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0.1 Wave-mean interaction and vorticity transport in nearshore
flows.

Emanuele Terrile

0.1.1 Eulerian description of nearshore circulation

Boussinesq model

The standard Boussinesq equations for variable water depth were first derived by Peregrine (1967),
who used the depth-averaged velocity as a dependent variable. Extended forms of Boussinesq
equations have been derived by Madsen et al. (1991) and Nwogu (1993), that used depth varying
velocity. Recently a complete set of fully nonlinear Boussinesq-type equations for waves and current
over an impermeable bottom has been provided by Chen (2006). The fully non linear Boussinesq
type equations introduced by Wei et al. (1995) neglect the second-order terms associated with the
vertical vorticity. Those terms are small with regard to the swash zone but become significant
in the case of wave-induced circulation. The different forms of corrections which we can find in
literature (i.e. Chen et al. 2001, Gobbi et al. 2001, and Hsiao et al. 2002), as shown by Kirby
(2003), are equivalents. However Chen (2006) has shown that such corrections are incomplete
because provide corrected equations which are still only first-order accurate with the respect of
the conservation of potential vorticity (hereinafter PV). In the same work he introduced a new
set of Boussinesq-type equation which are more complete, leading at the PV conservation. Both
continuity and momentum equations are written, as already did by Nwogu (1993), in terms of
a reference horizontal velocity vector uα=(uα, vα) at some reference elevation in the fluid layer
z = zα(x, y) = αhs(x, y). the parameter α is determined by fitting the linear dispersion relation
and damping property of the Boussinesq models to the Stokes-type solutions.

The continuity equation is identical to that in Wei et al. (1995) and reads:

∂η

∂t
+∇ ·M = O(µ4

√
gh0) (0.1.1)

where

M = Mα = (hs + η)

[
uα + µ2

{(
zα − 1

2
(η − hs)

)
∇(∇ · (hsuα))

+

(
z2
α

2
− 1

6
(η2 − ηhs + h2

s)

)
∇(∇ · uα)

}]
, (0.1.2)

hs is the still water depth and η is the free surface elevation. The associated momentum conser-
vation equation given in Chen (2006) reads:

∂uα

∂t
+ (uα · ∇)uα + g∇η + µ2(V1 + V2 + V3) = O(µ4 gh0

l0
), (0.1.3)
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where

V1 =
z2
α

2
∇(∇ · uα,t) + zα∇[∇ · (hsuα,t)]−∇

[
η2

2
∇ · uα,t + η∇ · (hsuα,t)

]
, (0.1.4)

V2 =∇
{

(zα − η)(uα · ∇)[∇ · (hsuα)] +
1
2

(z2
α − η2)(uα · ∇)(∇ · uα)

}

+
1
2
∇{[∇ · (hsuα) + η∇ · uα]2}, (0.1.5)

V3 =(V (x)
3 , V

(y)
3 ), (0.1.6)

in which

V
(x)
3 = −vαω1−ω0

{[
zα− 1

2
(η−hs)

]
∂

∂y
[∇ · (hsuα)]+

[
z2
α

2
− 1

6
(η2−ηhs+h2

s)

]
∂

∂y
(∇ · uα)

}
, (0.1.7)

V
(y)
3 = uαω1+ω0

{[
zα− 1

2
(η−hs)

]
∂

∂x
[∇ · (hsuα)]+

[
z2
α

2
− 1

6
(η2−ηhs+h2

s)

]
∂

∂x
(∇ · uα)

}
. (0.1.8)

Here the vertical component of the vorticity at the second order of approximation is given by

ω = ω0 + µ2ω1 + O

(
µ4

√
gh0

l0

)
, (0.1.9)

with

ω0 =
∂vα

∂x
− ∂uα

∂y
; (0.1.10)

ω1 =
∂zα

∂x

{
∂

∂y
[∇ · (hsuα)]+zα

∂

∂y
(∇ · uα)

}
− ∂zα

∂y

{
∂

∂x
[∇ · (hsuα)]+zα

∂

∂x
(∇ · uα)

}
. (0.1.11)

In comparison with Wei et al. (1995), the only difference is the introduction of the second-order
effects of the vertical vorticity, V3. In comparison with the corrections introduced by Chen et al.
(2003), the difference is the extra correction associated with ω0 in V3 in the present equations.
The implication of the corrections are connected with the conservation property of the PV.

The vorticity equation of such Boussinesq model is obtained taking the curl of the momentum
equation (0.1.3) and, after some manipulations, leads to:

∂ω

∂t
+ uα · ∇ω = −ω∇ · uα − µ2(uα1 · ∇ω + ω∇ · uα1) + O

(
µ4 gh0

l20

)
, (0.1.12)

where

uα1 =

(
z2
α

2
− 1

6
(η2 − ηhs + h2

s)

)
∇(∇ · uα) +

(
zα − 1

2
(η − hs)

)
∇(∇ · (hsuα)). (0.1.13)

It is noticed that the vertical vorticity ω depends on uα, even if it is not its direct curl (i.e.
ω 6= ∇ × uα but ω0 = ∇ × uα), and zα but is depth uniform. Introducing the depth-averaged
horizontal velocity vector, ū, which can be expressed as

û = uα + µ2uα1 + O
(
µ4

√
gh0

)
, (0.1.14)

after some manipulations, inserting (0.1.14) into (0.1.12), we can obtain the following useful vor-
ticity equation (0.1.15):

∂ω

∂t
+ û · ∇ω = −ω∇ · û + O

(
µ4 gh0

l20

)
. (0.1.15)
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Such equation, combined with the continuity equation (0.1.1) and with (0.1.14), leads us to the
conservation of the potential vorticity in terms of the transport velocity field û (corresponding to
the depth averaged velocity):

D∧
Dt

(ω

h

)
= O

(
µ4 gh0

l30

)
, (0.1.16)

in which
D∧
Dt

=
∂

∂t
+ û · ∇ and h = hs + η, (0.1.17)

where h represents the total water depth. The conservation of the PV, obtained in (0.1.16), is
consistent with the level of approximation in the Boussinesq model for the pure wave motion,
having accuracy up to order O(µ2).

To get a better understanding on the physical phenomena, described by such set of equation
(0.1.1)-(0.1.3), and to obtain a clearer set of Boussinesq-type equations, we introduce a new defi-
nition of the velocity vector, uω, which takes into account the second-order effects of the vertical
vorticity. This leads us to achieve a velocity whose curl is exactly the complete vertical vorticity
at the second-order, ω, as given in (0.1.12).

