream function 
(36) (no mean current assumed). Figure 4a shows that the 
results obtained with spectrum S1 are very bad; the method is 
unable to reproduce either the given surface elevation or to 
satisfy the Bernoulli equation with a constant right-hand side. 
This proves simply that if the waves are dispersive and if the 
energy located far from the dominant wave is significant, then 
the system (15)-(16) and (36) has no solution. This illustrates 
the exact signification of the dispersion relation which 

(so 
(so 

10 ø 10 • 
f (Uz) 

Figure 3. Frequency power spectra of numerically generated 
dispersive random wave fields. Local maxima behave as 
S•,SySo/(i+I) (thin solid curve) and $2, S•=So/(i+1)2 (thick 
solid curve). 

expresses a compatibility condition for (15) and (16) to be 
both verified on the same given surface. Figure 4b depicts the 
results of the same test performed on spectrum $2. The results 
are much more satisfactory, even if the right-hand side of the 
Bernoulli equation still varies slightly. The results confirm 
that with such a spectral distribution, dispersive effects are too 
weak to affect significantly (B2) and (B3) in appendix B. 

Real wind wave spectra obtained in laboratory experiments 
are generally sharper than the fictitious spectrum $2. 
Considering the results of the foregoing test and the 
nondispersive behavior of a significant part of the wave field, 
it seems reasonable to assume that for such waves the problem 
(15)-(16) can be adequately resolved by neglecting dispersion. 
Consequently, we apply the stream functions (19) and (36) to 
solve the problem (15)-(16) for a real wave record. Figure 5 
confirms for a typical block of real data, including nearly 20 
periods of the dominant wave, that measured and predicted 
wave elevations •l,,,(t)and rl•,(t) are in very good agreement 
while the right-hand side Q of Bernoulli equation remains 
almost constant. Only small-amplitude displacements asso- 
ciated with high frequencies are not very accurately followed 
because they do not contribute much to the error to be 
minimized and the number of Fourier modes kept is not 
sufficient to describe them properly. This typical result 
demonstrates that owing to the physical characteristics of 
laboratory wind waves, the form (36)of We which assumes 
that all components of the wave spectrum travel at the same 
phase velocity enables us to satisfy with good accuracy both 
(15) and (16). 
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Figure 4. Result of linear separation method applied to numerically generated dispersive random wave fields. 
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Figure 5. Sketch of laboratory wind waves (Wind speedU..=9.0 m/s) and result of nonlinear triple 
decomposition method (TDM). Solid curve is wave data •1,,,; open squares, computed wave •1•,; and solid 
diamonds, Qk - Q. 

3.4. The Triple Decomposition Method 

The foregoing conclusions concerning the weakness of the 
spanwise orbital motions and the lack of significant effects of 
dispersion on (15)-(16) for laboratory wind wave data suggest 
a reasonable generalization to wind waves of the method 
developed in section 2. Having measured the wave elevation 
11(x0,t ) at a fetch x 0 and determined the phase velocity of the 
dominant wav• c(ko) and the Lagrangian drift current Ui, the 
orbital potential motion is first obtained by solving (15)-(16) 
with • and •t, given 15y (19) and (36), respectively. The 
lagrangian drift U i is related to U 0 and U' 0 through (A9) which 
generalizes (21) to random waves. Then, as in the case of 
periodic waves, the orbital potential motion •t, derived from 
(36) is substracted from the total measured fluctuation v. 
Finally, the spectra of •R and v' are obtained by applying (27) 
and (28) to the signal v-• t, as described in subsection 2.4. 
Details about the implementation of the general method used 
to determine •t,, its linear version (used to obtain •m), and the 
choice of the parameters can be found in appendix B. An 
important question concerns the final precision of the method. 
An indication about this point is provided by the residual 
kinetic energy KRo s associated with the error E r made in the 
minimization procedure (see (B1)). KRo, defined as Kgo, = 

2 2 1/2(Co/C) O•o Er is shown at the end of Table 1. Table 1 also 
summarizes the values of kinetic energies Kin, KR, K c, and K r 
associated with the linear part of the orbital potential and 
rotational motions, mean current, and turbulent motion, 
respectively, all taken at the closest point below the waves. 
These results suggest that K•,•, Kc, and Kr are determined with 
a very good accuracy. Concerning the orbital rotational 
motion, the ratio Kms/K• lies roughly between 8% and 16%, 

suggesting that the orbital rotational motion is determined 
with a precision of nearly 20%. This indicates that the order of 
magnitude of the momentum fluxes associated with the orbital 
rotational motion can be obtained through the present me- 
thod, even if a significant uncertainty exists on the precise 
value of these terms. 

