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Vorticity and enstrophy production and dissipation are studied for both wave-averaged and
wave-resolving �Boussinesq-type� models of wave-induced near shore circulation. Quadratic flow
properties of fundamental importance for shallow-water turbulence, i.e., energy and enstrophy,
whose sources/sinks are clearly identifiable by positive/negative-definite contributions in the
appropriate transport equations, are taken as the most suitable indicators for assessing model
performance in describing flows characterized by large-scale vortices. Two state-of-the-art models,
SHORECIRC and FUNWAVE2D, have been evaluated in detail. Suitable transport equations for
enstrophy are derived and analyzed to get a clear insight into the mechanisms of generation/
dissipation of this quantity in both models. Analytical results show that steep gradients of the total
flow depth act as sinks as well as sources for vorticity and entrophy, similar to the results of
Brocchini and Colombini �M. Brocchini and M. Colombini, Phys. Fluids 16, 2469 �2004��.
Predictive estimates have been given for the rate of change of circulation for waves breaking over
a bar or breakwater and the vorticity source and sink terms have been numerically analyzed. The
comparison between numerical results obtained using the two different circulation models reveals
that while wave-resolving computations give well-structured rip currents, the wave-averaged model
predicts less organized flows, given the different structure of the circulation forcing terms. The
analysis of equivalent enstrophy-forcing terms characterizing the two models shows that they are all
proportional to depth gradients in the case of wave-resolving models while their intensity is mainly
due to the gradients of the wave-induced velocity for wave-averaged models. Energetic
considerations are also given in support of the proposed vorticity/enstrophy generation mechanisms.
Wave-averaged computations clearly show that, apart from bottom friction, the most intense
dissipation mechanism is due to classic viscous effects �−�T���̃�2� while depth gradients weakly
contribute. Rather surprisingly this also occurs for the wave-resolving model. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2400076�

I. INTRODUCTION

It is well known that differential wave breaking, espe-
cially when occurring over submerged bars or breakwaters,
can generate vorticity in the form of macrovortices �e.g.,
Peregrine2,3 and Bühler4� i.e., vertical eddies with horizontal
size larger than the flow depth. These macrovortices play a
major role in the horizontal flow mixing; therefore their
production/dissipation and evolution are very important for
the study of coastal zone hydrodynamics and of induced
mixing �Piattella et al.5�.

Analytical studies of breaking-wave-generated macro-
vortices have shown behaviors which are mainly dependent
on the local topographies; see Brocchini et al.6 and Kennedy

et al.7 Such studies lead to a better understanding of the main
mechanisms describing the generation/evolution of macro-
vortices. However, to get clearer and quantitative descrip-
tions of macrovortex evolution, and in general of vorticity
patterns, numerical simulations of near shore flows are
needed.

Two classes of near shore circulation models can be used
for this purpose: wave-averaged and wave-resolving models.
Wave-averaged models are currently very popular for the
study of near shore circulation patterns. In particular
SHORECIRC, developed by the Center for Applied Coastal
Research �CACR� of the University of Delaware, provides
useful solutions for a number of coastal circulations systems
�e.g., Putrevu and Svendsen8 and Svendsen et al.9�. On the
other hand, wave-resolving models can be used as circulation
models provided they preserve a correct description of the
wave-current interactions. Models based on Boussinesq-type
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equations such as FUNWAVE2D �also developed at CACR�
can describe the features of near shore circulation patterns
like rip currents and long shore currents, as shown in Chen
et al.10,11

Haas and Svendsen12 were the first to give predictions of
topographically-generated vorticity in the presence of rip
channels using SHORECIRC. This study illustrated the tran-
sition of the flow towards instability as well as the role of
wave-current interactions in the evolution of the circulation
patterns. A description of the vorticity and enstrophy equa-
tions associated with the SHORECIRC momentum equations
has been given in Zhao et al.13 These studies illustrate some
of the main characteristics of the vorticity patterns as de-
scribed by the model but they do not quantify the contribu-
tion of the source and sink terms to the generation and dis-
sipation of enstrophy and vorticity.

Detailed numerical simulations of rip currents using a
Boussinesq-type model have been carried out by Chen
et al.10 in which a description of the flow instability is also
given. After deriving the vorticity equation associated with
the specific set of Boussinesq-type equations, they discussed
the role of wave breaking terms as vorticity sources. Al-
though Haas and Svendsen12 and Chen et al.10,11 use the
same configuration for the tested rip channel, no direct com-
parison between the amount of generation/dissipation of
vorticity/enstrophy predicted by the two approaches has been
given as yet. However, recent work by Kirby et al.14 has
shown that wave-averaged circulation models and wave-
resolving Boussinesq-type models can induce very different
vorticity dynamics, and, in turn, near shore circulation pat-
terns, even when the models are configured similarly and
applied to the same field cases. Hence, a direct comparison
on a common experimental flow configuration may shed
light on various differences in the solutions given by the two
different approaches. Moreover the existing literature does
not report any test case of both models working with a simi-
lar, if not identical, set of input parameters.

It is, finally, recognized that circulation models of shal-
low oceanic/atmospheric flows where mesoscale eddies are
permitted, must carefully reproduce both energy and enstro-
phy cascading, hence allowing for simulations that faithfully
represent the rich variety of observed flow regimes.15,16

Similar analyses should be performed to assess the value of
near shore circulation models in reproducing macrovortex-
dominated dynamics, also using available experimental data
�e.g., Piattella et al.5�, and bearing in mind that fundamental
is the identification of sources/sinks of enstrophy which
force the cascading process.

These considerations are the starting point of our contri-
bution. Among the several, interesting, aspects of this com-
parison we chose to focus on the generation/dissipation
mechanisms of vorticity/enstrophy in the predicted flows as
described by the equations of SHORECIRC and
FUNWAVE2D. With an approach conceptually similar to
that used when stating the Theorem for the Mechanical
Power �e.g., Aris,17 pp. 120–123 and Batchelor,18 pp.
151–156� we inspect how the models describe the rotational
properties of the flow. In other words, the enstrophy, qua-
dratic flow properties of fundamental importance for

shallow-water turbulence,19,20 whose sources/sinks are
clearly identifiable by positive/negative-definite contribu-
tions in the appropriate transport equation, is taken, with
energy, as the fundamental indicator for assessing the model
performances in describing flows characterized by large-
scale vortices. Hence, suitable enstrophy equations are first
derived starting from the models equations �Sec. II�. Subse-
quently positive-definite and negative-definite terms, i.e.,
those contributions which act as sources or sinks of enstro-
phy, are highlighted. Although this process leads to formally
complex equations, it is the only method to properly separate
the production/dissipation contributions. Once these terms
are isolated and physically described, it is possible to study
their spatial structure and magnitude. Although various
analyses of vorticity dynamics reproduced by coastal circu-
lation models are available �Chen et al.10,11 and Zhao et al.13�
we know of no study, apart from that of Brocchini and
Colombini1 �hereafter BC04�, which has ever focused on de-
tailing the specific rate of each contribution to the vorticity/
enstrophy equations. This is the main aim of the present
work along with an illustration of specific, related, flow fea-
tures. In more detail the productive and dissipative terms are
identified studying the terms describing “wave-wave,”
“wave-current” and “current-current” interactions. The di-
mensional forms of the equations have been used as the most
suitable to compare two largely different models like
SHORECIRC and FUNWAVE2D, the aim being that of in-
specting features of similar mechanisms �e.g., wave-breaking
production, viscous dissipation, topographic forcing, wave-
wave interaction, etc.� in the two models rather than detailing
the influence of nonlinear and dispersive terms �these con-
tributing, at various orders, to each of the mentioned physical
mechanisms�. It is also clear that no exact quantitative com-
parison between the two models is sought, for which poten-
tial vorticity and enstrophy would probably be more suitable
�see Appendices B and D�, the scope being mainly that of a
minute inspection of the physical mechanism impossible to
achieve through the potential vorticity which, by definition,
introduces “hidden terms.” Together with a decomposition of
the various terms of the vorticity and enstrophy equations,
numerical simulations have been performed. The detailed
role of the topography is investigated on the basis of numeri-
cal computations carried out with a typical “rip-current to-
pography” �Sec. III�. A detailed description of the energy
dissipation mechanisms is given in Sec. IV, while Sec.V
rounds up the paper.

II. THEORETICAL ANALYSIS

Here we analyze in detail the vorticity and the enstrophy
equations obtained for both types of circulation models. The
equations considered are those implemented in the wave-
averaged model SHORECIRC and the wave-resolving model
FUNWAVE2D.