The horizontal vector velocity uω is therefore defined as:

uω = uα + µ2u12 + O(µ4
√

gh0) (0.1.18)

with u12 = zα∇(∇ · (hsuα)) +
z2
α

2
∇(∇ · uα) + O(µ2

√
gh0), (0.1.19)

or, in a better and reasonable way:

uω = û + µ2u2 + O(µ4
√

gh0) (0.1.20)

with u2 =
1
2

(η − hs)∇(∇ · (hsuα)) +
1
6

(η2 − ηhs + h2
s)∇(∇ · uα) + O(µ2

√
gh0),(0.1.21)

where u2 represents the difference, at the second-order, of uω from the depth averaged horizontal
velocity vector û.

From this definition it follows immediately that ω = ∇ × uω + O
(
µ4

√
gh0
l0

)
. Furthermore it

should be noted that the dispersion properties of the fully nonlinear Boussinesq model do not
change because, however, the velocity uω dependents always on the reference elevation zα(x, y).
Basing on the velocity uω we re-write the Boussinesq model previously presented as shown in the
following.

The continuity equations (0.1.1) remains formally the same but with:

M = Mω = (hs + η)


uω − µ2





1
2

(η − hs)∇(∇ · (hsuω)) +
1
6

(η2 − ηhs + h2
s)∇(∇ · uω)

︸ ︷︷ ︸
u2








+O(µ4h0

√
gh0), (0.1.22)

while major changes appears in the associated momentum equations given in the following, with
particular regards to the dispersive terms:

∂uω

∂t
+ (uω · ∇)uω + g∇η + µ2(Vω

12 + Vω
3 ) = O(µ4 gh0

l0
) (0.1.23)
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where:

V12 = −∇
[
η2

2
∇ · uω,t + η∇ · (hsuω,t)

]
+

1
2
∇{[∇ · (hsuω) + η∇ · uω]2}

+∇
{

(zα − η)(uω · ∇)[∇ · (hsuω)] +
1
2

(z2
α − η2)(uω · ∇)(∇ · uω)

}
, (0.1.24)

V3 =

{
1
6

(η2−ηhs+h2
s)∇(∇ · uω)+

1
2

(η−hs)∇(∇ · (hsuω))

}
×(∇×uω) =u2×(∇×uω). (0.1.25)

Now, the momentum equation (0.1.23) results more clear and, as shown in the following, its
curl gives immediately the vorticity equation written on ω. Furthermore the simply curl of the
momentum equation (0.1.23), because of V12 give an irrotational dispersive contribute, leads to
the following vorticity equation:

∂ω

∂t
+ uω · ∇ω = −ω∇ · uω − µ2∇× {u2 × (∇× uω)}︸ ︷︷ ︸

V ORTEXFORCE

+ O

(
µ4 gh0

l20

)
, (0.1.26)

where a VORTEX FORCE term, coming from the dispersive contribution of V3, appears. Note that
u2 represents the second-order difference between the velocity vector uω and the depth-averaged
horizontal velocity û. Hence V3 represents a forcing on the vorticity ω due to dispersive effects.

Terms V12 can be re-written in a more physically clear way through the use of (0.1.18), (0.1.22)
in (0.1.24):

V12 =∇





uω · u12 − 1
2

(w)2 +
∂(ηw)

∂t
+∇ · (ηwuω)

︸ ︷︷ ︸
Tp

+
η2

2

[
∂(∇ · uω)

∂t
+ uω · ∇(∇ · uω)

]

︸ ︷︷ ︸
Td





, (0.1.27)

where:

w =
∂η

∂t
+ uω · ∇η. (0.1.28)

The first term on the r.h.s. of equation (0.1.27) represents the dispersive effects due to the in-
teraction between the velocity uω and the deviation respect uα and indirectly û. It should be
pointed out that in the shallow water framework, NSWE, because of it is usually assumed that the
horizontal velocity is depth-uniform, uω ≡ uα ≡ û and both u2 and u12 tends to zero, therefore
this term disappear as well as V3. However, while assuming uω ≡ uα ≡ û equation (0.1.26) falls
into the usual non-dissipative vorticity shallow water equation:

∂ω

∂t
+ û · ∇ω = −ω∇ · û + O

(
µ2 gh0

l20

)
, (0.1.29)

the same does not happen for the momentum equations (0.1.23) because V12 does not disappear.
This means that some dispersive terms, straightly dependent on η, remain (i.e. 2nd, 3rd and 4th
terms on the r.h.s of (0.1.27)).

The second term of (0.1.27) represents the “wave energy” associated with the velocity w.
Tp and Td are two total derivative respectively for term (ηw), which is a sort of pseudomomentum

associated with the wave oscillation, and (∇ · uω).
Finally it can be derived that both Tp and Td fall to zero at the shoreline where h = hs +η → 0

(i.e. hs → −η and zα → η).
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A further analyses has been made looking at the velocity u12 and u2, and trying to get a better
understanding onto their physical meaning. In particular it has been found:

u12 = ∇
[
zα

(
E +

zα

2
G

)]
− (E + zαG)∇zα, (0.1.30)

with:

E = ∇ · (hsuω) and G = ∇ · uω, (0.1.31)

The formal structure is similar to the previous one (here not shown) found with η instead of
zα and leading to the velocity w and the quantity ηw, therefore a qualitative draft description of
u12 let us guess that correctly it represents a perturbation velocity of uα with respect to uω, see
(0.1.18).

More difficult is looking inside the physics described by u2. After some manipulation and by
using the continuity equation, it turns out that:

u2 =
1
2





(η − hs)∇w︸ ︷︷ ︸
S.I

− (η − hs)∇ · uω∇η︸ ︷︷ ︸
S.II

+
1
3

(
h2

s − 2η2 + 2ηhs

)∇(∇ · uω)
︸ ︷︷ ︸

S.III





(0.1.32)

Here S.I is the effect due to the gradient of the velocity w while S.II is mainly due to the gradient
of the wave η. (Both are multiplied by (η − hs) which seems taking into account the dynamical
aspect). S.III is more complicated to analyse but it can be shown keeping inside contribution
relating to the vorticity ω with both the topography gradient ∇hs and ∇η.