3.5. Turbulent and Rotational Contributions 

Near the Surface 

Turning back to the assumptions listed in subsection 3.1, 
as well as to those made to simplify (12) for obtaining (16), it 
appears that the method is valid only if rotational and 
turbulent effects are sufficiently weak on the surface. We are 

Table 1. Kinetic Energies of the Different Motions at the 
First Measured Point Below the Surface 

Kr Kn 
m/s cm2/s 2 cm2/s 2 cm2/s 2 cm2/s 2 

4.5 3.0 1.0 14.4 0.04 
6.8 5.9 0.9 26.5 0.08 
9.0 6.3 1.6 34.0 0.09 
13.5 12.5 2.6 60.5 0.32 

cm2/s 2 cm2/s 2 

23.7 0.14 
24.4 0.15 
16.0 0.14 
23.9 0.23 

Abbreviations are U., wind speed; K r, Kn, K m, Kt, 2, and K c 
are the kinetic energies associated with the turbulent motion, 
the rotational orbital motion, the linear part of the potential 
orbital motion, the nonlinear part of the potential orbital 
motion, and the mean current, respectively. Ka• is the residual 
kinetic energy associated with the final error made in the 
minimization procedure (see subsection 3.4). 
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unable to check precisely this hypothesis since the 
•- ..-7z, right on the surface is unknown. distribution of vn2i and v i 

However, we can try to estimate qualitatively the effect of the 
neglected terms by looking at the values of the kinetic 
energies shown in Table 1. Kt,• and K c appear clearly as the 
major terms. This result proves that it is absolutely necessary 
to take the mean current into account and that it is correct, at 

leading order, to neglect rotational and turbulent effects in the 
determination of the linear part •t,• of •t,- Since correlations 
like •n:i and vmi vnj are determined by removing •t,• from the 
measured fluctuation and then applying LFT, it can be 
concluded that the process used to evaluate these correlations 
is coherent with the order of magnitude analysis. In contrast, 
the kinetic energy Ke2 associated with the nonlinear part of 
the orbital potential motion is found to be smaller than Kr or 
Kn and even KRc,. Hence it is probably incorrect to determine 
'7t,2 without taking into account the effects of •n and v'. This 
means that owing to the poor determination of •t,2, a small 
error certainly exists in the turbulent fields determined by the 
method. 

a very close agreement. The value provided by (39) is still in 
fairly good agreement, even if the difference increases with 
as a consequence of the neglect of U•. 

Interestingly, the value of Co provided by the method can 
also be compared with those given by various forms of the 
dispersion relation. The linear dispersion relation arising 
from (15) and (16) satisfies 

u;l Co . _)_gu0 c• 1+ Z +z(UoUo ø•o =0 (40) 

With the aid of (A8) this leads to a value c0a• of Co given by 
a cubic equation. If U• is not taken into account, the solution 
of (40) reduces to 

g(1-e2•)+ g(1-e2), + gut (41) 
cod: = 2•o 2•o •o I 

3.6. The Effect of the Mean Sheared Current on 

As is well known from wave theory, the amplitude of •t, is 
directly proportional to the relative phase speed c o . Since in 
the present method ?t, must be removed from v to obtain 
it is of primary importance that Co be accurately evaluated. In 
fact, both relative and absolute phase velocities are needed to 
determine •; definition of the moving fetch x'= x-ct clearly 
involves the absolute phase velocity determined 
experimentally. In contrast, the relative phase velocity Co 
appears in the definition of the mean current (see (20)). In this 
subsection we stress that the determination of •v t, can be 
dramatically affected by the value of c o used in (20). The 
simplest way to determine c o would be to assume U0=0, so that 
c=c o. However, laboratory data do not support such 
simplification; for example, in present data the ratio UJc 
ranges from 20% at U.=4.5 m/s to 40% at U..=13.5 m/s. This 
fact was also pointed out by Jiang et al. [1990], who found 
absolute phase speeds up to 30% higher than those given by 
the linear dispersive law. A sounder estimate of Co valid for a 
linear mean current is given in appendix A in terms of c, 
and U•. From (All) it can be written: 