126603-2 Terrile et al. Phys. Fluids 18, 126603 �2006�

Downloaded 11 May 2007 to 130.251.56.92. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



A. The wave-averaged circulation model

In the wave-averaged circulation model SHORECIRC
the instantaneous horizontal velocity ui�x ,y ,z , t�, after turbu-
lence averaging, which implies that the generic turbulent
component satisfies �u��=0, is split in two components
�Putrevu and Svendsen8� to distinguish waves from the mean
flow,

ui�x,y,z,t� = uwi�x,y,z,t� + Vi�x,y,z,t� �1�

where x and y are, respectively, the cross shore and long
shore coordinates �with indices i�j�=1,2�, while z is the ver-
tical coordinate. uw is the generic wave component, defined
so that its time average over the wave period below the
trough level satisfies ūwi=0, and Vi is the generic current
component. The time-averaged and depth-integrated equa-
tions of mass conservation and momentum have been de-
rived for nonuniform currents over the variable depth.

Representing the mean surface elevation with �̄ and the
still water depth with h0, the local water depth h is

h = h0 + �̄ . �2�

After some manipulation and using the analysis reported in
Appendix A, the depth-integrated, short-wave-averaged gov-
erning equations

�̄,t + � · �hṼ� = 0, �3�

Ṽ,t + �Ṽ · ��Ṽ = − g � �̄ −
1

�h
� · �S − T + L� −

1

�h
�B

+
1

�h
�S, �4�

where g is the gravity acceleration, Ṽ= �Ũ , Ṽ ,0� is the depth-
uniform velocity vector, given by Eq. �A8�, S, L, and T are,
respectively, the radiation stress tensor, given by Eq. �A11�,
the dispersive mixing tensor, given by Eq. �A12� and repre-
senting the contribution from the depth-varying currents, the
quasi-3D dispersive term, and the turbulent stress tensor,

given by Eq. �A13�, while �B and �S are the bottom and
surface shear stresses.

The vorticity equation is found by taking the curl of the
momentum equation �4�

� � Ṽ,t + � � �Ṽ · ��Ṽ

= −
1

�
� � �1

h
� · �S − T + L��

+
1

�
� � �1

h
��S − �B�� . �5�

Defining the depth-averaged vertical vorticity related to Ṽ as

�̃ 	 k̂�̃ = k̂�Ṽ,x − Ũ,y� , �6�

we can write the vorticity equation as

D�̃

Dt
+ �̃ � · Ṽ = −

1

�
k̂ · 
� � �1

h
� · �S − T + L���

+
1

�
k̂ · 
� � �1

h
��S − �B��� . �7�

A detailed term-by-term examination of Eq. �7� is given in
Appendix A. The final form of the vorticity equation appears
as in Eq. �A37�, where the effective viscosity �T can be a
function of the flow and, in turn, of the spatial coordinates.
This effective viscosity is used to account for, through a
Fickian-type approach, all momentum mixing contributions
due to both small-scale horizontal turbulence and the disper-
sion introduced by vertical gradients of the horizontal flow
�e.g., BC04�.

From the vorticity equation �A37�, the transport equation
for the enstrophy ��̃2� can be easily derived. The viscous
terms are here manipulated, as standard when identifying
purely dissipative contributions �e.g., BC04�, with the spe-
cific aim of highlighting the presence of always negative
terms: standard diffusive-type terms appearing in �A37� lead,
in Eq. �8�, to both dissipative terms �e.g., T . I� and flux-type
terms �e.g., �T� · ��̃� �̃��. The enstrophy equation, obtained
by taking the curl of �7�, is given by

�8�
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where S.I, S.II, S.III, and S.IV represent short-wave contributions to the enstrophy dynamics and are defined as

S . I = − k̂ · �
−h0

� 1

h
��̃���� · uw� � uw��dz − �̃k̂ · 
� � �1

h
��� · Gw�� +

1

h
��� � �� · Gw���

�

− �̃k̂ · 
� � �1

h
��h0 · Gw�� +

1

h
��h0 � �� · Gw���

−h0

,

S . II = �
−h0

� 1

h
�uw · �̃ � �w�dz, S . III =�

−h0

� 1

h
�2�̃�w � · uw�dz , �9�

S . IV = k̂ · �
−h0

� ��̃�� · uw��h

h2 � uw� + �̃
�h

h2 � �uw · �uw��dz +�
−h0

�

�̃�wuw ·
�h

h2 �dz ,

where Gw is given in Appendix A.
In keeping with the fact that the wave driver used in SHORECIRC uses a framework based on a slowly modulated plane

wave to represent wave properties, the radiation stress-based terms S . I−S . IV can be represented approximately by

S . I � k̂ · 
1

h
� � � · S� − �S . II + S . III�,

S . II � −
�̃

h
� �̂ · Qw,

S . III � −
2�̃�̂

h
� · Qw, S . IV � k̂ · 
�

1

h
� � · S� ,

where Qw is the wave-induced volume flux given by Eq. �A6�.
Terms CC and WC are, respectively, the current-current and the wave-current contributions to the enstrophy dynamics, and

are defined as

CC = − �
−h0

�̄ 1

h
��̃k̂ · ���� · V1� � V1� + V1 · �̃ � �1 + 2�̃�1 � · V1�dz− �̃k̂ · 
� � �1

h
��� · G1�� +

1

h
��� � �� · G1���

�

− �̃k̂ · 
� � �1

h
��h0 · G1�� +

1

h
��h0 � �� · G1���

−h0

− k̂ · �
−h0

�̄ ��̃�� · V1��
1

h
� V1� + �̃ �

1

h
� �V1 · �V1��dz

− �
−h0

�̄

�̃�1V1 · �
1

h
�dz , �10�
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WC = + 2�̃k̂ · 
V̂ � �� � V̂ �
�h

h
�� − V̂

� �h

h
· �V̂� + V̂ � �h

h
· �̂��+ 2�̃�̂V̂ ·

�h

h
�

+ 2�̃k̂ · �V̂ � ��� · V̂�� + 2V̂ · �̃ � �̂

+ 4�̃�̂ � · V̂ , �11�

where V1 represents the depth-varying part of the velocity as

defined in �A7� and V̂ is given by �A29�, while �1 and �̂ are,
respectively, their related vorticity variables.

In SHORECIRC, as shown in Appendix A, the WC term
is approximated through Eqs. �A28�–�A30�. Here all the
terms given by the portion of the velocity vector variable
with the depth �V1� are set to zero since the comparison with
FUNWAVE2D requires to consider only the depth-uniform
velocity contribution.

Of particular interest are the T-terms, where �T . I� repre-
sents the most classic contribution to the enstrophy dissipa-
tion due to viscous effects, while the role of �T . II� and
�T . III� in the enstrophy budget is better highlighted by the
following manipulation:

�12�

�T . III� =
�T�̃

h
k̂ · ��h

h
� ��h � k̂�̃�� = − �T �̃ � h

h
�2

.

�13�

Although term �T . II�, as a whole, is not positive or negative
definite, it is easy to recognize in term �T . IIa� one of the
production terms of Schär and Smith,21 who used a viscous
shallow-water approach to investigate topographically-
forced shallow vortical flows. Furthermore in typical coastal
applications, i.e., for monotonically upward-concave beach
profile, the contribution of �T . IIb� is negative �BC04�. Fi-
nally, Eq. �13� clearly shows that �T . III�, is always negative,
and represents a sink term for the enstrophy balance.