In the following we study the wave-mean interaction in the the nearshore zone making use of the
fully nonlinear Boussinesq model, previously presented. In the first part of this study we performed
an asymptotic expansion in small wave amplitude. Even if this assumption is quite restrictive, it
give us an idea on the physical processing involved and on the influence of the dispersion terms on
the nearshore hydrodynamics. The analysis is performed for idealized non-dissipative waves. In
particular we are interested on looking at the forcing of the potential vorticity, due to the dispersion
effects. A more complete analyses on their effects is afterwards performed through the use of the
Generalized Lagrangian Mean theory (i.e. Andrews and McIntyre, 1978a), which gives results no
more dependent on the small wave assumption and valid for finite amplitude waves.

The small wave amplitude approximation looks at the mean-field response to slowly varying
small-amplitude gravity waves. Therefore, considering a background state of rest at O(1), we
assume that the flow fields can be uniquely decomposed into their mean part φ̄ (Eulerian mean is
denoted with the overbar) and a disturbance part φ′ at the relevant orders in small wave amplitude
a, such that φ = φ′ + φ̄ and φ̄′ = 0. Making these assumptions we set the generic velocity field u
and the free stream surface η such that:

u = u′ + ū + O(a3) and η = η′ + ∆h + O(a3), (0.1.33)

where the disturbance quantities u′ and η′ are O(a) while the mean-flow response quantities ū
and ∆h, representing the depth set-up, are O(a2). Note that the still water depth hs represents a
background field and, therefore, is O(1).

Gravity waves

Substituting equations (0.1.33) in the continuity equation (0.1.1)-(0.1.22) and momentum equa-
tion (0.1.23) we achieve the following continuity and momentum equations at the first order O(a)
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valid for gravity waves:

∂η′

∂t
+∇ ·M′ = O(µ4

√
gh0) (0.1.34)

∂u′ω
∂t

+ g∇η′ = O(µ4 gh0

l0
) (0.1.35)

with M′ = hs


u′ω − µ2




−hs

2
∇(∇ · (hsu′ω)) +

h2
s

6
∇(∇ · u′ω)

︸ ︷︷ ︸
u′2






 + O(µ4h0

√
gh0). (0.1.36)

Following Bühler and Jacobson (2001), it becomes useful now introduce a linear particle dis-
placement ξ′ = (ξ′a, ξ′b) such that:

∂ξ′

∂t
= û′ hence η′ +∇ · (hsξ

′) = 0, (0.1.37a, b)

This set of equations, (0.1.34)-(0.1.35), is useful for determining the wave properties at O(a2)
which will be important studying the equation for the mean-flow response. Those wave properties
depend only on the previous linearized equations being averaged squares of the O(a) solutions. Of
particular interest is the wave energy per unit, defined as:

E =
1
2

(
u′2w + v′2w + g

η′2

hs

)
hs (0.1.38)

Now performing the scalar product between multiplying (0.1.35) and (hsu′ω), averaging over the
wave period and invoking (0.1.34) we can obtain the following transport equation for the energy
E:

∂E

∂t
+∇ · (ghsη′u′ω)− µ2 g η′∇ · (hsu′2) = 0 (0.1.39)

In (0.1.39) the energy E is affected by the dispersion terms which are represented by the last term
on the l.h.s.

From (0.1.20) we can see that inside uω there are some O(µ2) contributions taking into account
dispersion effects. Hence we split the wave energy E into part, such that:

E = Ê + 2µ2Ê2 − 2µ2 gη′2 (0.1.40)

with Ê =
1
2

(
û′2 + v̂′2 + g

η′2

hs

)
hs; and Ê2 =

1
2

(
û′u′2 + v̂′v′2 + g

η′2

hs

)
hs. (0.1.41)

Now substituting equations (0.1.40) and (0.1.20) in 0.1.38, we get the following transport equa-
tion, valid for the wave energy Ê at order O(µ2):

∂Ê

∂t
+∇ · (ghsη′û′) + 2 µ2

{
∂Ê2

∂t
− g

∂η′2

∂t

}
= 0, (0.1.42)

where the last term is O(µ2) and is completely due to the dispersion effects. Ê2 represents the
wave energy per unit of area associated to the interaction between the depth-averaged part of the
wave velocity and the corresponding depth-varying part. If this interaction is weak as expected
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in shallow water, equation (0.1.42) conserve the area integral of Ê if non-dissipative waves on a
background state of rest are considered.

Another useful wave property we can get at this step of our analysis, using the velocity field
u′ω and η′, is the Stokes drift ūS

ω. This wave property is usually defined as the difference between
the Lagrangian mean velocity ūL

ω and the Eulerian mean velocity ūω, note that the overbar denote
averaging over the fast time scales. Although it is general formulation is quite complex, at O(a2),
following Andrews & McIntyre (1978) and Bühler & Jacobson (2001) , it reduces to:

ūS
ω = (ξ′ · ∇)u′ω =

1
hs

(hsξ
′ · ∇)u′ω = − 1

hs
∇ · (hsξ

′)u′ω + O(ε a2) ≈ 1
hs

η′u′ω. (0.1.43)

Equation (0.1.43) has been obtained using (0.1.37a, b) and neglecting terms of order O(εa2),
where it has been assumed that if the gradients of a disturbance field are O(1) the mean-flow re-
sponse has gradients of O(ε), with ε ¿ 1 representing a small suitable parameter used to describe
the scale separation. Expressions similar to (0.1.43) valid for Stokes correction, i.e. φ̄S = φ̄L − φ̄,
can be found.

Mean-flow response

Analyzing now, the continuity and momentum equations at order O(a2), we get a description
of the mean-flow response to the gravity waves. This set of equations is obtained time-averaging
over the fast time scale Boussinesq model equations (0.1.1)-(0.1.23) and retaining all terms up to
order O(a2). Using also (0.1.33) we get:

∂∆h

∂t
+∇ ·M = O(µ4

√
gh0) (0.1.44)

∂ūω

∂t
+ (u′ω · ∇)u′ω + g∇∆h + µ2V12 + µ2u′2 × (∇× u′ω) = O(µ4 gh0

l0
) (0.1.45)

with M = hs

(
ūL

ω − µ2 ūL
2

)
+ O(µ4h0

√
gh0). (0.1.46)

We note that µ2 V12 in (0.1.45), invoking (0.1.24), is a gradients of mean-flow quantities, therefore
it is at order O(ε a2) and can be neglected. Furthermore this term is irrotational and does not
influence the vorticity dynamics.