Coe• =c {1+œ2õ-U t/c+ 

[(1 + e2õ-U t / c) 2 + 2(1- e2)e2õ2 ]•/2 }/[2(1- e2)] 
(38) 

where œ is a measure of the wave slope (œ2 = 2q2(•00/c)2 ) and 
õ stands for U•/o• o, o• o being the radian frequency 2rcf0. 
Usually, U• is not determined directly in the measurements. 
Since eõ can be verified to be small compared to unity, a 
simpler estimate involving only basic experimental data is 
given by 

c-U ! 
cø•2=1 - e 2 (39) 

Equation (38) or (39) could be used directly in the separation 
method and should provide good estimates of Co. In fact, we 
prefer to start from (A9) which is slightly more general. 
Comparisons of the phase speed Co determined numerically by 
the triple-decomposition method with the estimate (38) show 

Finally, if U0 is also neglected, the well-known dispersion 
relation is recovered 

c% = -g'- (42) 
m0 

Figure 6 compares the value of c0given by the TDM 
(hereafter denoted c0xi• M) to the absolute phase velocity c and 
to values c0a•, c0a 2, Coa 3 predicted by the various forms of the 
dispersion relation (values predicted by (40) are not shown 
since they are very close to the TDM prediction, whatever U..). 
Obviously, CoxriM lies below c at all winds. Antagonistic 
effects of the mean sheared current can be observed by 

comparing the evolution of Coxtin with that of Coa 3. At low 
winds, C0d 3 underpredicts Co because the current behaves mainly 
as a constant drift. In contrast, at high winds, C0d 3 overpredicts 
c o because U• is large (õ becomes of order unity) and the 
global effect of the sheared current is then to reduce c o . 
Differences between c0a 3 and CoxriM can reach nearly 15%, 
whereas c0a 2 (which takes into account U 0 but neglects U•) 
may overestimate c o by nearly 50%! This comparison shows 
that forms (41) and (42) of the dispersion relation are not 
appropriate for determining Co in laboratory wind wave 
experiments. When these different estimates of c o are used to 
predict ¾v, the results are very different as shown on a vertical 
profile in Figure 7; in this example, the amplitude of •t,• would 
be artificially increased by more than 45% if c or C0d 2 were used 
in place of the value of Co determined by the TDM. This 
demonstrates that a necessary condition for predicting accura- 
tely •t, is that U0 and U• are both taken into account in the 
determination of c o . 

3.7. An Example of Results 

We present here a typical example of the results given by 
the whole separation method. For this purpose, we consider 
velocity measurements of the component w corresponding to 
the wind speed U..=9 m/s. Figure 8 presents the spectra of both 
the orbital potential and rotational contributions, as well as 
the turbulent movement. These typical results show that the 
shape of S,;a,; a follows roughly that of S•t,•t,: S•a• n rea- 
ches its maximum atf=j•, follows the same slope as S,;t,• •, on 
both sides of f0 and all the significant components of •n are 
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Figure 6. Experimental and theoretical determinations of relative phase velocity Co. Open squares are c,.•,; 
open diamonds c0dl; open triangles c0,•; open circles c0•; crosses c0•2; and solid squares, ComM. 

located within a narrow band of frequencies centered on f0. 
Theoretical reasons for this similarity are presented in the 
companion paper MT. It can be noted that the turbulent 
spectrum exhibits a bump around the dominant wave frequency 
f0. This bump whose origin is discussed in MT is present in all 
turbulent spectra and is much more pronounced on the spectra 
of the streamwise component u'. 

In the present framework the most important feature shown 
by Figure 8 is the relative magnitude of the orbital rotational 
motion; •,•2 / •,•2 is about 5%, whereas the ratio •,•2 / w'2 
reaches 25%. This enforces the idea that owing to the large 
amount of energy contained in the wave motion, a small devia- 
tion from irrotationality can lead to a perturbation of the same 
order as the turbulent contribution. It is then easy to guess that 

the orbital rotational motion can play a crucial role in energy 
transfers between the mean current, the orbital motion, and the 
turbulent fluctuations. 