B. The wave-resolving model

The extended Boussinesq-type equations of both
Nwogu22 and Wei et al.23 �hereinafter WKGS� are written in
terms of a reference velocity u�= �u� ,v�� at the reference
elevation z=z�=−0.531h. In particular the WKGS equations
for mass and momentum conservation are written as

�,t + � · M = 0, �14�

u�,t + �u� · ��u� + g � � + V1 + V2 = 0, �15�

where � is the free surface elevation. M, V1, and V2 are the
dispersive Boussinesq terms, given by

M = �h + ���u� +  z�
2

2
−

1

6
�h2 − h� + �2�� � �� · u���

+ �h + ���z� +
1

2
�h − ��� � �� · �hu���� , �16�

V1 =
1

2
z�

2 � �� · u� + z� � �� · �hu�,t��

− ��1

2
	2 � · u� + 	 � · �hu�,t�� , �17�

V2 = ���z� − 	��u� · ���� · �hu��� +
1

2
�z�

2 − 	2��u� · ��

��� · u���+
1

2
� ��� · �hu�� + 	 � · u��2� , �18�

where h is the still water depth.
Nwogu’s equations are recovered by neglecting nonlin-

ear dispersive terms. The mass conservation equation re-
mains in the form of Eq. �14� but with

M = �h + ��u� + hz�
2

2
−

h3

6
� � �� · u��

+ hz�
2 −

h2

2
� � �� · �hu��� , �19�

while the equation for momentum conservation becomes

u�,t + �u� · ��u� + g � � +
z�

2

2
� �� · u�,t�

+ z� � �� · �hu�,t�� = 0. �20�

Linear dispersive properties vary with the choice of z�.
Details on the numerical scheme used in FUNWAVE2D can
be found in Wei et al.23

The above equations are only valid for nonbreaking
waves and, therefore, need additional approximations of
added physics to model the wave breaking. While the mass
conservation equation �14� remains unchanged, in Eq. �20�
some additional eddy-viscosity terms are added �following
Kennedy et al.24� so that it becomes

u�,t + �u� · ��u� + g � � +
z�

2

2
� �� · u�,t�

+ z� � �� · �hu�,t�� − R = 0, �21�

with R=Rb+Rs+R f. Rb represents a dissipative body force
due to wave breaking, Rs accounts for small-scale turbulence
dissipation and R f accounts for bottom friction. The first two
terms have similar dependence on the flow gradients but dif-
ferent intensity determined through eddy viscosities �T

b and
�T

s specific to the two different dissipation mechanisms. Eddy
viscosity for the breaking model is given by

�T
b = B	2��h + �� � · M� �22�

with �T
b defined through the mixing length coefficient 	 and

the quantity B, which controls both the occurrence of energy
dissipation and the width of the resulting bore front. The

126603-5 Topographically-induced enstrophy production Phys. Fluids 18, 126603 �2006�

Downloaded 11 May 2007 to 130.251.56.92. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



subgrid turbulence eddy viscosity �T
s is defined in terms of a

mixing coefficient cm �see Chen et al.10�:

�T
s = cm
x
y��U,x�2 + �V,y�2 +

1

2
�U,y + V,x�2�1/2

. �23�

In Eq. �23�, �U ,V� denotes a wave-averaged velocity ob-
tained by averaging u� over a suitable period, usually two to
three peak wave periods.

If �̂T=�T
b +�T

s is used, the total dissipative force Rd=Rb

+Rs is given in component form by

Rdx =
1

d
��̂T�u�d�,x�,x +

1

2
��̂T�u�d�,y + �̂T�v�d�,x�,y� , �24�

Rdy =
1

d
��̂T�v�d�,y�,y +

1

2
��̂T�u�d�,y + �̂T�v�d�,x�,x� �25�

with the total local depth d=h+�=d�x ,y , t�.
Finally, the bottom friction R f is written in terms of a

friction factor:

R f = −
f

d
�u��u�. �26�

The leading-order vorticity is given by

� 	 k̂� = k̂�v�,x − u�,y� . �27�

This quantity depends on the choice of reference elevation z�

and, thus, can differ from depth-averaged vorticity by an

amount proportional to the order of dispersive Boussinesq
terms.

The vorticity equation is obtained by taking the curl of
the momentum equation �21�,

� � u�,t + � � �u� · ��u� + � �
z�

2

2
� �� · u�,t�

+ � � z� � �� · �hu�,t�� = � � R , �28�

which becomes

D�

Dt
+ � � · u� − z�k̂ · �� � ��� · u�,t� � z���

− k̂ · �� � ��� · hu�,t� � z��� = k̂ · �� � R� . �29�

The third and fourth terms on the left-hand side of �29�
are related to second-order contributions to the specification
of vorticity transport, and should not be interpreted as source
or sink effects for the leading-order vorticity.

Equations �24� and �25�, obtained for the breaking terms,
allow for an explicit computation of the last term on the
right-hand side of Eq. �29�. After some manipulations, re-
ported in Appendix C, we obtain the vorticity equation
�C18�. Now it is possible to derive the enstrophy transport
equation, which reads

�30�
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where d=h+� is the total local depth while � is given by
Eq. �C14�.

The �SF . � terms are formally equivalent to the �S . � terms
of the wave-averaged model �see Eqs. �8� and �9��. They are
all dependent on the gradient of d because of their strong
dependence on the specific modelling of the dissipative
force R.

Terms �F . � are the analogous terms of the T-terms char-
acterized in Eq. �8� for the wave-averaged circulation model
and, therefore, they assume an analogous physical meaning.
Terms �F . I� and �F . III�, which are “negative definite,”
are the most important for the enstrophy dissipation pro-
cess �note that �F . III� and is equal to zero for �d=0�.
As seen for the wave-averaged model, a priori little can be
said on the sign of �F . IIb�, while term �F . IIa� is again the
same production term as in BC04 and in Schär and Smith.21

Again, the term D represents the contribution of disper-
sive terms in the Boussinesq approximation to the represen-
tation and transport of vorticity, and should not be interpreted
as a direct source or sink mechanism for the enstrophy.

III. GENERATION AND DISSIPATION
OF VORTICITY

In this section we analyze the mechanisms of generation/
dissipation of vorticity using results obtained by running
both the wave-averaged �SHORECIRC� and the wave-
resolving �FUNWAVE2D� models. The clearest indicators
are quantities which admit positive/negative-definite �respec-
tively, always positive or negative� contributions. These are
the enstrophy and the kinetic energy. The evolution of flows
over complex bathymetries, like rip channels, as computed
by SHORECIRC and FUNWAVE2D, is analyzed in detail
and each contribution to the enstrophy equations �8� and �30�
is evaluated from the numerical solution.

Numerical simulations have been carried out for three
different bathymetries in which bars are placed with different
distances to each other, corresponding to the cases used
in Kennedy et al.7 No qualitative differences affecting
the present analysis were noted between the cases, and we
confine our attention here to the case of the narrowest rip
channel.

The numerical wave basin is 15.50 m wide and 18.15 m
long. Figure 1 shows the bathymetry. The two rip channels
are both 1.80 m wide, while the distance between them is
9.11 m. The submerged bar is placed on a 1:30 sloping
beach at 2.95 m off the shore. The still water depths at the
crest and at the offshore toe of the bar are 0.057 m and
0.12 m, respectively, while the water depth on the offshore
flat bottom is 0.40 m. The bar width in the cross shore direc-
tion is 1.10 m while in the long shore direction is 3.45 m for
the edge bars and 7.31 m for the central bar.

Regular waves were run with an offshore wave height
H0=4.5 cm and a wave period T=1 s. The bottom friction is
quantified by a friction coefficient cf =0.01. At the lateral
boundaries we have imposed wall lateral boundary condi-
tions, while at the seaward boundary of the domain a gener-
ating boundary condition has been used. A model grid size of
�
x ,
y�= �0.05,0.05� m and time step 
t=0.01 s have been

used in all tests. The numerical simulations run with
SHORECIRC made use of a depth-uniform velocity configu-
ration to get data comparable with the ones coming from
FUNWAVE2D, thus the term CC appearing in Eq. �10� is
neglected. All figures refer to the rip current bathymetry �a�
and are plotted at the same time t=60 s, which is far enough
from the initial transient to illustrate typical circulation
conditions.

A. The wave-averaged model

We start from the enstrophy equation for the wave-
averaged model SHORECIRC, i.e., Eq. �8�.

In Fig. 2 �top left panel� the mean water level is plotted
together with the velocity field vectors in the case of the rip
current, while in the top right panel the vorticity �̃ field is
illustrated. Typical vortical structures can be observed as de-
scribed by Kennedy et al.7 The main circulation features are
both the bar macrovortices �shed at the breakwater edges and
seaward evolving� and the shore macrovortices �located be-
tween the shoreline and the breakwater�. As expected a weak
contribution to the vorticity patterns is given by the shore
vortices in the wave-averaged model. The two middle panels
give global information, respectively, on the contributions
due to the radiation stress forcing and the WC term in the
enstrophy equation �8�. The radiations stress-related forcing
is not positive-definite, therefore it does not provide a source
only. However, the enstrophy production is larger on the side
of the rip channel both over the bar and shoreward of the bar.
Its contribution is also important in proximity of the breaking
zone close to the shore. No major differences are observed in
the magnitude of the production terms at the edges of the bar
and at the lee of them.