The advective term is handle in the same way as did by Bühler & Jacobson (2001) and it holds
to:

(u′ω · ∇)u′ω =
1
hs
∇ ·

(
hsu′ωu′ω + δ

g

2
η′2

)
+

∂ūS
ω

∂t
− µ2 1

hs
∇ · (hsu′2)u′ω, (0.1.47)

where both continuity (0.1.34) and momentum (0.1.35) equations have been used and δ is the
unit tensor associated to the Kronecker’s delta. Introducing now the radiation-stress tensor S as
described by Longuet-Higgins (1970), the advective term becomes:

(u′ω · ∇)u′ω =
1
hs
∇ · S +

∂ūS
ω

∂t
− µ2 1

hs
∇ · (hsu′2)u′ω. (0.1.48)

Looking now at the last term in the momentum equation (0.1.45) it turns out that is equal zero.
In fact considering the vorticity equation for the gravity waves, which can be easily derived taking
the curl of the momentum equation (0.1.35) it comes out that:

∂

∂t
(∇× u′ω) = 0. (0.1.49)
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By integrating this vorticity equation in time and assuming that there was no disturbance at the
initial time, it results that ∇× u′ω = 0. Hence, even the dispersion term u′2 × (∇× u′ω) does not
give any contributions.

The momentum equation, we get after these considerations and using (0.1.48), reads:

∂ūL
ω

∂t
+ g∇∆h = − 1

hs
∇ · S + µ2 1

hs
∇ · (hsu′2)u′ω + O(µ4 gh0

l0
) . (0.1.50)

This equation together with (0.1.44) completely describes the mean-flow response to the grav-
ity waves because depends only on waves quantities, which are derived directly from the linear
solutions.

We note that in (0.1.50) the radiation-stress tensor S is not the only forcing of the mean flow, as
it happens in shallow water framework (i.e. Bühler & Jacobson, 2001), but there are also dispersion
contributions represented by the last term on the r.h.s.. The mean-flow is expected to respond to a
different number of physical effect such as wave dissipation, transience and mean pressure changes
due to waves and radiation-stress describes only part of these effects.

Another important wave property is the so-called pseudomomentum per unit of mass p , asso-
ciated at the velocity field uω, which at order O(a2) and considering equation (0.1.49) is:

pi = −ξ′j,iu
′
wj ≈ ξ′ju

′
wi,j = ūS

i , (0.1.51)

whose evolution equation can be easily derived multiplying equation (0.1.45) with η′/hs, averaging
and using the corresponding continuity equation (0.1.44). After some manipulation, invoking
(0.1.51) and following Bühler & Jacobson (2001) , we get:

∂ p
∂t

+
1
hs
∇ · S − 1

2
∇|u′ω|2 = µ2 1

hs
∇ · (hsu′2)u′ω, (0.1.52)

where the dispersive term on the r.h.s., although in absence of dissipative force, captures the decay
of p . Furthermore substituting (0.1.53) back in (0.1.50) and taking the curl results in:

∂

∂t
∇× (

ūL
ω − p

)
= 0, (0.1.53)

being the gradient term irrotational. This equation is exactly the same found by Bühler & Jacobson
(2001) in a shallow water framework making a similar small wave approximation and make clear
the central role of the pseudomomentum on the mean-flow response. In particular it shows that the
pseudomomentum take into account dispersion terms which are not kept by the radiation-stress
tensor S.

0.1.2 Generalize Lagrangian-Mean theory

One of the difficulties in the Eulerian description is to identify the mean motion in an otherwise
oscillating field (in the splitting between currents and waves.). One way to obtain this splitting is
used in the time-averaged, depth-integrated models, in which essentially the mean motion is depth-
uniform. When depth-varying currents are considered (the mean motion is still a function of the
depth) one way to split up mean and oscillating motion is through the Generalized Lagrangian
Mean theory (GLM). The GLM gives the advantage that it is formed over the displaced locations,
while the Eulerian mean is formed (as normally done) at the undisplaced locations. This theory
was developed by Andrews and McIntyre to separate in a more rational way waves from mean flow
and to describe wave-mean interaction.

Andrews and McIntyre’s Generalized Lagrangian-Mean is an exact and very general Lagrangian-
mean description of the effect of oscillatory disturbances upon the mean flow. GLM theory is based
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upon an exact Lagrangian-mean operator ( )
L

, corresponding to any given Eulerian-mean oper-
ator ( ) through an exact disturbance-associated particle displacement field and provided the
mapping x ⇒ x + ξ is invertible. GLM theory derives the general equations for its evolution from
the equation of motion (continuity and momentum equations). Two important vector fields ξ and
p are used in GLM. The first generalizes the disturbance particle displacement field. The second
is a wave property, and it is called pseudomomentum, per unit of mass p can be considered as the
nonlinear forcing of the mean flow by the waves. In the GLM description the conservation of pseu-
domomentum is straightforward connected with the invariance to a translation of the disturbance
pattern while mean particle positions are kept fixed.

Figure 1: GLM theory scheme: the bold line represents the mean particle trajectory, while the thin line represents
the actual particle trajectory. Both trajectories are supposed to start at the same point x0 at time t = 0 and the
position Ξ = x + ξ(x, t) is the actual position of the particle whose mean position is x.

Now if we consider a material particle trajectory, solution of dx
dt = u(x, t), from figure 1 we

can see that its motion can be decomposed into a slow and a fast part by averaging over the
fast timescale. Through this averaging process we associate two different trajectory with each
particle: the thin line, representing the actual, rapidly varying trajectory, and the thick line, the
mean, slowly varying trajectory. The GLM theory provides the tools to link these two different
trajectories, introducing an unique disturbance particle displacement field ξ(x, t). Assuming mean
particle trajectories must not cross each other, and therefore that each point x is touched only
by a trajectory at a given time t (otherwise the field ξ(x, t) is not uniquely defined), the actual
particle position can be defined such that:

Ξ(x, t) = x + ξ(x, t) (0.1.54)

while x is the mean position, being the time average over the fast timescale of ξ(x, t) defined as
follows:

ξ(x, t) = 0. (0.1.55)