4. Conclusions 

Our main purpose in this work has been to devise a two-step 
technique for extracting from experimental velocity data the 
orbital potential and rotational contributions below 
laboratory wind waves. The problem has been first formulated 
for two-dimensional periodic waves. The first step of the 
method consists of a nonlinear formulation allowing the 
determination of the stream function of the orbital potential 
motion •, when a linear sheared current exists. In a second 
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Figure 7. Illustration of the effect of the mean sheared current on the determination of •],. Wind speed 
U..= 13.5 m/s. Curves with solid diamonds denote •, computed with c•; open squares, •, computed with COMM. 
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Figure 8. Typical spectra of the three contributions to the 
vertical velocity fluctuation. Wind speed Uo.=9.0m/s, z =-19 
mm. Solid, thin curve is orbital potential velocity; solid, 
thick curve, orbital rotational velocity; and dashed curve, 
turbulent velocity. 

step the spectrum of the orbital rotational contribution •n is 
obtained by means of the linear filtration technique of Benilov 
and Filyushkin [1970] applied to the signal v-• R. That the 
method is capable of extracting accurately the contribution of 
the orbital rotational motion has been proved by performing a 
detailed test on the rotational Gerstner solution. Extension to 

laboratory wind waves has been made after a discussion of two 
key points, namely the weakness of both spanwise orbital 
motions and dispersive effects. Finally, the crucial role played 
by the mean sheared current in the determination of •, has 
been discussed in some detail. We stress the fact that 

conclusions concerning three-dimensional and dispersive 
effects apply a priori only to laboratory data and that the 
method needs certainly improvements before being applicable 
to the field. However, even with this strong limitation this 
method is a useful tool for studying interaction mechanisms 
between wind waves, mean current, and turbulence. 

Appendix A: TrajeCtory of a Water Particle 
on the Free Surface in Presence of a Mean 
Linear Current 

AI. Periodic Surface Waves 

Let us consider on the free surface a water particle whose 
position was x 0, z=0 at time t=0. The position of this particle 
at any time t will be 

x(t)=x o +iU{x(x),•l[x(x),x],x} dx (A1) 
o 

= Uo 

+ + 
(A2) 

If the current U o exists, the trajectories are open since to 
first order x(t)-x o =Uot. In order to manage a higher-order 
Taylor expansion of (A1) around a fixed point it is more 
convenient to work in a frame R" moving at the constant 
velocity U 0. In this frame one gets 

x" (t)- Xo"= i (71[x" (x),x]U' o 
o 

+ 
(A3) 

The current being a linear function of depth, the potential 
linear Airy solution still holds. Thus for a sine wave, q and •' 
are given at first order in the wave slope by 

rl(x",t) = acos(kx"-co" t ) (A4a) 

•(x" ,z,t)= akco eh cos(kx"-co" t) (A4b) 

where co"= co-kU o = k (c-U0) = kc 0 is the radian frequency seen 
in R". Expansion of (A3) up to second order in the wave slope 
ak is 

(AS) 

Averaging (A5) on the wave period T and dividing by T 
yields the expression of the drift velocity U, in R" 

U, a2/2 co(U•+kco)2+l/2a2k 2 = c o (A6) 

Coming back to the fixed reference frame, the total drift 
velocity may be written as 

a 2 Ui=Uo+a2k2co+ /2U;(2k+U•/co) (A7) 
The second term in the right-hand side of (A7) is the well- 

known Stokes drift [Phillips, 1977, p. 44]. The third term is 
an additional mass transport contribution which comes from 
the fact that a particle following the surface sees a mean 
current different from U0 because, as shown by Longuet- 
Higgins [1986], the Lagrangian average of Z=•l(X,t) is 
nonzero. 