This is due to the chosen wave driver, i.e., REF/DIF,
based on a parabolic mild slope equation and, thus, repre-
sents only orthogonal wave diffraction and influences the
production of energy at the lee of the bars. The WC term
seems to have more of a dissipative than a productive role
and is larger near the corners of the bars and in the middle of

FIG. 1. Topography of the barred beach with two narrow rip channels used
for the computations of case �a�.
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their shoreward side. Obviously, because of its nature, it is
very weak over the bars but is large just shoreward of them.
Qualitatively its spatial distribution is very similar to that of
the radiation stress forcing. We can observe that in this case
WC gives only a small contribution to the enstrophy over the

lateral sides of the bar. This term, also in view of the similar
results obtained for all stages of evolution, gives a contribu-
tion to the generation/dissipation of vorticity in the rip chan-
nel just inshore of the bars.

On the bottom-left panel of Fig. 2 the term S . I+S . II

FIG. 2. �Color� Flow structure and main contributions to Eq. �8� �t=60 s�. From left to right and from top to bottom: mean water level, vorticity field, the S
term, the dispersive mixing WC, the S . I+S . II+S . III term and the S . IV term for the enstrophy production.
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+S . III, representing the portion of the total radiation stress
contribution independent of the gradient �h of the total wa-
ter depth, is plotted. We can observe that this portion of the
radiation stress forcing is of the same intensity of the total
term plotted on the panel above. The last panel of the figure
shows the S . IV contribution, proportional to �h, to the ra-
diation stress forcing. This is two orders of magnitudes
smaller �note the difference in scale� than S . I+S . II+S . III
�middle left panel� and it acts both as a source and sink of
enstrophy. Consequently S . I+S . II+S . III has a spatial pat-
tern qualitatively similar to the S term with larger positive
intensity on the side of the rip channel both over the bars and
shoreward of them. The spatial distribution of S . I+S . II
+S . III is also qualitatively similar to the WC term, therefore
we could conclude that both terms are influenced by the
same main forcing. From these results it seems that here the
enstrophy generation is dominated by the 1/h term rather
than the �h terms.

This is in opposition to what happens in wave-resolving
models in which depth gradients provide the leading force. A
complementary description of the contributions to the enstro-
phy generation is given in Sec. IV in terms of the energy
dissipation due to breaking waves. Such description also
highlights differences in energy dissipation mechanisms of
the two models which provides significant differences in
forcing the flow and, in turn, of generating vorticity.

Because of the previous findings, we analyze in more
detail the radiation stress contribution due to S . I, S . II, and
S . III, separately. S . I and S . II terms are plotted in the upper
panels of Fig. 3.

The left upper panel shows the S . I term whose intensity
and spatial distribution is similar to that of the total radiation
stress forcing. This term seems to give a dissipative con-
tribution only shoreward of the shore-breaking zone
�x�14 m�, dissipation which is locally balanced by the pro-
ductive role played by the term S . II plotted on the right
upper panel of the same figure.

The latter term is really small, close to the bar, and
dominates the production of the shore vortices. It represents
the contribution in the radiation stress term due to the gradi-
ent of the short-wave vorticity ��w. Such a term becomes
more and more intense in time until it becomes almost sta-
tionary. Looking at the evolution in time of the radiation
stress forcing, it seems to lose, little by little, intensity before
it becomes “quasisteady.”

In the left middle panel of Fig. 3 S . III is plotted. This is
smaller than S . I and S . II but it shows the typical distribution
of S and S . I, therefore we argue that such distribution is
mainly due to the 1 � h � ·uw term present in both S . I and
S . III �here plotted on the right middle panel of Fig. 3�, see
Eq. �9�.

Enstrophy and, thus, vorticity �̃ seems to be dissipated
mainly by viscous effects. Terms T . I and T . III are, respec-
tively, plotted on the left and right lower panels of Fig. 3,
together with the vorticity contours. The dominant dissipa-
tive term is T . I while T . III, representing the sink effects of
the local �h, is very small, as well as the production due to
a gradient of h. Therefore, for this class of models, it results
in the local depth gradient weakly contributing to the main

generation/dissipation mechanisms governing the vorticity
dynamics, as described by BC04 for the NSWE framework.
Note that the dominant dissipation term T . I. simply repre-
sents the classic dissipation due to eddy viscosity effects, that
are similar to the 2D stretching inducing enstrophy cascade,
occurring when two equally-signed vortices stretch an
oppositely-signed vortex located in between them �see Piat-
tella et al.5 and Kraichnan19�. The term plotted on the right
panel represents the dissipation due to �h. This is negative-
definite and, like the production term due to �h, is very
small.

B. The wave-resolving model

In this subsection results from the wave-resolving model
FUNWAVE2D are examined focusing on production/
dissipation of enstrophy. The bathymetry, grid and time steps
are the same as in the SHORECIRC application.

The top row of Fig. 4 shows the instantaneous surface
elevation and the corresponding instantaneous vorticity field.
To make meaningful comparisons with the results coming
from SHORECIRC it is necessary to also analyze the wave-
averaged flow. For this purpose a moving average over two
short-wave periods has been used. Wave-averaged free sur-
face and vorticity fields are shown in the bottom row of the
same figure.

Instantaneous and wave-averaged vorticity are not dra-
matically different, as also reported in other studies �e.g.,
Refs. 10 and 14�. Although the results are quite similar to the
ones coming from SHORECIRC �see Fig. 2�, several differ-
ences may be pointed out. If two snapshots of the simulation
taken at the same time are considered, the travel of the vortex
pairs described by the two models seems quite different. In
particular SHORECIRC seems to predict a faster migration
of the bar vortices.

This behavior, partially influenced by the different
treatment of cold-start of the models �wave forcing is ramped
up in SHORECIRC but applied instantaneously in
FUNWAVE2D�, is not of fundamental importance for our
analysis, which is mainly focused on evaluating the magni-
tude of enstrophy generation/dissipation. More importantly,
FUNWAVE2D clearly reproduces the main features of a rip
current i.e., a feeder, a neck and vortex pairs moving off-
shore. Such flow organization, especially near the gap tips, is
less evident from the results of SHORECIRC �compare with
the top-left panel of Fig. 2�. The current velocity increases
locally on the bars due to the irregularities in the bathymetry.
This introduces shear flows and a disruption of the organiza-
tion of the feeder region especially close to the gap. This
effect is still present but less evident close to the shoreline.

In turn, the spatial structure of the vorticity/enstrophy
forcing terms is largely influenced by such local effects and
FUNWAVE2D predicts two almost symmetric vortices. The
characteristics of the vortical structures are largely deter-
mined by the structure of the vorticity/enstrophy forcing
terms, i.e., by the instantaneous and mean values of Rbx and
Rby which are spatially more coherent than the equivalent
forcings of SHORECIRC and, as expected, resemble the
structure of the bathymetry itself. These are, respectively,
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shown on the top and middle rows of Fig. 5, while the curl of
these terms appears in the bottom row of the same figure.
This quantity is as an ensemble the source of vorticity as
described by the wave-resolving model. The instantaneous
values of ��Rb and the mean ones are quite different, as

expected, since as the instantaneous values are dependent on
the position of the roller at each time step while the wave-
averaged ones take into account its path during the time in-
terval used for averaging. Johnson and Pattiaratchi25 have
provided further illustration of how the instantaneous struc-

FIG. 3. �Color� Enstrophy production. Left upper panel: S . I, right upper panel: S . II, left middle panel: S . III, right middle panel: �−h0

� 1
h � ·uwdz. Enstrophy

dissipation. Left lower panel: T . I, right lower panel: T . III. Vorticity contours are superposed for ease of inspection.
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ture of breaking wave crests leads to persistent patches of
vorticity in the breaking of random waves on a plane beach.
In the present case, the simplicity of the incident wave field
guarantees that the wave-breaking generation mechanism
should be localized at the rip channel edges and in the re-
gions landward of the channel where wave crest geometry
becomes markedly two-dimensional. Note that the vortex
cores are not characterized by large values of ��R.

Vortices generated by differential wave breaking at the
bars are a consequence of the spatial structure of the break-
ing terms. With wave breaking localized on the bars,
the dominant vorticity production is represented by the dif-
ferential breaking itself. In turn the averaged value of the
curl of the breaking terms shows how the mean vorticity
production and dissipation is localized in space. On the other
hand, the production at the edges of the bars predicted by
SHORECIRC is rather weak although the vorticity magni-
tude is higher than that computed by FUNWAVE2D.

Inspection of SF, which is illustrated in the top panel of
Fig. 6 and represents the sum of the contributions to D�2 /Dt
formally equivalent to the S forcings to �̃2, reveals that such

equivalence is only formal, its size being smaller than S and
its spatial structure being very different from that of ��R.
This suggests that, while for the wave-averaged model en-
strophy is mainly forced by the considered S terms, the for-
mally equivalent SF terms represent a minor forcing to �,
with other contributions to ��R being more important.