We can observe that the particle whose mean position is x at time t is not necessary the same
particle that it is at x at time t. Now it can be defined an exact Lagrangian-mean velocity as

uL(x, t) = u(x + ξ(x, t), t) (0.1.56)

uL being the mean velocity of the particle whose mean position is x at time t. It should be noted
that the Lagrangian-mean operator is applied on the actual particle positions, as it can be seen in
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figure 1. The Lagrangian-mean operator applied to a generic function ϕ can be defined in analogy
with (0.1.56). Now it useful to introduce the following notation

ϕξ(x, t) = ϕ{x + ξ(x, t), t}, (0.1.57)

in which the upper symbol ξ means the generic quantity ϕ is evaluated at time t in x + ξ(x, t),
to pass from mean to actual particle positions, and viceversa. For this intention we have two
important properties of ϕξ arising from the chain rule of differentiation:

(ϕξ),t = (ϕ,t)
ξ + (ϕ,j)ξΞj,t and (ϕξ),i = (ϕ,j)ξΞj,i (0.1.58a,b)

where ,j denotes the covariant differentiation with respect to xj , the time-differentiation is denoted
with ,t and Ξi are the component of the actual position vector Ξ. Repeated indices are summed.
The relation between the Lagrangian-mean and the usual Eulerian-mean is represented by the
‘Stokes correction’ for every mean field and it is written as

ϕS ≡ ϕL + ϕ. (0.1.59)

In the special case of the velocity the Stokes correction is defined as the Stokes drift uS .
Lagrangian-mean trajectories can be defined as integral curves of the lagrangian-mean velocity uL

(i.e. solution of dx
dt = uL(x, t)) and this leads at the following definition of the Lagrangian-mean

time derivative

D
L

=
∂

∂t
+ uL · ∇, (0.1.60)

The Lagrangian-mean material derivative D
L

of the actual particle position (0.1.54) along a mean
trajectory is equal to the actual fluid velocity uξ:

D
L

Ξ =

(
∂

∂t
+ uL · ∇

)
Ξ = uξ. (0.1.61)

This equation has as consequence an important rule connecting the material derivative along mean
and actual trajectories, valid for any field ϕ:

(
∂

∂t
+ uL · ∇

)
(ϕξ) =

(
Dϕ

Dt

)ξ

. (0.1.62)

By simply averaging (0.1.62) we obtain the following useful relation:

(
∂

∂t
+ uL · ∇

)
(ϕ)

L
=

(
Dϕ

Dt

)L

(0.1.63)

We note that the previous relation (0.1.61) may be written as

D
L
ξ = u` (0.1.64)

where the quantity

u` = uξ − uL (0.1.65)

is the mean material rate of change of ξ and it is called Lagrangian disturbance velocity, obviously
from (0.1.65) it results

u` = 0. (0.1.66)
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Postulate (viii) in Andrews and McIntyre states that each Lagrangian-mean trajectory passes
through at least one point (x0, t) in the neighbourhood of which there is no disturbance. A con-
sequence of this postulate, given u(x, t) and assuming that the initial flow has no disturbances
(i.e. ξ(x, 0) = 0) from equations (0.1.56), (0.1.60) and (0.1.61) it is possible to determine ξ and,
therefore, uL at all later times.

Another important characteristic, which distinguishes the GLM theory from the standard
Eulerian-mean theories, is the so called ‘divergence effect’, or rather the fact that in the GLM
theory ∇ ·u = 0 does not imply that ∇ ·uL = 0. This divergence effect was discussed by Andrews
and McIntyre, who emphasized that a mean density field ρ̃ satisfying the continuity equation is
not in general equal to ρL. They gave a definition of this ‘new’ mean density field

ρ̃ = ρξJ (0.1.67)

where J is the Jacobian of the jacobian matrix Ξi,j mapping x ⇒ x + ξ:

J = det{Ξi,j} = det{δij + ξi,j}. (0.1.68)

For later manipulations it also is useful to introduce the cofactors Kij of J , as Andrew and McIntyre
(1978) did, which satisfy

Ξi,kKij = Jδkj (0.1.69a)

Ξk,iKji = Jδkj (0.1.69b)

from this relation, since Ξi,k = δik + ξi,k, the cofactor Kij can be written as

Kkj = Jδij − ξi,jKij (0.1.70)

or in the more useful form

Kij = ∂J/∂Ξi,j =
1
2
εilmεjpqΞl,pΞm,q (0.1.71)

which leads to
Kij,j = 0, and J,µ = Kij(Ξi,j),µ. (0.1.72a,b)

Furthermore, now we can write the inverse of (0.1.58b) by using (0.1.69b), as:

(ϕ,j)ξ = (ϕξ),i
Kji

J
; (0.1.73)

The continuity equation written in terms of the density ρ is

Dρ/Dt + ρ∇ · u = 0, (0.1.74)

and in the GLM theory, using the ‘new’ mean density field ρ̃, can be re-written in same way of the
previous (0.1.74) as follows

Dρ̃/Dt + ρ̃∇ · u = 0. (0.1.75)

The physical meaning of ρ̃ is the same as the ordinary density, but while ρ measures the dilatation
or contraction of the actual material volumes, ρ̃ measures the dilatation or contraction of the mean
material volumes as it is straightforward shown by equation (0.1.67) as defined in Andrews and
McIntyre. Note that ρ̃ is a mean quantity, as can be shown by averaging (0.1.75) and therefore
ρ̃ = ρ̃.
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Before we apply the GLM theory to the two-dimensional Boussinesq equation it is useful to
introduce a new vector field as Andrews & McIntyre (1978) did: the pseudomomentum or ‘wave-
momentum’ p per unit of mass. It is a wave property, therefore may be evaluated to a consistent
first approximation from linearized theory and depends only on the way in which ‘disturbance’ and
‘mean flow’ are defined.

In a more generic form, Andrews & McIntyre (1978) first introduced a fundamental measure
of the ‘wave activity’ for finite-amplitude disturbances on arbitrary mean flows, the ‘wave-action’
A:

A ≡ ξ,α · (u` + Ω× ξ) (0.1.76)

where ( ),α stands for ∂/∂α and Ω is the angular velocity of a rotating frame of reference. They
derived from the momentum equation, after some manipulation, an appropriate wave-action con-
servation relation:

D
L
A + ρ̃−1∇ ·B = F (0.1.77)

where B is the non-advective flux of wave-action, and F represents the rate of generation or
dissipation of wave-action.