A2. Extrapolation to Random Waves 

As far as the free surface can be regarded as a linear 
superposition of many sinusoids, the expression of the 
Lagrangian surface drift Ut can be deduced from (A6) and (A7) 
as 

U t =U 0 +2I(2xf) 2 Co -•- Snn (f)df 
c 

+ U; I 4c-•• • (f)df + U;2 1Snn (f)df c o 

(AS) 
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where Sqq(f) denotes the wave power spectrum. If U t, c and 
wave-related quantities are known experimentally, (A8) can be 
used as a relation between U 0 (or Co) and U•. In the framework 
of the TDM, consistent with the assumption of a non- 
dispersive wave field, Co and c are independent of f, so that 
(A8) becomes 

4•:U• U•)2 • $qu (f)df + • fSrm (f)df 
c o c 

+c o -•-If2Stm(f)df-1 +c-Ut=O 
c 

(A9) 

In the case of a narrowband spectrum centered around 
frequency fo, Sun(J) can be approximated as 

(f) = q: 5(f- fo) (^l o) 

Introducing the radian frequency co 0 = 2nf0, (A9) can then be 
rewritten as 

(All) 

Table 2. Parameters Used in the Triple Decomposition 
Method According to Wind Spee• 

U., m/s K N 

4.5 256 60 
6.8 256 60 
9.0 384 90 
13.5 512 120 

Af, Hz 

0.195 
0.195 
0.130 
0.098 

K is the number of samples per block data; N is the number 
of Fourier modes; Af is the resulting frequency resolution. 

was found unnecessary. It is worth noting that owing to the 
block by block processing, the method does not imply that 
the wave field conserves its form during a whole record; the 
Fourier coefficients differ from block to block, allowing slow 
amplitude modulations. 

As shown in subsection 2.4, the linear part •r• of the 
orbital potential motion is needed for the computation of 
several correlations. For this purpose, a linear approximation 
of the method has been developed. This approximation in- 
volves exactly the same algorithm, but kinematic and dynamic 
conditions (15) and (16) are replaced by 

(•) ,--o + qCo = • (B2) 

(1- Co U•[g) r I + Co/g (q•,,z) ,::o = Qi (B3) 

Appendix B: Implementation of the Triple 
Decomposition Method 

Only essential guidelines or parameters used in the first step 
of the method, i.e., the determination of g•,, are given here 
since the original method is extensively described in the paper 
of Jiang et al. [1990]. Schematically, the determination of the 
2N Fourier coefficients X• of (36) and of the unknowns Co, 
and W0 is achieved the following way. Wave elevation is 
sampled during a time T at a frequency F e. For reasons of 
computer limitations the records are sliced into blocks 
containing only K values of the measured surface elevation 
and the problem is solved separately over each block. Using 
(A9) to relate U• to Co, this leads to an overdeterminated 
system of 2K equations (15)-(16) with 2N+2 unknowns. This 
system is solved by a least squares method minimizing the 
quadratic error 

Both linear and nonlinear methods have been applied to 
laboratory data resampled at Fe=50 Hz during a time T=512 s. 
Since the dominant wave frequency decreases when the free- 
stream wind speed U. increases, the number K of sampling 
points in each block data is changed with U. so as to keep the 
number of wave periods recorded during time Tr=K/F • 
approximately constant. The frequency resolution Afis then 
determined by requiring that it should be equal to the lowest 
frequency present in each block data or, in other words, 
Af=l/Tr. Concerning the number N of Fourier modes, NAf 
must be equal to the highest significant gravity wave 
frequency fmax, and we apply the criterium defined by Jiang et 
al. [1990], fm•=11.7 Hz. The values of these parameters are 
reported in Table 2. Finally, in the minimization procedure we 
use •.=1 as Lagrange multiplier, and convergence is obtained 
when the relative variation between two successive values of 

Er falls below • 10 '2. 

E T I Z )• I/KY•Q•, 
K •=• •=• ! 2 } (q• -q•, (B1) 

In (B1,) Qt and qrt denote, respectively, the value of the 
right-hand side of (16) and of the wave elevation evaluated at 
each sampled point, whereas •. is a Lagrange multiplier to be 
precised later. The xls,• is computed at each iteration by solving 
(15) with a Newton-Raphson method, whereas data xl,,a are used 
in the evaluation of (16). The same procedure is repeated on 
each block of data. No overlapping between blocks is used 
because tests show that only prediction of grz is slightly 
improved by this technique, whereas no significant effect is 
found on gr•. Since in any case, g•,2 cannot be very accurately 
predicted (see the discussion in subsection 3.5), this option 
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