Like the wave-averaged model, the classic viscous dis-
sipation �bottom left panel of Fig. 6� dominate that depend
on �d �bottom right panel of Fig. 6�.

IV. BREAKING WAVE DISSIPATION

To gain further support to the analysis of the previous
section the breaking wave dissipation is analyzed as imple-
mented in the two different models following the approaches
of Peregrine2,3 and Brocchini et al.6 In particular Peregrine
showed, using a bore-like dissipation model, that the rate of
energy loss through a single bore is equal to the instanta-
neous rate of change of circulation around a closed material
curve passing once through that bore. In particular the rate of
energy loss is

FIG. 4. �Color� Instantaneous �top row� and averaged over two wave periods �bottom row� surface elevation and vorticity fields as computed by
FUNWAVE2D �t=60 s�.
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FIG. 5. �Color� Radiation stress forcing as computed by FUNWAVE2D. Top row: instantaneous values of the breaking terms �left panel Rbx, right panel Rby�.
Middle row: wave-averaged values of the breaking terms �left panel Rbx, right panel Rby�. Bottom row: the curl of the breaking terms �left panel instantaneous
values, right panel wave-averaged ones�.
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ED =
D�

Dt
, �31�

where

� 	 � Ṽ · dl and ED 	 � R · dl , �32�

Ṽ= �U ,V� is the mentioned depth-averaged velocity vector
and R is, in the bore model, the dissipative body force due to
turbulent bores.

A. The wave-averaged model

REF/DIF, i.e., the wave driver here forcing SHORE-
CIRC, uses the dissipation model proposed by Kirby and
Dalrymple.26 For waves propagating shoreward in the x di-
rection the steady form of the energy flux conservation law
reads

��ECg�
�x

= − WE , �33�

or, referring to the dissipative body force due to the
breaking, R,

��ECg�
�x

= − RxhCg, �34�

see Brocchini et al.6 Here �ECg� is the energy flux, where
E=�gH2 /8 is the average wave energy density per unit of
surface area and Cg= � /k��1+2kh / sinh 2kh� /2 is the group
velocity. k is related to the local depth h by the dispersion
relationship 2=gk tanh�kh�, with =2� /T and T wave pe-
riod. Assuming the group velocity corresponding to the
“stable” energy flux for a broken wave Cgs equals Cg, W is
written as

FIG. 6. �Color� Top panel: the SF term in Eq. �30�, proportional to �d. Bottom panels: enstrophy dissipation terms F . I �left� and F . III �right�.
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W =
KCg�1 − ��h/H�2�

h
�35�

and

WE =
�gKCg

8h
�H2 − ��h�2� , �36�

where H is the local wave height. K and � are empirical
constants, used to measure, respectively, the energy dissipa-
tion efficiency and the depth-limited wave height. Dally
et al.27 estimated the two constant as K=0.017 and �=0.4.

Following Brocchini et al.6 in the case of wave-averaged
models the rate of energy loss actually computed by the nu-
merical solver is

ED = � R · dl = �
1

2 WE

hCg
dx + �

2

3 WE

hCg
dy + �

3

4 WE

hCg
dx

+ �
4

1 WE

hCg
dy � �

1

2 WE

hCg
dx �37�

evaluated along a closed curve as shown in Fig. 7.
Using a bore-type approach, for which 1 and 2 are, re-

spectively, points placed offshore and inshore of the breaking

event and being ĥ= �h1+h2� /2, the following estimate of ED

can be given by integrating Eq. �34� in x:

ED � �
1

2

Rxdx = − �
1

2 1

hCg

��ECg�
�x

dx

�
1

ĥ�gĥ
��ECg�1 − �ECg�2� �38�

where quantities �ECg�1 and �ECg�2 are the energy fluxes
offshore and inshore of the breaking event, the numerical
results coming from the wave driver REF/DIF.

Note that while Eq. �37� gives an upper bound for
the dissipation mechanism actually implemented in
SHORECIRC, Eq. �38� provides an analytical bore-type rep-
resentation of the same mechanism.

B. The wave-resolving model

The dominant contributions to the energy flux conserva-
tion law for nearly shore-normal waves can be written:

�E

�t
+

��ECg�
�x

= − ED, �39�

where the y direction contributions have been found to be
small even near the rip channel. The role of the wave-
averaged breaking terms is the same as that of WE in the
wave driver �see Eqs. �33� and �34��. Hence, for the closed
circuit of Fig. 7, which does not go round the rip neck, only
Eq. �39� gives a contribution to the line integral which is
formally identical to Eq. �37�. Here the group celerity has
been evaluated using the Boussinesq approximation as in
Wei and Kirby,23 while the wave height spatial distribution
has been evaluated starting from the free surface envelope
obtained over five wave periods.

Table I summarizes the numerical values of the rate of
energy loss during the breaking event evaluated both with
Eqs. �37�–�39� and with the three different bathymetries, al-
ready described in Sec. III, to extend the validity of our
results.

The results of Table I have three implications:

�1� They confirm the findings of Kennedy et al.7 for which
ED, and consequently �, are independent of the global
topographic configuration �e.g., isolated structure vs ar-
ray of structures�, the latter only governing the macro-
vortices motion.

�2� ED computed by Eq. �38� gives the upper limit for the
energy dissipation and is rather larger than those evalu-
ated by Eqs. �37� and �39�. Part of the discrepancy may
be due to the choice of the integration path, but this
alone is not sufficient to justify the large difference.
Such difference might be better explained by the men-
tioned weakness of the model wave driver for SHORE-
CIRC of “seeing shocks” �see also discussion of Fig. 2
above�.

�3� ED computed by FUNWAVE2D �Eq. �39�� and by REF/
DIF-SHORECIRC �Eq. �37�� is approximately the same,

FIG. 7. �Color online� Example of the closed material curve along which ED

is computed in the case of a narrow rip bathymetry.

TABLE I. Rate of energy loss computed with Eqs. �37�–�39� in the prox-
imity of the breaking event over the bars in the three different cases: �a�
narrow rip topography, �b� wider rip topography, and �c� isolated bar.

Bathymetry
ED �Eq. �37��

�m2/s2�
ED �Eq. �38��

�m2/s2�
ED �Eq. �39��

�m2/s2�

Case �a� 0.0065 0.0223 0.0036

Case �b� 0.0064 0.0229 0.0036

Case �c� 0.0064 0.0228 0.0036
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the wave height estimate being mostly affected by wave-
current interaction.

V. CONCLUSIONS

Generation and dissipation of topographically induced
wave-breaking forced macrovortices evolving in the coastal
zone, have been investigated both analytically and
numerically.

Two numerical models for near shore circulation are
used: a wave-averaged model, i.e., SHORECIRC, and a
wave-resolving model, i.e., FUNWAVE. Because of they
predict different vorticity dynamics even if applied at identi-
cal wave and topography configurations, an accurate com-
parison between them is needed to understand the main
physical mechanisms governing the 2D vorticity dynamics in
the coastal zone and how they are modelled by those two
circulation models.

Since no comparison is given here with respect to ex-
perimental benchmark flows we are unable to definitely as-
sess which model performs best. However, we highlight the
differences in the vorticity/enstrophy production/dissipation
mechanisms. This has required an analytical derivation of the
vorticity and enstrophy equations for both models. Once the
equivalent terms that force and dissipate enstrophy in both
models have been identified, they have been quantitatively
compared using numerical computations carried out for three
typical bathymetries, ranging from an isolated breakwater to
a typical rip channel configuration. Results pertaining to the
latter configuration have been used both to characterize the
flow evolution and compare modalities of enstrophy
generation/dissipation.

Quantitative and qualitative differences in the vorticity
patterns are evident as reproduced by SHORECIRC and
FUNWAVE2D. Wave-resolving computations predict well-
structured rip current patterns with feeders, neck, and vortex
pairs. The flow structures predicted by SHORECIRC are less
symmetric and organized, the rip current feeders being “con-
taminated” by the overbar flows and the shore vortices inter-
acting with a large number of smaller vortical structures.

The flow spatial structures reflect that of the enstrophy/
vorticity forcings, i.e., gradients of the radiation stress in the
case of the wave-averaged models and curls of the dissipa-
tive body forces in the case of wave-resolving computations.
Gradients of radiation stresses, not positive-definite �hence
providing also dissipation�, are strong over the bar edges and
in the whole region between the bars and the shoreline. On
the contrary, in excellent agreement with the differential
breaking vorticity generation mechanism of Peregrine,
the curl of dissipative forces are most intense over the break-
water term.