Later, for slowly-varying wave fields, they link the wave-action to the pseudomomentum per
unit of mass, replacing in (0.1.76) the ∂/∂α with −∂/∂xi, the ith component results

pi(x, t) ≡ −ξj,i{u`
j + (Ω× ξ)j} (0.1.78)

where, because of (0.1.55) and (0.1.64), the disturbance velocity u`
j can be replaced by the actual

velocity uξ
j . The pseudomomuntum represents the nonlinear forcing of the mean motion by the

waves. In our case of study of nearshore circulation we can neglect the angular velocity of the frame
of reference so that Ω = 0, therefore the pseudomomentum vector is reduced to the following form:

pi(x, t) = −ξj,iu
ξ
j . (0.1.79)

GLM-Boussinesq theory

The GLM equations describe the back effect of oscillatory disturbances upon the mean state. Of
course the GLM still describes a mean motion, but it describes the Lagrangian aspects of the
motion from an Eulerian framework and is consequently able to capture structural aspects of the
flow. Therefore, the GLM approach appears to be quite useful in some classes of problems.
In the nearshore zone studies an accurate description of the wave evolution is provided by Boussinesq-
type equations. Therefore, to get a good and “more complete” description of the wave-current
interactions in the nearshore flow it is useful to write a GLM-Boussinesq model.

In the classical Eulerian approach the radiation stress as introduced by Longuet-Higgins (1962),
described the “excess flux of momentum due to the presence of waves”, and changes in the radia-
tion stress (momentum flux) of the waves are compensated for by changes in the mean field, so the
overall momentum is conserved. In the GLM, as already seen previously, the pseudomomentum,
introduced as the nonlinear forcing of the mean motion by the waves, differs from the classical
“radiation stress” and provides a more complete description of the wave-current interactions (see
Andrew McIntyre, 1978b).
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The GLM theory is now applied to the continuity equation (0.1.1) reported in the following
with the (0.1.22), for completeness:

∂η

∂t
+∇ ·Mω = O(µ4

√
gh0) (0.1.80)

with

Mω = (hs + η)
[
uω − µ2u2

]
+ O(µ4h0

√
gh0), (0.1.81)

where u2 is given by (0.1.32). Defining an opportune mean layer depth h̃ = h̃ in analogy with the
mean density ρ̃, the GLM continuity equation can be achieved easily multiplying (0.1.80)ξ, which
means equation (0.1.80) evaluated at the position x + ξ(x, t), by J :

D
L

∧h̃ + h̃∇ · ¯̂uL = 0 (0.1.82)

with h̃ = hξJ = hξ

(
1 +∇ · ξ +

∂(ξa, ξb)
∂(x, y)

)
, (0.1.83)

where (0.1.20) has been used and D
L

∧ = ∂/∂t + ¯̂uL · ∇. Now using again (0.1.20) in (0.1.82) we
can get the continuity equation valid for the velocity field uω as follows:

D
L
h̃ + h̃∇ · ūL

ω − µ2ūL
2 · ∇h̃− µ2h̃∇ · ūL

2 = 0, (0.1.84)

where D
L

= ∂/∂t + ūL
ω · ∇.

The momentum equation is obtained following Andrews & McIntyre (1978) in a such way that
the gradient character of the pressure term is maintained. The j-th component of (0.1.23)ξ (i.e.
evaluated at x + ξ(x, t)) is multiply by Ξj,i and then a time average over the fast time scale is
taking. The result is:

D
L

(uL
i − pi) + (uL

k ),i(u
L
k − pk) + gηL

,i −
1
2

(uξ
ju

ξ
j),i + µ2 Ξj,i

{
(V12)ξ

j + (V3)ξ
j

}
= 0 (0.1.85)

where the pseudomomentum is defined, following (0.1.79), as:

pi = −ξj,iu
ξ
ω j . (0.1.86)

and the 1st, 2nd and 3th are derived following exactly the same manipulation of Andrews and
McIntyre (1978).

Because of we are interested on looking at the effects that dispersive terms have on the macrovor-
tices dynamics (i.e. Kennedy et al., 2006) we need manage more explicitly the dispersive terms.
In particular we have seen in (0.1.27) that V12 is an irrotational term which does not give any
contributions to the vorticity equation, therefore much more attention will be give to V3 from
which arise a clear “Vortex Force effect”, involved into the vorticity equation.

In the following we analyse term V3, with ω = ∇× uω = (0, 0, ω):

Ξj,i(Vf )ξ
j = Ξj,i(u2 × ω)ξ

j = Ξj,i(u
ξ
2 × ωξ)j = Ξj,i εjqk (uξ

2q ωξ
k) =

= (δij + ξj,i) εjqk (uL
2q + u`

2q) ωξ
k =

= εiqkuL
2q ωL

k + εiqk u`
2q ω`

k + εjqk uL
2q ω`

kξj,i + εjqk ωL
k u`

2qξj,i + εjqk u`
2q ω`

kξj,i.

(0.1.87)
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Detailed expressions for ωξ and the corresponding Lagrangian mean ωL are given in Appendix
A.

The other pure dispersive term V12 is analyse in the following even if we aspect it should
maintain its gradient character without consequently influencing the vorticity dynamics.

Ξj,i(Vg)ξ
j = Ξj,i

([
uω · u12 − 1

2
w2 + Tp +

η2

2
Td

]

,j

)ξ

=

[
ūL

ω · ūL
12 + (u`

ω · u`
12)−

(
1
2
w2

)ξ

+ T ξ
p +

(
η2

2
Td

)ξ
]

,i

(0.1.88)

with

Tp =
∂(ηw)

∂t
+∇ · (ηwuω), (0.1.89)

Td =

[
∂(∇ · uω)

∂t
+ uω · ∇(∇ · uω)

]
. (0.1.90)

Here w/µ2 is the vertical velocity evaluated in z = η and consequently term − 1
2w

2 is related with
the dynamic boundary condition on the free surface, imposed to derive the Boussinesq model.
Furthermore Tp describes the transport of a quantity, (ηw), which is a pseudomomentum related
to the free surface disturbance η with respect to the rest conditions represented by still waver
depth hs.

Now terms u12 and u2, respectively in equation (0.1.88) and (0.1.87), can be further expanded,
their detailed derivations are given in Appendix B, and read:

uξ
12 = zξ

α∇
(∇ · (hξ

su
ξ
ω)

)
+

(zξ
α)2

2
∇ (∇ · uξ

ω

)
+ zξ

α K
(
hξ

su
ξ
ω

)
+

(zξ
α)2

2
K

(
uξ

ω

)
, (0.1.91)

uξ
2 =

1
2

(
ηξ − hξ

s

)∇ (∇ · (hξ
su

ξ
ω)

)
+

1
6

(
(ηξ)2 − ηξhξ

s + (hξ
s)2

)∇ (∇ · uξ
ω

)

+
1
2

(
ηξ − hξ

s

)
K

(
hξ

su
ξ
ω

)
+

1
6

(
(ηξ)2 − ηξhξ

s + (hξ
s)2

)
K

(
uξ

ω

)
. (0.1.92)

Because of we are interested on describing how dispersive effects can influence the macrovortices
dynamics we analyse the vorticity equation obtained now by the GLM theory. In particular the
potential vorticity equation is derived in the following. A “local” description of the vorticity
dynamics is obtain making directly use of the velocity field given by the Boussinesq model, uω as
transport velocity. A more “global” description is achieve and discuss using as transport velocity
the depth-averaged field û.

The potential vorticity, q = ω/h, equation in the Eulerian framework can be obtained taking
the curl of the momentum equation (0.1.23) and invoking the continuity equation (0.1.1):

D

Dt
q = −µ2

{
1
h
∇× (u2 × ω) + q ∇ · u2 + q u2 · ∇h

h

}
(0.1.93)

where D/Dt = (∂/∂t + uω · ∇). In (0.1.93) we can still identified on the r.h.s the dispersive
contribution given by the vortex force written for the potential vorticity, a 2D PV stretching term
due only to the u2 velocity contribution and a correction term taking into account the interaction
with the topography. All these dispersive effects contribute to change the potential vorticity with
respect to the velocity field uω. Now the GLM potential vorticity equation can be obtained
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from (0.1.93) by using Lemma 1 in Bühler (2000). This lemma can be applied not only to the
Lagrangian-mean of the definition of q but to all other quantities in (0.1.93) and leads to:

D
L
q̃ = −µ2∇× Ṽ3

h̃
− µ2(q ∇ · u2)

L − µ2

(
q u2 · ∇h

h

)L

, (0.1.94)

with

q̃ =
∇× (ūL

ω − p )

h̃
, (0.1.95)

Ṽ3 i = V3
L

i + ξj,iV `
3 i, (0.1.96)

note that assuming no initial disturbance we can assume that q̃ = qL. In (0.1.94) the forcing term
for the potential vorticity is identified in the Vortex force term (i.e. the first on the r.h.s.).This
mean force Ṽ3 depends only on the local flow and, in particular, on both the local vorticity ω and
the velocity u2. The second and third terms in (0.1.94) represent once more the 2D stretching
terms for the potential vorticity given by the velocity u2 and written in their lagrangian form. A
more accurate, but complex, expression for the Vortex force term can be obtained if (0.1.113) and

(0.1.117) are used in (0.1.96), showing that V3 = (u2 × ω)
L

, which represent a dispersive lagrangian
mean quantity can be further split in terms depending on the lagrangian mean field ūL

ω and the
corresponding disturbance part u`

ω. More interesting is the second term on the l.h.s. in (0.1.96)
which can be seen in analogy to the pseudomomentum. In particular in (0.1.94) it represents the
rate of generation or dissipation of the potential vorticity associated with the dispersion described
by the departure of uω from the depth averaged velocity. Hence ξj,iV `

f i is the nonlinear forcing of
the mean flow by dispersive characteristics of the wave field.

Now it is useful to derive the evolution equation for the pseudomomentum p. Following Andrews
and McIntyre (1978b) we multiply the j-th component of the Lagrangian disturbance part of the
momentum equation (0.1.23) by −ξj,i and afterward averaged. It turns out that:

D
L
pi + uL

k,ipk + 1
2 (uξ

ju
ξ
j),i − g ξj,i(η,j)` − µ2 ξj,i(V ω

12)`
j + Vi = 0 (0.1.97)

where

Vi ≡ −µ2 ξj,iV `
3j . (0.1.98)

Note that V is the same term we found developing V3 in the Lagrangian momentum equation,
(0.1.87). Now the pseudomomentum-forcing terms −µ2 ξj,i(Vg)`

j and Vi are wave properties and
describe the generation or destruction of pseudomomentum due to dispersive effects. In particular
Vi is equal to the second term found in (0.1.96), and leads to:

Ṽ3 i = V3
L

i − Vi. (0.1.99)

This results, such as the one found by Bühler (2000) for dissipative waves in shallow water, becomes
important because connect directly the “forcing” Ṽ3 of the potential vorticity in (0.1.94) with the
rate of dissipation of pseudomomentum due to dispersive wave effect.

As already discussed the potential vorticity equation can be written “globally” also in terms of
the depth-averaged velocity transport. In the Eulerian framework it is given by (0.1.16) and leads
to the conservation of the potential vorticity q , reported in the following:

D∧
Dt

q = 0. (0.1.100)

Invoking once more Lemma 1 in Bühler (2000), the potential vorticity eqaution (0.1.102) can be
written in GLM theory as:

D
L

∧q
L = D

L

∧
∇× (ūL

ω − p )

h̃
= 0. (0.1.101)
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where D
L

= ∂/∂t + ¯̂uL · ∇. Apparently no dispersive terms appear in (0.1.102), but both uω and
p bring inside, if written in term of û, dispersive effects. Making use of (0.1.32), the potential
vorticity equation (0.1.102) becomes:

D
L

∧
∇× (¯̂uL − µ2u2

L − p ∧ + µ2p 2)

h̃
= 0 , (0.1.102)

where

p∧i = −ξj,iû
ξ
j and p2i = −ξj,iu

ξ
2 j . (0.1.103)

From (0.1.102) it becomes evident that the dispersive effects, acting on the depth averaged velocity
fields, are described in term of both lagrangian mean velocity u2

L and disturbance particle field
through the associated pseudomomentum p2. Once more we note that in shallow water approxi-
mation, where it is usually assumed depth-averaged velocity, equation (0.1.102) turns in the same
potential vorticity equation found by Bühler & McIntyre (1998) for non-dissipative waves.