To analyze in more detail enstrophy generation, equiva-
lent enstrophy-forcing terms characterizing the two models
have been analyzed. Due to its nature and to the specific
definition of the dissipative body force used in
FUNWAVE2D all contributions to the forcing ��R contain
a gradient of the flow depth which is the basis of the mecha-
nism proven by Peregrine. On the other hand, most of the
intensity of the gradient of the radiation stress, which forces

the wave-averaged computations, is provided by contribu-
tions depending on the gradient of the wave-induced velocity
but virtually independent of depth gradients. Similar differ-
ences have also been found when directly inspecting the en-
ergy dissipation mechanisms.

It seems clear that while for the wave-resolving models a
bore-type energy dissipation forces a differential-breaking
vorticity generation mechanism, vorticity in wave-averaged
models is essentially produced by currents shearing.

Enstrophy dissipation is much easier to investigate as
negative-definite contributions characterize transport equa-
tions of enstrophy for both types of models. The results ob-
tained with both the wave-averaged and the wave-resolving
models suggest that most of enstrophy dissipation occurs be-
cause of the “classical” viscous terms, depth gradients only
weakly contributing.

In summary, we hypothesize, on the basis of the above
arguments �enstrophy generation/dissipation mechanisms,
flow symmetry/asymmetry, energy dissipation mechanism�,
that the wave-resolving Boussinesq-type might be the better
candidate for reproducing near shore flows heavily influ-
enced by large-scale vortical structure. This suggestion is
currently being verified on the basis of a quantitative com-
parison against available experimental data of Eulerian �time
series of elevation and velocity� and Lagrangian �statistics of
passive tracers� type.
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APPENDIX A: DERIVATION OF THE SOURCE
AND DISPERSIVE MIXING TERMS
FOR WAVE-AVERAGED MODELS

The SHORECIRC model is based on the following
depth-integrated, short-wave-averaged governing equation:

� �̄

�t
+

�Qi

�xi
= 0, �A1�

�Qj

�t
+

�

�xi
QiQj

h
� +

1

�

�Sij

�xi
−

1

�

�Tij

�xi
+

1

�

�Lij

�xi
+ gh

� �̄

�xj

+
� j

B

�
−

� j
S

�
= 0, �A2�

with indices i�j�=1,2. The time- and turbulent-averaged to-
tal volume flux is defined by

Qi = �
−h0

�

Vidz + �
�t

�

uwidz �A3�
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with �t denote the elevation of the wave through. We assume

�
−h0

�t

uwidz = 0, �A4�

which implies a definition of wave velocity which produces a
net volume flux, described below. Considering the Vi con-

stant above �̄, from Eq. �A3� we get

Qi = �
−h0

�̄

Vidz + Qwi, �A5�

where Qwi is the volume flux due to the short-wave motion
and is defined as

Qwi = �
−h0

�

uwidz = �
�t

�

uwidz . �A6�

The current velocity Vi is divided into a depth-uniform
part and a depth-varying part into different ways. Following
Van Dongeren and Svendsen28 the total current velocity is
split in

Vi�x,y,z,t� = Ṽi�x,y,t� + V1i�x,y,z,t� , �A7�

where the tilde denotes the depth-uniform part defined as

Ṽi =
1

h
�

−h0

�̄

uidz =
Qi

h
. �A8�

From the definition of Q, Eq. �A5� gives

Qi = Ṽih + �
−h0

�̄

V1idz + Qwi, �A9�

therefore the second component of Eq. �A7�, V1i, accounting
for the vertical variation of the currents, satisfies the
condition

�
−h0

�̄

V1idz = − �
�t

�

uwidz = − Qwi. �A10�

In �A2� Sij is the total short-wave-induced radiation
stress �e.g., Mei29�:

Sij = �
−h0

�

�p	ij + �uwiuwj�dz − 	ij
1

2
�gh2, �A11�

Tij is the depth-integrated turbulent shear stress, expressed
by an eddy viscosity model

Tij = �h�T �Ṽj

�xi
+

�Ṽi

�xj
� , �A12�

and Lij is the quasi-3D dispersive term, which represents the
contribution from the depth-varying currents V1, given by
the following expression:

Lij = ���
−h0

�̄

V1iV1jdz + �
�t

�

�uwiV1j + uwjV1i�dz� . �A13�

Following Van Dongeren and Svendsen,28 we split the
depth-varying part of the velocity into

V1i = V1i
�0� + V1i

�1� with V1i
�0� � V1i

�1� �A14�

and assuming that

V1�z� � V1��̄� in �t � z � � , �A15�

we approximate Eq. �A13� as

Lij � ���
−h0

�̄

V1iV1jdz + V1j��̄�Qwi + V1i��̄�Qwj� . �A16�

Moreover, through Eq. �A10� we make the following ap-
proximation �for more details, see Haas and Svendsen12�:

V1i��̄� � −
Qwi

h
, �A17�

therefore the tensor L becomes

Lij � ���
−h0

�̄

V1iV1jdz − 2
QwiQwj

h � . �A18�
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We can now rewrite the mass and momentum conservation
equations �A1� and �A2�, respectively, in terms of the depth-

uniform velocity Ṽ, and obtain

� �̄

�t
+

�

�xi
�Ṽih� = 0, �A19�

�

�t
�Ṽjh� +

�

�xi
�ṼiṼjh� +

1

�

�Sij

�xi
−

1

�

�Tij

�xi
+

1

�

�Lij

�xi
+ gh

� �̄

�xj

+
� j

B

�
−

� j
S

�
= 0. �A20�

The vorticity equation for wave-averaged models �e.g.,
SHORECIRC� is obtained by taking the curl of Eq. �A20�,
giving �see also Ref. 13�:

D�̃

Dt
+ �̃ � · Ṽ = −

1

�
k̂ · 
� � �1

h
� · �S − T + L���

+
1

�
k̂ · 
� � �1

h
��S − �B��� . �A21�

1. The source term

In the following we analyze in detail each term starting
with the source term represented by the contribution of the
radiation stress term:

k̂ · 
� � �1

h
� · �S��� . �A22�

According to Eq. �A11�, the radiation stress can be written as

S = �
−h0

�

�pI + �G�uw,uw��dz −
1

2
�gh2I �A23�

where I is the identity tensor and G�a ,b� is the tensor op-
erator defined as

G�a,b� 	 �a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3
� �A24�

for any generic vectors a= �a1 ,a2 ,a3�, b= �b1 ,b2 ,b3�. Com-
bining Eqs. �A22� and �A23�, we get

k̂ · 
� � �1

h
� · S��

= k̂ · 
� � �1

h
� · �

−h0

�

��G�uw,uw��dz�� . �A25�

By using the mentioned composite notation we obtain
the following expression for the source term �A22� in which
Gw=G�uw ,uw�:

k̂ · 
� � �1

h
� · �

−h0

�

��Gw�dz��
= �k̂ · �1

h
�

−h0

�

� � �� · Gw�dz� + �k̂ · ��
1

h
� �

−h0

�

� · Gwdz� + �k̂ · 
� � �1

h
��� · Gw�� +

1

h
��� � �� · Gw���

�

+ �k̂ · 
� � �1

h
��h0 · Gw�� +

1

h
��h0 � �� · Gw���

−h0

= ��
−h0

� 1

h
�k̂ · ���� · uw� � uw� + uw · ��w + 2�w � · uw�dz + �k̂ · ��

−h0

�

�
1

h
� � · Gwdz�

+ �k̂ · 
� � �1

h
��� · Gw�� +

1

h
��� � �� · Gw���

�

+ �k̂ · 
� � �1

h
��h0 · Gw�� +

1

h
��h0 � �� · Gw���

−h0

= ��
−h0

� 1

h
�k̂ · ���� · uw� � uw� + uw · ��w + 2�w � · uw�dz + �k̂ ·�

−h0

� ��� · uw��
1

h
� uw� + �

1

h
� �uw · �uw��dz

+ ��
−h0

�

�wuw · �
1

h
�dz + �k̂ · 
� � �1

h
��� · Gw�� +

1

h
��� � �� · Gw���

�

+ �k̂ · 
� � �1

h
��h0 · Gw�� +

1

h
��h0 � �� · Gw���

−h0

, �A26�
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where �w is the vertical component of the short-wave in-
duced vorticity:

�w 	 k̂�w = k̂�vw,x − uw,y� . �A27�

2. The dispersive mixing term

Now we analyze the dispersive mixing term used in
SHORECIRC as defined by Eq. �A18�, where its curl is

k̂ · 
� � �1

h
� · �L���

= �k̂ · 
� � �1

h
� · �

−h0

�̄

G�V1,V1�dz

− 2
G�Qw,Qw�

h ��� . �A28�

Here the wave flux Qw can be written in terms of a product

between a depth-uniform velocity V̂ and the total water
depth h:

Qw = V̂h , �A29�

where the velocity vector V̂ represents the difference be-
tween the definition of the depth-uniform velocity in Eq.
�A8� and the same as defined by Svendsen et al.,9 Vm:

Vm =
Q − Qw

h
, i.e., V̂ 	 Ṽ − Vm �A30�

and �̂ is its related vorticity �̂= k̂�̂= k̂v̂x− ûy.
Substitution of definition �A29� in �A28� leads to

k̂ · 
� � �1

h
� · �L���

= �k̂ · 
� � �1

h
� · �

−h0

�̄

G�V1,V1�dz���
− 2�k̂ · 
� � �1

h
� · �hG�V̂,V̂���� . �A31�

Now, defining G�V̂ , V̂�	Ĝ, we analyze only the second
term on the RHS of Eq. �A31� which leads to

k̂ · 
� � �1

h
� · �hĜ��� = k̂ · 
� � ��h

h
· Ĝ + � · Ĝ��

= k̂ · 
� � ��h

h
· Ĝ� + � � �� · Ĝ��

= k̂ · 
V̂ � �� � V̂ �
�h

h
�� − 2V̂ � �h

h
· �V̂� + V̂ �  �� · V̂� � h

h
��

− k̂ · �V̂ � ��� · V̂�� + V̂ · ��̂ + 2�̂ � · V̂ . �A32�

The first term on the RHS of Eq. �A31� can be manipulated as already done in Eq. �A26�, therefore, the total dispersive
mixing term in the vorticity equation results:

k̂ · 
� � �1

h
� · �L��� = ��

−h0

�̄ 1

h
�k̂ · ���� · V1� � V1� + V1 · ��1 + 2�1 � · V1�dz

+ �k̂ · �
−h0

�̄ ��� · V1��
1

h
� V1� + �

1

h
� �V1 · �V1��dz

+ ��
−h0

�̄

�1V1 · �
1

h
�dz + �k̂ · 
� � �1

h
��� · G1�� +

1

h
��� � �� · G1���

�̄

+ �k̂ · 
� � �1

h
��h0 · G1�� +

1

h
��h0 � �� · G1���

−h0

− 2�k̂ · 
V̂ � �� � V̂ �
�h

h
�� − 2V̂ � �h

h
· �V̂� + V̂ �  �� · V̂� � h

h
��

+ 2�k̂ · �V̂ � ��� · V̂�� − 2�V̂ · ��̂ − 4��̂ � · V̂ , �A33�

with G1=G�V̂1 , V̂1�.
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3. The turbulent shear stress term

Finally, we analyze the contribution to the vorticity due to the depth-integrated turbulent shear stress tensor T and that due
to the bottom shear stress �B. Using the definition of T given in Eq. �A12� we get

k̂ · 
� � �1

h
� · �T��� = �k̂ · 
� � �1

h
� · �h�TT̃��� �A34�

which is the same as defined in BC04:

T̃ = � 2Ũ,x Ũ,y + Ṽ,x 0

Ũ,y + Ṽ,x 2Ṽ,y 0

0 0 0
� = 2 � Ṽ − �̃ . �A35�

Following their approach we obtain

k̂ · 
� � �1

h
� · �T��� = ��T�2�̃ + � � �T · ��̃ + �

�T

h
k̂ · ��−

�h

h
� � �2 � h · �Ṽ − �h � k̂�̃��

+ �
1

h
k̂ · ���T � �2 � h · �Ṽ − �h � k̂�̃�� + �k̂ · �� � �2 � �T · �Ṽ − ��T � k̂�̃��

+ 2�k̂ · ���T � �2Ṽ� .

4. The bottom friction term

The bottom friction term used in SHORECIRC is given by the linear approximation used by Özkan-Haller and Kirby:30

�i
B = �

2

�
cf

�u0�
h

Vi
˜ , �A36�

where cf is the friction coefficient, which depends on the bottom roughness, and �u0� is the short-wave particle velocity
amplitude evaluated at the bottom. As shown by Zhao et al.,13 though different formulations of the bottom friction can affect
the development of shear waves, the quasi-3D effects on the shear waves due to the vertical variation of the currents remains
the same.

Substitution of Eqs. �A26�, �A33�, and �A36� on the RHS of Eq. �A21� and use of the approximation �S=0 leads to the
final form of the vorticity equation �A37�:

D�̃

Dt
+ �̃ � · Ṽ = − k̂ · �

−h0

� 1

h
����� · uw� � uw��dz −�

−h0

� 1

h
�uw · ��w + 2�w � · uw�dz

− k̂ · �
−h0

� ��� · uw��
1

h
� uw� + �

1

h
� �uw · �uw��dz −�

−h0

�

�wuw · �
1

h
�dz

− k̂ · 
� � �1

h
��� · Gw�� +

1

h
��� � �� · Gw���

�

− k̂ · 
� � �1

h
��h0 · Gw�� +

1

h
��h0 � �� · Gw���

−h0

− �
−h0

�̄ 1

h
�k̂ · ���� · V1� � V1� + V1 · ��1 + 2�1 � · V1�dz

− k̂ · �
−h0

�̄ ��� · V1��
1

h
� V1� + �

1

h
� �V1 · �V1��dz − �

−h0

�̄

�1V1 · �
1

h
�dz
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− k̂ · 
� � �1

h
��� · G1�� +

1

h
��� � �� · G1���

�

− k̂ · 
� � �1

h
��h0 · G1��

+
1

h
��h0 � �� · G1���

−h0

+ 2k̂ · 
V̂ � �� � V̂ �
�h

h
�� − 2V̂ � �h

h
· �V̂� + V̂ �  �� · V̂� � h

h
��

− 2k̂ · �V̂ � ��� · V̂�� + 2V̂ · ��̂ + 4�̂ � · V̂ + �T�2�̃ + ��T · ��̃ +
�T

h
k̂

· ��−
�h

h
� � �2 � h · �Ṽ − �h � k̂�̃�� +

1

h
k̂ · ���T � �2 � h · �Ṽ − �h � k̂�̃��

+ k̂ · �� � �2 � �T · �Ṽ − ��T � k̂�̃�� + 2k̂ · ���T � �2Ṽ� − k̂ · 
� � �1

h
�B�� . �A37�

APPENDIX B: POTENTIAL VORTICITY AND POTENTIAL ENSTROPHY EQUATION
FOR WAVE-AVERAGED MODELS

The vorticity and enstrophy equations can be written in term of the potential vorticity q̃= �̃ /h �hereinafter PV� and the
potential enstrophy q̃2, respectively.

The PV equation, after some manipulations described in Appendix A, reads

Dq̃

Dt
= − k̂ · �

−h0

� 1

h2 ����� · uw� � uw��dz − �
−h0

� 1

h
�uw · �qw +

qw

h
�uw · �h� + 2qw � · uw�dz

− k̂ · �
−h0

� 1

h
��� · uw��

1

h
� uw� + �

1

h
� �uw · �uw��dz − �

−h0

�

qwuw · �
1

h
�dz

−
1

h
k̂ · 
� � �1

h
��� · Gw�� +

1

h
��� � �� · Gw���

�

−
1

h
k̂ · 
� � �1

h
��h0 · Gw�� +

1

h
��h0 � �� · Gw���

−h0

− �
−h0

�̄ 1

h
1

h
k̂ · ���� · V1� � V1� + V1 · �q1 +

q1

h
�V1 · �h� + 2q1 � · V1�dz − k̂ · �

−h0

�̄ 1

h
��� · V1��

1

h
� V1�

+ �
1

h
� �V1 · �V1��dz − �

−h0

�̄

q1V1 · �
1

h
�dz −

1

h
k̂ · 
� � �1

h
��� · G1�� +

1

h
��� � �� · G1���

�̄

−
1

h
k̂ · 
� � �1

h
��h0 · G1�� +

1

h
��h0 � �� · G1���

−h0

+
2

h
k̂ · 
V̂ � �� � V̂ �

�h

h
�� − 2V̂ � �h

h
· �V̂�

+ V̂ �  �� · V̂� � h

h
�� −

2

h
k̂ · �V̂ � ��� · V̂�� + 2V̂ · �q̂ + 2

q̂

h
�V̂ · �h� + 4q̂ � · V̂ +

�T

h
�h�2q̃ + 2 � h · �q̃

+ q̃�2h� + ��T · �q̃ +
q̃

h
� �T · �h +

�T

h2 k̂ · ��−
�h

h
� � �2 � h · �Ṽ�� −

�T

h
k̂ · �� � ��h � k̂q̃��

+
1

h2 k̂ · ���T � �2 � h · �Ṽ�� +
1

h
k̂ · �� � �2 � �T · �Ṽ�� − k̂ · �� � ���T � k̂q̃�� +

2

h
k̂ · ���T � �2Ṽ�

−
1

h
k̂ · 
� � �1

h
�B�� , �B1�

while the enstrophy equation is obtained by a simple multiplication of �B1� by �̃.
In the potential enstrophy equation �B2� which follows no �T.III� term, negative-definite and strongly depending on the

total depth gradient �d, is present. This represents a sink for the enstrophy balance while in the potential enstrophy equation
is absorbed into �Tp.I� which describes the potential enstrophy dissipation due to viscous effects, becoming part of the
conservative vorticity dynamics,
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�B2�

�Tp.I�, �Tp.IIa�, and �Tp.IIb� are analogous terms of �T.I�, �T.IIa�, and �T.IIb� in �8� and �12�.

APPENDIX C: DERIVATION OF THE VORTICITY
EQUATION FOR WAVE-RESOLVING MODELS

Expressions �24� and �25� allow for an explicit compu-
tation of the last terms on the right-hand side of �29�:

k̂ · �� � R� = k̂ · 
� � �1

d
� · 1

2
�̂TT̃

ˆ���; �C1�

in which the tensor T̃
ˆ

is

T̃
ˆ 	 � 2�du��,x ��du��,y + �dv��,x� 0

��du��,y + �dv��,x� 2�dv��,y 0

0 0 0
�

= T̃
˜

+ dT̃ = 2 � �u�d� − �d, �C2�

where T̃ is the same as defined by BC04:

T̃ 	 � 2u�,x u�,y + v�,x 0

u�,y + v�,x 2v�,y 0

0 0 0
� = 2 � u� − �; �C3�

and

�d 	 � 0 − �d 0

�d 0 0

0 0 0
�,

�d = �dv�,x − �du�,y = d� + v�d,x − u�d,y; �C4�

T̃
˜

= � 2u�d�,x �u��d�,y + v��d�,x� 0

�u��d�,y + v��d�,x� 2v��d�,y 0

0 0 0
� . �C5�

Therefore R becomes

R =
1

2d
� · ��̂TT̃

ˆ� =
1

2d
� · ��̂TT̃

˜� + F , �C6�
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where F is the vector of dissipative body forces related with
the depth-averaged, effective stress tensor T, as defined in

BC04: T= �̂TT̃, and T̃
˜

=2���du��−d�u��− ��d−d��.

Using Eq. �C6� with R1= 1
2d � · ��̂TT̃

˜� the following
holds:

k̂ · �� � R� = k̂ · �� � R1� + k̂ · �� � F� , �C7�

where the results of k̂ · ���F� lead to the results already
obtained by BC04. In the following we analyze the total
dissipation term:

k̂ · �� � R1� = k̂ · 
� � � 1

2d
� · ��̂TT̃

ˆ���
= k̂ ·

1

2

� � ���̂T

d
· T̃
ˆ

+
�̂T

d
� · T̃

ˆ�� = k̂ · 
� � ���̂T

d
· ��du�� −

1

2
�d��� + k̂ ·

1

2

� � � �̂T

d
� · T̃

ˆ��
= k̂ · 
� � ���̂T

d
· ��du��� − � � ���̂T

d
·

1

2
�d�� + k̂ ·

1

2

�

�̂T

d
� �� · T̃

ˆ� +
�̂T

d
� � �� · T̃

ˆ�� �C8�

for any 2D vector f we can use the following results:

f · �d = f � �k̂�d� , �C9�

k̂ · �� � �� · T̃
ˆ�� = �2�d, �C10�

��̂T � �� · �d� = − k̂ � �̂T · ��d. �C11�

which substituted above lead to

k̂ · �� � R� = k̂ · 
� � ���̂T

d
· ��du�� −

1

2

��̂T

d
� �k̂�d��� + k̂ ·

1

2

���̂T

d
−

�̂T � d

d2 � � �� · T̃
ˆ�� +

1

2

�̂T

d
�2�d

= k̂ · 
� � ���̂T

d
· ��du�� −

1

2

��̂T

d
� �k̂�d��� +

1

d
k̂ · ���̂T � � · ��du��� +

1

2d
� �̂T · ��d

+
1

2

�̂T

d
�2�d −

�̂T

d2 k̂ · ��d � � · ��du��� −
�̂T

2d2 � d · ��d. �C12�

Considering Eq. �C4� and the following terms:

��du�� = d � u� + � , �C13�

with

� = �u��d�,x u��d�,y 0

v��d�,x v��d�,y 0

0 0 0
� , �C14�

��d�� = d � � + � � d , �C15�

�2�d�� = d�2� + 2 � � � d + ��2d , �C16�

lead us to rewrite Eq. �C12� as

k̂ · �� � R� = k̂ · �� � ���̂T · ��u���� + k̂ · 
� � ��̂T

d
· ��� −

�̂T

2d
� d · �� +

1

2
�̂T�2�

− k̂ · 
1

2
� � ���̂T � k̂� +

��̂T

d
� ��d � u���� +

1

d
k̂ · ���̂T � � · �d � u� + ��� +

1

2
� �̂T · ��

+
1

2d
���̂T · �� � d + ��k̂ · �d � u���� −

�̂T

d2 k̂ · ��d � � · �d � u� + ��� −
�̂T

2d2 ��d · �� � d + ��k̂ · �d � u����
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+
1

2

�̂T

d
�2 � � · �d + ��2d + �2�k̂ · �d � u��� . �C17�

Substitution of Eq. �C17� on the right-hand side of Eq. �29� leads to the vorticity equation:

D�

Dt
+ � � · u� = + z�k̂ · �� � ��� · u�,t� � z��� + k̂ · �� � ��� · hu�,t� � z��� + k̂ · �� � ���̂T · ��u����

+ k̂ · 
� � ��̂T

d
· ��� −

�̂T

2d
� d · �� +

1

2
�̂T�2� − k̂ · 
1

2
� � ���̂T � k̂� +

��̂T

d
� ��d � u����

+
1

d
k̂ · ���̂T � � · �d � u� + ��� +

1

2
� �̂T · �� +

1

2d
���̂T · �� � d + ��k̂ · �d � u����

−
�̂T

d2 k̂ · ��d � � · �d � u� + ��� −
�̂T

2d2 ��d · �� � d + ��k̂ · �d � u����

+
1

2

�̂T

d
�2 � � · �d + ��2d + �2�k̂ · �d � u��� . �C18�

APPENDIX D: POTENTIAL VORTICITY AND POTENTIAL ENSTROPHY EQUATION
FOR WAVE-RESOLVING MODELS

Once again, as it occurs for the wave-averaged model �e.g., SHORECIRC�, the �F.III� term is absorbed into the dissipation
term �Fp.I� for the equation employing the PV instead of �, in complete analogy with the respective �T.III� and �Tp.I� terms.
The potential vorticity is still a function of z� and here is defined as q= �� d , and the PV equation reads

Dq

Dt
+

q

d2 ��,t + � · �du��� = +
z�

d
k̂ · �� � ��� · u�,t� � z��� +

1

d
k̂ · �� � ��� · hu�,t� � z��� +

1

d
k̂ · �� � ���̂T · ��u����

+
1

d
k̂ · 
� � ��̂T

d
· ��� − k̂ · 
1

2
� � ���̂T � k̂q�� −

1

d
k̂ · 
1

2
� � ���̂T

d
� ��d � u����

+
1

d2 k̂ · ���̂T � � · �d � u� + ��� +
1

2
� �̂T · �q +

1

2

�̂T

d2 ��2�k̂ · �d � u���

+
1

2d
���̂T · 3q � d +

1

d
� �k̂ · �d � u���� −

�̂T

d3 k̂ · ��d � � · �d � u� + ���

+
�̂T

2d
�2q�2d + 3 � d · �q + d�2q� −

�̂T

2d3 ��d · ��k̂ · �d � u��� . �D1�

The potential enstrophy equation simply follows from Eq. �D1� and reads

�D2�
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