The GLM Boussinesq equations are now evaluated in the small amplitude limit, making the
same assumption did for the Eulerian equations. In particular we assume a small-amplitude pa-
rameter a ¿ 1 and expand the flow fields in a such way that the background state is O(1), the
disturbance fields are O(a) and the mean-flow response fields are O(a2). The derivative of the
disturbance fields are assumed to be O(1) while the spatial derivatives of mean fields are O(ε),
assuming as suitable scale parameter ε ¿ 1. The generic Lagrangian disturbance field and the
Stokes corrections can be respectively approximated, following Andrews and McIntyre (1978a), as:

φ` ≈ φ′, (0.1.104)

φ
S ≈ −ξ′j,jφ′. (0.1.105)

where φ′ and the disturbance ξ′ conventionally indicate respectively the O(a) component of φ and

ξ. The Lagrangian mean field φ
L

can be now easily evaluated as sum of Eulerian mean φ and

Stokes correction φ
S

.
Making the same assumption did in the previous section, i.e. (0.1.37a), we get analogous results

holding to:

φ
S ≈ 1

hs
η′φ′, (0.1.106)

φ
L ≈ φ +

1
hs

η′φ′, (0.1.107)

p ≈ ūS
ω to O(a2). (0.1.108)

These simple relation, valid in small ave amplitude approximation reduce the generality of the
previous founding in GLM theory to the ones gotten in the Eulerian framework for under the same
approximation. Under these approximation become easy to extract from the Eulerian Boussinesq
numerical model the Lagrangian mean quantities, avoiding the choose of an explicit disturbance
field ξ, which require a “closure”.
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0.1.3 Appendix A

Here ωξ
k is manipulated in the following two way:

ωξ
k = εk`m(uω m,`)

ξ = εk`m(uω m)ξ
,p

K`p

J
= εk`m(uω m)ξ

,` −Dk (0.1.109)

ωξ =
hξ

hξ
(∇× uω)ξ =

(∇× huω)ξ

hξ
− (∇h)ξ × uξ

ω

hξ
, (0.1.110)

with

Dk = εk`m(uω m)ξ
,p Bps, (0.1.111)

Bps = ξs,`
Ksp

J
. (0.1.112)

The first expression has been obtained invoking (0.1.73) and (0.1.70) and can be easily written in
the compact form as ωξ = ∇ × uξ

ω − D and it becomes useful for dealing with averaged terms
in (0.1.87) such as the 2nd, 3rd and 5th. The second expression (0.1.110) becomes very useful to

describe ωL = (∇× uω)ξ. Applying a time average and using Lemma 1 in Bühler (2000) we can
achieve the following result:

ωL =
∇× (h̃uω)− [(∇hξ ·K)× uξ

ω]

h̃
= ∇× ūL

ω −D , (0.1.113)

with

˜(huω)i = (huω)L
i + ξj,i (huω)`

j = (hsuω)L
i + ξj,i (hsuω)`

j + (ηuω)L
i + ξj,i (ηuω)`

j

= h
L

(ūL
ω)i + (h`u`

ω)i + ξj,i hξ(uω)`
j − h

L
ξj,i (uω)`

j

= h
L

[(ūL
ω)i − pi] + (hξu`

ω)i + ξj,i hξ(uω)`
j

= h
L

[(ūL
ω)i − pi] + hξ[(u`

ω)i + ξj,i (uω)`
j ]

= h
L

[(ūL
ω)i − pi] + hξ[(u`

ω)j Ξj,i] (0.1.114)
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0.1.4 Appendix B

Here uξ
12 and uξ

2 are developed as follows:

uξ
12 = [zα∇(∇ · (hsuω))]ξ +

[
z2
α

2
∇(∇ · uω)

]ξ

⇓

uξ
12 i =

[
zα

∂

∂xi

∂

∂xm
(hsuω m)

]ξ

+

[
z2
α

2
∂

∂xi

∂

∂xm
uω m

]ξ

= zξ
α





[(hsuω m),m]ξ,i − [(hsuω m),m]ξ,`
Kj`

J
ξj,i

︸ ︷︷ ︸
B`i





+
(zξ

α)2

2





[ uω m,m]ξ,i − [uω m,m]ξ,`
Kj`

J
ξj,i

︸ ︷︷ ︸
B`i





= zξ
α

{
(hξ

su
ξ
ω m),mi − B`i (hξ

su
ξ
ω m),m` −

[
Bpr (hξ

su
ξ
r),p

]
,i

+ B`i

[
Bpr (hξ

su
ξ
ω r),p

]
,`

}

+
(zξ

α)2

2

{
uξ

ω m,mi − B`i uξ
ω m,m` −

(
Bpr uξ

r,p

)
,i

+ B`i

(
Bpr uξ

ω r,p

)
,`

}

⇓
uξ

12 = zξ
α

{∇ [∇ · (hξ
su

ξ
ω)

]− B · ∇ [∇ · (hξ
su

ξ
ω)

]−∇ [
(B · ∇)(hξ

su
ξ
ω)

]
+ B · ∇ [

(B · ∇)(hξ
su

ξ
ω)

]}

+
(zξ

α)2

2

{∇ [∇ · uξ
ω

]− B · ∇ [∇ · uξ
ω

]−∇ [
(B · ∇)uξ

ω

]
+ B · ∇ [

(B · ∇)uξ
ω

]}

= zξ
α∇

(∇ · (hξ
su

ξ
ω)

)
+

(zξ
α)2

2
∇ (∇ · uξ

ω

)
+ zξ

α K
(
hξ

su
ξ
ω

)
+

(zξ
α)2

2
K

(
uξ

ω

)
, (0.1.115)

where (0.1.58b) (0.1.73) and (0.1.112) are used and the vector operator K is defined such that for
a generic 2D vector a:

K (a) = −B · ∇ [∇ · a]−∇ [(B · ∇)a] + B · ∇ [(B · ∇)a] . (0.1.116)

Analogous results can be find for the velocity u2 as shown in the following:

uξ
2 =

1
2

(
ηξ − hξ

s

)∇ (∇ · (hξ
su

ξ
ω)

)
+

1
6

(
(ηξ)2 − ηξhξ

s + (hξ
s)2

)∇ (∇ · uξ
ω

)

+
1
2

(
ηξ − hξ

s

)
K

(
hξ

su
ξ
ω

)
+

1
6

(
(ηξ)2 − ηξhξ

s + (hξ
s)2

)
K

(
uξ

ω

)
. (0.1.117)
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